diff options
Diffstat (limited to 'doc/rfc/rfc9380.txt')
-rw-r--r-- | doc/rfc/rfc9380.txt | 8077 |
1 files changed, 8077 insertions, 0 deletions
diff --git a/doc/rfc/rfc9380.txt b/doc/rfc/rfc9380.txt new file mode 100644 index 0000000..3cdaa27 --- /dev/null +++ b/doc/rfc/rfc9380.txt @@ -0,0 +1,8077 @@ + + + + +Internet Research Task Force (IRTF) A. Faz-Hernandez +Request for Comments: 9380 Cloudflare, Inc. +Category: Informational S. Scott +ISSN: 2070-1721 Oso Security, Inc. + N. Sullivan + Cloudflare, Inc. + R. S. Wahby + Stanford University + C. A. Wood + Cloudflare, Inc. + August 2023 + + + Hashing to Elliptic Curves + +Abstract + + This document specifies a number of algorithms for encoding or + hashing an arbitrary string to a point on an elliptic curve. This + document is a product of the Crypto Forum Research Group (CFRG) in + the IRTF. + +Status of This Memo + + This document is not an Internet Standards Track specification; it is + published for informational purposes. + + This document is a product of the Internet Research Task Force + (IRTF). The IRTF publishes the results of Internet-related research + and development activities. These results might not be suitable for + deployment. This RFC represents the consensus of the Crypto Forum + Research Group of the Internet Research Task Force (IRTF). Documents + approved for publication by the IRSG are not candidates for any level + of Internet Standard; see Section 2 of RFC 7841. + + Information about the current status of this document, any errata, + and how to provide feedback on it may be obtained at + https://www.rfc-editor.org/info/rfc9380. + +Copyright Notice + + Copyright (c) 2023 IETF Trust and the persons identified as the + document authors. All rights reserved. + + This document is subject to BCP 78 and the IETF Trust's Legal + Provisions Relating to IETF Documents + (https://trustee.ietf.org/license-info) in effect on the date of + publication of this document. Please review these documents + carefully, as they describe your rights and restrictions with respect + to this document. + +Table of Contents + + 1. Introduction + 1.1. Requirements Notation + 2. Background + 2.1. Elliptic Curves + 2.2. Terminology + 2.2.1. Mappings + 2.2.2. Encodings + 2.2.3. Random Oracle Encodings + 2.2.4. Serialization + 2.2.5. Domain Separation + 3. Encoding Byte Strings to Elliptic Curves + 3.1. Domain Separation Requirements + 4. Utility Functions + 4.1. The sgn0 Function + 5. Hashing to a Finite Field + 5.1. Efficiency Considerations in Extension Fields + 5.2. hash_to_field Implementation + 5.3. expand_message + 5.3.1. expand_message_xmd + 5.3.2. expand_message_xof + 5.3.3. Using DSTs Longer than 255 Bytes + 5.3.4. Defining Other expand_message Variants + 6. Deterministic Mappings + 6.1. Choosing a Mapping Function + 6.2. Interface + 6.3. Notation + 6.4. Sign of the Resulting Point + 6.5. Exceptional Cases + 6.6. Mappings for Weierstrass Curves + 6.6.1. Shallue-van de Woestijne Method + 6.6.2. Simplified Shallue-van de Woestijne-Ulas Method + 6.6.3. Simplified SWU for AB == 0 + 6.7. Mappings for Montgomery Curves + 6.7.1. Elligator 2 Method + 6.8. Mappings for Twisted Edwards Curves + 6.8.1. Rational Maps from Montgomery to Twisted Edwards Curves + 6.8.2. Elligator 2 Method + 7. Clearing the Cofactor + 8. Suites for Hashing + 8.1. Implementing a Hash-to-Curve Suite + 8.2. Suites for NIST P-256 + 8.3. Suites for NIST P-384 + 8.4. Suites for NIST P-521 + 8.5. Suites for curve25519 and edwards25519 + 8.6. Suites for curve448 and edwards448 + 8.7. Suites for secp256k1 + 8.8. Suites for BLS12-381 + 8.8.1. BLS12-381 G1 + 8.8.2. BLS12-381 G2 + 8.9. Defining a New Hash-to-Curve Suite + 8.10. Suite ID Naming Conventions + 9. IANA Considerations + 10. Security Considerations + 10.1. Properties of Encodings + 10.2. Hashing Passwords + 10.3. Constant-Time Requirements + 10.4. encode_to_curve: Output Distribution and + Indifferentiability + 10.5. hash_to_field Security + 10.6. expand_message_xmd Security + 10.7. Domain Separation for expand_message Variants + 10.8. Target Security Levels + 11. References + 11.1. Normative References + 11.2. Informative References + Appendix A. Related Work + Appendix B. Hashing to ristretto255 + Appendix C. Hashing to decaf448 + Appendix D. Rational Maps + D.1. Generic Mapping from Montgomery to Twisted Edwards + D.2. Mapping from Weierstrass to Montgomery + Appendix E. Isogeny Maps for Suites + E.1. 3-Isogeny Map for secp256k1 + E.2. 11-Isogeny Map for BLS12-381 G1 + E.3. 3-Isogeny Map for BLS12-381 G2 + Appendix F. Straight-Line Implementations of Deterministic + Mappings + F.1. Shallue-van de Woestijne Method + F.2. Simplified SWU Method + F.2.1. sqrt_ratio Subroutine + F.3. Elligator 2 Method + Appendix G. Curve-Specific Optimized Sample Code + G.1. Interface and Projective Coordinate Systems + G.2. Elligator 2 + G.2.1. curve25519 (q = 5 (mod 8), K = 1) + G.2.2. edwards25519 + G.2.3. curve448 (q = 3 (mod 4), K = 1) + G.2.4. edwards448 + G.2.5. Montgomery Curves with q = 3 (mod 4) + G.2.6. Montgomery Curves with q = 5 (mod 8) + G.3. Cofactor Clearing for BLS12-381 G2 + Appendix H. Scripts for Parameter Generation + H.1. Finding Z for the Shallue-van de Woestijne Map + H.2. Finding Z for Simplified SWU + H.3. Finding Z for Elligator 2 + Appendix I. sqrt and is_square Functions + I.1. sqrt for q = 3 (mod 4) + I.2. sqrt for q = 5 (mod 8) + I.3. sqrt for q = 9 (mod 16) + I.4. Constant-Time Tonelli-Shanks Algorithm + I.5. is_square for F = GF(p^2) + Appendix J. Suite Test Vectors + J.1. NIST P-256 + J.1.1. P256_XMD:SHA-256_SSWU_RO_ + J.1.2. P256_XMD:SHA-256_SSWU_NU_ + J.2. NIST P-384 + J.2.1. P384_XMD:SHA-384_SSWU_RO_ + J.2.2. P384_XMD:SHA-384_SSWU_NU_ + J.3. NIST P-521 + J.3.1. P521_XMD:SHA-512_SSWU_RO_ + J.3.2. P521_XMD:SHA-512_SSWU_NU_ + J.4. curve25519 + J.4.1. curve25519_XMD:SHA-512_ELL2_RO_ + J.4.2. curve25519_XMD:SHA-512_ELL2_NU_ + J.5. edwards25519 + J.5.1. edwards25519_XMD:SHA-512_ELL2_RO_ + J.5.2. edwards25519_XMD:SHA-512_ELL2_NU_ + J.6. curve448 + J.6.1. curve448_XOF:SHAKE256_ELL2_RO_ + J.6.2. curve448_XOF:SHAKE256_ELL2_NU_ + J.7. edwards448 + J.7.1. edwards448_XOF:SHAKE256_ELL2_RO_ + J.7.2. edwards448_XOF:SHAKE256_ELL2_NU_ + J.8. secp256k1 + J.8.1. secp256k1_XMD:SHA-256_SSWU_RO_ + J.8.2. secp256k1_XMD:SHA-256_SSWU_NU_ + J.9. BLS12-381 G1 + J.9.1. BLS12381G1_XMD:SHA-256_SSWU_RO_ + J.9.2. BLS12381G1_XMD:SHA-256_SSWU_NU_ + J.10. BLS12-381 G2 + J.10.1. BLS12381G2_XMD:SHA-256_SSWU_RO_ + J.10.2. BLS12381G2_XMD:SHA-256_SSWU_NU_ + Appendix K. Expand Test Vectors + K.1. expand_message_xmd(SHA-256) + K.2. expand_message_xmd(SHA-256) (Long DST) + K.3. expand_message_xmd(SHA-512) + K.4. expand_message_xof(SHAKE128) + K.5. expand_message_xof(SHAKE128) (Long DST) + K.6. expand_message_xof(SHAKE256) + Acknowledgements + Contributors + Authors' Addresses + +1. Introduction + + Many cryptographic protocols require a procedure that encodes an + arbitrary input, e.g., a password, to a point on an elliptic curve. + This procedure is known as hashing to an elliptic curve, where the + hashing procedure provides collision resistance and does not reveal + the discrete logarithm of the output point. Prominent examples of + cryptosystems that hash to elliptic curves include password- + authenticated key exchanges [BM92] [J96] [BMP00] [p1363.2], Identity- + Based Encryption [BF01], Boneh-Lynn-Shacham signatures [BLS01] + [BLS-SIG], Verifiable Random Functions [MRV99] [VRF], and Oblivious + Pseudorandom Functions [NR97] [OPRFs]. + + Unfortunately for implementors, the precise hash function that is + suitable for a given protocol implemented using a given elliptic + curve is often unclear from the protocol's description. Meanwhile, + an incorrect choice of hash function can have disastrous consequences + for security. + + This document aims to bridge this gap by providing a comprehensive + set of recommended algorithms for a range of curve types. Each + algorithm conforms to a common interface: it takes as input an + arbitrary-length byte string and produces as output a point on an + elliptic curve. We provide implementation details for each + algorithm, describe the security rationale behind each + recommendation, and give guidance for elliptic curves that are not + explicitly covered. We also present optimized implementations for + internal functions used by these algorithms. + + Readers wishing to quickly specify or implement a conforming hash + function should consult Section 8, which lists recommended hash-to- + curve suites and describes both how to implement an existing suite + and how to specify a new one. + + This document does not specify probabilistic rejection sampling + methods, sometimes referred to as "try-and-increment" or "hunt-and- + peck," because the goal is to specify algorithms that can plausibly + be computed in constant time. Use of these probabilistic rejection + methods is NOT RECOMMENDED, because they have been a perennial cause + of side-channel vulnerabilities. See Dragonblood [VR20] as one + example of this problem in practice, and see Appendix A for an + informal description of rejection sampling methods and the timing + side-channels they introduce. + + This document represents the consensus of the Crypto Forum Research + Group (CFRG). + +1.1. Requirements Notation + + The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", + "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and + "OPTIONAL" in this document are to be interpreted as described in + BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all + capitals, as shown here. + +2. Background + +2.1. Elliptic Curves + + The following is a brief definition of elliptic curves, with an + emphasis on important parameters and their relation to hashing to + curves. For further reference on elliptic curves, consult + [CFADLNV05] or [W08]. + + Let F be the finite field GF(q) of prime characteristic p > 3. (This + document does not consider elliptic curves over fields of + characteristic 2 or 3.) In most cases, F is a prime field, so q = p. + Otherwise, F is an extension field, so q = p^m for an integer m > 1. + This document writes elements of extension fields in a primitive + element or polynomial basis, i.e., as a vector of m elements of GF(p) + written in ascending order by degree. The entries of this vector are + indexed in ascending order starting from 1, i.e., x = (x_1, x_2, ..., + x_m). For example, if q = p^2 and the primitive element basis is (1, + I), then x = (a, b) corresponds to the element a + b * I, where x_1 = + a and x_2 = b. (Note that all choices of basis are isomorphic, but + certain choices may result in a more efficient implementation; this + document does not make any particular assumptions about choice of + basis.) + + An elliptic curve E is specified by an equation in two variables and + a finite field F. An elliptic curve equation takes one of several + standard forms, including (but not limited to) Weierstrass, + Montgomery, and Edwards. + + The curve E induces an algebraic group of order n, meaning that the + group has n distinct elements. (This document uses additive notation + for the elliptic curve group operation.) Elements of an elliptic + curve group are points with affine coordinates (x, y) satisfying the + curve equation, where x and y are elements of F. In addition, all + elliptic curve groups have a distinguished element, the identity + point, which acts as the identity element for the group operation. + On certain curves (including Weierstrass and Montgomery curves), the + identity point cannot be represented as an (x, y) coordinate pair. + + For security reasons, cryptographic applications of elliptic curves + generally require using a (sub)group of prime order. Let G be such a + subgroup of the curve of prime order r, where n = h * r. In this + equation, h is an integer called the cofactor. An algorithm that + takes as input an arbitrary point on the curve E and produces as + output a point in the subgroup G of E is said to "clear the + cofactor." Such algorithms are discussed in Section 7. + + Certain hash-to-curve algorithms restrict the form of the curve + equation, the characteristic of the field, or the parameters of the + curve. For each algorithm presented, this document lists the + relevant restrictions. + + The table below summarizes quantities relevant to hashing to curves: + + +========+=====================+=======================+ + | Symbol | Meaning | Relevance | + +========+=====================+=======================+ + | F,q,p | A finite field F of | For prime fields, | + | | characteristic p | q = p; otherwise, | + | | and #F = q = p^m. | q = p^m and m>1. | + +--------+---------------------+-----------------------+ + | E | Elliptic curve. | E is specified by an | + | | | equation and a field | + | | | F. | + +--------+---------------------+-----------------------+ + | n | Number of points on | n = h * r, for h and | + | | the elliptic curve | r defined below. | + | | E. | | + +--------+---------------------+-----------------------+ + | G | A prime-order | G is a destination | + | | subgroup of the | group to which byte | + | | points on E. | strings are encoded. | + +--------+---------------------+-----------------------+ + | r | Order of G. | r is a prime factor | + | | | of n (usually, the | + | | | largest such factor). | + +--------+---------------------+-----------------------+ + | h | Cofactor, h >= 1. | h is an integer | + | | | satisfying n = h * r. | + +--------+---------------------+-----------------------+ + + Table 1: Summary of Symbols and Their Definitions + +2.2. Terminology + + In this section, we define important terms used throughout the + document. + +2.2.1. Mappings + + A mapping is a deterministic function from an element of the field F + to a point on an elliptic curve E defined over F. + + In general, the set of all points that a mapping can produce over all + possible inputs may be only a subset of the points on an elliptic + curve (i.e., the mapping may not be surjective). In addition, a + mapping may output the same point for two or more distinct inputs + (i.e., the mapping may not be injective). For example, consider a + mapping from F to an elliptic curve having n points: if the number of + elements of F is not equal to n, then this mapping cannot be + bijective (i.e., both injective and surjective), since the mapping is + defined to be deterministic. + + Mappings may also be invertible, meaning that there is an efficient + algorithm that, for any point P output by the mapping, outputs an x + in F such that applying the mapping to x outputs P. Some of the + mappings given in Section 6 are invertible, but this document does + not discuss inversion algorithms. + +2.2.2. Encodings + + Encodings are closely related to mappings. Like a mapping, an + encoding is a function that outputs a point on an elliptic curve. In + contrast to a mapping, however, the input to an encoding is an + arbitrary-length byte string. + + This document constructs deterministic encodings by composing a hash + function Hf with a deterministic mapping. In particular, Hf takes as + input an arbitrary string and outputs an element of F. The + deterministic mapping takes that element as input and outputs a point + on an elliptic curve E defined over F. Since Hf takes arbitrary- + length byte strings as inputs, it cannot be injective: the set of + inputs is larger than the set of outputs, so there must be distinct + inputs that give the same output (i.e., there must be collisions). + Thus, any encoding built from Hf is also not injective. + + Like mappings, encodings may be invertible, meaning that there is an + efficient algorithm that, for any point P output by the encoding, + outputs a string s such that applying the encoding to s outputs P. + However, the instantiation of Hf used by all encodings specified in + this document (Section 5) is not invertible; thus, those encodings + are also not invertible. + + In some applications of hashing to elliptic curves, it is important + that encodings do not leak information through side channels. [VR20] + is one example of this type of leakage leading to a security + vulnerability. See Section 10.3 for further discussion. + +2.2.3. Random Oracle Encodings + + A random-oracle encoding satisfies a strong property: it can be + proved indifferentiable from a random oracle [MRH04] under a suitable + assumption. + + Both constructions described in Section 3 are indifferentiable from + random oracles [MRH04] when instantiated following the guidelines in + this document. The constructions differ in their output + distributions: one gives a uniformly random point on the curve, the + other gives a point sampled from a nonuniform distribution. + + A random-oracle encoding with a uniform output distribution is + suitable for use in many cryptographic protocols proven secure in the + random-oracle model. See Section 10.1 for further discussion. + +2.2.4. Serialization + + A procedure related to encoding is the conversion of an elliptic + curve point to a bit string. This is called serialization, and it is + typically used for compactly storing or transmitting points. The + inverse operation, deserialization, converts a bit string to an + elliptic curve point. For example, [SEC1] and [p1363a] give standard + methods for serialization and deserialization. + + Deserialization is different from encoding in that only certain + strings (namely, those output by the serialization procedure) can be + deserialized. In contrast, this document is concerned with encodings + from arbitrary strings to elliptic curve points. This document does + not cover serialization or deserialization. + +2.2.5. Domain Separation + + Cryptographic protocols proven secure in the random-oracle model are + often analyzed under the assumption that the random oracle only + answers queries associated with that protocol (including queries made + by adversaries) [BR93]. In practice, this assumption does not hold + if two protocols use the same function to instantiate the random + oracle. Concretely, consider protocols P1 and P2 that query a + random-oracle RO: if P1 and P2 both query RO on the same value x, the + security analysis of one or both protocols may be invalidated. + + A common way of addressing this issue is called domain separation, + which allows a single random oracle to simulate multiple, independent + oracles. This is effected by ensuring that each simulated oracle + sees queries that are distinct from those seen by all other simulated + oracles. For example, to simulate two oracles RO1 and RO2 given a + single oracle RO, one might define + + RO1(x) := RO("RO1" || x) + RO2(x) := RO("RO2" || x) + + where || is the concatenation operator. In this example, "RO1" and + "RO2" are called domain separation tags (DSTs); they ensure that + queries to RO1 and RO2 cannot result in identical queries to RO, + meaning that it is safe to treat RO1 and RO2 as independent oracles. + + In general, domain separation requires defining a distinct injective + encoding for each oracle being simulated. In the above example, + "RO1" and "RO2" have the same length and thus satisfy this + requirement when used as prefixes. The algorithms specified in this + document take a different approach to ensuring injectivity; see + Sections 5.3 and 10.7 for more details. + +3. Encoding Byte Strings to Elliptic Curves + + This section presents a general framework and interface for encoding + byte strings to points on an elliptic curve. The constructions in + this section rely on three basic functions: + + * The function hash_to_field hashes arbitrary-length byte strings to + a list of one or more elements of a finite field F; its + implementation is defined in Section 5. + + hash_to_field(msg, count) + + Input: + - msg, a byte string containing the message to hash. + - count, the number of elements of F to output. + + Output: + - (u_0, ..., u_(count - 1)), a list of field elements. + + Steps: defined in Section 5. + + * The function map_to_curve calculates a point on the elliptic curve + E from an element of the finite field F over which E is defined. + Section 6 describes mappings for a range of curve families. + + map_to_curve(u) + + Input: u, an element of field F. + Output: Q, a point on the elliptic curve E. + Steps: defined in Section 6. + + * The function clear_cofactor sends any point on the curve E to the + subgroup G of E. Section 7 describes methods to perform this + operation. + + clear_cofactor(Q) + + Input: Q, a point on the elliptic curve E. + Output: P, a point in G. + Steps: defined in Section 7. + + The two encodings (Section 2.2.2) defined in this section have the + same interface and are both random-oracle encodings (Section 2.2.3). + Both are implemented as a composition of the three basic functions + above. The difference between the two is that their outputs are + sampled from different distributions: + + * encode_to_curve is a nonuniform encoding from byte strings to + points in G. That is, the distribution of its output is not + uniformly random in G: the set of possible outputs of + encode_to_curve is only a fraction of the points in G, and some + points in this set are more likely to be output than others. + Section 10.4 gives a more precise definition of encode_to_curve's + output distribution. + + encode_to_curve(msg) + + Input: msg, an arbitrary-length byte string. + Output: P, a point in G. + + Steps: + 1. u = hash_to_field(msg, 1) + 2. Q = map_to_curve(u[0]) + 3. P = clear_cofactor(Q) + 4. return P + + * hash_to_curve is a uniform encoding from byte strings to points in + G. That is, the distribution of its output is statistically close + to uniform in G. + + This function is suitable for most applications requiring a random + oracle returning points in G, when instantiated with any of the + map_to_curve functions described in Section 6. See Section 10.1 + for further discussion. + + hash_to_curve(msg) + + Input: msg, an arbitrary-length byte string. + Output: P, a point in G. + + Steps: + 1. u = hash_to_field(msg, 2) + 2. Q0 = map_to_curve(u[0]) + 3. Q1 = map_to_curve(u[1]) + 4. R = Q0 + Q1 # Point addition + 5. P = clear_cofactor(R) + 6. return P + + Each hash-to-curve suite in Section 8 instantiates one of these + encoding functions for a specific elliptic curve. + +3.1. Domain Separation Requirements + + All uses of the encoding functions defined in this document MUST + include domain separation (Section 2.2.5) to avoid interfering with + other uses of similar functionality. + + Applications that instantiate multiple, independent instances of + either hash_to_curve or encode_to_curve MUST enforce domain + separation between those instances. This requirement applies in both + the case of multiple instances targeting the same curve and the case + of multiple instances targeting different curves. (This is because + the internal hash_to_field primitive (Section 5) requires domain + separation to guarantee independent outputs.) + + Domain separation is enforced with a domain separation tag (DST), + which is a byte string constructed according to the following + requirements: + + 1. Tags MUST be supplied as the DST parameter to hash_to_field, as + described in Section 5. + + 2. Tags MUST have nonzero length. A minimum length of 16 bytes is + RECOMMENDED to reduce the chance of collisions with other + applications. + + 3. Tags SHOULD begin with a fixed identification string that is + unique to the application. + + 4. Tags SHOULD include a version number. + + 5. For applications that define multiple ciphersuites, each + ciphersuite's tag MUST be different. For this purpose, it is + RECOMMENDED to include a ciphersuite identifier in each tag. + + 6. For applications that use multiple encodings, to either the