diff options
author | Thomas Voss <mail@thomasvoss.com> | 2024-11-27 20:54:24 +0100 |
---|---|---|
committer | Thomas Voss <mail@thomasvoss.com> | 2024-11-27 20:54:24 +0100 |
commit | 4bfd864f10b68b71482b35c818559068ef8d5797 (patch) | |
tree | e3989f47a7994642eb325063d46e8f08ffa681dc /doc/rfc/rfc5515.txt | |
parent | ea76e11061bda059ae9f9ad130a9895cc85607db (diff) |
doc: Add RFC documents
Diffstat (limited to 'doc/rfc/rfc5515.txt')
-rw-r--r-- | doc/rfc/rfc5515.txt | 1571 |
1 files changed, 1571 insertions, 0 deletions
diff --git a/doc/rfc/rfc5515.txt b/doc/rfc/rfc5515.txt new file mode 100644 index 0000000..991ce84 --- /dev/null +++ b/doc/rfc/rfc5515.txt @@ -0,0 +1,1571 @@ + + + + + + +Network Working Group V. Mammoliti +Request for Comments: 5515 C. Pignataro +Category: Informational Cisco Systems + P. Arberg + Redback Networks + J. Gibbons + Juniper Networks + P. Howard + May 2009 + + + Layer 2 Tunneling Protocol (L2TP) Access Line Information + Attribute Value Pair (AVP) Extensions + +Status of This Memo + + This memo provides information for the Internet community. It does + not specify an Internet standard of any kind. Distribution of this + memo is unlimited. + +Copyright Notice + + Copyright (c) 2009 IETF Trust and the persons identified as the + document authors. All rights reserved. + + This document is subject to BCP 78 and the IETF Trust's Legal + Provisions Relating to IETF Documents in effect on the date of + publication of this document (http://trustee.ietf.org/license-info). + Please review these documents carefully, as they describe your rights + and restrictions with respect to this document. + +Abstract + + This document describes a set of Layer 2 Tunneling Protocol (L2TP) + Attribute Value Pair (AVP) extensions designed to carry the + subscriber Access Line identification and characterization + information that arrives at the Broadband Remote Access Server (BRAS) + with L2TP Access Concentrator (LAC) functionality. It also describes + a mechanism to report connection speed changes, after the initial + connection speeds are sent during session establishment. The primary + purpose of this document is to provide a reference for DSL equipment + vendors wishing to interoperate with other vendors' products. The + L2TP AVPs defined in this document are applicable to both L2TPv2 and + L2TPv3. + + + + + + + +Mammoliti, et al. Informational [Page 1] + +RFC 5515 L2TP Access Line AVP Extensions May 2009 + + +Table of Contents + + 1. Introduction ....................................................3 + 2. Terminology .....................................................3 + 2.1. Requirements Language ......................................3 + 2.2. Technical Terms and Acronyms ...............................4 + 3. Access Line Information L2TP AVP Operation ......................5 + 4. Additional L2TP Messages ........................................6 + 4.1. Connect-Speed-Update-Notification (CSUN) ...................8 + 4.2. Connect-Speed-Update-Request (CSURQ) .......................8 + 5. Access Line Information L2TP Attribute Value Pair Extensions ....9 + 5.1. Access Line Agent-Circuit-Id AVP ..........................10 + 5.2. Access Line Agent-Remote-Id AVP ...........................11 + 5.3. Access Line Actual-Data-Rate-Upstream AVP .................12 + 5.4. Access Line Actual-Data-Rate-Downstream AVP ...............13 + 5.5. Access Line Minimum-Data-Rate-Upstream AVP ................13 + 5.6. Access Line Minimum-Data-Rate-Downstream AVP ..............14 + 5.7. Access Line Attainable-Data-Rate-Upstream AVP .............14 + 5.8. Access Line Attainable-Data-Rate-Downstream AVP ...........14 + 5.9. Access Line Maximum-Data-Rate-Upstream AVP ................15 + 5.10. Access Line Maximum-Data-Rate-Downstream AVP .............15 + 5.11. Access Line Minimum-Data-Rate-Upstream-Low-Power AVP .....16 + 5.12. Access Line Minimum-Data-Rate-Downstream-Low-Power AVP ...16 + 5.13. Access Line Maximum-Interleaving-Delay-Upstream AVP ......17 + 5.14. Access Line Actual-Interleaving-Delay-Upstream AVP .......17 + 5.15. Access Line Maximum-Interleaving-Delay-Downstream AVP ....18 + 5.16. Access Line Actual-Interleaving-Delay-Downstream AVP .....18 + 5.17. Access Line Access-Loop-Encapsulation AVP ................19 + 5.18. ANCP Access Line Type AVP ................................20 + 5.19. Access Line IWF-Session AVP ..............................21 + 6. Connect Speed Update L2TP Attribute Value Pair Extensions ......22 + 6.1. Connect Speed Update AVP (CSUN, CSURQ) ....................22 + 6.2. Connect Speed Update Enable AVP (ICRQ) ....................23 + 7. Access Line Information AVP Mapping ............................24 + 7.1. Summary of Access Line AVPs ...............................24 + 8. IANA Considerations ............................................25 + 8.1. Message Type AVP Values ...................................25 + 8.2. Control Message Attribute Value Pairs (AVPs) ..............25 + 8.3. Values for Access Line Information AVPs ...................25 + 9. Security Considerations ........................................25 + 10. Acknowledgements ..............................................26 + 11. References ....................................................26 + 11.1. Normative References .....................................26 + 11.2. Informative References ...................................27 + + + + + + + +Mammoliti, et al. Informational [Page 2] + +RFC 5515 L2TP Access Line AVP Extensions May 2009 + + +1. Introduction + + Access Nodes (ANs), referred to as Digital Subscriber Line Access + Multiplexers (DSLAMs) in DSL, are adding enhancement features to + forward, via in-band signaling, subscriber Access Line identification + and characterization information to their connected upstream + Broadband Remote Access Server (BRAS) with L2TP Access Concentrator + (LAC) functionality. + + The Access Node/DSLAM may forward the information via one or more of + the following methods: + + o Vendor-Specific Point-to-Point Protocol over Ethernet (PPPoE) Tags + [RFC2516]. + + o DHCP Relay Options [RFC3046] and Vendor-Specific Information + Suboptions [RFC4243]. + + o Access Node Control Protocol [ANCP]. + + Currently, this information is been collected on the BRAS and + forwarded to a radius server via [RFC4679]. + + This document describes the new additional L2TP AVPs that were + created to forward the subscriber line identification and + characterization information received at the BRAS/LAC to the + terminating L2TP Network Server (LNS). It also describes a mechanism + by which the LAC may report connection speed changes to the LNS, + after the initial connection speeds are sent by the LAC during + session establishment. + + The L2TP AVPs defined in this document MAY be used with either an + L2TPv2 [RFC2661] or L2TPv3 [RFC3931] implementation. + + The information acquired may be used to provide authentication, + policy, and accounting functionality. It may also be collected and + used for management and troubleshooting purposes. + +2. Terminology + + The following sections define the usage and meaning of certain + specialized terms in the context of this document. + +2.1. Requirements Language + + The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", + "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this + document are to be interpreted as described in [RFC2119]. + + + +Mammoliti, et al. Informational [Page 3] + +RFC 5515 L2TP Access Line AVP Extensions May 2009 + + +2.2. Technical Terms and Acronyms + + Access Node/DSLAM + + The Access Node/DSLAM is a DSL signal terminator that contains a + minimum of one Ethernet or ATM interface that serves as its + upstream interface into which it aggregates traffic from several + ATM-based (subscriber ports) or Ethernet-based downstream + interfaces. + + BNG + + Broadband Network Gateway. A BNG is an IP edge router where + bandwidth and Quality-of-Service (QoS) policies are applied; the + functions performed by a BRAS are a superset of those performed by + a BNG. + + BRAS + + Broadband Remote Access Server. A BRAS is a BNG and is the + aggregation point for the subscriber traffic. It provides + aggregation capabilities (e.g., IP, PPP, Ethernet) between the + access network and the core network. Beyond its aggregation + function, the BRAS is also an injection point for policy + management and IP QoS in the access network. + + DSL + + Digital Subscriber Line. DSL is a technology that allows digital + data transmission over wires in the local telephone network. + + DSLAM + + Digital Subscriber Line Access Multiplexer. DSLAM is a device + that terminates DSL subscriber lines. The data is aggregated and + forwarded to ATM- or Ethernet-based aggregation networks. + + IWF + + Interworking Function. The set of functions required for + interconnecting two networks of different technologies (e.g., ATM + and Ethernet). IWF is utilized to enable the carriage of Point- + to-Point Protocol over ATM (PPPoA) traffic over PPPoE. + + + + + + + + +Mammoliti, et al. Informational [Page 4] + +RFC 5515 L2TP Access Line AVP Extensions May 2009 + + + LAC + + L2TP Access Concentrator. If an L2TP Control Connection Endpoint + (LCCE) is being used to cross-connect an L2TP session directly to + a data link, we refer to it as an L2TP Access Concentrator (LAC). + (See [RFC2661] and [RFC3931].) + + LCCE + + L2TP Control Connection Endpoint. An L2TP node that exists at + either end of an L2TP control connection. May also be referred to + as an LAC or LNS, depending on whether tunneled frames are + processed at the data link (LAC) or network layer (LNS). (See + [RFC3931].) + + LNS + + L2TP Network Server. If a given L2TP session is terminated at the + L2TP node and the encapsulated network layer (L3) packet processed + on a virtual interface, we refer to this L2TP node as an L2TP + Network Server (LNS). (See [RFC2661] and [RFC3931].) + +3. Access Line Information L2TP AVP Operation + + When the BRAS with LAC functionality receives the Access Line + information from the Access Node and has determined that the session + will be established with an LNS, the LAC will forward the information + that it has collected in the newly defined L2TP AVPs. The LAC will + only forward the Access Line Information AVPs that have populated + values. + + Access Line information from any of the above methods must be + available at the BRAS prior to the start of session negotiation by + the LAC. This ensures Access Line parameters are reliably provided + to the LNS and avoids additional call set-up delays. Under the + condition that the LAC has not received any Access Line information + from any of the methods, as default behavior the LAC SHOULD establish + the L2TP session without waiting for the Access Line information. In + this case, the LAC MUST NOT send any of the Access Line AVPs to the + LNS. The LAC MAY, as local policy, wait for the Access Line + information from one or more of the methods before forwarding the + information in the Access Line L2TP AVPs to the LNS. + + It is possible that the Access Node will only send a subset of the + currently available line information defined. The LAC MUST be able + to limit and/or filter which AVPs, if any, are sent to the LNS. + + + + + +Mammoliti, et al. Informational [Page 5] + +RFC 5515 L2TP Access Line AVP Extensions May 2009 + + + It is also possible that the LAC may receive Access Line information + from multiple sources and at different time intervals. Local policy + SHOULD determine which source(s) the LAC will accept. The LAC SHOULD + default to accepting ANCP-sourced parameters. + + The Access Line AVPs are sent as part of the L2TP Incoming-Call- + Request (ICRQ) control message. Connect Speed Update AVPs are sent + as part of the Connect-Speed-Update-Notification (CSUN) or Connect- + Speed-Update-Request (CSURQ) L2TP messages (see Sections 4, 4.1, and + 4.2). + + It is possible for the LAC to send updated Connect Speed + characteristics to the LNS via the Connect Speed Update AVP in an + L2TP Connect-Speed-Update-Notification (CSUN) control message (see + Section 4.1). To avoid unnecessary L2TP Connect-Speed-Update-Request + and Connect-Speed-Update-Notification message exchanges between the + LAC and LNS (e.g., during failover protocol recovery and + resynchronization), the LAC signals in the session establishment + exchange its ability and desire to provide speed updates during the + life of the session. This is achieved using a new AVP, Connect Speed + Update Enable (see Section 6.2), sent in the L2TP Incoming-Call- + Request (ICRQ) control message. The absence of this AVP in the ICRQ + message implies that the LAC will not be sending any speed updates + during the life of the session. If the LAC is configured to accept + ANCP-sourced parameters, and supports providing speed updates during + the life of a session, it MUST send the Connect Speed Update Enable + AVP in the ICRQ, since this implies that speed updates may occur over + the life of the connection. If the LAC is configured to only accept + PPPoE vendor-specific tags, it MUST NOT send the Connect Speed Update + Enable AVP in the ICRQ, since the connection speed is only sent + during PPPoE discovery and no further updates will occur during the + life of the connection. + +4. Additional L2TP Messages + + If the Access Line information changes while the session is still + maintained, connection speed updates MAY be sent from the LAC to the + LNS via an L2TP Connect-Speed-Update-Notification (CSUN) Message (see + Section 4.1). A new AVP, Connect Speed Update AVP (see Section 6.1), + is included in the CSUN message to report connect speed updates for a + specific session after the initial connection speeds are established + (i.e., at session establishment via the Tx Connect Speed and Rx + Connect Speed AVPs, Attribute Types 24 and 38, respectively, for + L2TPv2 and 74 and 75, respectively, for L2TPv3). The values + established in the Connect Speed Update AVP (as well as the values + for the initial Tx/Rx Connect Speeds AVPs) are based on LAC local + policy. For example, the LAC's local policy may use the Actual-Data- + Rate-Upstream and Actual-Data-Rate-Downstream as its policy to report + + + +Mammoliti, et al. Informational [Page 6] + +RFC 5515 L2TP Access Line AVP Extensions May 2009 + + + connection speed updates. For consistency, the same local policy + SHOULD equally apply both to the initial connect speeds (conveyed + during session establishment) and to the (optional) connect speed + updates (sent after the establishment of the session). The CSUN + message MAY be sent periodically to the LNS based on local policy and + may include more than one Connect Speed Update AVP. The bulking of + more than one Connect Speed Update AVP into the CSUN message serves + the following purposes: + + o Dampens the rate of changes sent to the LNS when Access Line + parameter updates are received at a high rate for a given line. + + o Efficiently forwards speed updates when Access Line parameter + updates are received for many lines at the same time. + + o Supports failover [RFC4951] protocol recovery and + resynchronization. + + During failover recovery and resynchronization, to ensure the correct + speeds have been applied to outstanding sessions on each tunnel, the + LNS MAY issue a Connect-Speed-Update-Request (CSURQ) message (see + Section 4.2) to the LAC containing one or more Session IDs. In + response to the CSURQ message, the LAC MUST issue a Connect-Speed- + Update-Notification (CSUN) message (see Section 4.1) containing a + Connect Speed Update AVP for each of the Session IDs requested in the + CSURQ. Note: In the CSUN response to the CSURQ, the LAC MUST NOT + respond to unknown sessions, or to known sessions for which it did + not issue a Connect Speed Update Enable AVP in the prior Incoming- + Call-Request (ICRQ) control message for the session (see Sections 3 + and 6.2). + + This section defines two new Messages that are used with the IETF + Vendor ID of 0 in the Message Type AVP. + + The following message types will be assigned to these new messages + (see Section 8.1): + + 28: (CSUN) Connect-Speed-Update-Notification + + 29: (CSURQ) Connect-Speed-Update-Request + + The Mandatory (M) bit within the Message Type AVP SHOULD be clear + (i.e., not set) for the CSUN and CSURQ control messages, to allow for + an L2TP Control Connection Endpoint (LCCE) to maintain the control + connection if the message type is unknown. + + + + + + +Mammoliti, et al. Informational [Page 7] + +RFC 5515 L2TP Access Line AVP Extensions May 2009 + + +4.1. Connect-Speed-Update-Notification (CSUN) + + The Connect-Speed-Update-Notification (CSUN) is an L2TP control + message sent by the LAC to the LNS to provide transmit and receive + connection speed updates for one or more sessions. The connection + speed may change at any time during the life of the call; thus, the + LNS SHOULD be able to update its connection speed on an active + session. + + The following AVPs MUST be present in the CSUN: + + Message Type + + Connect Speed Update (more than one may be present in the CSUN) + + Note that the LAC MUST NOT include a Connect Speed Update AVP for + which it did not send a Connect Speed Update Enable AVP in the prior + Incoming-Call-Request (ICRQ) control message for the session. + +4.2. Connect-Speed-Update-Request (CSURQ) + + The Connect-Speed-Update-Request (CSURQ) is an L2TP control message + sent by the LNS to the LAC to request the current transmit and + receive connection speed for one or more sessions. It MAY be issued + at any time during the life of the tunnel and MUST only be issued for + each outstanding session on each tunnel on which the LNS has already + received a Connect Speed Update Enable AVP in the prior Incoming- + Call-Request (ICRQ) control message for the session. It is typically + used as part of failover recovery and resynchronization to allow the + LNS to verify it has the correct speeds for each outstanding session + on each tunnel. + + The following AVPs MUST be present in the CSURQ: + + Message Type + + Connect Speed Update (more than one may be present in the CSURQ) + + The Current Tx Connect Speed and Current Rx Connect Speed fields in + the Connect Speed Update AVP MUST be set to 0 when this AVP is used + in the CSURQ message. + + In the CSUN response to the CSURQ, the LAC MUST NOT respond to + unknown sessions or to known sessions for which it did not issue a + Connect Speed Update Enable AVP in the prior Incoming-Call-Request + (ICRQ) control message for the session. + + + + + +Mammoliti, et al. Informational [Page 8] + +RFC 5515 L2TP Access Line AVP Extensions May 2009 + + +5. Access Line Information L2TP Attribute Value Pair Extensions + + The Access Line information was initially defined in the DSL Forum + Technical Report TR-101 [TR-101]. TR-101 defines the line + characteristic that are sent from an Access Node. + + The following sections contain a list of the Access Line Information + L2TP AVPs. Included with each of the listed AVPs is a short + description of the purpose of the AVPs. + + The AVPs follow the standard method of encoding AVPs as follows: + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + |M|H| rsvd | Length | Vendor ID | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Attribute Type |Attribute Value, if Required ... + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + ... (Until Length is reached) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + The M bit for all the AVPs defined in this document SHOULD be set to + 0 to allow for backwards