same + curve or different curves, each encoding MUST use a different + tag. For this purpose, it is RECOMMENDED to include the + encoding's Suite ID (Section 8) in the domain separation tag. + For independent encodings based on the same suite, each tag + SHOULD also include a distinct identifier, e.g., "ENC1" and + "ENC2". + + As an example, consider a fictional application named Quux that + defines several different ciphersuites, each for a different curve. + A reasonable choice of tag is "QUUX-V<xx>-CS<yy>-<suiteID>", where + <xx> and <yy> are two-digit numbers indicating the version and + ciphersuite, respectively, and <suiteID> is the Suite ID of the + encoding used in ciphersuite <yy>. + + As another example, consider a fictional application named Baz that + requires two independent random oracles to the same curve. + Reasonable choices of tags for these oracles are "BAZ-V<xx>-CS<yy>- + <suiteID>-ENC1" and "BAZ-V<xx>-CS<yy>-<suiteID>-ENC2", respectively, + where <xx>, <yy>, and <suiteID> are as described above. + + The example tags given above are assumed to be ASCII-encoded byte + strings without null termination, which is the RECOMMENDED format. + Other encodings can be used, but in all cases the encoding as a + sequence of bytes MUST be specified unambiguously. + +4. Utility Functions + + Algorithms in this document use the utility functions described + below, plus standard arithmetic operations (addition, multiplication, + modular reduction, etc.) and elliptic curve point operations (point + addition and scalar multiplication). + + For security, implementations of these functions SHOULD be constant + time: in brief, this means that execution time and memory access + patterns SHOULD NOT depend on the values of secret inputs, + intermediate values, or outputs. For such constant-time + implementations, all arithmetic, comparisons, and assignments MUST + also be implemented in constant time. Section 10.3 briefly discusses + constant-time security issues. + + Guidance on implementing low-level operations (in constant time or + otherwise) is beyond the scope of this document; readers should + consult standard reference material [MOV96] [CFADLNV05]. + + * CMOV(a, b, c): If c is False, CMOV returns a; otherwise, it + returns b. For constant-time implementations, this operation must + run in a time that is independent of the value of c. + + * AND, OR, NOT, and XOR are standard bitwise logical operators. For + constant-time implementations, short-circuit operators MUST be + avoided. + + * is_square(x): This function returns True whenever the value x is a + square in the field F. By Euler's criterion, this function can be + calculated in constant time as + + is_square(x) := { True, if x^((q - 1) / 2) is 0 or 1 in F; + { False, otherwise. + + In certain extension fields, is_square can be computed in constant + time more quickly than by the above exponentiation. [AR13] and + [S85] describe optimized methods for extension fields. + Appendix I.5 gives an optimized straight-line method for GF(p^2). + + * sqrt(x): The sqrt operation is a multi-valued function, i.e., + there exist two roots of x in the field F whenever x is square + (except when x = 0). To maintain compatibility across + implementations while allowing implementors leeway for + optimizations, this document does not require sqrt() to return a + particular value. Instead, as explained in Section 6.4, any + function that calls sqrt also specifies how to determine the + correct root. + + The preferred way of computing square roots is to fix a + deterministic algorithm particular to F. We give several + algorithms in Appendix I. + + * sgn0(x): This function returns either 0 or 1 indicating the "sign" + of x, where sgn0(x) == 1 just when x is "negative". (In other + words, this function always considers 0 to be positive.) + Section 4.1 defines this function and discusses its + implementation. + + * inv0(x): This function returns the multiplicative inverse of x in + F, extended to all of F by fixing inv0(0) == 0. A straightforward + way to implement inv0 in constant time is to compute + + inv0(x) := x^(q - 2). + + Notice that on input 0, the output is 0 as required. Certain + fields may allow faster inversion methods; detailed discussion of + such methods is beyond the scope of this document. + + * I2OSP and OS2IP: These functions are used to convert a byte string + to and from a non-negative integer as described in [RFC8017]. + (Note that these functions operate on byte strings in big-endian + byte order.) + + * a || b: denotes the concatenation of byte strings a and b. For + example, "ABC" || "DEF" == "ABCDEF". + + * substr(str, sbegin, slen): For a byte string str, this function + returns the slen-byte substring starting at position sbegin; + positions are zero indexed. For example, substr("ABCDEFG", 2, 3) + == "CDE". + + * len(str): For a byte string str, this function returns the length + of str in bytes. For example, len("ABC") == 3. + + * strxor(str1, str2): For byte strings str1 and str2, strxor(str1, + str2) returns the bitwise XOR of the two strings. For example, + strxor("abc", "XYZ") == "9;9" (the strings in this example are + ASCII literals, but strxor is defined for arbitrary byte strings). + In this document, strxor is only applied to inputs of equal + length. + +4.1. The sgn0 Function + + This section defines a generic sgn0 implementation that applies to + any field F = GF(p^m). It also gives simplified implementations for + the cases F = GF(p) and F = GF(p^2). + + The definition of the sgn0 function for extension fields relies on + the polynomial basis or vector representation of field elements, and + iterates over the entire vector representation of the input element. + As a result, sgn0 depends on the primitive polynomial used to define + the polynomial basis; see Section 8 for more information about this + basis, and see Section 2.1 for a discussion of representing elements + of extension fields as vectors. + + sgn0(x) + + Parameters: + - F, a finite field of characteristic p and order q = p^m. + - p, the characteristic of F (see immediately above). + - m, the extension degree of F, m >= 1 (see immediately above). + + Input: x, an element of F. + Output: 0 or 1. + + Steps: + 1. sign = 0 + 2. zero = 1 + 3. for i in (1, 2, ..., m): + 4. sign_i = x_i mod 2 + 5. zero_i = x_i == 0 + 6. sign = sign OR (zero AND sign_i) # Avoid short-circuit logic ops + 7. zero = zero AND zero_i + 8. return sign + + When m == 1, sgn0 can be significantly simplified: + + sgn0_m_eq_1(x) + + Input: x, an element of GF(p). + Output: 0 or 1. + + Steps: + 1. return x mod 2 + + The case m == 2 is only slightly more complicated: + + sgn0_m_eq_2(x) + + Input: x, an element of GF(p^2). + Output: 0 or 1. + + Steps: + 1. sign_0 = x_0 mod 2 + 2. zero_0 = x_0 == 0 + 3. sign_1 = x_1 mod 2 + 4. s = sign_0 OR (zero_0 AND sign_1) # Avoid short-circuit logic ops + 5. return s + +5. Hashing to a Finite Field + + The hash_to_field function hashes a byte string msg of arbitrary + length into one or more elements of a field F. This function works + in two steps: it first hashes the input byte string to produce a + uniformly random byte string, and then interprets this byte string as + one or more elements of F. + + For the first step, hash_to_field calls an auxiliary function + expand_message. This document defines two variants of + expand_message: one appropriate for hash functions like SHA-2 + [FIPS180-4] or SHA-3 [FIPS202], and another appropriate for + extendable-output functions such as SHAKE128 [FIPS202]. Security + considerations for each expand_message variant are discussed below + (Sections 5.3.1 and 5.3.2). + + Implementors MUST NOT use rejection sampling to generate a uniformly + random element of F, to ensure that the hash_to_field function is + amenable to constant-time implementation. The reason is that + rejection sampling procedures are difficult to implement in constant + time, and later well-meaning "optimizations" may silently render an + implementation non-constant-time. This means that any hash_to_field + function based on rejection sampling would be incompatible with + constant-time implementation. + + The hash_to_field function is also suitable for securely hashing to + scalars. For example, when hashing to the scalar field for an + elliptic curve (sub)group with prime order r, it suffices to + instantiate hash_to_field with target field GF(r). + + The hash_to_field function is designed to be indifferentiable from a + random oracle [MRH04] when expand_message (Section 5.3) is modeled as + a random oracle (see Section 10.5 for details about its + indifferentiability). Ensuring indifferentiability requires care; to + see why, consider a prime p that is close to 3/4 * 2^256. Reducing a + random 256-bit integer modulo this p yields a value that is in the + range [0, p / 3] with probability roughly 1/2, meaning that this + value is statistically far from uniform in [0, p - 1]. + + To control bias, hash_to_field instead uses random integers whose + length is at least ceil(log2(p)) + k bits, where k is the target + security level for the suite in bits. Reducing such integers mod p + gives bias at most 2^-k for any p; this bias is appropriate when + targeting k-bit security. For each such integer, hash_to_field uses + expand_message to obtain L uniform bytes, where + + L = ceil((ceil(log2(p)) + k) / 8) + + These uniform bytes are then interpreted as an integer via OS2IP. + For example, for a 255-bit prime p, and k = 128-bit security, L = + ceil((255 + 128) / 8) = 48 bytes. + + Note that k is an upper bound on the security level for the + corresponding curve. See Section 10.8 for more details and + Section 8.9 for guidelines on choosing k for a given curve. + +5.1. Efficiency Considerations in Extension Fields + + The hash_to_field function described in this section is inefficient + for certain extension fields. Specifically, when hashing to an + element of the extension field GF(p^m), hash_to_field requires + expanding msg into m * L bytes (for L as defined above). For + extension fields where log2(p) is significantly smaller than the + security level k, this approach is inefficient: it requires + expand_message to output roughly m * log2(p) + m * k bits, whereas m + * log2(p) + k bytes suffices to generate an element of GF(p^m) with + bias at most 2^-k. In such cases, applications MAY use an + alternative hash_to_field function, provided it meets the following + security requirements: + + * The function MUST output one or more field elements that are + uniformly random except with bias at most 2^-k. + + * The function MUST NOT use rejection sampling. + + * The function SHOULD be amenable to straight-line implementations. + + For example, Pornin [P20] describes a method for hashing to + GF(9767^19) that meets these requirements while using fewer output + bits from expand_message than hash_to_field would for that field. + +5.2. hash_to_field Implementation + + The following procedure implements hash_to_field. + + The expand_message parameter to this function MUST conform to the + requirements given in Section 5.3. Section 3.1 discusses the + REQUIRED method for constructing DST, the domain separation tag. + Note that hash_to_field may fail (ABORT) if expand_message fails. + + hash_to_field(msg, count) + + Parameters: + - DST, a domain separation tag (see Section 3.1). + - F, a finite field of characteristic p and order q = p^m. + - p, the characteristic of F (see immediately above). + - m, the extension degree of F, m >= 1 (see immediately above). + - L = ceil((ceil(log2(p)) + k) / 8), where k is the security + parameter of the suite (e.g., k = 128). + - expand_message, a function that expands a byte string and + domain separation tag into a uniformly random byte string + (see Section 5.3). + + Input: + - msg, a byte string containing the message to hash. + - count, the number of elements of F to output. + + Output: + - (u_0, ..., u_(count - 1)), a list of field elements. + + Steps: + 1. len_in_bytes = count * m * L + 2. uniform_bytes = expand_message(msg, DST, len_in_bytes) + 3. for i in (0, ..., count - 1): + 4. for j in (0, ..., m - 1): + 5. elm_offset = L * (j + i * m) + 6. tv = substr(uniform_bytes, elm_offset, L) + 7. e_j = OS2IP(tv) mod p + 8. u_i = (e_0, ..., e_(m - 1)) + 9. return (u_0, ..., u_(count - 1)) + +5.3. expand_message + + expand_message is a function that generates a uniformly random byte + string. It takes three arguments: + + 1. msg, a byte string containing the message to hash, + + 2. DST, a byte string that acts as a domain separation tag, and + + 3. len_in_bytes, the number of bytes to be generated. + + This document defines the following two variants of expand_message: + + * expand_message_xmd (Section 5.3.1) is appropriate for use with a + wide range of hash functions, including SHA-2 [FIPS180-4], SHA-3 + [FIPS202], BLAKE2 [RFC7693], and others. + + * expand_message_xof (Section 5.3.2) is appropriate for use with + extendable-output functions (XOFs), including functions in the + SHAKE [FIPS202] or BLAKE2X [BLAKE2X] families. + + These variants should suffice for the vast majority of use cases, but + other variants are possible; Section 5.3.4 discusses requirements. + +5.3.1. expand_message_xmd + + The expand_message_xmd function produces a uniformly random byte + string using a cryptographic hash function H that outputs b bits. + For security, H MUST meet the following requirements: + + * The number of bits output by H MUST be b >= 2 * k, where k is the + target security level in bits, and b MUST be divisible by 8. The + first requirement ensures k-bit collision resistance; the second + ensures uniformity of expand_message_xmd's output. + + * H MAY be a Merkle-Damgaard hash function like SHA-2. In this + case, security holds when the underlying compression function is + modeled as a random oracle [CDMP05]. (See Section 10.6 for + discussion.) + + * H MAY be a sponge-based hash function like SHA-3 or BLAKE2. In + this case, security holds when the inner function is modeled as a + random transformation or as a random permutation [BDPV08]. + + * Otherwise, H MUST be a hash function that has been proved + indifferentiable from a random oracle [MRH04] under a reasonable + cryptographic assumption. + + SHA-2 [FIPS180-4] and SHA-3 [FIPS202] are typical and RECOMMENDED + choices. As an example, for the 128-bit security level, b >= 256 + bits and either SHA-256 or SHA3-256 would be an appropriate choice. + + The hash function H is assumed to work by repeatedly ingesting fixed- + length blocks of data. The length in bits of these blocks is called + the input block size (s). As examples, s = 1024 for SHA-512 + [FIPS180-4] and s = 576 for SHA3-512 [FIPS202]. For correctness, H + requires b <= s. + + The following procedure implements expand_message_xmd. + + expand_message_xmd(msg, DST, len_in_bytes) + + Parameters: + - H, a hash function (see requirements above). + - b_in_bytes, b / 8 for b the output size of H in bits. + For example, for b = 256, b_in_bytes = 32. + - s_in_bytes, the input block size of H, measured in bytes (see + discussion above). For example, for SHA-256, s_in_bytes = 64. + + Input: + - msg, a byte string. + - DST, a byte string of at most 255 bytes. + See below for information on using longer DSTs. + - len_in_bytes, the length of the requested output in bytes, + not greater than the lesser of (255 * b_in_bytes) or 2^16-1. + + Output: + - uniform_bytes, a byte string. + + Steps: + 1. ell = ceil(len_in_bytes / b_in_bytes) + 2. ABORT if ell > 255 or len_in_bytes > 65535 or len(DST) > 255 + 3. DST_prime = DST || I2OSP(len(DST), 1) + 4. Z_pad = I2OSP(0, s_in_bytes) + 5. l_i_b_str = I2OSP(len_in_bytes, 2) + 6. msg_prime = Z_pad || msg || l_i_b_str || I2OSP(0, 1) || DST_prime + 7. b_0 = H(msg_prime) + 8. b_1 = H(b_0 || I2OSP(1, 1) || DST_prime) + 9. for i in (2, ..., ell): + 10. b_i = H(strxor(b_0, b_(i - 1)) || I2OSP(i, 1) || DST_prime) + 11. uniform_bytes = b_1 || ... || b_ell + 12. return substr(uniform_bytes, 0, len_in_bytes) + + Note that the string Z_pad (step 6) is prefixed to msg before + computing b_0 (step 7). This is necessary for security when H is a + Merkle-Damgaard hash, e.g., SHA-2 (see Section 10.6). Hashing this + additional data means that the cost of computing b_0 is higher than + the cost of simply computing H(msg). In most settings, this overhead + is negligible, because the cost of evaluating H is much less than the + other costs involved in hashing to a curve. + + It is possible, however, to entirely avoid this overhead by taking + advantage of the fact that Z_pad depends only on H, and not on the + arguments to expand_message_xmd. To do so, first precompute and save + the internal state of H after ingesting Z_pad. Then, when computing + b_0, initialize H using the saved state. Further details are + implementation dependent and are beyond the scope of this document. + +5.3.2. expand_message_xof + + The expand_message_xof function produces a uniformly random byte + string using an extendable-output function (XOF) H. For security, H + MUST meet the following criteria: + + * The collision resistance of H MUST be at least k bits. + + * H MUST be an XOF that has been proved indifferentiable from a + random oracle under a reasonable cryptographic assumption. + + The SHAKE XOF family [FIPS202] is a typical and RECOMMENDED choice. + As an example, for 128-bit security, SHAKE128 would be an appropriate + choice. + + The following procedure implements expand_message_xof. + + expand_message_xof(msg, DST, len_in_bytes) + + Parameters: + - H(m, d), an extendable-output function that processes + input message m and returns d bytes. + + Input: + - msg, a byte string. + - DST, a byte string of at most 255 bytes. + See below for information on using longer DSTs. + - len_in_bytes, the length of the requested output in bytes. + + Output: + - uniform_bytes, a byte string. + + Steps: + 1. ABORT if len_in_bytes > 65535 or len(DST) > 255 + 2. DST_prime = DST || I2OSP(len(DST), 1) + 3. msg_prime = msg || I2OSP(len_in_bytes, 2) || DST_prime + 4. uniform_bytes = H(msg_prime, len_in_bytes) + 5. return uniform_bytes + +5.3.3. Using DSTs Longer than 255 Bytes + + The expand_message variants defined in this section accept domain + separation tags of at most 255 bytes. If applications require a + domain separation tag longer than 255 bytes, e.g., because of + requirements imposed by an invoking protocol, implementors MUST + compute a short domain separation tag by hashing, as follows: + + * For expand_message_xmd using hash function H, DST is computed as + + DST = H("H2C-OVERSIZE-DST-" || a_very_long_DST) + + * For expand_message_xof using extendable-output function H, DST is + computed as + + DST = H("H2C-OVERSIZE-DST-" || a_very_long_DST, ceil(2 * k / 8)) + + Here, a_very_long_DST is the DST whose length is greater than 255 + bytes, "H2C-OVERSIZE-DST-" is a 17-byte ASCII string literal, and k + is the target security level in bits. + +5.3.4. Defining Other expand_message Variants + + When defining a new expand_message variant, the most important + consideration is that hash_to_field models expand_message as a random + oracle. Thus, implementors SHOULD prove indifferentiability from a + random oracle under an appropriate assumption about the underlying + cryptographic primitives; see Section 10.5 for more information. + + In addition, expand_message variants: + + * MUST give collision resistance commensurate with the security + level of the target elliptic curve. + + * MUST be built on primitives designed for use in applications + requiring cryptographic randomness. As examples, a secure stream + cipher is an appropriate primitive, whereas a Mersenne twister + pseudorandom number generator [MT98] is not. + + * MUST NOT use rejection sampling. + + * MUST give independent values for distinct (msg, DST, length) + inputs. Meeting this requirement is subtle. As a simplified + example, hashing msg || DST does not work, because in this case + distinct (msg, DST) pairs whose concatenations are equal will + return the same output (e.g., ("AB", "CDEF") and ("ABC", "DEF")). + The variants defined in this document use a suffix-free encoding + of DST to avoid this issue. + + * MUST use the domain separation tag DST to ensure that invocations + of cryptographic primitives inside of expand_message are domain- + separated from invocations outside of expand_message. For + example, if the expand_message variant uses a hash function H, an + encoding of DST MUST be added either as a prefix or a suffix of + the input to each invocation of H. Adding DST as a suffix is the + RECOMMENDED approach. + + * SHOULD read msg exactly once, for efficiency when msg is long. + + In addition, each expand_message variant MUST specify a unique + EXP_TAG that identifies that variant in a Suite ID. See Section 8.10 + for more information. + +6. Deterministic Mappings + + The mappings in this section are suitable for implementing either + nonuniform or uniform encodings using the constructions in Section 3. + Certain mappings restrict the form of the curve or its parameters. + For each mapping presented, this document lists the relevant + restrictions. + + Note that mappings in this section are not interchangeable: different + mappings will almost certainly output different points when evaluated + on the same input. + +6.1. Choosing a Mapping Function + + This section gives brief guidelines on choosing a mapping function + for a given elliptic curve. Note that the suites given in Section 8 + are recommended mappings for the respective curves. + + If the target elliptic curve is a Montgomery curve (Section 6.7), the + Elligator 2 method (Section 6.7.1) is recommended. Similarly, if the + target elliptic curve is a twisted Edwards curve (Section 6.8), the + twisted Edwards Elligator 2 method (Section 6.8.2) is recommended. + + The remaining cases are Weierstrass curves. For curves supported by + the Simplified Shallue-van de Woestijne-Ulas (SWU) method + (Section 6.6.2), that mapping is the recommended one. Otherwise, the + Simplified SWU method for AB == 0 (Section 6.6.3) is recommended if + the goal is best performance, while the Shallue-van de Woestijne + method (Section 6.6.1) is recommended if the goal is simplicity of + implementation. (The reason for this distinction is that the + Simplified SWU method for AB == 0 requires implementing an isogeny + map in addition to the mapping function, while the Shallue-van de + Woestijne method does not.) + + The Shallue-van de Woestijne method (Section 6.6.1) works with any + curve and may be used in cases where a generic mapping is required. + Note, however, that this mapping is almost always more + computationally expensive than the curve-specific recommendations + above. + +6.2. Interface + + The generic interface shared by all mappings in this section is as + follows: + + (x, y) = map_to_curve(u) + + The input u and outputs x and y are elements of the field F. The + affine coordinates (x, y) specify a point on an elliptic curve + defined over F. Note, however, that the point (x, y) is not a + uniformly random point. + +6.3. Notation + + As a rough guide, the following conventions are used in pseudocode: + + * All arithmetic operations are performed over a field F, unless + explicitly stated otherwise. + + * u: the input to the mapping function. This is an element of F + produced by the hash_to_field function. + + * (x, y), (s, t), (v, w): the affine coordinates of the point output + by the mapping. Indexed variables (e.g., x1, y2, ...) are used + for candidate values. + + * tv1, tv2, ...: reusable temporary variables. + + * c1, c2, ...: constant values, which can be computed in advance. + +6.4. Sign of the Resulting Point + + In general, elliptic curves have equations of the form y^2 = g(x). + The mappings in this section first identify an x such that g(x) is + square, then take a square root to find y. Since there are two + square roots when g(x) != 0, this may result in an ambiguity + regarding the sign of y. + + When necessary, the mappings in this section resolve this ambiguity + by specifying the sign of the y-coordinate in terms of the input to + the mapping function. Two main reasons support this approach: first, + this covers elliptic curves over any field in a uniform way, and + second, it gives implementors leeway in optimizing square-root + implementations. + +6.5. Exceptional Cases + + Mappings may have exceptional cases, i.e., inputs u on which the + mapping is undefined. These cases must be handled carefully, + especially for constant-time implementations. + + For each mapping in this section, we discuss the exceptional cases + and show how to handle them in constant time. Note that all + implementations SHOULD use inv0 (Section 4) to compute multiplicative + inverses, to avoid exceptional cases that result from attempting to + compute the inverse of 0. + +6.6. Mappings for Weierstrass Curves + + The mappings in this section apply to a target curve E defined by the + equation + + y^2 = g(x) = x^3 + A * x + B + + where 4 * A^3 + 27 * B^2 != 0. + +6.6.1. Shallue-van de Woestijne Method + + Shallue and van de Woestijne [SW06] describe a mapping that applies + to essentially any elliptic curve. (Note, however, that this mapping + is more expensive to evaluate than the other mappings in this + document.) + + The parameterization given below is for Weierstrass curves; its + derivation is detailed in [W19]. This parameterization also works + for Montgomery curves (Section 6.7) and twisted Edwards curves + (Section 6.8) via the rational maps given in Appendix D: first, + evaluate the Shallue-van de Woestijne mapping to an equivalent + Weierstrass curve, then map that point to the target Montgomery or + twisted Edwards curve using the corresponding rational map. + + Preconditions: A Weierstrass curve y^2 = x^3 + A * x + B. + + Constants: + + * A and B, the parameter of the Weierstrass curve. + + * Z, a non-zero element of F meeting the below criteria. + Appendix H.1 gives a Sage script [SAGE] that outputs the + RECOMMENDED Z. + + 1. g(Z) != 0 in F. + + 2. -(3 * Z^2 + 4 * A) / (4 * g(Z)) != 0 in F. + + 3. -(3 * Z^2 + 4 * A) / (4 * g(Z)) is square in F. + + 4. At least one of g(Z) and g(-Z / 2) is square in F. + + Sign of y: Inputs u and -u give the same x-coordinate for many values + of u. Thus, we set sgn0(y) == sgn0(u). + + Exceptions: The exceptional cases for u occur when (1 + u^2 * g(Z)) * + (1 - u^2 * g(Z)) == 0. The restrictions on Z given above ensure that + implementations that use inv0 to invert this product are exception + free. + + Operations: + + 1. tv1 = u^2 * g(Z) + 2. tv2 = 1 + tv1 + 3. tv1 = 1 - tv1 + 4. tv3 = inv0(tv1 * tv2) + 5. tv4 = sqrt(-g(Z) * (3 * Z^2 + 4 * A)) # can be precomputed + 6. If sgn0(tv4) == 1, set tv4 = -tv4 # sgn0(tv4) MUST equal 0 + 7. tv5 = u * tv1 * tv3 * tv4 + 8. tv6 = -4 * g(Z) / (3 * Z^2 + 4 * A) # can be precomputed + 9. x1 = -Z / 2 - tv5 + 10. x2 = -Z / 2 + tv5 + 11. x3 = Z + tv6 * (tv2^2 * tv3)^2 + 12. If is_square(g(x1)), set x = x1 and y = sqrt(g(x1)) + 13. Else If is_square(g(x2)), set x = x2 and y = sqrt(g(x2)) + 14. Else set x = x3 and y = sqrt(g(x3)) + 15. If sgn0(u) != sgn0(y), set y = -y + 16. return (x, y) + + Appendix F.1 gives an example straight-line implementation of this + mapping. + +6.6.2. Simplified Shallue-van de Woestijne-Ulas Method + + The function map_to_curve_simple_swu(u) implements a simplification + of the Shallue-van de Woestijne-Ulas mapping [U07] described by Brier + et al. [BCIMRT10], which they call the "simplified SWU" map. Wahby + and Boneh [WB19] generalize and optimize this mapping. + + Preconditions: A Weierstrass curve y^2 = x^3 + A * x + B where A != 0 + and B != 0. + + Constants: + + * A and B, the parameters of the Weierstrass curve. + + * Z, an element of F meeting the below criteria. Appendix H.2 gives + a Sage script [SAGE] that outputs the RECOMMENDED Z. The criteria + are as follows: + + 1. Z is non-square in F, + + 2. Z != -1 in F, + + 3. the polynomial g(x) - Z is irreducible over F, and + + 4. g(B / (Z * A)) is square in F. + + Sign of y: Inputs u and -u give the same x-coordinate. Thus, we set + sgn0(y) == sgn0(u). + + Exceptions: The exceptional cases are values of u such that Z^2 * u^4 + + Z * u^2 == 0. This includes u == 0 and may include other values + that depend on Z. Implementations must detect this case and set x1 = + B / (Z * A), which guarantees that g(x1) is square by the condition + on Z given above. + + Operations: + + 1. tv1 = inv0(Z^2 * u^4 + Z * u^2) + 2. x1 = (-B / A) * (1 + tv1) + 3. If tv1 == 0, set x1 = B / (Z * A) + 4. gx1 = x1^3 + A * x1 + B + 5. x2 = Z * u^2 * x1 + 6. gx2 = x2^3 + A * x2 + B + 7. If is_square(gx1), set x = x1 and y = sqrt(gx1) + 8. Else set x = x2 and y = sqrt(gx2) + 9. If sgn0(u) != sgn0(y), set y = -y + 10. return (x, y) + + Appendix F.2 gives a general and optimized straight-line + implementation of this mapping. For more information on optimizing + this mapping, see Section 4 of [WB19] or the example code found at + [hash2curve-repo]. + +6.6.3. Simplified SWU for AB == 0 + + Wahby and Boneh [WB19] show how to adapt the Simplified SWU mapping + to Weierstrass curves having A == 0 or B == 0, which the mapping of + Section 6.6.2 does not support. (The case A == B == 0 is excluded + because y^2 = x^3 is not an elliptic curve.) + + This method applies to curves like secp256k1 [SEC2] and to pairing- + friendly curves in the Barreto-Lynn-Scott family [BLS03], Barreto- + Naehrig family [BN05], and other families. + + This method requires finding another elliptic curve E' given by the + equation + + y'^2 = g'(x') = x'^3 + A' * x' + B' + + that is isogenous to E and has A' != 0 and B' != 0. (See [WB19], + Appendix A, for one way of finding E' using [SAGE].) This isogeny + defines a map iso_map(x', y') given by a pair of rational functions. + iso_map takes as input a point on E' and produces as output a point + on E. + + Once E' and iso_map are identified, this mapping works as follows: on + input u, first apply the Simplified SWU mapping to get a point on E', + then apply the isogeny map to that point to get a point on E. + + Note that iso_map is a group homomorphism, meaning that point + addition commutes with iso_map. Thus, when using this mapping in the + hash_to_curve construction discussed in Section 3, one can effect a + small optimization by first mapping u0 and u1 to E', adding the + resulting points on E', and then applying iso_map to the sum. This + gives the same result while requiring only one evaluation of iso_map. + + Preconditions: An elliptic curve E' with A' != 0 and B' != 0 that is + isogenous to the target curve E with isogeny map iso_map from E' to + E. + + Helper functions: + + * map_to_curve_simple_swu is the mapping of Section 6.6.2 to E' + + * iso_map is the isogeny map from E' to E + + Sign of y: For this map, the sign is determined by + map_to_curve_simple_swu. No further sign adjustments are necessary. + + Exceptions: map_to_curve_simple_swu handles its exceptional cases. + Exceptional cases of iso_map are inputs that cause the denominator of + either rational function to evaluate to zero; such cases MUST return + the identity point on E. + + Operations: + + 1. (x', y') = map_to_curve_simple_swu(u) # (x', y') is on E' + 2. (x, y) = iso_map(x', y') # (x, y) is on E + 3. return (x, y) + + See [hash2curve-repo] or Section 4.3 of [WB19] for details on + implementing the isogeny map. + +6.7. Mappings for Montgomery Curves + + The mapping defined in this section applies to a target curve M + defined by the equation + + K * t^2 = s^3 + J * s^2 + s + +6.7.1. Elligator 2 Method + + Bernstein, Hamburg, Krasnova, and Lange give a mapping that applies + to any curve with a point of order 2 [BHKL13], which they call + Elligator 2. + + Preconditions: A Montgomery curve K * t^2 = s^3 + J * s^2 + s where + J != 0, K != 0, and (J^2 - 4) / K^2 is non-zero and non-square in F. + + Constants: + + * J and K, the parameters of the elliptic curve. + + * Z, a non-square element of F. Appendix H.3 gives a Sage script + [SAGE] that outputs the RECOMMENDED Z. + + Sign of t: This mapping fixes the sign of t as specified in [BHKL13]. + No additional adjustment is required. + + Exceptions: The exceptional case is Z * u^2 == -1, i.e., 1 + Z * u^2 + == 0. Implementations must detect this case and set x1 = -(J / K). + Note that this can only happen when q = 3 (mod 4). + + Operations: + + 1. x1 = -(J / K) * inv0(1 + Z * u^2) + 2. If x1 == 0, set x1 = -(J / K) + 3. gx1 = x1^3 + (J / K) * x1^2 + x1 / K^2 + 4. x2 = -x1 - (J / K) + 5. gx2 = x2^3 + (J / K) * x2^2 + x2 / K^2 + 6. If is_square(gx1), set x = x1, y = sqrt(gx1) with sgn0(y) == 1. + 7. Else set x = x2, y = sqrt(gx2) with sgn0(y) == 0. + 8. s = x * K + 9. t = y * K + 10. return (s, t) + + Appendix F.3 gives an example straight-line implementation of this + mapping. Appendix G.2 gives optimized straight-line procedures that + apply to specific classes of curves and base fields. + +6.8. Mappings for Twisted Edwards Curves + + Twisted Edwards curves (a class of curves that includes Edwards + curves) are given by the equation + + a * v^2 + w^2 = 1 + d * v^2 * w^2 + + with a != 0, d != 0, and a != d [BBJLP08]. + + These curves are closely related to Montgomery curves (Section 6.7): + every twisted Edwards curve is birationally equivalent to a + Montgomery curve ([BBJLP08], Theorem 3.2). This equivalence yields + an efficient way of hashing to a twisted Edwards curve: first, hash + to an equivalent Montgomery curve, then transform the result into a + point on the twisted Edwards curve via a rational map. This method + of hashing to a twisted Edwards curve thus requires identifying a + corresponding Montgomery curve and rational map. We describe how to + identify such a curve and map immediately below. + +6.8.1. Rational Maps from Montgomery to Twisted Edwards Curves + + There are two ways to select a Montgomery curve and rational map for + use when hashing to a given twisted Edwards curve. The selected + Montgomery curve and rational map MUST be specified as part of the + hash-to-curve suite for a given twisted Edwards curve; see Section 8. + + 1. When hashing to a standardized twisted Edwards curve for which a + corresponding Montgomery form and rational map are also + standardized, the standard Montgomery form and rational map + SHOULD be used to ensure compatibility with existing software. + + In certain cases, e.g., edwards25519 [RFC7748], the sign of the + rational map from the twisted Edwards curve to its corresponding + Montgomery curve is not given explicitly. In this case, the sign + MUST be fixed such that applying the rational map to the twisted + Edwards curve's base point yields the Montgomery curve's base + point with correct sign. (For edwards25519, see [RFC7748] and + [Err4730].) + + When defining new twisted Edwards curves, a Montgomery equivalent + and rational map SHOULD also be specified, and the sign of the + rational map SHOULD be stated explicitly. + + 2. When hashing to a twisted Edwards curve that does not have a + standardized Montgomery form or rational map, the map given in + Appendix D SHOULD be used. + +6.8.2. Elligator 2 Method + + Preconditions: A twisted Edwards curve E and an equivalent Montgomery + curve M meeting the requirements in Section 6.8.1. + + Helper functions: + + * map_to_curve_elligator2 is the mapping of Section 6.7.1 to the + curve M. + + * rational_map is a function that takes a point (s, t) on M and + returns a point (v, w) on E. This rational map should be chosen + as defined in Section 6.8.1. + + Sign of t (and v): For this map, the sign is determined by + map_to_curve_elligator2. No further sign adjustments are required. + + Exceptions: The exceptions for the Elligator 2 mapping are as given + in Section 6.7.1. The exceptions for the rational map are as given + in Section 6.8.1. No other exceptions are possible. + + The following procedure implements the Elligator 2 mapping for a + twisted Edwards curve. (Note that the output point is denoted (v, w) + because it is a point on the target twisted Edwards curve.) + + map_to_curve_elligator2_edwards(u) + + Input: u, an element of F. + Output: (v, w), a point on E. + + 1. (s, t) = map_to_curve_elligator2(u) # (s, t) is on M + 2. (v, w) = rational_map(s, t) # (v, w) is on E + 3. return (v, w) + +7. Clearing the Cofactor + + The mappings of Section 6 always output a point on the elliptic + curve, i.e., a point in a group of order h * r (Section 2.1). + Obtaining a point in G may require a final operation commonly called + "clearing the cofactor," which takes as input any point on the curve + and produces as output a point in the prime-order (sub)group G + (Section 2.1). + + The cofactor can always be cleared via scalar multiplication by h. + For elliptic curves where h = 1, i.e., the curves with a prime number + of points, no operation is required. This applies, for example, to + the NIST curves P-256, P-384, and P-521 [FIPS186-4]. + + In some cases, it is possible to clear the cofactor via a faster + method than scalar multiplication by h. These methods are equivalent + to (but usually faster than) multiplication by some scalar h_eff + whose value is determined by the method and the curve. Examples of + fast cofactor clearing methods include the following: + + * For certain pairing-friendly curves having subgroup G2 over an + extension field, Scott et al. [SBCDK09] describe a method for fast + cofactor clearing that exploits an efficiently computable + endomorphism. Fuentes-Castañeda et al. [FKR11] propose an + alternative method that is sometimes more efficient. Budroni and + Pintore [BP17] give concrete instantiations of these methods for + Barreto-Lynn-Scott pairing-friendly curves [BLS03]. This method + is described for the specific case of BLS12-381 in Appendix G.3. + + * Wahby and Boneh ([WB19], Section 5) describe a trick due to Scott + for fast cofactor clearing on any elliptic curve for which the + prime factorization of h and the structure of the elliptic curve + group meet certain conditions. + + The clear_cofactor function is parameterized by a scalar h_eff. + Specifically, + + clear_cofactor(P) := h_eff * P + + where * represents scalar multiplication. When a curve does not + support a fast cofactor clearing method, h_eff = h and the cofactor + MUST be cleared via scalar multiplication. + + When a curve admits a fast cofactor clearing method, clear_cofactor + MAY be evaluated either via that method or via scalar multiplication + by the equivalent h_eff; these two methods give the same result. + Note that in this case scalar multiplication by the cofactor h does + not generally give the same result as the fast method and MUST NOT be + used. + +8. Suites for Hashing + + This section lists recommended suites for hashing to standard + elliptic curves. + + A hash-to-curve suite fully specifies the procedure for hashing byte + strings to points on a specific elliptic curve group. Section 8.1 + describes how to implement a suite. Applications that require + hashing to an elliptic curve should use either an existing suite or a + new suite specified as described in Section 8.9. + + All applications using a hash-to-curve suite MUST choose a domain + separation tag (DST) in accordance with the guidelines in + Section 3.1. In addition, applications whose security requires a + random oracle that returns uniformly random points on the target + curve MUST use a suite whose encoding type is hash_to_curve; see + Section 3 and immediately below for more information. + + A hash-to-curve suite comprises the following parameters: + + * Suite ID, a short name used to refer to a given suite. + Section 8.10 discusses the naming conventions for Suite IDs. + + * encoding type, either uniform (hash_to_curve) or nonuniform + (encode_to_curve). See Section 3 for definitions of these + encoding types. + + * E, the target elliptic curve over a field F. + + * p, the characteristic of the field F. + + * m, the extension degree of the field F. If m > 1, the suite MUST + also specify the polynomial basis used to represent extension + field elements. + + * k, the target security level of the suite in bits. (See + Section 10.8 for discussion.) + + * L, the length parameter for hash_to_field (Section 5). + + * expand_message, one of the variants specified in Section 5.3 plus + any parameters required for the specified variant (for example, H, + the underlying hash function). + + * f, a mapping function from Section 6. + + * h_eff, the scalar parameter for clear_cofactor (Section 7). + + In addition to the above parameters, the mapping f may require + additional parameters Z, M, rational_map, E', or iso_map. When + applicable, these MUST be specified. + + The table below lists suites RECOMMENDED for some elliptic curves. + The corresponding parameters are given in the following subsections. + Applications instantiating cryptographic protocols whose security + analysis relies on a random oracle that outputs points with a uniform + distribution MUST NOT use a nonuniform encoding. Moreover, + applications that use a nonuniform encoding SHOULD carefully analyze + the security implications of nonuniformity. When the required + encoding is not clear, applications SHOULD use a uniform encoding for + security. + + +==============+===================================+=========+ + | E | Suites | Section | + +==============+===================================+=========+ + | NIST P-256 | P256_XMD:SHA-256_SSWU_RO_ | 8.2 | + | | P256_XMD:SHA-256_SSWU_NU_ | | + +--------------+-----------------------------------+---------+ + | NIST P-384 | P384_XMD:SHA-384_SSWU_RO_ | 8.3 | + | | P384_XMD:SHA-384_SSWU_NU_ | | + +--------------+-----------------------------------+---------+ + | NIST P-521 | P521_XMD:SHA-512_SSWU_RO_ | 8.4 | + | | P521_XMD:SHA-512_SSWU_NU_ | | + +--------------+-----------------------------------+---------+ + | curve25519 | curve25519_XMD:SHA-512_ELL2_RO_ | 8.5 | + | | curve25519_XMD:SHA-512_ELL2_NU_ | | + +--------------+-----------------------------------+---------+ + | edwards25519 | edwards25519_XMD:SHA-512_ELL2_RO_ | 8.5 | + | | edwards25519_XMD:SHA-512_ELL2_NU_ | | + +--------------+-----------------------------------+---------+ + | curve448 | curve448_XOF:SHAKE256_ELL2_RO_ | 8.6 | + | | curve448_XOF:SHAKE256_ELL2_NU_ | | + +--------------+-----------------------------------+---------+ + | edwards448 | edwards448_XOF:SHAKE256_ELL2_RO_ | 8.6 | + | | edwards448_XOF:SHAKE256_ELL2_NU_ | | + +--------------+-----------------------------------+---------+ + | secp256k1 | secp256k1_XMD:SHA-256_SSWU_RO_ | 8.7 | + | | secp256k1_XMD:SHA-256_SSWU_NU_ | | + +--------------+-----------------------------------+---------+ + | BLS12-381 G1 | BLS12381G1_XMD:SHA-256_SSWU_RO_ | 8.8 | + | | BLS12381G1_XMD:SHA-256_SSWU_NU_ | | + +--------------+-----------------------------------+---------+ + | BLS12-381 G2 | BLS12381G2_XMD:SHA-256_SSWU_RO_ | 8.8 | + | | BLS12381G2_XMD:SHA-256_SSWU_NU_ | | + +--------------+-----------------------------------+---------+ + + Table 2: Suites for hashing to elliptic curves. + +8.1. Implementing a Hash-to-Curve Suite + + A hash-to-curve suite requires the following functions. Note that + some of these require utility functions from Section 4. + + 1. Base field arithmetic operations for the target elliptic curve, + e.g., addition, multiplication, and square root. + + 2. Elliptic curve point operations for the target curve, e.g., point + addition and scalar multiplication. + + 3. The hash_to_field function; see Section 5. This includes the + expand_message variant (Section 5.3) and any constituent hash + function or XOF. + + 4. The suite-specified mapping function; see the corresponding + subsection of Section 6. + + 5. A cofactor clearing function; see Section 7. This may be + implemented as scalar multiplication by h_eff or as a faster + equivalent method. + + 6. The desired encoding function; see Section 3. This is either + hash_to_curve or encode_to_curve. + +8.2. Suites for NIST P-256 + + This section defines ciphersuites for the NIST P-256 elliptic curve + [FIPS186-4]. + + P256_XMD:SHA-256_SSWU_RO_ is defined as follows: + + * encoding type: hash_to_curve (Section 3) + + * E: y^2 = x^3 + A * x + B, where + + - A = -3 + + - B = 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e2 + 7d2604b + + * p: 2^256 - 2^224 + 2^192 + 2^96 - 1 + + * m: 1 + + * k: 128 + + * expand_message: expand_message_xmd (Section 5.3.1) + + * H: SHA-256 + + * L: 48 + + * f: Simplified SWU method (Section 6.6.2) + + * Z: -10 + + * h_eff: 1 + + P256_XMD:SHA-256_SSWU_NU_ is identical to P256_XMD:SHA-256_SSWU_RO_, + except that the encoding type is encode_to_curve (Section 3). + + An optimized example implementation of the Simplified SWU mapping to + P-256 is given in Appendix F.2. + +8.3. Suites for NIST P-384 + + This section defines ciphersuites for the NIST P-384 elliptic curve + [FIPS186-4]. + + P384_XMD:SHA-384_SSWU_RO_ is defined as follows: + + * encoding type: hash_to_curve (Section 3) + + * E: y^2 = x^3 + A * x + B, where + + - A = -3 + + - B = 0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5 + 013875ac656398d8a2ed19d2a85c8edd3ec2aef + + * p: 2^384 - 2^128 - 2^96 + 2^32 - 1 + + * m: 1 + + * k: 192 + + * expand_message: expand_message_xmd (Section 5.3.1) + + * H: SHA-384 + + * L: 72 + + * f: Simplified SWU method (Section 6.6.2) + + * Z: -12 + + * h_eff: 1 + + P384_XMD:SHA-384_SSWU_NU_ is identical to P384_XMD:SHA-384_SSWU_RO_, + except that the encoding type is encode_to_curve (Section 3). + + An optimized example implementation of the Simplified SWU mapping to + P-384 is given in Appendix F.2. + +8.4. Suites for NIST P-521 + + This section defines ciphersuites for the NIST P-521 elliptic curve + [FIPS186-4]. + + P521_XMD:SHA-512_SSWU_RO_ is defined as follows: + + * encoding type: hash_to_curve (Section 3) + + * E: y^2 = x^3 + A * x + B, where + + - A = -3 + + - B = 0x51953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b4899 + 18ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451f + d46b503f00 + + * p: 2^521 - 1 + + * m: 1 + + * k: 256 + + * expand_message: expand_message_xmd (Section 5.3.1) + + * H: SHA-512 + + * L: 98 + + * f: Simplified SWU method (Section 6.6.2) + + * Z: -4 + + * h_eff: 1 + + P521_XMD:SHA-512_SSWU_NU_ is identical to P521_XMD:SHA-512_SSWU_RO_, + except that the encoding type is encode_to_curve (Section 3). + + An optimized example implementation of the Simplified SWU mapping to + P-521 is given in Appendix F.2. + +8.5. Suites for curve25519 and edwards25519 + + This section defines ciphersuites for curve25519 and edwards25519 + [RFC7748]. Note that these ciphersuites MUST NOT be used when + hashing to ristretto255 [ristretto255-decaf448]. See Appendix B for + information on how to hash to that group. + + curve25519_XMD:SHA-512_ELL2_RO_ is defined as follows: + + * encoding type: hash_to_curve (Section 3) + + * E: K * t^2 = s^3 + J * s^2 + s, where + + - J = 486662 + + - K = 1 + + * p: 2^255 - 19 + + * m: 1 + + * k: 128 + + * expand_message: expand_message_xmd (Section 5.3.1) + + * H: SHA-512 + + * L: 48 + + * f: Elligator 2 method (Section 6.7.1) + + * Z: 2 + + * h_eff: 8 + + edwards25519_XMD:SHA-512_ELL2_RO_ is identical to curve25519_XMD:SHA- + 512_ELL2_RO_, except for the following parameters: + + * E: a * v^2 + w^2 = 1 + d * v^2 * w^2, where + + - a = -1 + + - d = 0x52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca1 + 35978a3 + + * f: Twisted Edwards Elligator 2 method (Section 6.8.2) + + * M: curve25519, defined in [RFC7748], Section 4.1 + + * rational_map: the birational maps defined in [RFC7748], + Section 4.1 + + curve25519_XMD:SHA-512_ELL2_NU_ is identical to curve25519_XMD:SHA- + 512_ELL2_RO_, except that the encoding type is encode_to_curve + (Section 3). + + edwards25519_XMD:SHA-512_ELL2_NU_ is identical to + edwards25519_XMD:SHA-512_ELL2_RO_, except that the encoding type is + encode_to_curve (Section 3). + + Optimized example implementations of the above mappings are given in + Appendix G.2.1 and Appendix G.2.2. + +8.6. Suites for curve448 and edwards448 + + This section defines ciphersuites for curve448 and edwards448 + [RFC7748]. Note that these ciphersuites MUST NOT be used when + hashing to decaf448 [ristretto255-decaf448]. See Appendix C for + information on how to hash to that group. + + curve448_XOF:SHAKE256_ELL2_RO_ is defined as follows: + + * encoding type: hash_to_curve (Section 3) + + * E: K * t^2 = s^3 + J * s^2 + s, where + + - J = 156326 + + - K = 1 + + * p: 2^448 - 2^224 - 1 + + * m: 1 + + * k: 224 + + * expand_message: expand_message_xof (Section 5.3.2) + + * H: SHAKE256 + + * L: 84 + + * f: Elligator 2 method (Section 6.7.1) + + * Z: -1 + + * h_eff: 4 + + edwards448_XOF:SHAKE256_ELL2_RO_ is identical to + curve448_XOF:SHAKE256_ELL2_RO_, except for the following parameters: + + * E: a * v^2 + w^2 = 1 + d * v^2 * w^2, where + + - a = 1 + + - d = -39081 + + * f: Twisted Edwards Elligator 2 method (Section 6.8.2) + + * M: curve448, defined in [RFC7748], Section 4.2 + + * rational_map: the 4-isogeny map defined in [RFC7748], Section 4.2 + + curve448_XOF:SHAKE256_ELL2_NU_ is identical to + curve448_XOF:SHAKE256_ELL2_RO_, except that the encoding type is + encode_to_curve (Section 3). + + edwards448_XOF:SHAKE256_ELL2_NU_ is identical to + edwards448_XOF:SHAKE256_ELL2_RO_, except that the encoding type is + encode_to_curve (Section 3). + + Optimized example implementations of the above mappings are given in + Appendix G.2.3 and Appendix G.2.4. + +8.7. Suites for secp256k1 + + This section defines ciphersuites for the secp256k1 elliptic curve + [SEC2]. + + secp256k1_XMD:SHA-256_SSWU_RO_ is defined as follows: + + * encoding type: hash_to_curve (Section 3) + + * E: y^2 = x^3 + 7 + + * p: 2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1 + + * m: 1 + + * k: 128 + + * expand_message: expand_message_xmd (Section 5.3.1) + + * H: SHA-256 + + * L: 48 + + * f: Simplified SWU for AB == 0 (Section 6.6.3) + + * Z: -11 + + * E': y'^2 = x'^3 + A' * x' + B', where + + - A': 0x3f8731abdd661adca08a5558f0f5d272e953d363cb6f0e5d405447c01 + a444533 + + - B': 1771 + + * iso_map: the 3-isogeny map from E' to E given in Appendix E.1 + + * h_eff: 1 + + secp256k1_XMD:SHA-256_SSWU_NU_ is identical to secp256k1_XMD:SHA- + 256_SSWU_RO_, except that the encoding type is encode_to_curve + (Section 3). + + An optimized example implementation of the Simplified SWU mapping to + the curve E' isogenous to secp256k1 is given in Appendix F.2. + +8.8. Suites for BLS12-381 + + This section defines ciphersuites for groups G1 and G2 of the + BLS12-381 elliptic curve [BLS12-381]. + +8.8.1. BLS12-381 G1 + + BLS12381G1_XMD:SHA-256_SSWU_RO_ is defined as follows: + + * encoding type: hash_to_curve (Section 3) + + * E: y^2 = x^3 + 4 + + * p: 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f + 6241eabfffeb153ffffb9feffffffffaaab + + * m: 1 + + * k: 128 + + * expand_message: expand_message_xmd (Section 5.3.1) + + * H: SHA-256 + + * L: 64 + + * f: Simplified SWU for AB == 0 (Section 6.6.3) + + * Z: 11 + + * E': y'^2 = x'^3 + A' * x' + B', where + + - A' = 0x144698a3b8e9433d693a02c96d4982b0ea985383ee66a8d8e8981aef + d881ac98936f8da0e0f97f5cf428082d584c1d + + - B' = 0x12e2908d11688030018b12e8753eee3b2016c1f0f24f4070a0b9c14f + cef35ef55a23215a316ceaa5d1cc48e98e172be0 + + * iso_map: the 11-isogeny map from E' to E given in Appendix E.2 + + * h_eff: 0xd201000000010001 + + BLS12381G1_XMD:SHA-256_SSWU_NU_ is identical to BLS12381G1_XMD:SHA- + 256_SSWU_RO_, except that the encoding type is encode_to_curve + (Section 3). + + Note that the h_eff values for these suites are chosen for + compatibility with the fast cofactor clearing method described by + Scott ([WB19], Section 5). + + An optimized example implementation of the Simplified SWU mapping to + the curve E' isogenous to BLS12-381 G1 is given in Appendix F.2. + +8.8.2. BLS12-381 G2 + + BLS12381G2_XMD:SHA-256_SSWU_RO_ is defined as follows: + + * encoding type: hash_to_curve (Section 3) + + * E: y^2 = x^3 + 4 * (1 + I) + + * base field F is GF(p^m), where + + - p: 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6 + b0f6241eabfffeb153ffffb9feffffffffaaab + + - m: 2 + + - (1, I) is the basis for F, where I^2 + 1 == 0 in F + + * k: 128 + + * expand_message: expand_message_xmd (Section 5.3.1) + + * H: SHA-256 + + * L: 64 + + * f: Simplified SWU for AB == 0 (Section 6.6.3) + + * Z: -(2 + I) + + * E': y'^2 = x'^3 + A' * x' + B', where + + - A' = 240 * I + + - B' = 1012 * (1 + I) + + * iso_map: the isogeny map from E' to E given in Appendix E.3 + + * h_eff: 0xbc69f08f2ee75b3584c6a0ea91b352888e2a8e9145ad7689986ff0315 + 08ffe1329c2f178731db956d82bf015d1212b02ec0ec69d7477c1ae954cbc06689 + f6a359894c0adebbf6b4e8020005aaa95551 + + BLS12381G2_XMD:SHA-256_SSWU_NU_ is identical to BLS12381G2_XMD:SHA- + 256_SSWU_RO_, except that the encoding type is encode_to_curve + (Section 3). + + Note that the h_eff values for these suites are chosen for + compatibility with the fast cofactor clearing method described by + Budroni and Pintore ([BP17], Section 4.1) and are summarized in + Appendix G.3. + + An optimized example implementation of the Simplified SWU mapping to + the curve E' isogenous to BLS12-381 G2 is given in Appendix F.2. + +8.9. Defining a New Hash-to-Curve Suite + + For elliptic curves not listed elsewhere in Section 8, a new hash-to- + curve suite can be defined by the following: + + 1. E, F, p, and m are determined by the elliptic curve and its base + field. + + 2. k is an upper bound on the target security level of the suite + (Section 10.8). A reasonable choice of k is ceil(log2(r) / 2), + where r is the order of the subgroup G of the curve E + (Section 2.1). + + 3. Choose encoding type, either hash_to_curve or encode_to_curve + (Section 3). + + 4. Compute L as described in Section 5. + + 5. Choose an expand_message variant from Section 5.3 plus any + underlying cryptographic primitives (e.g., a hash function H). + + 6. Choose a mapping following the guidelines in Section 6.1, and + select any required parameters for that mapping. + + 7. Choose h_eff to be either the cofactor of E or, if a fast + cofactor clearing method is to be used, a value appropriate to + that method as discussed in Section 7. + + 8. Construct a Suite ID following the guidelines in Section 8.10. + +8.10. Suite ID Naming Conventions + + Suite IDs MUST be constructed as follows: + + CURVE_ID || "_" || HASH_ID || "_" || MAP_ID || "_" || ENC_VAR || "_" + + The fields CURVE_ID, HASH_ID, MAP_ID, and ENC_VAR are ASCII-encoded + strings of at most 64 characters each. Fields MUST contain only + ASCII characters between 0x21 and 0x7E (inclusive), except that + underscore (i.e., 0x5F) is not allowed. + + As indicated above, each field (including the last) is followed by an + underscore ("_", ASCII 0x5F). This helps to ensure that Suite IDs + are prefix free. Suite IDs MUST include the final underscore and + MUST NOT include any characters after the final underscore. + + Suite ID fields MUST be chosen as follows: + + * CURVE_ID: a human-readable representation of the target elliptic + curve. + + * HASH_ID: a human-readable representation of the expand_message + function and any underlying hash primitives used in hash_to_field + (Section 5). This field MUST be constructed as follows: + + EXP_TAG || ":" || HASH_NAME + + EXP_TAG indicates the expand_message variant: + + - "XMD" for expand_message_xmd (Section 5.3.1). + + - "XOF" for expand_message_xof (Section 5.3.2). + + HASH_NAME is a human-readable name for the underlying hash + primitive. As examples: + + 1. For expand_message_xof (Section 5.3.2) with SHAKE128, HASH_ID + is "XOF:SHAKE128". + + 2. For expand_message_xmd (Section 5.3.1) with SHA3-256, HASH_ID + is "XMD:SHA3-256". + + Suites that use an alternative hash_to_field function that meets + the requirements in Section 5.1 MUST indicate this by appending a + tag identifying that function to the HASH_ID field, separated by a + colon (":", ASCII 0x3A). + + * MAP_ID: a human-readable representation of the map_to_curve + function as defined in Section 6. These are defined as follows: + + - "SVDW" for Shallue and van de Woestijne (Section 6.6.1). + + - "SSWU" for Simplified SWU (Sections 6.6.2 and 6.6.3). + + - "ELL2" for Elligator 2 (Sections 6.7.1 and 6.8.2). + + * ENC_VAR: a string indicating the encoding type and other + information. The first two characters of this string indicate + whether the suite represents a hash_to_curve or an encode_to_curve + operation (Section 3), as follows: + + - If ENC_VAR begins with "RO", the suite uses hash_to_curve. + + - If ENC_VAR begins with "NU", the suite uses encode_to_curve. + + - ENC_VAR MUST NOT begin with any other string. + + ENC_VAR MAY also be used to encode other information used to + identify variants, for example, a version number. The RECOMMENDED + way to do so is to add one or more subfields separated by colons. + For example, "RO:V02" is an appropriate ENC_VAR value for the + second version of a uniform encoding suite, while + "RO:V02:FOO01:BAR17" might be used to indicate a variant of that + suite. + +9. IANA Considerations + + This document has no IANA actions. + +10. Security Considerations + + This section contains additional security considerations about the + hash-to-curve mechanisms described in this document. + +10.1. Properties of Encodings + + Each encoding type (Section 3) accepts an arbitrary byte string and + maps it to a point on the curve sampled from a distribution that + depends on the encoding type. It is important to note that using a + nonuniform encoding or directly evaluating one of the mappings of + Section 6 produces an output that is easily distinguished from a + uniformly random point. Applications that use a nonuniform encoding + SHOULD carefully analyze the security implications of nonuniformity. + When the required encoding is not clear, applications SHOULD use a + uniform encoding. + + Both encodings given in Section 3 can output the identity element of + the group G. The probability that either encoding function outputs + the identity element is roughly 1/r for a random input, which is + negligible for cryptographically useful elliptic curves. Further, it + is computationally infeasible to find an input to either encoding + function whose corresponding output is the identity element. (Both + of these properties hold when the encoding functions are instantiated + with a hash_to_field function that follows all guidelines in + Section 5.) Protocols that use these encoding functions SHOULD NOT + add a special case to detect and "fix" the identity element. + + When the hash_to_curve function (Section 3) is instantiated with a + hash_to_field function that is indifferentiable from a random oracle + (Section 5), the resulting function is indifferentiable from a random + oracle ([MRH04] [BCIMRT10] [FFSTV13] [LBB19] [H20]). In many cases, + such a function can be safely used in cryptographic protocols whose + security analysis assumes a random oracle that outputs uniformly + random points on an elliptic curve. As Ristenpart et al. discuss in + [RSS11], however, not all security proofs that rely on random oracles + continue to hold when those oracles are replaced by indifferentiable + functionalities. This limitation should be considered when analyzing + the security of protocols relying on the hash_to_curve function. + +10.2. Hashing Passwords + + When hashing passwords using any function described in this document, + an adversary who learns the output of the hash function (or + potentially any intermediate value, e.g., the output of + hash_to_field) may be able to carry out a dictionary attack. To + mitigate such attacks, it is recommended to first execute a more + costly key derivation function (e.g., PBKDF2 [RFC8018], scrypt + [RFC7914], or Argon2 [RFC9106]) on the password, then hash the output + of that function to the target elliptic curve. For collision + resistance, the hash underlying the key derivation function should be + chosen according to the guidelines listed in Section 5.3.1. + +10.3. Constant-Time Requirements + + Constant-time implementations of all functions in this document are + STRONGLY RECOMMENDED for all uses, to avoid leaking information via + side channels. It is especially important to use a constant-time + implementation when inputs to an encoding are secret values; in such + cases, constant-time implementations are REQUIRED for security + against timing attacks (e.g., [VR20]). When constant-time + implementations are required, all basic operations and utility + functions must be implemented in constant time, as discussed in + Section 4. In some applications (e.g., embedded systems), leakage + through other side channels (e.g., power or electromagnetic side + channels) may be pertinent. Defending against such leakage is + outside the scope of this document, because the nature of the leakage + and the appropriate defense depend on the application. + +10.4. encode_to_curve: Output Distribution and Indifferentiability + + The encode_to_curve function (Section 3) returns points sampled from + a distribution that is statistically far from uniform. This + distribution is bounded roughly as follows: first, it includes at + least one eighth of the points in G, and second, the probability of + points in the distribution varies by at most a factor of four. These + bounds hold when encode_to_curve is instantiated with any of the + map_to_curve functions in Section 6. + + The bounds above are derived from several works in the literature. + Specifically: + + * Shallue and van de Woestijne [SW06] and Fouque and Tibouchi [FT12] + derive bounds on the Shallue-van de Woestijne mapping + (Section 6.6.1). + + * Fouque and Tibouchi [FT10] and Tibouchi [T14] derive bounds for + the Simplified SWU mapping (Sections 6.6.2 and 6.6.3). + + * Bernstein et al. [BHKL13] derive bounds for the Elligator 2 + mapping (Sections 6.7.1 and 6.8.2). + + Indifferentiability of encode_to_curve follows from an argument + similar to the one given by Brier et al. [BCIMRT10]; we briefly + sketch this argument as follows. Consider an ideal random oracle + Hc() that samples from the distribution induced by the map_to_curve + function called by encode_to_curve, and assume for simplicity that + the target elliptic curve has cofactor 1 (a similar argument applies + for non-unity cofactors). Indifferentiability holds just if it is + possible to efficiently simulate the "inner" random oracle in + encode_to_curve, namely, hash_to_field. The simulator works as + follows: on a fresh query msg, the simulator queries Hc(msg) and + receives a point P in the image of map_to_curve (if msg is the same + as a prior query, the simulator just returns the value it gave in + response to that query). The simulator then computes the possible + preimages of P under map_to_curve, i.e., elements u of F such that + map_to_curve(u) == P (Tibouchi [T14] shows that this can be done + efficiently for the Shallue-van de Woestijne and Simplified SWU maps, + and Bernstein et al. show the same for Elligator 2). The simulator + selects one such preimage at random and returns this value as the + simulated output of the "inner" random oracle. By hypothesis, Hc() + samples from the distribution induced by map_to_curve on a uniformly + random input element of F, so this value is uniformly random and + induces the correct point P when passed through map_to_curve. + +10.5. hash_to_field Security + + The hash_to_field function, defined in Section 5, is indifferentiable + from a random oracle [MRH04] when expand_message (Section 5.3) is + modeled as a random oracle. Since indifferentiability proofs are + composable, this also holds when expand_message is proved + indifferentiable from a random oracle relative to an underlying + primitive that is modeled as a random oracle. When following the + guidelines in Section 5.3, both variants of expand_message defined in + that section meet this requirement (see also Section 10.6). + + We very briefly sketch the indifferentiability argument for + hash_to_field. Notice that each integer mod p that hash_to_field + returns (i.e., each element of the vector representation of F) is a + member of an equivalence class of roughly 2^k integers of length + log2(p) + k bits, all of which are equal modulo p. For each integer + mod p that hash_to_field returns, the simulator samples one member of + this equivalence class at random and outputs the byte string returned + by I2OSP. (Notice that this is essentially the inverse of the + hash_to_field procedure.) + +10.6. expand_message_xmd Security + + The expand_message_xmd function, defined in Section 5.3.1, is + indifferentiable from a random oracle [MRH04] when one of the + following holds: + + 1. H is indifferentiable from a random oracle, + + 2. H is a sponge-based hash function whose inner function is modeled + as a random transformation or random permutation [BDPV08], or + + 3. H is a Merkle-Damgaard hash function whose compression function + is modeled as a random oracle [CDMP05]. + + For cases (1) and (2), the indifferentiability of expand_message_xmd + follows directly from the indifferentiability of H. + + For case (3), i.e., where H is a Merkle-Damgaard hash function, + indifferentiability follows from [CDMP05], Theorem 5. In particular, + expand_message_xmd computes b_0 by prefixing the message with one + block of zeros plus auxiliary information (length, counter, and DST). + Then, each of the output blocks b_i, i >= 1 in expand_message_xmd is + the result of invoking H on a unique, prefix-free encoding of b_0. + This is true, first because the length of the input to all such + invocations is equal and fixed by the choice of H and DST, and second + because each such input has a unique suffix (because of the inclusion + of the counter byte I2OSP(i, 1)). + + The essential difference between the construction discussed in + [CDMP05] and expand_message_xmd is that the latter hashes a counter + appended to strxor(b_0, b_(i - 1)) ({#hashtofield-expand-xmd}, step + 10) rather than to b_0. This approach increases the Hamming distance + between inputs to different invocations of H, which reduces the + likelihood that nonidealities in H affect the distribution of the b_i + values. + + We note that expand_message_xmd can be used to instantiate a general- + purpose indifferentiable functionality with variable-length output + based on any hash function meeting one of the above criteria. + Applications that use expand_message_xmd outside of hash_to_field + should ensure domain separation by picking a distinct value for DST. + +10.7. Domain Separation for expand_message Variants + + As discussed in Section 2.2.5, the purpose of domain separation is to + ensure that security analyses of cryptographic protocols that query + multiple independent random oracles remain valid even if all of these + random oracles are instantiated based on one underlying function H. + + The expand_message variants in this document (Section 5.3) ensure + domain separation by appending a suffix-free-encoded domain + separation tag DST_prime to all strings hashed by H, an underlying + hash or extendable-output function. (Other expand_message variants + that follow the guidelines in Section 5.3.4 are expected to behave + similarly, but these should be analyzed on a case-by-case basis.) + For security, applications that use the same function H outside of + expand_message should enforce domain separation between those uses of + H and expand_message, and they should separate all of these from uses + of H in other applications. + + This section suggests four methods for enforcing domain separation + from expand_message variants, explains how each method achieves + domain separation, and lists the situations in which each is + appropriate. These methods share a high-level structure: the + application designer fixes a tag DST_ext distinct from DST_prime and + augments calls to H with DST_ext. Each method augments calls to H + differently, and each may impose additional requirements on DST_ext. + + These methods can be used to instantiate multiple domain-separated + functions (e.g., H1 and H2) by selecting distinct DST_ext values for + each (e.g., DST_ext1, DST_ext2). + + 1. (Suffix-only domain separation.) This method is useful when + domain-separating invocations of H from expand_message_xmd or + expand_message_xof. It is not appropriate for domain-separating + expand_message from HMAC-H [RFC2104]; for that purpose, see + method 4. + + To instantiate a suffix-only domain-separated function Hso, + compute + + Hso(msg) = H(msg || DST_ext) + + DST_ext should be suffix-free encoded (e.g., by appending one + byte encoding the length of DST_ext) to make it infeasible to + find distinct (msg, DST_ext) pairs that hash to the same value. + + This method ensures domain separation because all distinct + invocations of H have distinct suffixes, since DST_ext is + distinct from DST_prime. + + 2. (Prefix-suffix domain separation.) This method can be used in + the same cases as the suffix-only method. + + To instantiate a prefix-suffix domain-separated function Hps, + compute + + Hps(msg) = H(DST_ext || msg || I2OSP(0, 1)) + + DST_ext should be prefix-free encoded (e.g., by adding a one-byte + prefix that encodes the length of DST_ext) to make it infeasible + to find distinct (msg, DST_ext) pairs that hash to the same + value. + + This method ensures domain separation because appending the byte + I2OSP(0, 1) ensures that inputs to H inside Hps are distinct from + those inside expand_message. Specifically, the final byte of + DST_prime encodes the length of DST, which is required to be + nonzero (Section 3.1, requirement 2), and DST_prime is always + appended to invocations of H inside expand_message. + + 3. (Prefix-only domain separation.) This method is only useful for + domain-separating invocations of H from expand_message_xmd. It + does not give domain separation for expand_message_xof or HMAC-H. + + To instantiate a prefix-only domain-separated function Hpo, + compute + + Hpo(msg) = H(DST_ext || msg) + + In order for this method to give domain separation, DST_ext + should be at least b bits long, where b is the number of bits + output by the hash function H. In addition, at least one of the + first b bits must be nonzero. Finally, DST_ext should be prefix- + free encoded (e.g., by adding a one-byte prefix that encodes the + length of DST_ext) to make it infeasible to find distinct (msg, + DST_ext) pairs that hash to the same value. + + This method ensures domain separation as follows. First, since + DST_ext contains at least one nonzero bit among its first b bits, + it is guaranteed to be distinct from the value Z_pad + (Section 5.3.1, step 4), which ensures that all inputs to H are + distinct from the input used to generate b_0 in + expand_message_xmd. Second, since DST_ext is at least b bits + long, it is almost certainly distinct from the values b_0 and + strxor(b_0, b_(i - 1)), and therefore all inputs to H are + distinct from the inputs used to generate b_i, i >= 1, with high + probability. + + 4. (XMD-HMAC domain separation.) This method is useful for domain- + separating invocations of