compatibility with LNSs that do not support + the Access Line Information AVP extensions hereby defined. However, + if it is desired to prevent the establishment of the L2TP session if + the peer LNS does not support the Access Line Information AVP + extensions, the M bit MAY be set to 1. See Section 4.2 of [RFC2661] + and Section 5.2 of [RFC3931]. + + All the AVPs defined in this document MAY be hidden (the H bit MAY be + 0 or 1). + + The Length (before hiding) of all the listed AVPs is 6 plus the + length of the Attribute Value, if one is required, in octets. + + The Vendor ID for all the listed AVPs (Sections 5.1 through 5.19) is + that of the IANA assigned ADSL Forum Vendor ID, decimal 3561 + [IANA.enterprise-numbers]. + + All the listed AVPs (Section 5.1 through Section 5.19) MAY be present + in the following messages unless otherwise stipulated: + + Incoming-Call-Request (ICRQ) + + The Value of the AVP contains information about the Access Line to + which the subscriber is attached. + + + + +Mammoliti, et al. Informational [Page 9] + +RFC 5515 L2TP Access Line AVP Extensions May 2009 + + + With the exception of the Connect Speed Update AVP (see Section 6.1), + all new AVPs specifying a data rate or speed expressed in bits per + second (bps) will be sent as 64-bits to provide extensibility to + support future increases in subscriber connection speeds. These new + AVPs that specify a 64-bit "Data-Rate" are defined from Section 5.3 + to Section 5.12, both inclusive. Whenever a speed value sent in an + AVP fits within 32 bits, the upper 32 bits MUST be transmitted as 0s. + + The various Data-Rates and Interleaving-Delays used in the subsequent + Sections 5.3 through 5.16 are defined in Section 3.9.4 of [TR-101]. + The qualifiers used with these Data-Rates and Interleaving-Delays + have the following meanings: + + o Actual Actual rate or delay of an access loop + + o Attainable Maximum value that can be achieved by the equipment + + o Minimum Minimum value configured by the operator + + o Maximum Maximum value configured by the operator + +5.1. Access Line Agent-Circuit-Id AVP + + The Access Line Agent-Circuit-Id AVP, Attribute Type 1, contains + information describing the subscriber agent circuit ID corresponding + to the logical access loop port of the Access Node/DSLAM from which a + subscriber's requests are initiated. + + The Attribute Value field for this AVP has the following format: + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Agent-Circuit-Id ... (2 to 63 octets) + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + The Agent-Circuit-Id is of arbitrary length, but MUST be greater than + 1 octet and not greater than 63 octets. + + The Length (before hiding) of this AVP is 6 plus the length of the + Agent-Circuit-Id. + + The Agent-Circuit-Id contains information about the Access Node/DSLAM + to which the subscriber is attached, along with a unique identifier + for the subscriber's DSL port on that Access Node/DSLAM. The Agent- + + + + + + +Mammoliti, et al. Informational [Page 10] + +RFC 5515 L2TP Access Line AVP Extensions May 2009 + + + Circuit-Id contains a locally administered string representing the + access loop logical port, and its syntax is defined in Section 3.9.3 + of [TR-101]. The text string is encoded in the UTF-8 charset + [RFC3629]. + + An exemplary description of the Agent-Circuit-Id string format + follows for background purposes. The LAC MUST treat the string as an + opaque value and MUST NOT manipulate or enforce the format of the + string based on the description here or in TR-101 [TR-101]. + + Default syntax for the string is defined in [TR-101]. The examples + in this section are included only for illustrative purposes. The + exact syntax of the string is implementation dependent; however, a + typical practice is to subdivide it into two or more space-separated + components, one to identify the Access Node and another the + subscriber line on that node, with perhaps an indication of whether + that line is Ethernet or ATM. Example formats for this string are + shown below. + + "Access-Node-Identifier atm slot/port:vpi.vci" + (when ATM/DSL is used) + + "Access-Node-Identifier eth slot/port[:vlan-id]" + (when Ethernet/DSL is used) + + The syntax for the string is defined in [TR-101]. An example showing + the slot and port field encoding is given below: + + "Relay-identifier atm 3/0:100.33" + (slot = 3, port = 0, vpi = 100, vci = 33) + + The Access-Node-Identifier is a unique ASCII string that does not + include 'space' characters. The syntax of the slot and port fields + reflects typical practices currently in place. The slot identifier + does not exceed 6 characters in length, and the port identifier does + not exceed 3 characters in length using a '/' as a delimiter. + + The exact manner in which slots are identified is Access Node/DSLAM + implementation dependent. The vpi, vci, and vlan-id fields (when + applicable) are related to a given access loop (U-interface). + +5.2. Access Line Agent-Remote-Id AVP + + The Access Line Agent-Remote-Id AVP, Attribute Type 2, contains an + operator-specific, statically configured string that uniquely + identifies the subscriber on the associated access loop of the Access + Node/DSLAM. + + + + +Mammoliti, et al. Informational [Page 11] + +RFC 5515 L2TP Access Line AVP Extensions May 2009 + + + The Attribute Value field for this AVP has the following format: + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Agent-Remote-Id ... (2 to 63 octets) + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + The Agent-Remote-Id is of arbitrary length, but MUST be greater than + 1 octet and not greater than 63 octets. + + The Length (before hiding) of this AVP is 6 plus the length of the + Agent-Remote-Id. + + The Agent-Remote-Id contains information sent from the Access Node/ + DSLAM from which the subscriber is attached, to further refine the + access loop logical port identification with a user. The content of + this message is entirely open to the service provider's discretion. + For example, it MAY contain a subscriber billing ID or telephone + number. The LAC MUST treat the string as an opaque value and MUST + NOT manipulate or enforce its format. The text string is defined in + [TR-101], and is encoded in the UTF-8 charset [RFC3629]. + +5.3. Access Line Actual-Data-Rate-Upstream AVP + + The Access Line Actual-Data-Rate-Upstream AVP, Attribute Type 129, + contains the actual upstream train rate of a subscriber's + synchronized Access link. + + The Attribute Value