H inside HMAC-H (i.e., HMAC [RFC2104] + instantiated with hash function H) from expand_message_xmd. It + also applies to HKDF-H (i.e., HKDF [RFC5869] instantiated with + hash function H), as discussed below. + + Specifically, this method applies when HMAC-H is used with a non- + secret key to instantiate a random oracle based on a hash + function H (note that expand_message_xmd can also be used for + this purpose; see Section 10.6). When using HMAC-H with a high- + entropy secret key, domain separation is not necessary; see + discussion below. + + To choose a non-secret HMAC key DST_key that ensures domain + separation from expand_message_xmd, compute + + DST_key_preimage = "DERIVE-HMAC-KEY-" || DST_ext || I2OSP(0, 1) + DST_key = H(DST_key_preimage) + + Then, to instantiate the random oracle Hro using HMAC-H, compute + + Hro(msg) = HMAC-H(DST_key, msg) + + The trailing zero byte in DST_key_preimage ensures that this + value is distinct from inputs to H inside expand_message_xmd + (because all such inputs have suffix DST_prime, which cannot end + with a zero byte as discussed above). This ensures domain + separation because, with overwhelming probability, all inputs to + H inside of HMAC-H using key DST_key have prefixes that are + distinct from the values Z_pad, b_0, and strxor(b_0, b_(i - 1)) + inside of expand_message_xmd. + + For uses of HMAC-H that instantiate a private random oracle by + fixing a high-entropy secret key, domain separation from + expand_message_xmd is not necessary. This is because, similarly + to the case above, all inputs to H inside HMAC-H using this + secret key almost certainly have distinct prefixes from all + inputs to H inside expand_message_xmd. + + Finally, this method can be used with HKDF-H [RFC5869] by fixing + the salt input to HKDF-Extract to DST_key, computed as above. + This ensures domain separation for HKDF-Extract by the same + argument as for HMAC-H using DST_key. Moreover, assuming that + the input keying material (IKM) supplied to HKDF-Extract has + sufficiently high entropy (say, commensurate with the security + parameter), the HKDF-Expand step is domain-separated by the same + argument as for HMAC-H with a high-entropy secret key (since a + pseudorandom key is exactly that). + +10.8. Target Security Levels + + Each ciphersuite specifies a target security level (in bits) for the + underlying curve. This parameter ensures the corresponding + hash_to_field instantiation is conservative and correct. We stress + that this parameter is only an upper bound on the security level of + the curve and is neither a guarantee nor endorsement of its + suitability for a given application. Mathematical and cryptographic + advancements may reduce the effective security level for any curve. + +11. References + +11.1. Normative References + + [Err4730] RFC Errata, "Erratum ID 4730", RFC 7748, July 2016, + <https://www.rfc-editor.org/errata/eid4730>. + + [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate + Requirement Levels", BCP 14, RFC 2119, + DOI 10.17487/RFC2119, March 1997, + <https://www.rfc-editor.org/info/rfc2119>. + + [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves + for Security", RFC 7748, DOI 10.17487/RFC7748, January + 2016, <https://www.rfc-editor.org/info/rfc7748>. + + [RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch, + "PKCS #1: RSA Cryptography Specifications Version 2.2", + RFC 8017, DOI 10.17487/RFC8017, November 2016, + <https://www.rfc-editor.org/info/rfc8017>. + + [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC + 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, + May 2017, <https://www.rfc-editor.org/info/rfc8174>. + +11.2. Informative References + + [AFQTZ14] Aranha, D. F., Fouque, P.-A., Qian, C., Tibouchi, M., and + J. C. Zapalowicz, "Binary Elligator Squared", In Selected + Areas in Cryptography - SAC 2014, pages 20-37, + DOI 10.1007/978-3-319-13051-4_2, November 2014, + <https://doi.org/10.1007/978-3-319-13051-4_2>. + + [AR13] Adj, G. and F. Rodríguez-Henríquez, "Square Root + Computation over Even Extension Fields", In IEEE + Transactions on Computers. vol 63 issue 11, pages + 2829-2841, DOI 10.1109/TC.2013.145, November 2014, + <https://doi.org/10.1109/TC.2013.145>. + + [BBJLP08] Bernstein, D. J., Birkner, P., Joye, M., Lange, T., and C. + Peters, "Twisted Edwards Curves", In AFRICACRYPT 2008, + pages 389-405, DOI 10.1007/978-3-540-68164-9_26, June + 2008, <https://doi.org/10.1007/978-3-540-68164-9_26>. + + [BCIMRT10] Brier, E., Coron, J.-S., Icart, T., Madore, D., Randriam, + H., and M. Tibouchi, "Efficient Indifferentiable Hashing + into Ordinary Elliptic Curves", In Advances in Cryptology + - CRYPTO 2010, pages 237-254, + DOI 10.1007/978-3-642-14623-7_13, August 2010, + <https://doi.org/10.1007/978-3-642-14623-7_13>. + + [BDPV08] Bertoni, G., Daemen, J., Peeters, M., and G. Van Assche, + "On the Indifferentiability of the Sponge Construction", + In Advances in Cryptology - EUROCRYPT 2008, pages 181-197, + DOI 10.1007/978-3-540-78967-3_11, April 2008, + <https://doi.org/10.1007/978-3-540-78967-3_11>. + + [BF01] Boneh, D. and M. Franklin, "Identity-Based Encryption from + the Weil Pairing", In Advances in Cryptology - CRYPTO + 2001, pages 213-229, DOI 10.1007/3-540-44647-8_13, August + 2001, <https://doi.org/10.1007/3-540-44647-8_13>. + + [BHKL13] Bernstein, D. J., Hamburg, M., Krasnova, A., and T. Lange, + "Elligator: elliptic-curve points indistinguishable from + uniform random strings", In Proceedings of the 2013 ACM + SIGSAC Conference on Computer and Communications Security, + pages 967-980, DOI 10.1145/2508859.2516734, November 2013, + <https://doi.org/10.1145/2508859.2516734>. + + [BLAKE2X] Aumasson, J.-P., Neves, S., Wilcox-O'Hearn, Z., and C. + Winnerlein, "BLAKE2X", December 2016, + <https://blake2.net/blake2x.pdf>. + + [BLMP19] Bernstein, D. J., Lange, T., Martindale, C., and L. Panny, + "Quantum Circuits for the CSIDH: Optimizing Quantum + Evaluation of Isogenies", In Advances in Cryptology - + EUROCRYPT 2019, pages 409-441, + DOI 10.1007/978-3-030-17656-3, May 2019, + <https://doi.org/10.1007/978-3-030-17656-3_15>. + + [BLS-SIG] Boneh, D., Gorbunov, S., Wahby, R. S., Wee, H., Wood, C. + A., and Z. Zhang, "BLS Signatures", Work in Progress, + Internet-Draft, draft-irtf-cfrg-bls-signature-05, 16 June + 2022, <https://datatracker.ietf.org/doc/html/draft-irtf- + cfrg-bls-signature-05>. + + [BLS01] Boneh, D., Lynn, B., and H. Shacham, "Short Signatures + from the Weil Pairing", In Journal of Cryptology, vol 17, + pages 297-319, DOI 10.1007/s00145-004-0314-9, July 2004, + <https://doi.org/10.1007/s00145-004-0314-9>. + + [BLS03] Barreto, P. S. L. M., Lynn, B., and M. Scott, + "Constructing Elliptic Curves with Prescribed Embedding + Degrees", In Security in Communication Networks, pages + 257-267, DOI 10.1007/3-540-36413-7_19, September 2002, + <https://doi.org/10.1007/3-540-36413-7_19>. + + [BLS12-381] + Bowe, S., "BLS12-381: New zk-SNARK Elliptic Curve + Construction", March 2017, + <https://electriccoin.co/blog/new-snark-curve/>. + + [BM92] Bellovin, S. M. and M. Merritt, "Encrypted key exchange: + password-based protocols secure against dictionary + attacks", In IEEE Symposium on Security and Privacy - + Oakland 1992, pages 72-84, DOI 10.1109/RISP.1992.213269, + May 1992, <https://doi.org/10.1109/RISP.1992.213269>. + + [BMP00] Boyko, V., MacKenzie, P., and S. Patel, "Provably Secure + Password-Authenticated Key Exchange Using Diffie-Hellman", + In Advances in Cryptology - EUROCRYPT 2000, pages 156-171, + DOI 10.1007/3-540-45539-6_12, May 2000, + <https://doi.org/10.1007/3-540-45539-6_12>. + + [BN05] Barreto, P. S. L. M. and M. Naehrig, "Pairing-Friendly + Elliptic Curves of Prime Order", In Selected Areas in + Cryptography 2005, pages 319-331, DOI 10.1007/11693383_22, + 2006, <https://doi.org/10.1007/11693383_22>. + + [BP17] Budroni, A. and F. Pintore, "Efficient hash maps to + \mathbb{G}_2 on BLS curves", Cryptology ePrint Archive, + Paper 2017/419, May 2017, + <https://eprint.iacr.org/2017/419>. + + [BR93] Bellare, M. and P. Rogaway, "Random oracles are practical: + a paradigm for designing efficient protocols", In + Proceedings of the 1993 ACM Conference on Computer and + Communications Security, pages 62-73, + DOI 10.1145/168588.168596, December 1993, + <https://doi.org/10.1145/168588.168596>. + + [C93] Cohen, H., "A Course in Computational Algebraic Number + Theory", Springer-Verlag, ISBN 9783642081422, + DOI 10.1007/978-3-662-02945-9, 1993, + <https://doi.org/10.1007/978-3-662-02945-9>. + + [CDMP05] Coron, J.-S., Dodis, Y., Malinaud, C., and P. Puniya, + "Merkle-Damgård Revisited: How to Construct a Hash + Function", In Advances in Cryptology -- CRYPTO 2005, pages + 430-448, DOI 10.1007/11535218_26, August 2005, + <https://doi.org/10.1007/11535218_26>. + + [CFADLNV05] + Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., + Nguyen, K., and F. Vercauteren, "Handbook of Elliptic and + Hyperelliptic Curve Cryptography", Chapman and Hall / CRC, + ISBN 9781584885184, 2005, + <https://www.crcpress.com/9781584885184>. + + [CK11] Couveignes, J.-M. and J.-G. Kammerer, "The geometry of + flex tangents to a cubic curve and its parameterizations", + In Journal of Symbolic Computation, vol 47 issue 3, pages + 266-281, DOI 10.1016/j.jsc.2011.11.003, March 2012, + <https://doi.org/10.1016/j.jsc.2011.11.003>. + + [F11] Farashahi, R. R., "Hashing into Hessian Curves", In + AFRICACRYPT 2011, pages 278-289, + DOI 10.1007/978-3-642-21969-6_17, July 2011, + <https://doi.org/10.1007/978-3-642-21969-6_17>. + + [FFSTV13] Farashahi, R. R., Fouque, P.-A., Shparlinski, I. E., + Tibouchi, M., and J. F. Voloch, "Indifferentiable + deterministic hashing to elliptic and hyperelliptic + curves", In Mathematics of Computation. vol 82, pages + 491-512, DOI 10.1090/S0025-5718-2012-02606-8, 2013, + <https://doi.org/10.1090/S0025-5718-2012-02606-8>. + + [FIPS180-4] + National Institute of Standards and Technology (NIST), + "Secure Hash Standard (SHS)", FIPS 180-4, + DOI 10.6028/NIST.FIPS.180-4, August 2015, + <https://nvlpubs.nist.gov/nistpubs/FIPS/ + NIST.FIPS.180-4.pdf>. + + [FIPS186-4] + National Institute of Standards and Technology (NIST), + "Digital Signature Standard (DSS)", FIPS 186-4, + DOI 10.6028/NIST.FIPS.186-4, July 2013, + <https://nvlpubs.nist.gov/nistpubs/FIPS/ + NIST.FIPS.186-4.pdf>. + + [FIPS202] National Institute of Standards and Technology (NIST), + "SHA-3 Standard: Permutation-Based Hash and Extendable- + Output Functions", FIPS 202, DOI 10.6028/NIST.FIPS.202, + August 2015, <https://nvlpubs.nist.gov/nistpubs/FIPS/ + NIST.FIPS.202.pdf>. + + [FJT13] Fouque, P.-A., Joux, A., and M. Tibouchi, "Injective + Encodings to Elliptic Curves", In ACISP 2013, pages + 203-218, DOI 10.1007/978-3-642-39059-3_14, 2013, + <https://doi.org/10.1007/978-3-642-39059-3_14>. + + [FKR11] Fuentes-Castañeda, L., Knapp, E., and F. Rodriguez- + Henriquez, "Faster Hashing to G2", In Selected Areas in + Cryptography, pages 412-430, + DOI 10.1007/978-3-642-28496-0_25, August 2011, + <https://doi.org/10.1007/978-3-642-28496-0_25>. + + [FSV09] Farashahi, R. R., Shparlinski, I. E., and J. F. Voloch, + "On hashing into elliptic curves", In Journal of + Mathematical Cryptology, vol 3 no 4, pages 353-360, + DOI 10.1515/JMC.2009.022, March 2009, + <https://doi.org/10.1515/JMC.2009.022>. + + [FT10] Fouque, P.-A. and M. Tibouchi, "Estimating the Size of the + Image of Deterministic Hash Functions to Elliptic Curves", + In Progress in Cryptology - LATINCRYPT 2010, pages 81-91, + DOI 10.1007/978-3-642-14712-8_5, August 2010, + <https://doi.org/10.1007/978-3-642-14712-8_5>. + + [FT12] Fouque, P.-A. and M. Tibouchi, "Indifferentiable Hashing + to Barreto--Naehrig Curves", In Progress in Cryptology - + LATINCRYPT 2012, pages 1-17, + DOI 10.1007/978-3-642-33481-8_1, 2012, + <https://doi.org/10.1007/978-3-642-33481-8_1>. + + [H20] Hamburg, M., "Indifferentiable hashing from Elligator 2", + Cryptology ePrint Archive, Paper 2020/1513, 2020, + <https://eprint.iacr.org/2020/1513>. + + [hash2curve-repo] + "Hashing to Elliptic Curves", commit 664b135, June 2022, + <https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve>. + + [Icart09] Icart, T., "How to Hash into Elliptic Curves", In Advances + in Cryptology - CRYPTO 2009, pages 303-316, + DOI 10.1007/978-3-642-03356-8_18, August 2009, + <https://doi.org/10.1007/978-3-642-03356-8_18>. + + [J96] Jablon, D. P., "Strong password-only authenticated key + exchange", In SIGCOMM Computer Communication Review, vol + 26 issue 5, pages 5-26, DOI 10.1145/242896.242897, October + 1996, <https://doi.org/10.1145/242896.242897>. + + [jubjub-fq] + "zkcrypto/jubjub - fq.rs", 2019, + <https://github.com/zkcrypto/jubjub/pull/18>. + + [KLR10] Kammerer, J.-G., Lercier, R., and G. Renault, "Encoding + Points on Hyperelliptic Curves over Finite Fields in + Deterministic Polynomial Time", In Pairing-Based + Cryptography - Pairing 2010, pages 278-297, + DOI 10.1007/978-3-642-17455-1_18, 2010, + <https://doi.org/10.1007/978-3-642-17455-1_18>. + + [L13] Langley, A., "Implementing Elligator for Curve25519", + December 2013, <https://www.imperialviolet.org/2013/12/25/ + elligator.html>. + + [LBB19] Lipp, B., Blanchet, B., and K. Bhargavan, "A Mechanised + Cryptographic Proof of the WireGuard Virtual Private + Network Protocol", In INRIA Research Report 9269, April + 2019, <https://hal.inria.fr/hal-02100345/>. + + [MOV96] Menezes, A. J., van Oorschot, P. C., and S. A. Vanstone, + "Handbook of Applied Cryptography", CRC Press, + ISBN 9780849385230, October 1996, + <http://cacr.uwaterloo.ca/hac/>. + + [MRH04] Maurer, U., Renner, R., and C. Holenstein, + "Indifferentiability, Impossibility Results on Reductions, + and Applications to the Random Oracle Methodology", In TCC + 2004: Theory of Cryptography, pages 21-39, + DOI 10.1007/978-3-540-24638-1_2, February 2004, + <https://doi.org/10.1007/978-3-540-24638-1_2>. + + [MRV99] Micali, S., Rabin, M., and S. Vadhan, "Verifiable random + functions", 40th Annual Symposium on Foundations of + Computer Science (Cat. No.99CB37039), pages 120-130, + DOI 10.1109/SFFCS.1999.814584, October 1999, + <https://doi.org/10.1109/SFFCS.1999.814584>. + + [MT98] Matsumoto, M. and T. Nishimura, "Mersenne twister: A + 623-dimensionally equidistributed uniform pseudo-random + number generator", In ACM Transactions on Modeling and + Computer Simulation (TOMACS), vol 8 issue 1, pages 3-30, + DOI 10.1145/272991.272995, January 1998, + <https://doi.org/10.1145/272991.272995>. + + [NR97] Naor, M. and O. Reingold, "Number-theoretic constructions + of efficient pseudo-random functions", In Proceedings 38th + Annual Symposium on Foundations of Computer Science, pages + 458-467, DOI 10.1109/SFCS.1997.646134, October 1997, + <https://doi.org/10.1109/SFCS.1997.646134>. + + [OPRFs] Davidson, A., Faz-Hernandez, A., Sullivan, N., and C. A. + Wood, "Oblivious Pseudorandom Functions (OPRFs) using + Prime-Order Groups", Work in Progress, Internet-Draft, + draft-irtf-cfrg-voprf-21, 21 February 2023, + <https://datatracker.ietf.org/doc/html/draft-irtf-cfrg- + voprf-21>. + + [p1363.2] IEEE, "IEEE Standard Specification for Password-Based + Public-Key Cryptography Techniques", IEEE 1363.2-2008, + September 2008, + <https://standards.ieee.org/standard/1363_2-2008.html>. + + [p1363a] IEEE, "IEEE Standard Specifications for Public-Key + Cryptography - Amendment 1: Additional Techniques", IEEE + 1363a-2004, March 2004, + <https://standards.ieee.org/standard/1363a-2004.html>. + + [P20] Pornin, T., "Efficient Elliptic Curve Operations On + Microcontrollers With Finite Field Extensions", Cryptology + ePrint Archive, Paper 2020/009, 2020, + <https://eprint.iacr.org/2020/009>. + + [RCB16] Renes, J., Costello, C., and L. Batina, "Complete Addition + Formulas for Prime Order Elliptic Curves", In Advances in + Cryptology - EUROCRYPT 2016, pages 403-428, + DOI 10.1007/978-3-662-49890-3_16, April 2016, + <https://doi.org/10.1007/978-3-662-49890-3_16>. + + [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed- + Hashing for Message Authentication", RFC 2104, + DOI 10.17487/RFC2104, February 1997, + <https://www.rfc-editor.org/info/rfc2104>. + + [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand + Key Derivation Function (HKDF)", RFC 5869, + DOI 10.17487/RFC5869, May 2010, + <https://www.rfc-editor.org/info/rfc5869>. + + [RFC7693] Saarinen, M., Ed. and J. Aumasson, "The BLAKE2 + Cryptographic Hash and Message Authentication Code (MAC)", + RFC 7693, DOI 10.17487/RFC7693, November 2015, + <https://www.rfc-editor.org/info/rfc7693>. + + [RFC7914] Percival, C. and S. Josefsson, "The scrypt Password-Based + Key Derivation Function", RFC 7914, DOI 10.17487/RFC7914, + August 2016, <https://www.rfc-editor.org/info/rfc7914>. + + [RFC8018] Moriarty, K., Ed., Kaliski, B., and A. Rusch, "PKCS #5: + Password-Based Cryptography Specification Version 2.1", + RFC 8018, DOI 10.17487/RFC8018, January 2017, + <https://www.rfc-editor.org/info/rfc8018>. + + [RFC9106] Biryukov, A., Dinu, D., Khovratovich, D., and S. + Josefsson, "Argon2 Memory-Hard Function for Password + Hashing and Proof-of-Work Applications", RFC 9106, + DOI 10.17487/RFC9106, September 2021, + <https://www.rfc-editor.org/info/rfc9106>. + + [ristretto255-decaf448] + de Valence, H., Grigg, J., Hamburg, M., Lovecruft, I., + Tankersley, G., and F. Valsorda, "The ristretto255 and + decaf448 Groups", Work in Progress, Internet-Draft, draft- + irtf-cfrg-ristretto255-decaf448-07, 3 April 2023, + <https://datatracker.ietf.org/doc/html/draft-irtf-cfrg- + ristretto255-decaf448-07>. + + [RSS11] Ristenpart, T., Shacham, H., and T. Shrimpton, "Careful + with Composition: Limitations of the Indifferentiability + Framework", In Advances in Cryptology - EUROCRYPT 2011, + pages 487-506, DOI 10.1007/978-3-642-20465-4_27, May 2011, + <https://doi.org/10.1007/978-3-642-20465-4_27>. + + [S05] Skałba, M., "Points on elliptic curves over finite + fields", In Acta Arithmetica, vol 117 no 3, pages 293-301, + DOI 10.4064/aa117-3-7, 2005, + <https://doi.org/10.4064/aa117-3-7>. + + [S85] Schoof, R., "Elliptic curves over finite fields and the + computation of square roots mod p", In Mathematics of + Computation, vol 44 issue 170, pages 483-494, + DOI 10.1090/S0025-5718-1985-0777280-6, April 1985, + <https://doi.org/10.1090/S0025-5718-1985-0777280-6>. + + [SAGE] The Sage Developers, "SageMath, the Sage Mathematics + Software System", <https://www.sagemath.org>. + + [SBCDK09] Scott, M., Benger, N., Charlemagne, M., Dominguez Perez, + L. J., and E. J. Kachisa, "Fast Hashing to G2 on Pairing- + Friendly Curves", In Pairing-Based Cryptography - Pairing + 2009, pages 102-113, DOI 10.1007/978-3-642-03298-1_8, + August 2009, + <https://doi.org/10.1007/978-3-642-03298-1_8>. + + [SEC1] Standards for Efficient Cryptography Group (SECG), "SEC 1: + Elliptic Curve Cryptography", May 2009, + <http://www.secg.org/sec1-v2.pdf>. + + [SEC2] Standards for Efficient Cryptography Group (SECG), "SEC 2: + Recommended Elliptic Curve Domain Parameters", January + 2010, <http://www.secg.org/sec2-v2.pdf>. + + [SS04] Schinzel, A. and M. Skałba, "On equations y^2 = x^n + k in + a finite field", In Bulletin Polish Academy of Sciences. + Mathematics, vol 52 no 3, pages 223-226, + DOI 10.4064/ba52-3-1, 2004, + <https://doi.org/10.4064/ba52-3-1>. + + [SW06] Shallue, A. and C. E. van de Woestijne, "Construction of + Rational Points on Elliptic Curves over Finite Fields", In + Algorithmic Number Theory - ANTS 2006, pages 510-524, + DOI 10.1007/11792086_36, July 2006, + <https://doi.org/10.1007/11792086_36>. + + [T14] Tibouchi, M., "Elligator Squared: Uniform Points on + Elliptic Curves of Prime Order as Uniform Random Strings", + In Financial Cryptography and Data Security - FC 2014, + pages 139-156, DOI 10.1007/978-3-662-45472-5_10, November + 2014, <https://doi.org/10.1007/978-3-662-45472-5_10>. + + [TK17] Tibouchi, M. and T. Kim, "Improved elliptic curve hashing + and point representation", In Designs, Codes, and + Cryptography, vol 82, pages 161-177, + DOI 10.1007/s10623-016-0288-2, January 2017, + <https://doi.org/10.1007/s10623-016-0288-2>. + + [U07] Ulas, M., "Rational Points on Certain Hyperelliptic Curves + over Finite Fields", In Bulletin Polish Academy of + Science. Mathematics, vol 55 no 2, pages 97-104, + DOI 10.4064/ba55-2-1, July 2007, + <https://doi.org/10.4064/ba55-2-1>. + + [VR20] Vanhoef, M. and E. Ronen, "Dragonblood: Analyzing the + Dragonfly Handshake of WPA3 and EAP-pwd", In IEEE + Symposium on Security & Privacy (SP), May 2020, + <https://eprint.iacr.org/2019/383>. + + [VRF] Goldberg, S., Reyzin, L., Papadopoulos, D., and J. Včelák, + "Verifiable Random Functions (VRFs)", Work in Progress, + Internet-Draft, draft-irtf-cfrg-vrf-15, 9 August 2022, + <https://datatracker.ietf.org/doc/html/draft-irtf-cfrg- + vrf-15>. + + [W08] Washington, L. C., "Elliptic Curves: Number Theory and + Cryptography, Second Edition", Chapman and Hall / CRC, + ISBN 9781420071467, April 2008, + <https://www.crcpress.com/9781420071467>. + + [W19] Wahby, R. S., "An explicit, generic parameterization for + the Shallue--van de Woestijne map", commit e2a625f, March + 2020, <https://github.com/cfrg/draft-irtf-cfrg-hash-to- + curve/blob/draft-irtf-cfrg-hash-to-curve-14/doc/ + svdw_params.pdf>. + + [WB19] Wahby, R. S. and D. Boneh, "Fast and simple constant-time + hashing to the BLS12-381 elliptic curve", In IACR + Transactions on Cryptographic Hardware and Embedded + Systems, vol 2019 issue 4, Cryptology ePrint Archive, + Paper 2019/403, DOI 10.13154/tches.v2019.i4.154-179, + August 2019, <https://eprint.iacr.org/2019/403>. + +Appendix A. Related Work + + The problem of mapping arbitrary bit strings to elliptic curve points + has been the subject of both practical and theoretical research. + This section briefly describes the background and research results + that underlie the recommendations in this document. This section is + provided for informational purposes only. + + A naive but generally insecure method of mapping a string msg to a + point on an elliptic curve E having n points is to first fix a point + P that generates the elliptic curve group, and a hash function Hn + from bit strings to integers less than n; then compute Hn(msg) * P, + where the * operator represents scalar multiplication. The reason + this approach is insecure is that the resulting point has a known + discrete log relationship to P. Thus, except in cases where this + method is specified by the protocol, it must not be used; doing so + risks catastrophic security failures. + + Boneh et al. [BLS01] describe an encoding method they call + MapToGroup, which works roughly as follows: first, use the input + string to initialize a pseudorandom number generator, then use the + generator to produce a value x in F. If x is the x-coordinate of a + point on the elliptic curve, output that point. Otherwise, generate + a new value x in F and try again. Since a random value x in F has + probability about 1/2 of corresponding to a point on the curve, the + expected number of tries is just two. However, the running time of + this method, which is generally referred to as a probabilistic try- + and-increment algorithm, depends on the input string. As such, it is + not safe to use in protocols sensitive to timing side channels, as + was exemplified by the Dragonblood attack [VR20]. + + Schinzel and Skalba [SS04] introduce a method of constructing + elliptic curve points deterministically, for a restricted class of + curves and a very small number of points. Skalba [S05] generalizes + this construction to more curves and more points on those curves. + Shallue and van de Woestijne [SW06] further generalize and simplify + Skalba's construction, yielding concretely efficient maps to a + constant fraction of the points on almost any curve. Fouque and + Tibouchi [FT12] give a parameterization of this mapping for Barreto- + Naehrig pairing-friendly curves [BN05]. + + Ulas [U07] describes a simpler version of the Shallue-van de + Woestijne map, and Brier et al. [BCIMRT10] give a further + simplification, which the authors call the "Simplified SWU" map. + That simplified map applies only to fields of characteristic p = 3 + (mod 4); Wahby and Boneh [WB19] generalize to fields of any + characteristic and give further optimizations. + + Boneh and Franklin give a deterministic algorithm mapping to certain + supersingular curves over fields of characteristic p = 2 (mod 3) + [BF01]. Icart gives another deterministic algorithm that maps to any + curve over a field of characteristic p = 2 (mod 3) [Icart09]. + Several extensions and generalizations follow this work, including + [FSV09], [FT10], [KLR10], [F11], and [CK11]. + + Following the work of Farashahi [F11], Fouque et al. [FJT13] describe + a mapping to curves over fields of characteristic p = 3 (mod 4) + having a number of points divisible by 4. Bernstein et al. [BHKL13] + optimize this mapping and describe a related mapping that they call + "Elligator 2," which applies to any curve over a field of odd + characteristic having a point of order 2. This includes Curve25519 + and Curve448, both of which are CFRG-recommended curves [RFC7748]. + Bernstein et al. [BLMP19] extend the Elligator 2 map to a class of + supersingular curves over fields of characteristic p = 3 (mod 4). + + An important caveat regarding all of the above deterministic mapping + functions is that none of them map to the entire curve, but rather to + some fraction of the points. This means that they cannot be used + directly to construct a random oracle that outputs points on the + curve. + + Brier et al. [BCIMRT10] give two solutions to this problem. The + first, which Brier et al. prove applies to Icart's method, computes + f(H0(msg)) + f(H1(msg)) for two distinct hash functions H0 and H1 + from bit strings to F and a mapping f from F to the elliptic curve E. + The second, which applies to essentially all deterministic mappings + but is more costly, computes f(H0(msg)) + H2(msg) * P, where P is a + generator of the elliptic curve group, H2 is a hash from bit strings + to integers modulo r, and r is the order of the elliptic curve group. + + Farashahi et al. [FFSTV13] improve the analysis of the first method, + showing that it applies to essentially all deterministic mappings. + Tibouchi and Kim [TK17] further refine the analysis and describe + additional optimizations. + + Complementary to the problem of mapping from bit strings to elliptic + curve points, Bernstein et al. [BHKL13] study the problem of mapping + from elliptic curve points to uniformly random bit strings, giving + solutions for a class of curves that includes Montgomery and twisted + Edwards curves. Tibouchi [T14] and Aranha et al. [AFQTZ14] + generalize these results. This document does not deal with this + complementary problem. + +Appendix B. Hashing to ristretto255 + + ristretto255 [ristretto255-decaf448] provides a prime-order group + based on curve25519 [RFC7748]. This section describes + hash_to_ristretto255, which implements a random-oracle encoding to + this group that has a uniform output distribution (Section 2.2.3) and + the same security properties and interface as the hash_to_curve + function (Section 3). + + The ristretto255 API defines a one-way map ([ristretto255-decaf448], + Section 4.3.4); this section refers to that map as ristretto255_map. + + The hash_to_ristretto255 function MUST be instantiated with an + expand_message function that conforms to the requirements given in + Section 5.3. In addition, it MUST use a domain separation tag + constructed as described in Section 3.1, and all domain separation + recommendations given in Section 10.7 apply when implementing + protocols that use hash_to_ristretto255. + + hash_to_ristretto255(msg) + + Parameters: + - DST, a domain separation tag (see discussion above). + - expand_message, a function that expands a byte string and + domain separation tag into a uniformly random byte string + (see discussion above). + - ristretto255_map, the one-way map from the ristretto255 API. + + Input: msg, an arbitrary-length byte string. + Output: P, an element of the ristretto255 group. + + Steps: + 1. uniform_bytes = expand_message(msg, DST, 64) + 2. P = ristretto255_map(uniform_bytes) + 3. return P + + Since hash_to_ristretto255 is not a hash-to-curve suite, it does not + have a Suite ID. If a similar identifier is needed, it MUST be + constructed following the guidelines in Section 8.10, with the + following parameters: + + * CURVE_ID: "ristretto255" + + * HASH_ID: as described in Section 8.10 + + * MAP_ID: "R255MAP" + + * ENC_VAR: "RO" + + For example, if expand_message is expand_message_xmd using SHA-512, + the REQUIRED identifier is: + + ristretto255_XMD:SHA-512_R255MAP_RO_ + +Appendix C. Hashing to decaf448 + + Similar to ristretto255, decaf448 [ristretto255-decaf448] provides a + prime-order group based on curve448 [RFC7748]. This section + describes hash_to_decaf448, which implements a random-oracle encoding + to this group that has a uniform output distribution (Section 2.2.3) + and the same security properties and interface as the hash_to_curve + function (Section 3). + + The decaf448 API defines a one-way map ([ristretto255-decaf448], + Section 5.3.4); this section refers to that map as decaf448_map. + + The hash_to_decaf448 function MUST be instantiated with an + expand_message function that conforms to the requirements given in + Section 5.3. In addition, it MUST use a domain separation tag + constructed as described in Section 3.1, and all domain separation + recommendations given in Section 10.7 apply when implementing + protocols that use hash_to_decaf448. + + hash_to_decaf448(msg) + + Parameters: + - DST, a domain separation tag (see discussion above). + - expand_message, a function that expands a byte string and + domain separation tag into a uniformly random byte string + (see discussion above). + - decaf448_map, the one-way map from the decaf448 API. + + Input: msg, an arbitrary-length byte string. + Output: P, an element of the decaf448 group. + + Steps: + 1. uniform_bytes = expand_message(msg, DST, 112) + 2. P = decaf448_map(uniform_bytes) + 3. return P + + Since hash_to_decaf448 is not a hash-to-curve suite, it does not have + a Suite ID. If a similar identifier is needed, it MUST be + constructed following the guidelines in Section 8.10, with the + following parameters: + + * CURVE_ID: "decaf448" + + * HASH_ID: as described in Section 8.10 + + * MAP_ID: "D448MAP" + + * ENC_VAR: "RO" + + For example, if expand_message is expand_message_xof using SHAKE256, + the REQUIRED identifier is: + + decaf448_XOF:SHAKE256_D448MAP_RO_ + +Appendix D. Rational Maps + + This section gives rational maps that can be used when hashing to + twisted Edwards or Montgomery curves. + + Given a twisted Edwards curve, Appendix D.1 shows how to derive a + corresponding Montgomery curve and how to map from that curve to the + twisted Edwards curve. This mapping may be used when hashing to + twisted Edwards curves as described in Section 6.8. + + Given a Montgomery curve, Appendix D.2 shows how to derive a + corresponding Weierstrass curve and how to map from that curve to the + Montgomery curve. This mapping can be used to hash to Montgomery or + twisted Edwards curves via the Shallue-van de Woestijne method + (Section 6.6.1) or Simplified SWU method (Section 6.6.2), as follows: + + * For Montgomery curves, first map to the Weierstrass curve, then + convert to Montgomery coordinates via the mapping. + + * For twisted Edwards curves, compose the mapping from Weierstrass + to Montgomery with the mapping from Montgomery to twisted Edwards + (Appendix D.1) to obtain a Weierstrass curve and a mapping to the + target twisted Edwards curve. Map to this Weierstrass curve, then + convert to Edwards coordinates via the mapping. + +D.1. Generic Mapping from Montgomery to Twisted Edwards + + This section gives a generic birational map between twisted Edwards + and Montgomery curves. + + The map in this section is a simplified version of the map given in + [BBJLP08], Theorem 3.2. Specifically, this section's map handles + exceptional cases in a simplified way that is geared towards hashing + to a twisted Edwards curve's prime-order subgroup. + + The twisted Edwards curve + + a * v^2 + w^2 = 1 + d * v^2 * w^2 + + is birationally equivalent to the Montgomery curve + + K * t^2 = s^3 + J * s^2 + s + + which has the form required by the Elligator 2 mapping of + Section 6.7.1. The coefficients of the Montgomery curve are + + * J = 2 * (a + d) / (a - d) + + * K = 4 / (a - d) + + The rational map from the point (s, t) on the above Montgomery curve + to the point (v, w) on the twisted Edwards curve is given by + + * v = s / t + + * w = (s - 1) / (s + 1) + + This mapping is undefined when t == 0 or s == -1, i.e., when the + denominator of either of the above rational functions is zero. + Implementations MUST detect exceptional cases and return the value + (v, w) = (0, 1), which is the identity point on all twisted Edwards + curves. + + The following straight-line implementation of the above rational map + handles the exceptional cases. + + monty_to_edw_generic(s, t) + + Input: (s, t), a point on the curve K * t^2 = s^3 + J * s^2 + s. + Output: (v, w), a point on an equivalent twisted Edwards curve. + + 1. tv1 = s + 1 + 2. tv2 = tv1 * t # (s + 1) * t + 3. tv2 = inv0(tv2) # 1 / ((s + 1) * t) + 4. v = tv2 * tv1 # 1 / t + 5. v = v * s # s / t + 6. w = tv2 * t # 1 / (s + 1) + 7. tv1 = s - 1 + 8. w = w * tv1 # (s - 1) / (s + 1) + 9. e = tv2 == 0 + 10. w = CMOV(w, 1, e) # handle exceptional case + 11. return (v, w) + + For completeness, we also give the inverse relations. (Note that + this map is not required when hashing to twisted Edwards curves.) + The coefficients of the twisted Edwards curve corresponding to the + above Montgomery curve are + + * a = (J + 2) / K + + * d = (J - 2) / K + + The rational map from the point (v, w) on the twisted Edwards curve + to the point (s, t) on the Montgomery curve is given by + + * s = (1 + w) / (1 - w) + + * t = (1 + w) / (v * (1 - w)) + + The mapping is undefined when v == 0 or w == 1. When the goal is to + map into the prime-order subgroup of the Montgomery curve, it + suffices to return the identity point on the Montgomery curve in the + exceptional cases. + +D.2. Mapping from Weierstrass to Montgomery + + The rational map from the point (s, t) on the Montgomery curve + + K * t^2 = s^3 + J * s^2 + s + + to the point (x, y) on the equivalent Weierstrass curve + + y^2 = x^3 + A * x + B + + is given by + + * A = (3 - J^2) / (3 * K^2) + + * B = (2 * J^3 - 9 * J) / (27 * K^3) + + * x = (3 * s + J) / (3 * K) + + * y = t / K + + The inverse map, from the point (x, y) to the point (s, t), is given + by + + * s = (3 * K * x - J) / 3 + + * t = y * K + + This mapping can be used to apply the Shallue-van de Woestijne method + (Section 6.6.1) or Simplified SWU method (Section 6.6.2) to + Montgomery curves. + +Appendix E. Isogeny Maps for Suites + + This section specifies the isogeny maps for the secp256k1 and + BLS12-381 suites listed in Section 8. + + These maps are given in terms of affine coordinates. Wahby and Boneh + ([WB19], Section 4.3) show how to evaluate these maps in a projective + coordinate system (Appendix G.1), which avoids modular inversions. + + Refer to [hash2curve-repo] for a Sage [SAGE] script that constructs + these isogenies. + +E.1. 3-Isogeny Map for secp256k1 + + This section specifies the isogeny map for the secp256k1 suite listed + in Section 8.7. + + The 3-isogeny map from (x', y') on E' to (x, y) on E is given by the + following rational functions: + + * x = x_num / x_den, where + + - x_num = k_(1,3) * x'^3 + k_(1,2) * x'^2 + k_(1,1) * x' + + k_(1,0) + + - x_den = x'^2 + k_(2,1) * x' + k_(2,0) + + * y = y' * y_num / y_den, where + + - y_num = k_(3,3) * x'^3 + k_(3,2) * x'^2 + k_(3,1) * x' + + k_(3,0) + + - y_den = x'^3 + k_(4,2) * x'^2 + k_(4,1) * x' + k_(4,0) + + The constants used to compute x_num are as follows: + + * k_(1,0) = + 0x8e38e38e38e38e38e38e38e38e38e38e38e38e38e38e38e38e38e38daaaaa8c7 + + * k_(1,1) = + 0x7d3d4c80bc321d5b9f315cea7fd44c5d595d2fc0bf63b92dfff1044f17c6581 + + * k_(1,2) = + 0x534c328d23f234e6e2a413deca25caece4506144037c40314ecbd0b53d9dd262 + + * k_(1,3) = + 0x8e38e38e38e38e38e38e38e38e38e38e38e38e38e38e38e38e38e38daaaaa88c + + The constants used to compute x_den are as follows: + + * k_(2,0) = + 0xd35771193d94918a9ca34ccbb7b640dd86cd409542f8487d9fe6b745781eb49b + + * k_(2,1) = + 0xedadc6f64383dc1df7c4b2d51b54225406d36b641f5e41bbc52a56612a8c6d14 + + The constants used to compute y_num are as follows: + + * k_(3,0) = + 0x4bda12f684bda12f684bda12f684bda12f684bda12f684bda12f684b8e38e23c + + * k_(3,1) = + 0xc75e0c32d5cb7c0fa9d0a54b12a0a6d5647ab046d686da6fdffc90fc201d71a3 + + * k_(3,2) = + 0x29a6194691f91a73715209ef6512e576722830a201be2018a765e85a9ecee931 + + * k_(3,3) = + 0x2f684bda12f684bda12f684bda12f684bda12f684bda12f684bda12f38e38d84 + + The constants used to compute y_den are as follows: + + * k_(4,0) = + 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffff93b + + * k_(4,1) = + 0x7a06534bb8bdb49fd5e9e6632722c2989467c1bfc8e8d978dfb425d2685c2573 + + * k_(4,2) = + 0x6484aa716545ca2cf3a70c3fa8fe337e0a3d21162f0d6299a7bf8192bfd2a76f + +E.2. 11-Isogeny Map for BLS12-381 G1 + + The 11-isogeny map from (x', y') on E' to (x, y) on E is given by the + following rational functions: + + * x = x_num / x_den, where + + - x_num = k_(1,11) * x'^11 + k_(1,10) * x'^10 + k_(1,9) * x'^9 + + ... + k_(1,0) + + - x_den = x'^10 + k_(2,9) * x'^9 + k_(2,8) * x'^8 + ... + k_(2,0) + + * y = y' * y_num / y_den, where + + - y_num = k_(3,15) * x'^15 + k_(3,14) * x'^14 + k_(3,13) * x'^13 + + ... + k_(3,0) + + - y_den = x'^15 + k_(4,14) * x'^14 + k_(4,13) * x'^13 + ... + + k_(4,0) + + The constants used to compute x_num are as follows: + + * k_(1,0) = 0x11a05f2b1e833340b809101dd99815856b303e88a2d7005ff2627b + 56cdb4e2c85610c2d5f2e62d6eaeac1662734649b7 + + * k_(1,1) = 0x17294ed3e943ab2f0588bab22147a81c7c17e75b2f6a8417f565e3 + 3c70d1e86b4838f2a6f318c356e834eef1b3cb83bb + + * k_(1,2) = 0xd54005db97678ec1d1048c5d10a9a1bce032473295983e56878e50 + 1ec68e25c958c3e3d2a09729fe0179f9dac9edcb0 + + * k_(1,3) = 0x1778e7166fcc6db74e0609d307e55412d7f5e4656a8dbf25f1b332 + 89f1b330835336e25ce3107193c5b388641d9b6861 + + * k_(1,4) = 0xe99726a3199f4436642b4b3e4118e5499db995a1257fb3f086eeb6 + 5982fac18985a286f301e77c451154ce9ac8895d9 + + * k_(1,5) = 0x1630c3250d7313ff01d1201bf7a74ab5db3cb17dd952799b9ed3ab + 9097e68f90a0870d2dcae73d19cd13c1c66f652983 + + * k_(1,6) = 0xd6ed6553fe44d296a3726c38ae652bfb11586264f0f8ce19008e21 + 8f9c86b2a8da25128c1052ecaddd7f225a139ed84 + + * k_(1,7) = 0x17b81e7701abdbe2e8743884d1117e53356de5ab275b4db1a682c6 + 2ef0f2753339b7c8f8c8f475af9ccb5618e3f0c88e + + * k_(1,8) = 0x80d3cf1f9a78fc47b90b33563be990dc43b756ce79f5574a2c596c + 928c5d1de4fa295f296b74e956d71986a8497e317 + + * k_(1,9) = 0x169b1f8e1bcfa7c42e0c37515d138f22dd2ecb803a0c5c99676314 + baf4bb1b7fa3190b2edc0327797f241067be390c9e + + * k_(1,10) = 0x10321da079ce07e272d8ec09d2565b0dfa7dccdde6787f96d50af + 36003b14866f69b771f8c285decca67df3f1605fb7b + + * k_(1,11) = 0x6e08c248e260e70bd1e962381edee3d31d79d7e22c837bc23c0bf + 1bc24c6b68c24b1b80b64d391fa9c8ba2e8ba2d229 + + The constants used to compute x_den are as follows: + + * k_(2,0) = 0x8ca8d548cff19ae18b2e62f4bd3fa6f01d5ef4ba35b48ba9c95886 + 17fc8ac62b558d681be343df8993cf9fa40d21b1c + + * k_(2,1) = 0x12561a5deb559c4348b4711298e536367041e8ca0cf0800c0126c2 + 588c48bf5713daa8846cb026e9e5c8276ec82b3bff + + * k_(2,2) = 0xb2962fe57a3225e8137e629bff2991f6f89416f5a718cd1fca64e0 + 0b11aceacd6a3d0967c94fedcfcc239ba5cb83e19 + + * k_(2,3) = 0x3425581a58ae2fec83aafef7c40eb545b08243f16b1655154cca8a + bc28d6fd04976d5243eecf5c4130de8938dc62cd8 + + * k_(2,4) = 0x13a8e162022914a80a6f1d5f43e7a07dffdfc759a12062bb8d6b44 + e833b306da9bd29ba81f35781d539d395b3532a21e + + * k_(2,5) = 0xe7355f8e4e667b955390f7f0506c6e9395735e9ce9cad4d0a43bce + f24b8982f7400d24bc4228f11c02df9a29f6304a5 + + * k_(2,6) = 0x772caacf16936190f3e0c63e0596721570f5799af53a1894e2e073 + 062aede9cea73b3538f0de06cec2574496ee84a3a + + * k_(2,7) = 0x14a7ac2a9d64a8b230b3f5b074cf01996e7f63c21bca68a81996e1 + cdf9822c580fa5b9489d11e2d311f7d99bbdcc5a5e + + * k_(2,8) = 0xa10ecf6ada54f825e920b3dafc7a3cce07f8d1d7161366b74100da + 67f39883503826692abba43704776ec3a79a1d641 + + * k_(2,9) = 0x95fc13ab9e92ad4476d6e3eb3a56680f682b4ee96f7d03776df533 + 978f31c1593174e4b4b7865002d6384d168ecdd0a + + The constants used to compute y_num are as follows: + + * k_(3,0) = 0x90d97c81ba24ee0259d1f094980dcfa11ad138e48a869522b52af6 + c956543d3cd0c7aee9b3ba3c2be9845719707bb33 + + * k_(3,1) = 0x134996a104ee5811d51036d776fb46831223e96c254f383d0f9063 + 43eb67ad34d6c56711962fa8bfe097e75a2e41c696 + + * k_(3,2) = 0xcc786baa966e66f4a384c86a3b49942552e2d658a31ce2c344be4b + 91400da7d26d521628b00523b8dfe240c72de1f6 + + * k_(3,3) = 0x1f86376e8981c217898751ad8746757d42aa7b90eeb791c09e4a3e + c03251cf9de405aba9ec61deca6355c77b0e5f4cb + + * k_(3,4) = 0x8cc03fdefe0ff135caf4fe2a21529c4195536fbe3ce50b879833fd + 221351adc2ee7f8dc099040a841b6daecf2e8fedb + + * k_(3,5) = 0x16603fca40634b6a2211e11db8f0a6a074a7d0d4afadb7bd76505c + 3d3ad5544e203f6326c95a807299b23ab13633a5f0 + + * k_(3,6) = 0x4ab0b9bcfac1bbcb2c977d027796b3ce75bb8ca2be184cb5231413 + c4d634f3747a87ac2460f415ec961f8855fe9d6f2 + + * k_(3,7) = 0x987c8d5333ab86fde9926bd2ca6c674170a05bfe3bdd81ffd038da + 6c26c842642f64550fedfe935a15e4ca31870fb29 + + * k_(3,8) = 0x9fc4018bd96684be88c9e221e4da1bb8f3abd16679dc26c1e8b6e6 + a1f20cabe69d65201c78607a360370e577bdba587 + + * k_(3,9) = 0xe1bba7a1186bdb5223abde7ada14a23c42a0ca7915af6fe06985e7 + ed1e4d43b9b3f7055dd4eba6f2bafaaebca731c30 + + * k_(3,10) = 0x19713e47937cd1be0dfd0b8f1d43fb93cd2fcbcb6caf493fd1183 + e416389e61031bf3a5cce3fbafce813711ad011c132 + + * k_(3,11) = 0x18b46a908f36f6deb918c143fed2edcc523559b8aaf0c2462e6bf + e7f911f643249d9cdf41b44d606ce07c8a4d0074d8e + + * k_(3,12) = 0xb182cac101b9399d155096004f53f447aa7b12a3426b08ec02710 + e807b4633f06c851c1919211f20d4c04f00b971ef8 + + * k_(3,13) = 0x245a394ad1eca9b72fc00ae7be315dc757b3b080d4c158013e663 + 2d3c40659cc6cf90ad1c232a6442d9d3f5db980133 + + * k_(3,14) = 0x5c129645e44cf1102a159f748c4a3fc5e673d81d7e86568d9ab0f + 5d396a7ce46ba1049b6579afb7866b1e715475224b + + * k_(3,15) = 0x15e6be4e990f03ce4ea50b3b42df2eb5cb181d8f84965a3957add + 4fa95af01b2b665027efec01c7704b456be69c8b604 + + The constants used to compute y_den are as follows: + + * k_(4,0) = 0x16112c4c3a9c98b252181140fad0eae9601a6de578980be6eec323 + 2b5be72e7a07f3688ef60c206d01479253b03663c1 + + * k_(4,1) = 0x1962d75c2381201e1a0cbd6c43c348b885c84ff731c4d59ca4a103 + 56f453e01f78a4260763529e3532f6102c2e49a03d + + * k_(4,2) = 0x58df3306640da276faaae7d6e8eb15778c4855551ae7f310c35a5d + d279cd2eca6757cd636f96f891e2538b53dbf67f2 + + * k_(4,3) = 0x16b7d288798e5395f20d23bf89edb4d1d115c5dbddbcd30e123da4 + 89e726af41727364f2c28297ada8d26d98445f5416 + + * k_(4,4) = 0xbe0e079545f43e4b00cc912f8228ddcc6d19c9f0f69bbb0542eda0 + fc9dec916a20b15dc0fd2ededda39142311a5001d + + * k_(4,5) = 0x8d9e5297186db2d9fb266eaac783182b70152c65550d881c5ecd87 + b6f0f5a6449f38db9dfa9cce202c6477faaf9b7ac + + * k_(4,6) = 0x166007c08a99db2fc3ba8734ace9824b5eecfdfa8d0cf8ef5dd365 + bc400a0051d5fa9c01a58b1fb93d1a1399126a775c + + * k_(4,7) = 0x16a3ef08be3ea7ea03bcddfabba6ff6ee5a4375efa1f4fd7feb34f + d206357132b920f5b00801dee460ee415a15812ed9 + + * k_(4,8) = 0x1866c8ed336c61231a1be54fd1d74cc4f9fb0ce4c6af5920abc575 + 0c4bf39b4852cfe2f7bb9248836b233d9d55535d4a + + * k_(4,9) = 0x167a55cda70a6e1cea820597d94a84903216f763e13d87bb530859 + 2e7ea7d4fbc7385ea3d529b35e346ef48bb8913f55 + + * k_(4,10) = 0x4d2f259eea405bd48f010a01ad2911d9c6dd039bb61a6290e591b + 36e636a5c871a5c29f4f83060400f8b49cba8f6aa8 + + * k_(4,11) = 0xaccbb67481d033ff5852c1e48c50c477f94ff8aefce42d28c0f9a + 88cea7913516f968986f7ebbea9684b529e2561092 + + * k_(4,12) = 0xad6b9514c767fe3c3613144b45f1496543346d98adf02267d5cee + f9a00d9b8693000763e3b90ac11e99b138573345cc + + * k_(4,13) = 0x2660400eb2e4f3b628bdd0d53cd76f2bf565b94e72927c1cb748d + f27942480e420517bd8714cc80d1fadc1326ed06f7 + + * k_(4,14) = 0xe0fa1d816ddc03e6b24255e0d7819c171c40f65e273b853324efc + d6356caa205ca2f570f13497804415473a1d634b8f + +E.3. 