field for this AVP has the following format: + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Actual-Data-Rate-Upstream + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + ... in bps (64 bits) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + The Actual-Data-Rate-Upstream is an 8-octet value. + + The Actual-Data-Rate-Upstream AVP contains an 8-octet unsigned + integer, indicating the subscriber's actual data rate upstream of a + synchronized Access link. The rate is coded in bits per second. + + The Length (before hiding) of this AVP is 14. + + + + + +Mammoliti, et al. Informational [Page 12] + +RFC 5515 L2TP Access Line AVP Extensions May 2009 + + +5.4. Access Line Actual-Data-Rate-Downstream AVP + + The Access Line Actual-Data-Rate-Downstream AVP, Attribute Type 130, + contains the actual downstream train rate of a subscriber's + synchronized Access link. + + The Attribute Value field for this AVP has the following format: + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Actual-Data-Rate-Downstream + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + ... in bps (64 bits) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + The Actual-Data-Rate-Downstream AVP contains an 8-octet unsigned + integer, indicating the subscriber's actual data rate downstream of a + synchronized Access link. The rate is coded in bits per second. + + The Length (before hiding) of this AVP is 14. + +5.5. Access Line Minimum-Data-Rate-Upstream AVP + + The Access Line Minimum-Data-Rate-Upstream AVP, Attribute Type 131, + contains the subscriber's operator-configured minimum upstream data + rate. + + The Attribute Value field for this AVP has the following format: + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Minimum-Data-Rate-Upstream + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + ... in bps (64 bits) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + The Minimum-Data-Rate-Upstream AVP contains an 8-octet unsigned + integer, indicating the subscriber's minimum upstream data rate (as + configured by the operator). The rate is coded in bits per second. + + The Length (before hiding) of this AVP is 14. + + + + + + + + +Mammoliti, et al. Informational [Page 13] + +RFC 5515 L2TP Access Line AVP Extensions May 2009 + + +5.6. Access Line Minimum-Data-Rate-Downstream AVP + + The Access Line Minimum-Data-Rate-Downstream AVP, Attribute Type 132, + contains the subscriber's operator-configured minimum downstream data + rate. + + The Attribute Value field for this AVP has the following format: + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Minimum-Data-Rate-Downstream + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + ... in bps (64 bits) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + The Minimum-Data-Rate-Downstream AVP contains an 8-octet unsigned + integer, indicating the subscriber's minimum downstream data rate (as + configured by the operator). The rate is coded in bits per second. + + The Length (before hiding) of this AVP is 14. + +5.7. Access Line Attainable-Data-Rate-Upstream AVP + + The Access Line Attainable-Data-Rate-Upstream AVP, Attribute Type + 133, contains the subscriber's actual attainable upstream data rate. + + The Attribute Value field for this AVP has the following format: + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Attainable-Data-Rate-Upstream + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + ... in bps (64 bits) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + The Attainable-Data-Rate-Upstream AVP contains an 8-octet unsigned + integer, indicating the subscriber's Access Line actual attainable + upstream data rate. The rate is coded in bits per second. + + The Length (before hiding) of this AVP is 14. + +5.8. Access Line Attainable-Data-Rate-Downstream AVP + + The Access Line Attainable-Data-Rate-Downstream AVP, Attribute Type + 134, contains the subscriber's actual attainable downstream data + rate. + + + +Mammoliti, et al. Informational [Page 14] + +RFC 5515 L2TP Access Line AVP Extensions May 2009 + + + The Attribute Value field for this AVP has the following format: + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Attainable-Data-Rate-Downstream + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + ... in bps (64 bits) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + The Attainable-Data-Rate-Downstream AVP contains an 8-octet unsigned + integer, indicating the subscriber's Access Line actual DSL + attainable downstream data rate. The rate is coded in bits per + second. + + The Length (before hiding) of this AVP is 14. + +5.9. Access Line Maximum-Data-Rate-Upstream AVP + + The Access Line Maximum-Data-Rate-Upstream AVP, Attribute Type 135, + contains the subscriber's maximum upstream data rate, as configured + by the operator. + + The Attribute Value field for this AVP has the following format: + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Maximum-Data-Rate-Upstream + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + ... in bps (64 bits) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + The Maximum-Data-Rate-Upstream AVP contains an 8-octet unsigned + integer, indicating the numeric value of the subscriber's Access Line + maximum upstream data rate. The rate is coded in bits per second. + + The Length (before hiding) of this AVP is 14. + +5.10. Access Line Maximum-Data-Rate-Downstream AVP + + The Access Line Maximum-Data-Rate-Downstream AVP, Attribute Type 136, + contains the subscriber's maximum downstream data rate, as configured + by the operator. + + + + + + + +Mammoliti, et al. Informational [Page 15] + +RFC 5515 L2TP Access Line AVP Extensions May 2009 + + + The Attribute Value field for this AVP has the following format: + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Maximum-Data-Rate-Downstream + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + ... in bps (64 bits) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + The Maximum-Data-Rate-Downstream AVP contains an 8-octet unsigned + integer, indicating the numeric value of the subscriber's Access Line + maximum downstream data rate. The rate is coded in bits per second. + + The Length (before hiding) of this AVP is 14. + +5.11. Access Line Minimum-Data-Rate-Upstream-Low-Power AVP + + The Access Line Minimum-Data-Rate-Upstream-Low-Power AVP, Attribute + Type 137, contains the subscriber's minimum upstream data rate in low + power state, as configured by the operator. + + The Attribute Value field for this AVP has the following format: + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Minimum-Data-Rate-Upstream-Low-Power + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + ... in bps (64 bits) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + The Minimum-Data-Rate-Upstream-Low-Power AVP contains an 8-octet + unsigned integer, indicating the numeric value of the subscriber's + Access Line minimum upstream data rate when in low power state + (L1/L2). The rate is coded in bits per second. + + The Length (before hiding) of this AVP is 14. + +5.12. Access Line Minimum-Data-Rate-Downstream-Low-Power AVP + + The Access Line Minimum-Data-Rate-Downstream-Low-Power AVP, Attribute + Type 138, contains the subscriber's minimum downstream data rate in + low power state, as configured by the operator. + + + + + + + +Mammoliti, et al. Informational [Page 16] + +RFC 5515 L2TP Access Line AVP Extensions May 2009 + + + The Attribute Value field for this AVP has the following format: + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Minimum-Data-Rate-Downstream-Low-Power + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + ... in bps (64 bits) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + The Minimum-Data-Rate-Downstream-Low-Power AVP contains an 8-octet + unsigned integer, indicating the numeric value of the subscriber's + Access Line minimum downstream data rate when in low power state + (L1/L2). The rate is coded in bits per second. + + The Length (before hiding) of this AVP is 14. + +5.13. Access Line Maximum-Interleaving-Delay-Upstream AVP + + The Access Line Maximum-Interleaving-Delay-Upstream AVP, Attribute + Type 139, contains the subscriber's maximum one-way upstream + interleaving delay, as configured by the operator. + + The Attribute Value field for this AVP has the following format: + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Maximum-Interleaving-Delay-Upstream | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + The Maximum-Interleaving-Delay-Upstream AVP contains a 4-octet + unsigned integer, indicating the numeric value in milliseconds of the + subscriber's Access Line maximum one-way upstream interleaving delay. + + The Length (before hiding) of this AVP is 10. + +5.14. Access Line Actual-Interleaving-Delay-Upstream AVP + + The Access Line Actual-Interleaving-Delay-Upstream AVP, Attribute + Type 140, contains the subscriber's actual one-way upstream + interleaving delay. + + + + + + + + + +Mammoliti, et al. Informational [Page 17] + +RFC 5515 L2TP Access Line AVP Extensions May 2009 + + + The Attribute Value field for this AVP has the following format: + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Actual-Interleaving-Delay-Upstream | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + The Actual-Interleaving-Delay-Upstream AVP contains a 4-octet + unsigned integer, indicating the numeric value in milliseconds of the + subscriber's Access Line actual upstream interleaving delay. + + The Length (before hiding) of this AVP is 10. + +5.15. Access Line Maximum-Interleaving-Delay-Downstream AVP + + The Access Line Maximum-Interleaving-Delay-Downstream AVP, Attribute + Type 141, contains the subscriber's maximum one-way downstream + interleaving delay, as configured by the operator. + + The Attribute Value field for this AVP has the following format: + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Maximum-Interleaving-Delay-Downstream | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + The Maximum-Interleaving-Delay-Downstream AVP contains a 4-octet + unsigned integer, indicating the numeric value in milliseconds of the + subscriber's Access Line maximum one-way downstream interleaving + delay. + + The Length (before hiding) of this AVP is 10. + +5.16. Access Line Actual-Interleaving-Delay-Downstream AVP + + The Access Line Actual-Interleaving-Delay-Downstream AVP, Attribute + Type 142, contains the subscriber's actual one-way downstream + interleaving delay. + + + + + + + + + + + +Mammoliti, et al. Informational [Page 18] + +RFC 5515 L2TP Access Line AVP Extensions May 2009 + + + The Attribute Value field for this AVP has the following format: + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Actual-Interleaving-Delay-Downstream | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + The Actual-Interleaving-Delay-Downstream AVP contains a 4-octet + unsigned integer, indicating the numeric value in milliseconds of the + subscriber's Access Line actual downstream interleaving delay. + + The Length (before hiding) of this AVP is 10. + +5.17. Access Line Access-Loop-Encapsulation AVP + + The Access Line Access-Loop-Encapsulation AVP, Attribute Type 144, + describes the encapsulation(s) used by the subscriber on the access + loop. + + The Length (before hiding) of this AVP is 9. + + The Access-Loop-Encapsulation value is comprised of three 1-octet + values representing the Data Link, Encapsulation 1, and Encapsulation + 2, respectively. + + The Access-Loop-Encapsulation value is 3 octets in length, logically + divided into three 1-octet sub-fields, each containing its own + enumeration value, as shown in the following diagram: + + + 0 1 2 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Data Link | Encaps 1 | Encaps 2 | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + Valid values for the sub-fields are as follows: + + Data Link + + 0x00 ATM AAL5 + + 0x01 Ethernet + + + + + + + +Mammoliti, et al. Informational [Page 19] + +RFC 5515 L2TP Access Line AVP Extensions May 2009 + + + Encaps 1 + + 0x00 NA - Not Available + + 0x01 Untagged Ethernet + + 0x02 Single-Tagged Ethernet + + Encaps 2 + + 0x00 NA - Not Available + + 0x01 PPPoA LLC + + 0x02 PPPoA Null + + 0x03 IP over ATM (IPoA) LLC + + 0x04 IPoA Null + + 0x05 Ethernet over AAL5 LLC with Frame Check Sequence (FCS) + + 0x06 Ethernet over AAL5 LLC without FCS + + 0x07 Ethernet over AAL5 Null with FCS + + 0x08 Ethernet over AAL5 Null without FCS + +5.18. ANCP Access Line Type AVP + + The ANCP Access Line Type AVP, Attribute Type 145, describes the + transmission systems on access loop to the subscriber. + + The Attribute Value field for this AVP has the following format: + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | ANCP-Access-Line-Type | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + The Length (before hiding) of this AVP is 10. The ANCP Access Line + Type AVP defines the type of transmission system used. + + + + + + + + +Mammoliti, et al. Informational [Page 20] + +RFC 5515 L2TP Access Line AVP Extensions May 2009 + + + The ANCP Access Line Type AVP contains a 1-octet field