3-Isogeny Map for BLS12-381 G2 + + The 3-isogeny map from (x', y') on E' to (x, y) on E is given by the + following rational functions: + + * x = x_num / x_den, where + + - x_num = k_(1,3) * x'^3 + k_(1,2) * x'^2 + k_(1,1) * x' + + k_(1,0) + + - x_den = x'^2 + k_(2,1) * x' + k_(2,0) + + * y = y' * y_num / y_den, where + + - y_num = k_(3,3) * x'^3 + k_(3,2) * x'^2 + k_(3,1) * x' + + k_(3,0) + + - y_den = x'^3 + k_(4,2) * x'^2 + k_(4,1) * x' + k_(4,0) + + The constants used to compute x_num are as follows: + + * k_(1,0) = 0x5c759507e8e333ebb5b7a9a47d7ed8532c52d39fd3a042a88b5842 + 3c50ae15d5c2638e343d9c71c6238aaaaaaaa97d6 + 0x5c759507e8e333ebb5b7 + a9a47d7ed8532c52d39fd3a042a88b58423c50ae15d5c2638e343d9c71c6238aaa + aaaaa97d6 * I + + * k_(1,1) = 0x11560bf17baa99bc32126fced787c88f984f87adf7ae0c7f9a208c + 6b4f20a4181472aaa9cb8d555526a9ffffffffc71a * I + + * k_(1,2) = 0x11560bf17baa99bc32126fced787c88f984f87adf7ae0c7f9a208c + 6b4f20a4181472aaa9cb8d555526a9ffffffffc71e + 0x8ab05f8bdd54cde1909 + 37e76bc3e447cc27c3d6fbd7063fcd104635a790520c0a395554e5c6aaaa9354ff + ffffffe38d * I + + * k_(1,3) = 0x171d6541fa38ccfaed6dea691f5fb614cb14b4e7f4e810aa22d610 + 8f142b85757098e38d0f671c7188e2aaaaaaaa5ed1 + + The constants used to compute x_den are as follows: + + * k_(2,0) = 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2 + a0f6b0f6241eabfffeb153ffffb9feffffffffaa63 * I + + * k_(2,1) = 0xc + 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf + 6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaa9f * I + + The constants used to compute y_num are as follows: + + * k_(3,0) = 0x1530477c7ab4113b59a4c18b076d11930f7da5d4a07f649bf54439 + d87d27e500fc8c25ebf8c92f6812cfc71c71c6d706 + 0x1530477c7ab4113b59a + 4c18b076d11930f7da5d4a07f649bf54439d87d27e500fc8c25ebf8c92f6812cfc + 71c71c6d706 * I + + * k_(3,1) = 0x5c759507e8e333ebb5b7a9a47d7ed8532c52d39fd3a042a88b5842 + 3c50ae15d5c2638e343d9c71c6238aaaaaaaa97be * I + + * k_(3,2) = 0x11560bf17baa99bc32126fced787c88f984f87adf7ae0c7f9a208c + 6b4f20a4181472aaa9cb8d555526a9ffffffffc71c + 0x8ab05f8bdd54cde1909 + 37e76bc3e447cc27c3d6fbd7063fcd104635a790520c0a395554e5c6aaaa9354ff + ffffffe38f * I + + * k_(3,3) = 0x124c9ad43b6cf79bfbf7043de3811ad0761b0f37a1e26286b0e977 + c69aa274524e79097a56dc4bd9e1b371c71c718b10 + + The constants used to compute y_den are as follows: + + * k_(4,0) = 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2 + a0f6b0f6241eabfffeb153ffffb9feffffffffa8fb + 0x1a0111ea397fe69a4b1 + ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9fef + fffffffa8fb * I + + * k_(4,1) = 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2 + a0f6b0f6241eabfffeb153ffffb9feffffffffa9d3 * I + + * k_(4,2) = 0x12 + 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512b + f6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaa99 * I + +Appendix F. Straight-Line Implementations of Deterministic Mappings + + This section gives straight-line implementations of the mappings of + Section 6. These implementations are generic, i.e., they are defined + for any curve and field. Appendix G gives further implementations + that are optimized for specific classes of curves and fields. + +F.1. Shallue-van de Woestijne Method + + This section gives a straight-line implementation of the Shallue-van + de Woestijne method for any Weierstrass curve of the form given in + Section 6.6. See Section 6.6.1 for information on the constants used + in this mapping. + + Note that the constant c3 below MUST be chosen such that sgn0(c3) = + 0. In other words, if the square-root computation returns a value cx + such that sgn0(cx) = 1, set c3 = -cx; otherwise, set c3 = cx. + + map_to_curve_svdw(u) + + Input: u, an element of F. + Output: (x, y), a point on E. + + Constants: + 1. c1 = g(Z) + 2. c2 = -Z / 2 + 3. c3 = sqrt(-g(Z) * (3 * Z^2 + 4 * A)) # sgn0(c3) MUST equal 0 + 4. c4 = -4 * g(Z) / (3 * Z^2 + 4 * A) + + Steps: + 1. tv1 = u^2 + 2. tv1 = tv1 * c1 + 3. tv2 = 1 + tv1 + 4. tv1 = 1 - tv1 + 5. tv3 = tv1 * tv2 + 6. tv3 = inv0(tv3) + 7. tv4 = u * tv1 + 8. tv4 = tv4 * tv3 + 9. tv4 = tv4 * c3 + 10. x1 = c2 - tv4 + 11. gx1 = x1^2 + 12. gx1 = gx1 + A + 13. gx1 = gx1 * x1 + 14. gx1 = gx1 + B + 15. e1 = is_square(gx1) + 16. x2 = c2 + tv4 + 17. gx2 = x2^2 + 18. gx2 = gx2 + A + 19. gx2 = gx2 * x2 + 20. gx2 = gx2 + B + 21. e2 = is_square(gx2) AND NOT e1 # Avoid short-circuit logic ops + 22. x3 = tv2^2 + 23. x3 = x3 * tv3 + 24. x3 = x3^2 + 25. x3 = x3 * c4 + 26. x3 = x3 + Z + 27. x = CMOV(x3, x1, e1) # x = x1 if gx1 is square, else x = x3 + 28. x = CMOV(x, x2, e2) # x = x2 if gx2 is square and gx1 is not + 29. gx = x^2 + 30. gx = gx + A + 31. gx = gx * x + 32. gx = gx + B + 33. y = sqrt(gx) + 34. e3 = sgn0(u) == sgn0(y) + 35. y = CMOV(-y, y, e3) # Select correct sign of y + 36. return (x, y) + +F.2. Simplified SWU Method + + This section gives a straight-line implementation of the Simplified + SWU method for any Weierstrass curve of the form given in + Section 6.6. See Section 6.6.2 for information on the constants used + in this mapping. + + This optimized, straight-line procedure applies to any base field. + The sqrt_ratio subroutine is defined in Appendix F.2.1. + + map_to_curve_simple_swu(u) + + Input: u, an element of F. + Output: (x, y), a point on E. + + Steps: + 1. tv1 = u^2 + 2. tv1 = Z * tv1 + 3. tv2 = tv1^2 + 4. tv2 = tv2 + tv1 + 5. tv3 = tv2 + 1 + 6. tv3 = B * tv3 + 7. tv4 = CMOV(Z, -tv2, tv2 != 0) + 8. tv4 = A * tv4 + 9. tv2 = tv3^2 + 10. tv6 = tv4^2 + 11. tv5 = A * tv6 + 12. tv2 = tv2 + tv5 + 13. tv2 = tv2 * tv3 + 14. tv6 = tv6 * tv4 + 15. tv5 = B * tv6 + 16. tv2 = tv2 + tv5 + 17. x = tv1 * tv3 + 18. (is_gx1_square, y1) = sqrt_ratio(tv2, tv6) + 19. y = tv1 * u + 20. y = y * y1 + 21. x = CMOV(x, tv3, is_gx1_square) + 22. y = CMOV(y, y1, is_gx1_square) + 23. e1 = sgn0(u) == sgn0(y) + 24. y = CMOV(-y, y, e1) + 25. x = x / tv4 + 26. return (x, y) + +F.2.1. sqrt_ratio Subroutine + + This section defines three variants of the sqrt_ratio subroutine used + by the above procedure. The first variant can be used with any + field; the others are optimized versions for specific fields. + + The routines given in this section depend on the constant Z from the + Simplified SWU map. For correctness, sqrt_ratio and + map_to_curve_simple_swu MUST use the same value for Z. + +F.2.1.1. sqrt_ratio for Any Field + + sqrt_ratio(u, v) + + Parameters: + - F, a finite field of characteristic p and order q = p^m. + - Z, the constant from the Simplified SWU map. + + Input: u and v, elements of F, where v != 0. + Output: (b, y), where + b = True and y = sqrt(u / v) if (u / v) is square in F, and + b = False and y = sqrt(Z * (u / v)) otherwise. + + Constants: + 1. c1, the largest integer such that 2^c1 divides q - 1. + 2. c2 = (q - 1) / (2^c1) # Integer arithmetic + 3. c3 = (c2 - 1) / 2 # Integer arithmetic + 4. c4 = 2^c1 - 1 # Integer arithmetic + 5. c5 = 2^(c1 - 1) # Integer arithmetic + 6. c6 = Z^c2 + 7. c7 = Z^((c2 + 1) / 2) + + Procedure: + 1. tv1 = c6 + 2. tv2 = v^c4 + 3. tv3 = tv2^2 + 4. tv3 = tv3 * v + 5. tv5 = u * tv3 + 6. tv5 = tv5^c3 + 7. tv5 = tv5 * tv2 + 8. tv2 = tv5 * v + 9. tv3 = tv5 * u + 10. tv4 = tv3 * tv2 + 11. tv5 = tv4^c5 + 12. isQR = tv5 == 1 + 13. tv2 = tv3 * c7 + 14. tv5 = tv4 * tv1 + 15. tv3 = CMOV(tv2, tv3, isQR) + 16. tv4 = CMOV(tv5, tv4, isQR) + 17. for i in (c1, c1 - 1, ..., 2): + 18. tv5 = i - 2 + 19. tv5 = 2^tv5 + 20. tv5 = tv4^tv5 + 21. e1 = tv5 == 1 + 22. tv2 = tv3 * tv1 + 23. tv1 = tv1 * tv1 + 24. tv5 = tv4 * tv1 + 25. tv3 = CMOV(tv2, tv3, e1) + 26. tv4 = CMOV(tv5, tv4, e1) + 27. return (isQR, tv3) + +F.2.1.2. Optimized sqrt_ratio for q = 3 mod 4 + + sqrt_ratio_3mod4(u, v) + + Parameters: + - F, a finite field of characteristic p and order q = p^m, + where q = 3 mod 4. + - Z, the constant from the Simplified SWU map. + + Input: u and v, elements of F, where v != 0. + Output: (b, y), where + b = True and y = sqrt(u / v) if (u / v) is square in F, and + b = False and y = sqrt(Z * (u / v)) otherwise. + + Constants: + 1. c1 = (q - 3) / 4 # Integer arithmetic + 2. c2 = sqrt(-Z) + + Procedure: + 1. tv1 = v^2 + 2. tv2 = u * v + 3. tv1 = tv1 * tv2 + 4. y1 = tv1^c1 + 5. y1 = y1 * tv2 + 6. y2 = y1 * c2 + 7. tv3 = y1^2 + 8. tv3 = tv3 * v + 9. isQR = tv3 == u + 10. y = CMOV(y2, y1, isQR) + 11. return (isQR, y) + +F.2.1.3. Optimized sqrt_ratio for q = 5 mod 8 + + sqrt_ratio_5mod8(u, v) + + Parameters: + - F, a finite field of characteristic p and order q = p^m, + where q = 5 mod 8. + - Z, the constant from the Simplified SWU map. + + Input: u and v, elements of F, where v != 0. + Output: (b, y), where + b = True and y = sqrt(u / v) if (u / v) is square in F, and + b = False and y = sqrt(Z * (u / v)) otherwise. + + Constants: + 1. c1 = (q - 5) / 8 + 2. c2 = sqrt(-1) + 3. c3 = sqrt(Z / c2) + + Steps: + 1. tv1 = v^2 + 2. tv2 = tv1 * v + 3. tv1 = tv1^2 + 4. tv2 = tv2 * u + 5. tv1 = tv1 * tv2 + 6. y1 = tv1^c1 + 7. y1 = y1 * tv2 + 8. tv1 = y1 * c2 + 9. tv2 = tv1^2 + 10. tv2 = tv2 * v + 11. e1 = tv2 == u + 12. y1 = CMOV(y1, tv1, e1) + 13. tv2 = y1^2 + 14. tv2 = tv2 * v + 15. isQR = tv2 == u + 16. y2 = y1 * c3 + 17. tv1 = y2 * c2 + 18. tv2 = tv1^2 + 19. tv2 = tv2 * v + 20. tv3 = Z * u + 21. e2 = tv2 == tv3 + 22. y2 = CMOV(y2, tv1, e2) + 23. y = CMOV(y2, y1, isQR) + 24. return (isQR, y) + +F.3. Elligator 2 Method + + This section gives a straight-line implementation of the Elligator 2 + method for any Montgomery curve of the form given in Section 6.7. + See Section 6.7.1 for information on the constants used in this + mapping. + + Appendix G.2 gives optimized straight-line procedures that apply to + specific classes of curves and base fields, including curve25519 and + curve448 [RFC7748]. + + map_to_curve_elligator2(u) + + Input: u, an element of F. + Output: (s, t), a point on M. + + Constants: + 1. c1 = J / K + 2. c2 = 1 / K^2 + + Steps: + 1. tv1 = u^2 + 2. tv1 = Z * tv1 # Z * u^2 + 3. e1 = tv1 == -1 # exceptional case: Z * u^2 == -1 + 4. tv1 = CMOV(tv1, 0, e1) # if tv1 == -1, set tv1 = 0 + 5. x1 = tv1 + 1 + 6. x1 = inv0(x1) + 7. x1 = -c1 * x1 # x1 = -(J / K) / (1 + Z * u^2) + 8. gx1 = x1 + c1 + 9. gx1 = gx1 * x1 + 10. gx1 = gx1 + c2 + 11. gx1 = gx1 * x1 # gx1 = x1^3 + (J / K) * x1^2 + x1 / K^2 + 12. x2 = -x1 - c1 + 13. gx2 = tv1 * gx1 + 14. e2 = is_square(gx1) # If is_square(gx1) + 15. x = CMOV(x2, x1, e2) # then x = x1, else x = x2 + 16. y2 = CMOV(gx2, gx1, e2) # then y2 = gx1, else y2 = gx2 + 17. y = sqrt(y2) + 18. e3 = sgn0(y) == 1 + 19. y = CMOV(y, -y, e2 XOR e3) # fix sign of y + 20. s = x * K + 21. t = y * K + 22. return (s, t) + +Appendix G. Curve-Specific Optimized Sample Code + + This section gives sample implementations optimized for some of the + elliptic curves listed in Section 8. Sample Sage code [SAGE] for + each algorithm can also be found in [hash2curve-repo]. + +G.1. Interface and Projective Coordinate Systems + + The sample code in this section uses a different interface than the + mappings of Section 6. Specifically, each mapping function in this + section has the following signature: + + (xn, xd, yn, yd) = map_to_curve(u) + + The resulting affine point (x, y) is given by (xn / xd, yn / yd). + + The reason for this modified interface is that it enables further + optimizations when working with points in a projective coordinate + system. This is desirable, for example, when the resulting point + will be immediately multiplied by a scalar, since most scalar + multiplication algorithms operate on projective points. + + Projective coordinates are also useful when implementing random- + oracle encodings (Section 3). One reason is that, in general, point + addition is faster using projective coordinates. Another reason is + that, for Weierstrass curves, projective coordinates allow using + complete addition formulas [RCB16]. This is especially convenient + when implementing a constant-time encoding, because it eliminates the + need for a special case when Q0 == Q1, which incomplete addition + formulas usually do not handle. + + The following are two commonly used projective coordinate systems and + the corresponding conversions: + + * A point (X, Y, Z) in homogeneous projective coordinates + corresponds to the affine point (x, y) = (X / Z, Y / Z); the + inverse conversion is given by (X, Y, Z) = (x, y, 1). To convert + (xn, xd, yn, yd) to homogeneous projective coordinates, compute + (X, Y, Z) = (xn * yd, yn * xd, xd * yd). + + * A point (X', Y', Z') in Jacobian projective coordinates + corresponds to the affine point (x, y) = (X' / Z'^2, Y' / Z'^3); + the inverse conversion is given by (X', Y', Z') = (x, y, 1). To + convert (xn, xd, yn, yd) to Jacobian projective coordinates, + compute (X', Y', Z') = (xn * xd * yd^2, yn * yd^2 * xd^3, xd * + yd). + +G.2. Elligator 2 + +G.2.1. curve25519 (q = 5 (mod 8), K = 1) + + The following is a straight-line implementation of Elligator 2 for + curve25519 [RFC7748] as specified in Section 8.5. + + This implementation can also be used for any Montgomery curve with K + = 1 over GF(q) where q = 5 (mod 8). + + map_to_curve_elligator2_curve25519(u) + + Input: u, an element of F. + Output: (xn, xd, yn, yd) such that (xn / xd, yn / yd) is a + point on curve25519. + + Constants: + 1. c1 = (q + 3) / 8 # Integer arithmetic + 2. c2 = 2^c1 + 3. c3 = sqrt(-1) + 4. c4 = (q - 5) / 8 # Integer arithmetic + + Steps: + 1. tv1 = u^2 + 2. tv1 = 2 * tv1 + 3. xd = tv1 + 1 # Nonzero: -1 is square (mod p), tv1 is not + 4. x1n = -J # x1 = x1n / xd = -J / (1 + 2 * u^2) + 5. tv2 = xd^2 + 6. gxd = tv2 * xd # gxd = xd^3 + 7. gx1 = J * tv1 # x1n + J * xd + 8. gx1 = gx1 * x1n # x1n^2 + J * x1n * xd + 9. gx1 = gx1 + tv2 # x1n^2 + J * x1n * xd + xd^2 + 10. gx1 = gx1 * x1n # x1n^3 + J * x1n^2 * xd + x1n * xd^2 + 11. tv3 = gxd^2 + 12. tv2 = tv3^2 # gxd^4 + 13. tv3 = tv3 * gxd # gxd^3 + 14. tv3 = tv3 * gx1 # gx1 * gxd^3 + 15. tv2 = tv2 * tv3 # gx1 * gxd^7 + 16. y11 = tv2^c4 # (gx1 * gxd^7)^((p - 5) / 8) + 17. y11 = y11 * tv3 # gx1 * gxd^3 * (gx1 * gxd^7)^((p - 5) / 8) + 18. y12 = y11 * c3 + 19. tv2 = y11^2 + 20. tv2 = tv2 * gxd + 21. e1 = tv2 == gx1 + 22. y1 = CMOV(y12, y11, e1) # If g(x1) is square, this is its sqrt + 23. x2n = x1n * tv1 # x2 = x2n / xd = 2 * u^2 * x1n / xd + 24. y21 = y11 * u + 25. y21 = y21 * c2 + 26. y22 = y21 * c3 + 27. gx2 = gx1 * tv1 # g(x2) = gx2 / gxd = 2 * u^2 * g(x1) + 28. tv2 = y21^2 + 29. tv2 = tv2 * gxd + 30. e2 = tv2 == gx2 + 31. y2 = CMOV(y22, y21, e2) # If g(x2) is square, this is its sqrt + 32. tv2 = y1^2 + 33. tv2 = tv2 * gxd + 34. e3 = tv2 == gx1 + 35. xn = CMOV(x2n, x1n, e3) # If e3, x = x1, else x = x2 + 36. y = CMOV(y2, y1, e3) # If e3, y = y1, else y = y2 + 37. e4 = sgn0(y) == 1 # Fix sign of y + 38. y = CMOV(y, -y, e3 XOR e4) + 39. return (xn, xd, y, 1) + +G.2.2. edwards25519 + + The following is a straight-line implementation of Elligator 2 for + edwards25519 [RFC7748] as specified in Section 8.5. The subroutine + map_to_curve_elligator2_curve25519 is defined in Appendix G.2.1. + + Note that the sign of the constant c1 below is chosen as specified in + Section 6.8.1, i.e., applying the rational map to the edwards25519 + base point yields the curve25519 base point (see erratum [Err4730]). + + map_to_curve_elligator2_edwards25519(u) + + Input: u, an element of F. + Output: (xn, xd, yn, yd) such that (xn / xd, yn / yd) is a + point on edwards25519. + + Constants: + 1. c1 = sqrt(-486664) # sgn0(c1) MUST equal 0 + + Steps: + 1. (xMn, xMd, yMn, yMd) = map_to_curve_elligator2_curve25519(u) + 2. xn = xMn * yMd + 3. xn = xn * c1 + 4. xd = xMd * yMn # xn / xd = c1 * xM / yM + 5. yn = xMn - xMd + 6. yd = xMn + xMd # (n / d - 1) / (n / d + 1) = (n - d) / (n + d) + 7. tv1 = xd * yd + 8. e = tv1 == 0 + 9. xn = CMOV(xn, 0, e) + 10. xd = CMOV(xd, 1, e) + 11. yn = CMOV(yn, 1, e) + 12. yd = CMOV(yd, 1, e) + 13. return (xn, xd, yn, yd) + +G.2.3. curve448 (q = 3 (mod 4), K = 1) + + The following is a straight-line implementation of Elligator 2 for + curve448 [RFC7748] as specified in Section 8.6. + + This implementation can also be used for any Montgomery curve with K + = 1 over GF(q) where q = 3 (mod 4). + + map_to_curve_elligator2_curve448(u) + + Input: u, an element of F. + Output: (xn, xd, yn, yd) such that (xn / xd, yn / yd) is a + point on curve448. + + Constants: + 1. c1 = (q - 3) / 4 # Integer arithmetic + + Steps: + 1. tv1 = u^2 + 2. e1 = tv1 == 1 + 3. tv1 = CMOV(tv1, 0, e1) # If Z * u^2 == -1, set tv1 = 0 + 4. xd = 1 - tv1 + 5. x1n = -J + 6. tv2 = xd^2 + 7. gxd = tv2 * xd # gxd = xd^3 + 8. gx1 = -J * tv1 # x1n + J * xd + 9. gx1 = gx1 * x1n # x1n^2 + J * x1n * xd + 10. gx1 = gx1 + tv2 # x1n^2 + J * x1n * xd + xd^2 + 11. gx1 = gx1 * x1n # x1n^3 + J * x1n^2 * xd + x1n * xd^2 + 12. tv3 = gxd^2 + 13. tv2 = gx1 * gxd # gx1 * gxd + 14. tv3 = tv3 * tv2 # gx1 * gxd^3 + 15. y1 = tv3^c1 # (gx1 * gxd^3)^((p - 3) / 4) + 16. y1 = y1 * tv2 # gx1 * gxd * (gx1 * gxd^3)^((p - 3) / 4) + 17. x2n = -tv1 * x1n # x2 = x2n / xd = -1 * u^2 * x1n / xd + 18. y2 = y1 * u + 19. y2 = CMOV(y2, 0, e1) + 20. tv2 = y1^2 + 21. tv2 = tv2 * gxd + 22. e2 = tv2 == gx1 + 23. xn = CMOV(x2n, x1n, e2) # If e2, x = x1, else x = x2 + 24. y = CMOV(y2, y1, e2) # If e2, y = y1, else y = y2 + 25. e3 = sgn0(y) == 1 # Fix sign of y + 26. y = CMOV(y, -y, e2 XOR e3) + 27. return (xn, xd, y, 1) + +G.2.4. edwards448 + + The following is a straight-line implementation of Elligator 2 for + edwards448 [RFC7748] as specified in Section 8.6. The subroutine + map_to_curve_elligator2_curve448 is defined in Appendix G.2.3. + + map_to_curve_elligator2_edwards448(u) + + Input: u, an element of F. + Output: (xn, xd, yn, yd) such that (xn / xd, yn / yd) is a + point on edwards448. + + Steps: + 1. (xn, xd, yn, yd) = map_to_curve_elligator2_curve448(u) + 2. xn2 = xn^2 + 3. xd2 = xd^2 + 4. xd4 = xd2^2 + 5. yn2 = yn^2 + 6. yd2 = yd^2 + 7. xEn = xn2 - xd2 + 8. tv2 = xEn - xd2 + 9. xEn = xEn * xd2 + 10. xEn = xEn * yd + 11. xEn = xEn * yn + 12. xEn = xEn * 4 + 13. tv2 = tv2 * xn2 + 14. tv2 = tv2 * yd2 + 15. tv3 = 4 * yn2 + 16. tv1 = tv3 + yd2 + 17. tv1 = tv1 * xd4 + 18. xEd = tv1 + tv2 + 19. tv2 = tv2 * xn + 20. tv4 = xn * xd4 + 21. yEn = tv3 - yd2 + 22. yEn = yEn * tv4 + 23. yEn = yEn - tv2 + 24. tv1 = xn2 + xd2 + 25. tv1 = tv1 * xd2 + 26. tv1 = tv1 * xd + 27. tv1 = tv1 * yn2 + 28. tv1 = -2 * tv1 + 29. yEd = tv2 + tv1 + 30. tv4 = tv4 * yd2 + 31. yEd = yEd + tv4 + 32. tv1 = xEd * yEd + 33. e = tv1 == 0 + 34. xEn = CMOV(xEn, 0, e) + 35. xEd = CMOV(xEd, 1, e) + 36. yEn = CMOV(yEn, 1, e) + 37. yEd = CMOV(yEd, 1, e) + 38. return (xEn, xEd, yEn, yEd) + +G.2.5. Montgomery Curves with q = 3 (mod 4) + + The following is a straight-line implementation of Elligator 2 that + applies to any Montgomery curve defined over GF(q) where q = 3 (mod + 4). + + For curves where K = 1, the implementation given in Appendix G.2.3 + gives identical results with slightly reduced cost. + + map_to_curve_elligator2_3mod4(u) + + Input: u, an element of F. + Output: (xn, xd, yn, yd) such that (xn / xd, yn / yd) is a + point on the target curve. + + Constants: + 1. c1 = (q - 3) / 4 # Integer arithmetic + 2. c2 = K^2 + + Steps: + 1. tv1 = u^2 + 2. e1 = tv1 == 1 + 3. tv1 = CMOV(tv1, 0, e1) # If Z * u^2 == -1, set tv1 = 0 + 4. xd = 1 - tv1 + 5. xd = xd * K + 6. x1n = -J # x1 = x1n / xd = -J / (K * (1 + 2 * u^2)) + 7. tv2 = xd^2 + 8. gxd = tv2 * xd + 9. gxd = gxd * c2 # gxd = xd^3 * K^2 + 10. gx1 = x1n * K + 11. tv3 = xd * J + 12. tv3 = gx1 + tv3 # x1n * K + xd * J + 13. gx1 = gx1 * tv3 # K^2 * x1n^2 + J * K * x1n * xd + 14. gx1 = gx1 + tv2 # K^2 * x1n^2 + J * K * x1n * xd + xd^2 + 15. gx1 = gx1 * x1n # K^2 * x1n^3 + J * K * x1n^2 * xd + x1n * xd^2 + 16. tv3 = gxd^2 + 17. tv2 = gx1 * gxd # gx1 * gxd + 18. tv3 = tv3 * tv2 # gx1 * gxd^3 + 19. y1 = tv3^c1 # (gx1 * gxd^3)^((q - 3) / 4) + 20. y1 = y1 * tv2 # gx1 * gxd * (gx1 * gxd^3)^((q - 3) / 4) + 21. x2n = -tv1 * x1n # x2 = x2n / xd = -1 * u^2 * x1n / xd + 22. y2 = y1 * u + 23. y2 = CMOV(y2, 0, e1) + 24. tv2 = y1^2 + 25. tv2 = tv2 * gxd + 26. e2 = tv2 == gx1 + 27. xn = CMOV(x2n, x1n, e2) # If e2, x = x1, else x = x2 + 28. xn = xn * K + 29. y = CMOV(y2, y1, e2) # If e2, y = y1, else y = y2 + 30. e3 = sgn0(y) == 1 # Fix sign of y + 31. y = CMOV(y, -y, e2 XOR e3) + 32. y = y * K + 33. return (xn, xd, y, 1) + +G.2.6. Montgomery Curves with q = 5 (mod 8) + + The following is a straight-line implementation of Elligator 2 that + applies to any Montgomery curve defined over GF(q) where q = 5 (mod + 8). + + For curves where K = 1, the implementation given in Appendix G.2.1 + gives identical results with slightly reduced cost. + + map_to_curve_elligator2_5mod8(u) + + Input: u, an element of F. + Output: (xn, xd, yn, yd) such that (xn / xd, yn / yd) is a + point on the target curve. + + Constants: + 1. c1 = (q + 3) / 8 # Integer arithmetic + 2. c2 = 2^c1 + 3. c3 = sqrt(-1) + 4. c4 = (q - 5) / 8 # Integer arithmetic + 5. c5 = K^2 + + Steps: + 1. tv1 = u^2 + 2. tv1 = 2 * tv1 + 3. xd = tv1 + 1 # Nonzero: -1 is square (mod p), tv1 is not + 4. xd = xd * K + 5. x1n = -J # x1 = x1n / xd = -J / (K * (1 + 2 * u^2)) + 6. tv2 = xd^2 + 7. gxd = tv2 * xd + 8. gxd = gxd * c5 # gxd = xd^3 * K^2 + 9. gx1 = x1n * K + 10. tv3 = xd * J + 11. tv3 = gx1 + tv3 # x1n * K + xd * J + 12. gx1 = gx1 * tv3 # K^2 * x1n^2 + J * K * x1n * xd + 13. gx1 = gx1 + tv2 # K^2 * x1n^2 + J * K * x1n * xd + xd^2 + 14. gx1 = gx1 * x1n # K^2 * x1n^3 + J * K * x1n^2 * xd + x1n * xd^2 + 15. tv3 = gxd^2 + 16. tv2 = tv3^2 # gxd^4 + 17. tv3 = tv3 * gxd # gxd^3 + 18. tv3 = tv3 * gx1 # gx1 * gxd^3 + 19. tv2 = tv2 * tv3 # gx1 * gxd^7 + 20. y11 = tv2^c4 # (gx1 * gxd^7)^((q - 5) / 8) + 21. y11 = y11 * tv3 # gx1 * gxd^3 * (gx1 * gxd^7)^((q - 5) / 8) + 22. y12 = y11 * c3 + 23. tv2 = y11^2 + 24. tv2 = tv2 * gxd + 25. e1 = tv2 == gx1 + 26. y1 = CMOV(y12, y11, e1) # If g(x1) is square, this is its sqrt + 27. x2n = x1n * tv1 # x2 = x2n / xd = 2 * u^2 * x1n / xd + 28. y21 = y11 * u + 29. y21 = y21 * c2 + 30. y22 = y21 * c3 + 31. gx2 = gx1 * tv1 # g(x2) = gx2 / gxd = 2 * u^2 * g(x1) + 32. tv2 = y21^2 + 33. tv2 = tv2 * gxd + 34. e2 = tv2 == gx2 + 35. y2 = CMOV(y22, y21, e2) # If g(x2) is square, this is its sqrt + 36. tv2 = y1^2 + 37. tv2 = tv2 * gxd + 38. e3 = tv2 == gx1 + 39. xn = CMOV(x2n, x1n, e3) # If e3, x = x1, else x = x2 + 40. xn = xn * K + 41. y = CMOV(y2, y1, e3) # If e3, y = y1, else y = y2 + 42. e4 = sgn0(y) == 1 # Fix sign of y + 43. y = CMOV(y, -y, e3 XOR e4) + 44. y = y * K + 45. return (xn, xd, y, 1) + +G.3. Cofactor Clearing for BLS12-381 G2 + + The curve BLS12-381, whose parameters are defined in Section 8.8.2, + admits an efficiently computable endomorphism, psi, that can be used + to speed up cofactor clearing for G2 [SBCDK09] [FKR11] [BP17] (see + also Section 7). This section implements the endomorphism psi and a + fast cofactor clearing method described by Budroni and Pintore + [BP17]. + + The functions in this section operate on points whose coordinates are + represented as ratios, i.e., (xn, xd, yn, yd) corresponds to the + point (xn / xd, yn / yd); see Appendix G.1 for further discussion of + projective coordinates. When points are represented in affine + coordinates, one can simply ignore the denominators (xd == 1 and + yd == 1). + + The following function computes the Frobenius endomorphism for an + element of F = GF(p^2) with basis (1, I), where I^2 + 1 == 0 in F. + (This is the base field of the elliptic curve E defined in + Section 8.8.2.) + + frobenius(x) + + Input: x, an element of GF(p^2). + Output: a, an element of GF(p^2). + + Notation: x = x0 + I * x1, where x0 and x1 are elements of GF(p). + + Steps: + 1. a = x0 - I * x1 + 2. return a + + The following function computes the endomorphism psi for points on + the elliptic curve E defined in Section 8.8.2. + + psi(xn, xd, yn, yd) + + Input: P, a point (xn / xd, yn / yd) on the curve E (see above). + Output: Q, a point on the same curve. + + Constants: + 1. c1 = 1 / (1 + I)^((p - 1) / 3) # in GF(p^2) + 2. c2 = 1 / (1 + I)^((p - 1) / 2) # in GF(p^2) + + Steps: + 1. qxn = c1 * frobenius(xn) + 2. qxd = frobenius(xd) + 3. qyn = c2 * frobenius(yn) + 4. qyd = frobenius(yd) + 5. return (qxn, qxd, qyn, qyd) + + The following function efficiently computes psi(psi(P)). + + psi2(xn, xd, yn, yd) + + Input: P, a point (xn / xd, yn / yd) on the curve E (see above). + Output: Q, a point on the same curve. + + Constants: + 1. c1 = 1 / 2^((p - 1) / 3) # in GF(p^2) + + Steps: + 1. qxn = c1 * xn + 2. qyn = -yn + 3. return (qxn, xd, qyn, yd) + + The following function maps any point on the elliptic curve E + (Section 8.8.2) into the prime-order subgroup G2. This function + returns a point equal to h_eff * P, where h_eff is the parameter + given in Section 8.8.2. + + clear_cofactor_bls12381_g2(P) + + Input: P, a point (xn / xd, yn / yd) on the curve E (see above). + Output: Q, a point in the subgroup G2 of BLS12-381. + + Constants: + 1. c1 = -15132376222941642752 # the BLS parameter for BLS12-381 + # i.e., -0xd201000000010000 + + Notation: in this procedure, + and - represent elliptic curve point + addition and subtraction, respectively, and * represents scalar + multiplication. + + Steps: + 1. t1 = c1 * P + 2. t2 = psi(P) + 3. t3 = 2 * P + 4. t3 = psi2(t3) + 5. t3 = t3 - t2 + 6. t2 = t1 + t2 + 7. t2 = c1 * t2 + 8. t3 = t3 + t2 + 9. t3 = t3 - t1 + 10. Q = t3 - P + 11. return Q + +Appendix H. Scripts for Parameter Generation + + This section gives Sage scripts [SAGE] used to generate parameters + for the mappings of Section 6. + +H.1. Finding Z for the Shallue-van de Woestijne Map + + The below function outputs an appropriate Z for the Shallue-van de + Woestijne map (Section 6.6.1). + + # Arguments: + # - F, a field object, e.g., F = GF(2^521 - 1) + # - A and B, the coefficients of the curve y^2 = x^3 + A * x + B + def find_z_svdw(F, A, B, init_ctr=1): + g = lambda x: F(x)^3 + F(A) * F(x) + F(B) + h = lambda Z: -(F(3) * Z^2 + F(4) * A) / (F(4) * g(Z)) + # NOTE: if init_ctr=1 fails to find Z, try setting it to F.gen() + ctr = init_ctr + while True: + for Z_cand in (F(ctr), F(-ctr)): + # Criterion 1: + # g(Z) != 0 in F. + if g(Z_cand) == F(0): + continue + # Criterion 2: + # -(3 * Z^2 + 4 * A) / (4 * g(Z)) != 0 in F. + if h(Z_cand) == F(0): + continue + # Criterion 3: + # -(3 * Z^2 + 4 * A) / (4 * g(Z)) is square in F. + if not is_square(h(Z_cand)): + continue + # Criterion 4: + # At least one of g(Z) and g(-Z / 2) is square in F. + if is_square(g(Z_cand)) or is_square(g(-Z_cand / F(2))): + return Z_cand + ctr += 1 + +H.2. Finding Z for Simplified SWU + + The below function outputs an appropriate Z for the Simplified SWU + map (Section 6.6.2). + + # Arguments: + # - F, a field object, e.g., F = GF(2^521 - 1) + # - A and B, the coefficients of the curve y^2 = x^3 + A * x + B + def find_z_sswu(F, A, B): + R.