encoding the + Transmission System, followed by a 3-octet reserved field (MUST be + zero), and is 4 octets in length. It indicates the transmission + systems on access loop to the subscriber. The current valid values + only utilize the 1-octet field. + + Valid values are as follows: + + Transmission system: + + 0x01 ADSL1 + + 0x02 ADSL2 + + 0x03 ADSL2+ + + 0x04 VDSL1 + + 0x05 VDSL2 + + 0x06 SDSL + + 0x07 UNKNOWN + +5.19. Access Line IWF-Session AVP + + The Access Line IWF-Session AVP, Attribute Type 254, indicates if an + Interworking Function has been performed with respect to the + subscriber's session. + + The Attribute Value field for this AVP has the following format: + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Inter-Working Function | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + The Inter-Working Function is a 4-octet value. + + Valid values for this field are as follows: + + 0x00 IWF not performed + + 0x01 IWF performed + + The Length (before hiding) of this AVP is 10. + + + + +Mammoliti, et al. Informational [Page 21] + +RFC 5515 L2TP Access Line AVP Extensions May 2009 + + +6. Connect Speed Update L2TP Attribute Value Pair Extensions + + The following sections define Connect Speed Update related AVPs. + These AVPs (Section 6.1 and Section 6.2) use the IETF Vendor ID of 0. + + The M bit for these AVPs SHOULD be set to 0. However, if it is + desired to prevent the establishment or tear down the established + L2TP session if the peer LNS does not support the Connect Speed + Update AVP extensions, the M bit MAY be set to 1. See Section 4.2 of + [RFC2661] and Section 5.2 of [RFC3931]. + +6.1. Connect Speed Update AVP (CSUN, CSURQ) + + The Connect Speed Update AVP, Attribute Type 97, contains the updated + connection speeds for this session. The format is consistent with + that of the Tx Connect Speed and Rx Connect Speed AVPs for L2TPv2 + (Attribute Types 24 and 38, respectively) and L2TPv3 (Attribute Types + 74 and 75, respectively). Hence, there is a separate format defined + for L2TPv2 and L2TPv3. + + The Attribute Value field for this AVP has the following format for + L2TPv2 Tunnels: + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Reserved | Remote Session Id | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Current Tx Connect Speed in bps | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Current Rx Connect Speed in bps | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + + + + + + + + + + + + + + + + + + +Mammoliti, et al. Informational [Page 22] + +RFC 5515 L2TP Access Line AVP Extensions May 2009 + + + The Attribute Value field for this AVP has the following format for + L2TPv3 Tunnels: + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Remote Session Id | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Current Tx Connect Speed in bps... + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + ...Current Tx Connect Speed in bps (64 bits) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Current Rx Connect Speed in bps... + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + ...Current Rx Connect Speed in bps (64 bits) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + The Remote Session Id is the remote session id relative to the sender + (i.e., the identifier that was assigned to this session by the peer). + The Current Tx Connect Speed is a 4-octet value (L2TPv2) or an + 8-octet value (L2TPv3) representing the current transmit connect + speed, from the perspective of the LAC (e.g., data flowing from the + LAC to the remote system). The rate is encoded in bits per second. + The Current Rx Connect Speed is a 4-octet value (L2TPv2) or an + 8-octet value (L2TPv3) representing the current receive connect + speed, from the perspective of the LAC (e.g., data flowing from the + remote system to the LAC). The rate is encoded in bits per second. + + The Length (before hiding) of this AVP is 18 (L2TPv2) or 26 (L2TPv3). + +6.2. Connect Speed Update Enable AVP (ICRQ) + + The Connect Speed Update Enable AVP, Attribute Type 98, indicates + whether the LAC intends to send speed updates to the LNS during the + life of the session. The Connect Speed Update Enable AVP is a + boolean AVP. Presence of this AVP indicates that the LAC MAY send + speed updates using CSUN (see Section 4.1) during the life of the + session, and the LNS SHOULD query for the current connection speed + via the CSURQ (see Section 4.2) during failover synchronization. + Absence of this AVP indicates that the LAC will not be sending speed + updates using CSUN (see Section 4.1) during the life of the session, + and the LNS MUST NOT query for the current connection speed via the + CSURQ (see Section 4.2) during failover synchronization. + + The Length (before hiding) of this AVP is 6. + + + + + + +Mammoliti, et al. Informational [Page 23] + +RFC 5515 L2TP Access Line AVP Extensions May 2009 + + +7. Access Line Information AVP Mapping + + The Access Line information that is obtained from the Access Node/ + DSLAM is required to be mapped into the Access Line AVPs. The Access + Line information can be obtained via: + + o Vendor-Specific PPPoE Tags [RFC2516]. + + o DHCP Relay Options [RFC3046] and Vendor-Specific Information + Suboptions [RFC4243]. + + o ANCP [ANCP]. + +7.1. Summary of Access Line AVPs + + Table 1 summarizes the Access Line AVPs defined in Sections 5.1 + through 5.19. + + +-----------------+----------------------------------------+ + | Access Line AVP | Name | + +-----------------+----------------------------------------+ + | 1 (0x01) | Agent-Circuit-Id | + | 2 (0x02) | Agent-Remote-Id | + | 129 (0x81) | Actual-Data-Rate-Upstream | + | 130 (0x82) | Actual-Data-Rate-Downstream | + | 131 (0x83) | Minimum-Data-Rate-Upstream | + | 132 (0x84) | Minimum-Data-Rate-Downstream | + | 133 (0x85) | Attainable-Data-Rate-Upstream | + | 134 (0x86) | Attainable-Data-Rate-Downstream | + | 135 (0x87) | Maximum-Data-Rate-Upstream | + | 136 (0x88) | Maximum-Data-Rate-Downstream | + | 137 (0x89) | Minimum-Data-Rate-Upstream-Low-Power | + | 138 (0x8A) | Minimum-Data-Rate-Downstream-Low-Power | + | 139 (0x8B) | Maximum-Interleaving-Delay-Upstream | + | 140 (0x8C) | Actual-Interleaving-Delay-Upstream | + | 141 (0x8D) | Maximum-Interleaving-Delay-Downstream | + | 142 (0x8E) | Actual-Interleaving-Delay-Downstream | + | 144 (0x90) | Access-Loop-Encapsulation | + | 145 (0x91) | ANCP Access Line Type | + | 254 (0xFE) | IWF-Session | + +-----------------+----------------------------------------+ + + Table 1: Access Line AVP Summary + + + + + + + + +Mammoliti, et al. Informational [Page 24] + +RFC 5515 L2TP Access Line AVP Extensions May 2009 + + +8. IANA Considerations + + Sections 8.1 and 8.2 describe request for new values in + [IANA.l2tp-parameters], for registries already managed by IANA + assignable through Expert Review according to [RFC3438]. Section 8.3 + describes number spaces not managed by IANA. + +8.1. Message Type AVP Values + + This number space is managed by IANA as per [RFC3438]. There are two + new message types, defined in Sections 4.1 and 4.2, to be allocated + for this specification. + + Message Type AVP (Attribute Type 0) Values + + 28: (CSUN) Connect-Speed-Update-Notification + + 29: (CSURQ) Connect-Speed-Update-Request + +8.2. Control Message Attribute Value Pairs (AVPs) + + This number space is managed by IANA as per [RFC3438]. There are two + new AVPs, defined in Sections 6.1 and 6.2, to be allocated for this + specification. + + Control Message Attribute Value Pairs (AVPs) + + 97: Connect Speed Update AVP + + 98: Connect Speed Update Enable AVP + +8.3. Values for Access Line Information AVPs + + The Access Line Information AVPs use the Vendor ID of 3561 for the + ADSL Forum (now Broadband Forum). The number spaces in these Values + and their new allocations (e.g., enumerated values for the Access + Line Access-Loop-Encapsulation AVP and ANCP Access Line Type AVP) are + managed by the Broadband Forum. + +9. Security Considerations + + The security of these AVP relies on an implied trust relationship + between the Access Node/DSLAM and the BRAS/LAC, and between the LAC + and the LNS. The identifiers that are inserted by the Access Node/ + DSLAM are unconditionally trusted; the BRAS does not perform any + validity check on the information received before forwarding the + information. + + + + +Mammoliti, et al. Informational [Page 25] + +RFC 5515 L2TP Access Line AVP Extensions May 2009 + + + These AVPs are intended to be used in environments in which the + network infrastructure (the Access Node/DSLAM, the BRAS/LAC, the LNS, + and the entire network in which those devices reside) is trusted and + secure. + + Careful consideration should be given to the potential security + vulnerabilities that are present in this model before deploying this + option in actual networks. + + The AVPs described in this document are used to carry identification + and characterization of subscriber Access Line, and to report + connection speed changes. If used in a non-secure environment, they + could reveal such information. The Tunnel (Control Connection) + security considerations are covered in Section 9.1 of [RFC2661] and + Section 8.l of [RFC3931]. Additionally, the hiding of AVP attribute + values mechanism can be used to hide the value of the AVPs described + in this document, if they are deemed sensitive in some environments. + AVP hiding is described in Section 4.3 of [RFC2661] and Section 5.3 + of [RFC3931]. + + The Attributes described in this document neither increase nor + decrease the security of the L2TP protocol. + + It is possible to utilize [RFC3193] "Securing L2TP with IPsec" to + increase the security by utilizing IPsec to provide for tunnel + authentication, privacy protection, integrity checking and replay + protection. + +10. Acknowledgements + + Many thanks to Wojciech Dec and the others of the Broadband Forum + (previously the DSL Forum) Architecture and Transport Working Group + for their help in putting together this document. + +11. References + +11.1. Normative References + + [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate + Requirement Levels", BCP 14, RFC 2119, March 1997. + + [RFC2661] Townsley, W., Valencia, A., Rubens, A., Pall, G., Zorn, + G., and B. Palter, "Layer Two Tunneling Protocol "L2TP"", + RFC 2661, August 1999. + + [RFC3438] Townsley, W., "Layer Two Tunneling Protocol (L2TP) + Internet Assigned Numbers Authority (IANA) Considerations + Update", BCP 68, RFC 3438, December 2002. + + + +Mammoliti, et al. Informational [Page 26] + +RFC 5515 L2TP Access Line AVP Extensions May 2009 + + + [RFC3931] Lau, J., Townsley, M., and I. Goyret, "Layer Two Tunneling + Protocol - Version 3 (L2TPv3)", RFC 3931, March 2005. + + [TR-101] DSL Forum, "Migration to Ethernet-Based DSL Aggregation", + TR 101, April 2006, <http://www.broadband-forum.org/ + technical/download/TR-101.pdf>. + +11.2. Informative References + + [ANCP] Wadhwa, S., Moisand, J., Subramanian, S., Haag, T., Voigt, + N., and R. Maglione, "Protocol for Access Node Control + Mechanism in Broadband Networks", Work in Progress, + March 2009. + + [IANA.enterprise-numbers] + Internet Assigned Numbers Authority, "PRIVATE ENTERPRISE + NUMBERS", <http://www.iana.org>. + + [IANA.l2tp-parameters] + Internet Assigned Numbers Authority, "Layer Two Tunneling + Protocol 'L2TP'", <http://www.iana.org>. + + [RFC2516] Mamakos, L., Lidl, K., Evarts, J., Carrel, D., Simone, D., + and R. Wheeler, "A Method for Transmitting PPP Over + Ethernet (PPPoE)", RFC 2516, February 1999. + + [RFC3046] Patrick, M., "DHCP Relay Agent Information Option", + RFC 3046, January 2001. + + [RFC3193] Patel, B., Aboba, B., Dixon, W., Zorn, G., and S. Booth, + "Securing L2TP using IPsec", RFC 3193, November 2001. + + [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO + 10646", STD 63, RFC 3629, November 2003. + + [RFC4243] Stapp, M., Johnson, R., and T. Palaniappan, "Vendor- + Specific Information Suboption for the Dynamic Host + Configuration Protocol (DHCP) Relay Agent Option", + RFC 4243, December 2005. + + [RFC4679] Mammoliti, V., Zorn, G., Arberg, P., and R. Rennison, "DSL + Forum Vendor-Specific RADIUS Attributes", RFC 4679, + September 2006. + + [RFC4951] Jain, V., "Fail Over Extensions for Layer 2 Tunneling + Protocol (L2TP) "failover"", RFC 4951, August 2007. + + + + + +Mammoliti, et al. Informational [Page 27] + +RFC 5515 L2TP Access Line AVP Extensions May 2009 + + +Authors' Addresses + + Vince Mammoliti + Cisco Systems + 181 Bay Street, Suite 3400 + Toronto, ON M5J 2T3 + Canada + + EMaill: vince@cisco.com + + + Carlos Pignataro + Cisco Systems + 7200 Kit Creek Road + PO Box 14987 + Research Triangle Park, NC 27709 + USA + + EMail: cpignata@cisco.com + + + Peter Arberg + Redback Networks + 300 Holger Way + San Jose, CA 95134 + USA + + EMail: parberg@redback.com + + + John Gibbons + Juniper Networks + 10 Technology Park Drive + Westford, MA 01886 + USA + + EMail: jgibbons@juniper.net + + + Paul Howard + + EMail: howsoft@mindspring.com + + + + + + + + + +Mammoliti, et al. Informational [Page 28] + |