<xx> = F[] # Polynomial ring over F + g = xx^3 + F(A) * xx + F(B) # y^2 = g(x) = x^3 + A * x + B + ctr = F.gen() + while True: + for Z_cand in (F(ctr), F(-ctr)): + # Criterion 1: Z is non-square in F. + if is_square(Z_cand): + continue + # Criterion 2: Z != -1 in F. + if Z_cand == F(-1): + continue + # Criterion 3: g(x) - Z is irreducible over F. + if not (g - Z_cand).is_irreducible(): + continue + # Criterion 4: g(B / (Z * A)) is square in F. + if is_square(g(B / (Z_cand * A))): + return Z_cand + ctr += 1 + +H.3. Finding Z for Elligator 2 + + The below function outputs an appropriate Z for the Elligator 2 map + (Section 6.7.1). + + # Argument: + # - F, a field object, e.g., F = GF(2^255 - 19) + def find_z_ell2(F): + ctr = F.gen() + while True: + for Z_cand in (F(ctr), F(-ctr)): + # Z must be a non-square in F. + if is_square(Z_cand): + continue + return Z_cand + ctr += 1 + +Appendix I. sqrt and is_square Functions + + This section defines special-purpose sqrt functions for the three + most common cases, q = 3 (mod 4), q = 5 (mod 8), and q = 9 (mod 16), + plus a generic constant-time algorithm that works for any prime + modulus. + + In addition, it gives an optimized is_square method for GF(p^2). + +I.1. sqrt for q = 3 (mod 4) + + sqrt_3mod4(x) + + Parameters: + - F, a finite field of characteristic p and order q = p^m. + + Input: x, an element of F. + Output: z, an element of F such that (z^2) == x, if x is square in F. + + Constants: + 1. c1 = (q + 1) / 4 # Integer arithmetic + + Procedure: + 1. return x^c1 + +I.2. sqrt for q = 5 (mod 8) + + sqrt_5mod8(x) + + Parameters: + - F, a finite field of characteristic p and order q = p^m. + + Input: x, an element of F. + Output: z, an element of F such that (z^2) == x, if x is square in F. + + Constants: + 1. c1 = sqrt(-1) in F, i.e., (c1^2) == -1 in F + 2. c2 = (q + 3) / 8 # Integer arithmetic + + Procedure: + 1. tv1 = x^c2 + 2. tv2 = tv1 * c1 + 3. e = (tv1^2) == x + 4. z = CMOV(tv2, tv1, e) + 5. return z + +I.3. sqrt for q = 9 (mod 16) + + sqrt_9mod16(x) + + Parameters: + - F, a finite field of characteristic p and order q = p^m. + + Input: x, an element of F. + Output: z, an element of F such that (z^2) == x, if x is square in F. + + Constants: + 1. c1 = sqrt(-1) in F, i.e., (c1^2) == -1 in F + 2. c2 = sqrt(c1) in F, i.e., (c2^2) == c1 in F + 3. c3 = sqrt(-c1) in F, i.e., (c3^2) == -c1 in F + 4. c4 = (q + 7) / 16 # Integer arithmetic + + Procedure: + 1. tv1 = x^c4 + 2. tv2 = c1 * tv1 + 3. tv3 = c2 * tv1 + 4. tv4 = c3 * tv1 + 5. e1 = (tv2^2) == x + 6. e2 = (tv3^2) == x + 7. tv1 = CMOV(tv1, tv2, e1) # Select tv2 if (tv2^2) == x + 8. tv2 = CMOV(tv4, tv3, e2) # Select tv3 if (tv3^2) == x + 9. e3 = (tv2^2) == x + 10. z = CMOV(tv1, tv2, e3) # Select the sqrt from tv1 and tv2 + 11. return z + +I.4. Constant-Time Tonelli-Shanks Algorithm + + This algorithm is a constant-time version of the classic Tonelli- + Shanks algorithm ([C93], Algorithm 1.5.1) due to Sean Bowe, Jack + Grigg, and Eirik Ogilvie-Wigley [jubjub-fq], adapted and optimized by + Michael Scott. + + This algorithm applies to GF(p) for any p. Note, however, that the + special-purpose algorithms given in the prior sections are faster, + when they apply. + + sqrt_ts_ct(x) + + Parameters: + - F, a finite field of characteristic p and order q = p^m. + + Input x, an element of F. + Output: z, an element of F such that z^2 == x, if x is square in F. + + Constants: + 1. c1, the largest integer such that 2^c1 divides q - 1. + 2. c2 = (q - 1) / (2^c1) # Integer arithmetic + 3. c3 = (c2 - 1) / 2 # Integer arithmetic + 4. c4, a non-square value in F + 5. c5 = c4^c2 in F + + Procedure: + 1. z = x^c3 + 2. t = z * z + 3. t = t * x + 4. z = z * x + 5. b = t + 6. c = c5 + 7. for i in (c1, c1 - 1, ..., 2): + 8. for j in (1, 2, ..., i - 2): + 9. b = b * b + 10. e = b == 1 + 11. zt = z * c + 12. z = CMOV(zt, z, e) + 13. c = c * c + 14. tt = t * c + 15. t = CMOV(tt, t, e) + 16. b = t + 17. return z + +I.5. is_square for F = GF(p^2) + + The following is_square method applies to any field F = GF(p^2) with + basis (1, I) represented as described in Section 2.1, i.e., an + element x = (x_1, x_2) = x_1 + x_2 * I. + + Other optimizations of this type are possible in other extension + fields; see, for example, [AR13] for more information. + + is_square(x) + + Parameters: + - F, an extension field of characteristic p and order q = p^2 + with basis (1, I). + + Input: x, an element of F. + Output: True if x is square in F, and False otherwise. + + Constants: + 1. c1 = (p - 1) / 2 # Integer arithmetic + + Procedure: + 1. tv1 = x_1^2 + 2. tv2 = I * x_2 + 3. tv2 = tv2^2 + 4. tv1 = tv1 - tv2 + 5. tv1 = tv1^c1 + 6. e1 = tv1 != -1 # Note: -1 in F + 7. return e1 + +Appendix J. Suite Test Vectors + + This section gives test vectors for each suite defined in Section 8. + The test vectors in this section were generated using code that is + available from [hash2curve-repo]. + + Each test vector in this section lists values computed by the + appropriate encoding function, with variable names defined as in + Section 3. For example, for a suite whose encoding type is random + oracle, the test vector gives the value for msg, u, Q0, Q1, and the + output point P. + +J.1. NIST P-256 + +J.1.1. P256_XMD:SHA-256_SSWU_RO_ + + suite = P256_XMD:SHA-256_SSWU_RO_ + dst = QUUX-V01-CS02-with-P256_XMD:SHA-256_SSWU_RO_ + + msg = + P.x = 2c15230b26dbc6fc9a37051158c95b79656e17a1a920b11394ca91 + c44247d3e4 + P.y = 8a7a74985cc5c776cdfe4b1f19884970453912e9d31528c060be9a + b5c43e8415 + u[0] = ad5342c66a6dd0ff080df1da0ea1c04b96e0330dd89406465eeba1 + 1582515009 + u[1] = 8c0f1d43204bd6f6ea70ae8013070a1518b43873bcd850aafa0a9e + 220e2eea5a + Q0.x = ab640a12220d3ff283510ff3f4b1953d09fad35795140b1c5d64f3 + 13967934d5 + Q0.y = dccb558863804a881d4fff3455716c836cef230e5209594ddd33d8 + 5c565b19b1 + Q1.x = 51cce63c50d972a6e51c61334f0f4875c9ac1cd2d3238412f84e31 + da7d980ef5 + Q1.y = b45d1a36d00ad90e5ec7840a60a4de411917fbe7c82c3949a6e699 + e5a1b66aac + + msg = abc + P.x = 0bb8b87485551aa43ed54f009230450b492fead5f1cc91658775da + c4a3388a0f + P.y = 5c41b3d0731a27a7b14bc0bf0ccded2d8751f83493404c84a88e71 + ffd424212e + u[0] = afe47f2ea2b10465cc26ac403194dfb68b7f5ee865cda61e9f3e07 + a537220af1 + u[1] = 379a27833b0bfe6f7bdca08e1e83c760bf9a338ab335542704edcd + 69ce9e46e0 + Q0.x = 5219ad0ddef3cc49b714145e91b2f7de6ce0a7a7dc7406c7726c7e + 373c58cb48 + Q0.y = 7950144e52d30acbec7b624c203b1996c99617d0b61c2442354301 + b191d93ecf + Q1.x = 019b7cb4efcfeaf39f738fe638e31d375ad6837f58a852d032ff60 + c69ee3875f + Q1.y = 589a62d2b22357fed5449bc38065b760095ebe6aeac84b01156ee4 + 252715446e + + msg = abcdef0123456789 + P.x = 65038ac8f2b1def042a5df0b33b1f4eca6bff7cb0f9c6c15268118 + 64e544ed80 + P.y = cad44d40a656e7aff4002a8de287abc8ae0482b5ae825822bb870d + 6df9b56ca3 + u[0] = 0fad9d125a9477d55cf9357105b0eb3a5c4259809bf87180aa01d6 + 51f53d312c + u[1] = b68597377392cd3419d8fcc7d7660948c8403b19ea78bbca4b133c + 9d2196c0fb + Q0.x = a17bdf2965eb88074bc01157e644ed409dac97cfcf0c61c998ed0f + a45e79e4a2 + Q0.y = 4f1bc80c70d411a3cc1d67aeae6e726f0f311639fee560c7f5a664 + 554e3c9c2e + Q1.x = 7da48bb67225c1a17d452c983798113f47e438e4202219dd0715f8 + 419b274d66 + Q1.y = b765696b2913e36db3016c47edb99e24b1da30e761a8a3215dc0ec + 4d8f96e6f9 + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + P.x = 4be61ee205094282ba8a2042bcb48d88dfbb609301c49aa8b07853 + 3dc65a0b5d + P.y = 98f8df449a072c4721d241a3b1236d3caccba603f916ca680f4539 + d2bfb3c29e + u[0] = 3bbc30446f39a7befad080f4d5f32ed116b9534626993d2cc5033f + 6f8d805919 + u[1] = 76bb02db019ca9d3c1e02f0c17f8baf617bbdae5c393a81d9ce11e + 3be1bf1d33 + Q0.x = c76aaa823aeadeb3f356909cb08f97eee46ecb157c1f56699b5efe + bddf0e6398 + Q0.y = 776a6f45f528a0e8d289a4be12c4fab80762386ec644abf2bffb9b + 627e4352b1 + Q1.x = 418ac3d85a5ccc4ea8dec14f750a3a9ec8b85176c95a7022f39182 + 6794eb5a75 + Q1.y = fd6604f69e9d9d2b74b072d14ea13050db72c932815523305cb9e8 + 07cc900aff + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + P.x = 457ae2981f70ca85d8e24c308b14db22f3e3862c5ea0f652ca38b5 + e49cd64bc5 + P.y = ecb9f0eadc9aeed232dabc53235368c1394c78de05dd96893eefa6 + 2b0f4757dc + u[0] = 4ebc95a6e839b1ae3c63b847798e85cb3c12d3817ec6ebc10af6ee + 51adb29fec + u[1] = 4e21af88e22ea80156aff790750121035b3eefaa96b425a8716e0d + 20b4e269ee + Q0.x = d88b989ee9d1295df413d4456c5c850b8b2fb0f5402cc5c4c7e815 + 412e926db8 + Q0.y = bb4a1edeff506cf16def96afff41b16fc74f6dbd55c2210e5b8f01 + 1ba32f4f40 + Q1.x = a281e34e628f3a4d2a53fa87ff973537d68ad4fbc28d3be5e8d9f6 + a2571c5a4b + Q1.y = f6ed88a7aab56a488100e6f1174fa9810b47db13e86be999644922 + 961206e184 + +J.1.2. P256_XMD:SHA-256_SSWU_NU_ + + suite = P256_XMD:SHA-256_SSWU_NU_ + dst = QUUX-V01-CS02-with-P256_XMD:SHA-256_SSWU_NU_ + + msg = + P.x = f871caad25ea3b59c16cf87c1894902f7e7b2c822c3d3f73596c5a + ce8ddd14d1 + P.y = 87b9ae23335bee057b99bac1e68588b18b5691af476234b8971bc4 + f011ddc99b + u[0] = b22d487045f80e9edcb0ecc8d4bf77833e2bf1f3a54004d7df1d57 + f4802d311f + Q.x = f871caad25ea3b59c16cf87c1894902f7e7b2c822c3d3f73596c5a + ce8ddd14d1 + Q.y = 87b9ae23335bee057b99bac1e68588b18b5691af476234b8971bc4 + f011ddc99b + + msg = abc + P.x = fc3f5d734e8dce41ddac49f47dd2b8a57257522a865c124ed02b92 + b5237befa4 + P.y = fe4d197ecf5a62645b9690599e1d80e82c500b22ac705a0b421fac + 7b47157866 + u[0] = c7f96eadac763e176629b09ed0c11992225b3a5ae99479760601cb + d69c221e58 + Q.x = fc3f5d734e8dce41ddac49f47dd2b8a57257522a865c124ed02b92 + b5237befa4 + Q.y = fe4d197ecf5a62645b9690599e1d80e82c500b22ac705a0b421fac + 7b47157866 + + msg = abcdef0123456789 + P.x = f164c6674a02207e414c257ce759d35eddc7f55be6d7f415e2cc17 + 7e5d8faa84 + P.y = 3aa274881d30db70485368c0467e97da0e73c18c1d00f34775d012 + b6fcee7f97 + u[0] = 314e8585fa92068b3ea2c3bab452d4257b38be1c097d58a2189045 + 6c2929614d + Q.x = f164c6674a02207e414c257ce759d35eddc7f55be6d7f415e2cc17 + 7e5d8faa84 + Q.y = 3aa274881d30db70485368c0467e97da0e73c18c1d00f34775d012 + b6fcee7f97 + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + P.x = 324532006312be4f162614076460315f7a54a6f85544da773dc659 + aca0311853 + P.y = 8d8197374bcd52de2acfefc8a54fe2c8d8bebd2a39f16be9b710e4 + b1af6ef883 + u[0] = 752d8eaa38cd785a799a31d63d99c2ae4261823b4a367b133b2c66 + 27f48858ab + Q.x = 324532006312be4f162614076460315f7a54a6f85544da773dc659 + aca0311853 + Q.y = 8d8197374bcd52de2acfefc8a54fe2c8d8bebd2a39f16be9b710e4 + b1af6ef883 + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + P.x = 5c4bad52f81f39c8e8de1260e9a06d72b8b00a0829a8ea004a610b + 0691bea5d9 + P.y = c801e7c0782af1f74f24fc385a8555da0582032a3ce038de637ccd + cb16f7ef7b + u[0] = 0e1527840b9df2dfbef966678ff167140f2b27c4dccd884c25014d + ce0e41dfa3 + Q.x = 5c4bad52f81f39c8e8de1260e9a06d72b8b00a0829a8ea004a610b + 0691bea5d9 + Q.y = c801e7c0782af1f74f24fc385a8555da0582032a3ce038de637ccd + cb16f7ef7b + +J.2. NIST P-384 + +J.2.1. P384_XMD:SHA-384_SSWU_RO_ + + suite = P384_XMD:SHA-384_SSWU_RO_ + dst = QUUX-V01-CS02-with-P384_XMD:SHA-384_SSWU_RO_ + + msg = + P.x = eb9fe1b4f4e14e7140803c1d99d0a93cd823d2b024040f9c067a8e + ca1f5a2eeac9ad604973527a356f3fa3aeff0e4d83 + P.y = 0c21708cff382b7f4643c07b105c2eaec2cead93a917d825601e63 + c8f21f6abd9abc22c93c2bed6f235954b25048bb1a + u[0] = 25c8d7dc1acd4ee617766693f7f8829396065d1b447eedb155871f + effd9c6653279ac7e5c46edb7010a0e4ff64c9f3b4 + u[1] = 59428be4ed69131df59a0c6a8e188d2d4ece3f1b2a3a02602962b4 + 7efa4d7905945b1e2cc80b36aa35c99451073521ac + Q0.x = e4717e29eef38d862bee4902a7d21b44efb58c464e3e1f0d03894d + 94de310f8ffc6de86786dd3e15a1541b18d4eb2846 + Q0.y = 6b95a6e639822312298a47526bb77d9cd7bcf76244c991c8cd7007 + 5e2ee6e8b9a135c4a37e3c0768c7ca871c0ceb53d4 + Q1.x = 509527cfc0750eedc53147e6d5f78596c8a3b7360e0608e2fab056 + 3a1670d58d8ae107c9f04bcf90e89489ace5650efd + Q1.y = 33337b13cb35e173fdea4cb9e8cce915d836ff57803dbbeb7998aa + 49d17df2ff09b67031773039d09fbd9305a1566bc4 + + msg = abc + P.x = e02fc1a5f44a7519419dd314e29863f30df55a514da2d655775a81 + d413003c4d4e7fd59af0826dfaad4200ac6f60abe1 + P.y = 01f638d04d98677d65bef99aef1a12a70a4cbb9270ec55248c0453 + 0d8bc1f8f90f8a6a859a7c1f1ddccedf8f96d675f6 + u[0] = 53350214cb6bef0b51abb791b1c4209a2b4c16a0c67e1ab1401017 + fad774cd3b3f9a8bcdf7f6229dd8dd5a075cb149a0 + u[1] = c0473083898f63e03f26f14877a2407bd60c75ad491e7d26cbc6cc + 5ce815654075ec6b6898c7a41d74ceaf720a10c02e + Q0.x = fc853b69437aee9a19d5acf96a4ee4c5e04cf7b53406dfaa2afbdd + 7ad2351b7f554e4bbc6f5db4177d4d44f933a8f6ee + Q0.y = 7e042547e01834c9043b10f3a8221c4a879cb156f04f72bfccab0c + 047a304e30f2aa8b2e260d34c4592c0c33dd0c6482 + Q1.x = 57912293709b3556b43a2dfb137a315d256d573b82ded120ef8c78 + 2d607c05d930d958e50cb6dc1cc480b9afc38c45f1 + Q1.y = de9387dab0eef0bda219c6f168a92645a84665c4f2137c14270fb4 + 24b7532ff84843c3da383ceea24c47fa343c227bb8 + + msg = abcdef0123456789 + P.x = bdecc1c1d870624965f19505be50459d363c71a699a496ab672f9a + 5d6b78676400926fbceee6fcd1780fe86e62b2aa89 + P.y = 57cf1f99b5ee00f3c201139b3bfe4dd30a653193778d89a0accc5e + 0f47e46e4e4b85a0595da29c9494c1814acafe183c + u[0] = aab7fb87238cf6b2ab56cdcca7e028959bb2ea599d34f68484139d + de85ec6548a6e48771d17956421bdb7790598ea52e + u[1] = 26e8d833552d7844d167833ca5a87c35bcfaa5a0d86023479fb28e + 5cd6075c18b168bf1f5d2a0ea146d057971336d8d1 + Q0.x = 0ceece45b73f89844671df962ad2932122e878ad2259e650626924 + e4e7f132589341dec1480ebcbbbe3509d11fb570b7 + Q0.y = fafd71a3115298f6be4ae5c6dfc96c400cfb55760f185b7b03f3fa + 45f3f91eb65d27628b3c705cafd0466fafa54883ce + Q1.x = dea1be8d3f9be4cbf4fab9d71d549dde76875b5d9b876832313a08 + 3ec81e528cbc2a0a1d0596b3bcb0ba77866b129776 + Q1.y = eb15fe71662214fb03b65541f40d3eb0f4cf5c3b559f647da138c9 + f9b7484c48a08760e02c16f1992762cb7298fa52cf + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + P.x = 03c3a9f401b78c6c36a52f07eeee0ec1289f178adf78448f43a385 + 0e0456f5dd7f7633dd31676d990eda32882ab486c0 + P.y = cc183d0d7bdfd0a3af05f50e16a3f2de4abbc523215bf57c848d5e + a662482b8c1f43dc453a93b94a8026db58f3f5d878 + u[0] = 04c00051b0de6e726d228c85bf243bf5f4789efb512b22b498cde3 + 821db9da667199b74bd5a09a79583c6d353a3bb41c + u[1] = 97580f218255f899f9204db64cd15e6a312cb4d8182375d1e5157c + 8f80f41d6a1a4b77fb1ded9dce56c32058b8d5202b + Q0.x = 051a22105e0817a35d66196338c8d85bd52690d79bba373ead8a86 + dd9899411513bb9f75273f6483395a7847fb21edb4 + Q0.y = f168295c1bbcff5f8b01248e9dbc885335d6d6a04aea960f7384f7 + 46ba6502ce477e624151cc1d1392b00df0f5400c06 + Q1.x = 6ad7bc8ed8b841efd8ad0765c8a23d0b968ec9aa360a558ff33500 + f164faa02bee6c704f5f91507c4c5aad2b0dc5b943 + Q1.y = 47313cc0a873ade774048338fc34ca5313f96bbf6ae22ac6ef475d + 85f03d24792dc6afba8d0b4a70170c1b4f0f716629 + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + P.x = 7b18d210b1f090ac701f65f606f6ca18fb8d081e3bc6cbd937c560 + 4325f1cdea4c15c10a54ef303aabf2ea58bd9947a4 + P.y = ea857285a33abb516732915c353c75c576bf82ccc96adb63c094dd + e580021eddeafd91f8c0bfee6f636528f3d0c47fd2 + u[0] = 480cb3ac2c389db7f9dac9c396d2647ae946db844598971c26d1af + d53912a1491199c0a5902811e4b809c26fcd37a014 + u[1] = d28435eb34680e148bf3908536e42231cba9e1f73ae2c6902a222a + 89db5c49c97db2f8fa4d4cd6e424b17ac60bdb9bb6 + Q0.x = 42e6666f505e854187186bad3011598d9278b9d6e3e4d2503c3d23 + 6381a56748dec5d139c223129b324df53fa147c4df + Q0.y = 8ee51dbda46413bf621838cc935d18d617881c6f33f3838a79c767 + a1e5618e34b22f79142df708d2432f75c7366c8512 + Q1.x = 4ff01ceeba60484fa1bc0d825fe1e5e383d8f79f1e5bb78e5fb26b + 7a7ef758153e31e78b9d60ce75c5e32e43869d4e12 + Q1.y = 0f84b978fac8ceda7304b47e229d6037d32062e597dc7a9b95bcd9 + af441f3c56c619a901d21635f9ec6ab4710b9fcd0e + +J.2.2. P384_XMD:SHA-384_SSWU_NU_ + + suite = P384_XMD:SHA-384_SSWU_NU_ + dst = QUUX-V01-CS02-with-P384_XMD:SHA-384_SSWU_NU_ + + msg = + P.x = de5a893c83061b2d7ce6a0d8b049f0326f2ada4b966dc7e7292725 + 6b033ef61058029a3bfb13c1c7ececd6641881ae20 + P.y = 63f46da6139785674da315c1947e06e9a0867f5608cf24724eb379 + 3a1f5b3809ee28eb21a0c64be3be169afc6cdb38ca + u[0] = bc7dc1b2cdc5d588a66de3276b0f24310d4aca4977efda7d6272e1 + be25187b001493d267dc53b56183c9e28282368e60 + Q.x = de5a893c83061b2d7ce6a0d8b049f0326f2ada4b966dc7e7292725 + 6b033ef61058029a3bfb13c1c7ececd6641881ae20 + Q.y = 63f46da6139785674da315c1947e06e9a0867f5608cf24724eb379 + 3a1f5b3809ee28eb21a0c64be3be169afc6cdb38ca + + msg = abc + P.x = 1f08108b87e703c86c872ab3eb198a19f2b708237ac4be53d7929f + b4bd5194583f40d052f32df66afe5249c9915d139b + P.y = 1369dc8d5bf038032336b989994874a2270adadb67a7fcc32f0f88 + 24bc5118613f0ac8de04a1041d90ff8a5ad555f96c + u[0] = 9de6cf41e6e41c03e4a7784ac5c885b4d1e49d6de390b3cdd5a1ac + 5dd8c40afb3dfd7bb2686923bab644134483fc1926 + Q.x = 1f08108b87e703c86c872ab3eb198a19f2b708237ac4be53d7929f + b4bd5194583f40d052f32df66afe5249c9915d139b + Q.y = 1369dc8d5bf038032336b989994874a2270adadb67a7fcc32f0f88 + 24bc5118613f0ac8de04a1041d90ff8a5ad555f96c + + msg = abcdef0123456789 + P.x = 4dac31ec8a82ee3c02ba2d7c9fa431f1e59ffe65bf977b948c59e1 + d813c2d7963c7be81aa6db39e78ff315a10115c0d0 + P.y = 845333cdb5702ad5c525e603f302904d6fc84879f0ef2ee2014a6b + 13edd39131bfd66f7bd7cdc2d9ccf778f0c8892c3f + u[0] = 84e2d430a5e2543573e58e368af41821ca3ccc97baba7e9aab51a8 + 4543d5a0298638a22ceee6090d9d642921112af5b7 + Q.x = 4dac31ec8a82ee3c02ba2d7c9fa431f1e59ffe65bf977b948c59e1 + d813c2d7963c7be81aa6db39e78ff315a10115c0d0 + Q.y = 845333cdb5702ad5c525e603f302904d6fc84879f0ef2ee2014a6b + 13edd39131bfd66f7bd7cdc2d9ccf778f0c8892c3f + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + P.x = 13c1f8c52a492183f7c28e379b0475486718a7e3ac1dfef39283b9 + ce5fb02b73f70c6c1f3dfe0c286b03e2af1af12d1d + P.y = 57e101887e73e40eab8963324ed16c177d55eb89f804ec9df06801 + 579820420b5546b579008df2145fd770f584a1a54c + u[0] = 504e4d5a529333b9205acaa283107bd1bffde753898f7744161f7d + d19ba57fbb6a64214a2e00ddd2613d76cd508ddb30 + Q.x = 13c1f8c52a492183f7c28e379b0475486718a7e3ac1dfef39283b9 + ce5fb02b73f70c6c1f3dfe0c286b03e2af1af12d1d + Q.y = 57e101887e73e40eab8963324ed16c177d55eb89f804ec9df06801 + 579820420b5546b579008df2145fd770f584a1a54c + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + P.x = af129727a4207a8cb9e9dce656d88f79fce25edbcea350499d65e9 + bf1204537bdde73c7cefb752a6ed5ebcd44e183302 + P.y = ce68a3d5e161b2e6a968e4ddaa9e51504ad1516ec170c7eef3ca6b + 5327943eca95d90b23b009ba45f58b72906f2a99e2 + u[0] = 7b01ce9b8c5a60d9fbc202d6dde92822e46915d8c17e03fcb92ece + 1ed6074d01e149fc9236def40d673de903c1d4c166 + Q.x = af129727a4207a8cb9e9dce656d88f79fce25edbcea350499d65e9 + bf1204537bdde73c7cefb752a6ed5ebcd44e183302 + Q.y = ce68a3d5e161b2e6a968e4ddaa9e51504ad1516ec170c7eef3ca6b + 5327943eca95d90b23b009ba45f58b72906f2a99e2 + +J.3. NIST P-521 + +J.3.1. P521_XMD:SHA-512_SSWU_RO_ + + suite = P521_XMD:SHA-512_SSWU_RO_ + dst = QUUX-V01-CS02-with-P521_XMD:SHA-512_SSWU_RO_ + + msg = + P.x = 00fd767cebb2452030358d0e9cf907f525f50920c8f607889a6a35 + 680727f64f4d66b161fafeb2654bea0d35086bec0a10b30b14adef + 3556ed9f7f1bc23cecc9c088 + P.y = 0169ba78d8d851e930680322596e39c78f4fe31b97e57629ef6460 + ddd68f8763fd7bd767a4e94a80d3d21a3c2ee98347e024fc73ee1c + 27166dc3fe5eeef782be411d + u[0] = 01e5f09974e5724f25286763f00ce76238c7a6e03dc396600350ee + 2c4135fb17dc555be99a4a4bae0fd303d4f66d984ed7b6a3ba3860 + 93752a855d26d559d69e7e9e + u[1] = 00ae593b42ca2ef93ac488e9e09a5fe5a2f6fb330d18913734ff60 + 2f2a761fcaaf5f596e790bcc572c9140ec03f6cccc38f767f1c197 + 5a0b4d70b392d95a0c7278aa + Q0.x = 00b70ae99b6339fffac19cb9bfde2098b84f75e50ac1e80d6acb95 + 4e4534af5f0e9c4a5b8a9c10317b8e6421574bae2b133b4f2b8c6c + e4b3063da1d91d34fa2b3a3c + Q0.y = 007f368d98a4ddbf381fb354de40e44b19e43bb11a1278759f4ea7 + b485e1b6db33e750507c071250e3e443c1aaed61f2c28541bb54b1 + b456843eda1eb15ec2a9b36e + Q1.x = 01143d0e9cddcdacd6a9aafe1bcf8d218c0afc45d4451239e821f5 + d2a56df92be942660b532b2aa59a9c635ae6b30e803c45a6ac8714 + 32452e685d661cd41cf67214 + Q1.y = 00ff75515df265e996d702a5380defffab1a6d2bc232234c7bcffa + 433cd8aa791fbc8dcf667f08818bffa739ae25773b32073213cae9 + a0f2a917a0b1301a242dda0c + + msg = abc + P.x = 002f89a1677b28054b50d15e1f81ed6669b5a2158211118ebdef8a + 6efc77f8ccaa528f698214e4340155abc1fa08f8f613ef14a04371 + 7503d57e267d57155cf784a4 + P.y = 010e0be5dc8e753da8ce51091908b72396d3deed14ae166f66d8eb + f0a4e7059ead169ea4bead0232e9b700dd380b316e9361cfdba55a + 08c73545563a80966ecbb86d + u[0] = 003d00c37e95f19f358adeeaa47288ec39998039c3256e13c2a4c0 + 0a7cb61a34c8969472960150a27276f2390eb5e53e47ab193351c2 + d2d9f164a85c6a5696d94fe8 + u[1] = 01f3cbd3df3893a45a2f1fecdac4d525eb16f345b03e2820d69bc5 + 80f5cbe9cb89196fdf720ef933c4c0361fcfe29940fd0db0a5da6b + afb0bee8876b589c41365f15 + Q0.x = 01b254e1c99c835836f0aceebba7d77750c48366ecb07fb658e4f5 + b76e229ae6ca5d271bb0006ffcc42324e15a6d3daae587f9049de2 + dbb0494378ffb60279406f56 + Q0.y = 01845f4af72fc2b1a5a2fe966f6a97298614288b456cfc385a425b + 686048b25c952fbb5674057e1eb055d04568c0679a8e2dda3158dc + 16ac598dbb1d006f5ad915b0 + Q1.x = 007f08e813c620e527c961b717ffc74aac7afccb9158cebc347d57 + 15d5c2214f952c97e194f11d114d80d3481ed766ac0a3dba3eb73f + 6ff9ccb9304ad10bbd7b4a36 + Q1.y = 0022468f92041f9970a7cc025d71d5b647f822784d29ca7b3bc3b0 + 829d6bb8581e745f8d0cc9dc6279d0450e779ac2275c4c3608064a + d6779108a7828ebd9954caeb + + msg = abcdef0123456789 + P.x = 006e200e276a4a81760099677814d7f8794a4a5f3658442de63c18 + d2244dcc957c645e94cb0754f95fcf103b2aeaf94411847c24187b + 89fb7462ad3679066337cbc4 + P.y = 001dd8dfa9775b60b1614f6f169089d8140d4b3e4012949b52f98d + b2deff3e1d97bf73a1fa4d437d1dcdf39b6360cc518d8ebcc0f899 + 018206fded7617b654f6b168 + u[0] = 00183ee1a9bbdc37181b09ec336bcaa34095f91ef14b66b1485c16 + 6720523dfb81d5c470d44afcb52a87b704dbc5c9bc9d0ef524dec2 + 9884a4795f55c1359945baf3 + u[1] = 00504064fd137f06c81a7cf0f84aa7e92b6b3d56c2368f0a08f447 + 76aa8930480da1582d01d7f52df31dca35ee0a7876500ece3d8fe0 + 293cd285f790c9881c998d5e + Q0.x = 0021482e8622aac14da60e656043f79a6a110cbae5012268a62dd6 + a152c41594549f373910ebed170ade892dd5a19f5d687fae7095a4 + 61d583f8c4295f7aaf8cd7da + Q0.y = 0177e2d8c6356b7de06e0b5712d8387d529b848748e54a8bc0ef5f + 1475aa569f8f492fa85c3ad1c5edc51faf7911f11359bfa2a12d2e + f0bd73df9cb5abd1b101c8b1 + Q1.x = 00abeafb16fdbb5eb95095678d5a65c1f293291dfd20a3751dbe05 + d0a9bfe2d2eef19449fe59ec32cdd4a4adc3411177c0f2dffd0159 + 438706159a1bbd0567d9b3d0 + Q1.y = 007cc657f847db9db651d91c801741060d63dab4056d0a1d3524e2 + eb0e819954d8f677aa353bd056244a88f00017e00c3ce8beeedb43 + 82d83d74418bd48930c6c182 + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + P.x = 01b264a630bd6555be537b000b99a06761a9325c53322b65bdc41b + f196711f9708d58d34b3b90faf12640c27b91c70a507998e559406 + 48caa8e71098bf2bc8d24664 + P.y = 01ea9f445bee198b3ee4c812dcf7b0f91e0881f0251aab272a1220 + 1fd89b1a95733fd2a699c162b639e9acdcc54fdc2f6536129b6beb + 0432be01aa8da02df5e59aaa + u[0] = 0159871e222689aad7694dc4c3480a49807b1eedd9c8cb4ae1b219 + d5ba51655ea5b38e2e4f56b36bf3e3da44a7b139849d28f598c816 + fe1bc7ed15893b22f63363c3 + u[1] = 004ef0cffd475152f3858c0a8ccbdf7902d8261da92744e98df9b7 + fadb0a5502f29c5086e76e2cf498f47321434a40b1504911552ce4 + 4ad7356a04e08729ad9411f5 + Q0.x = 0005eac7b0b81e38727efcab1e375f6779aea949c3e409b53a1d37 + aa2acbac87a7e6ad24aafbf3c52f82f7f0e21b872e88c55e17b7fa + 21ce08a94ea2121c42c2eb73 + Q0.y = 00a173b6a53a7420dbd61d4a21a7c0a52de7a5c6ce05f31403bef7 + 47d16cc8604a039a73bdd6e114340e55dacd6bea8e217ffbadfb8c + 292afa3e1b2afc839a6ce7bb + Q1.x = 01881e3c193a69e4d88d8180a6879b74782a0bc7e529233e9f84bf + 7f17d2f319c36920ffba26f9e57a1e045cc7822c834c239593b6e1 + 42a694aa00c757b0db79e5e8 + Q1.y = 01558b16d396d866e476e001f2dd0758927655450b84e12f154032 + c7c2a6db837942cd9f44b814f79b4d729996ced61eec61d85c6751 + 39cbffe3fbf071d2c21cfecb + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + P.x = 00c12bc3e28db07b6b4d2a2b1167ab9e26fc2fa85c7b0498a17b03 + 47edf52392856d7e28b8fa7a2dd004611159505835b687ecf1a764 + 857e27e9745848c436ef3925 + P.y = 01cd287df9a50c22a9231beb452346720bb163344a41c5f5a24e83 + 35b6ccc595fd436aea89737b1281aecb411eb835f0b939073fdd1d + d4d5a2492e91ef4a3c55bcbd + u[0] = 0033d06d17bc3b9a3efc081a05d65805a14a3050a0dd4dfb488461 + 8eb5c73980a59c5a246b18f58ad022dd3630faa22889fbb8ba1593 + 466515e6ab4aeb7381c26334 + u[1] = 0092290ab99c3fea1a5b8fb2ca49f859994a04faee3301cefab312 + d34227f6a2d0c3322cf76861c6a3683bdaa2dd2a6daa5d6906c663 + e065338b2344d20e313f1114 + Q0.x = 00041f6eb92af8777260718e4c22328a7d74203350c6c8f5794d99 + d5789766698f459b83d5068276716f01429934e40af3d1111a2278 + 0b1e07e72238d2207e5386be + Q0.y = 001c712f0182813942b87cab8e72337db017126f52ed797dd23458 + 4ac9ae7e80dfe7abea11db02cf1855312eae1447dbaecc9d7e8c88 + 0a5e76a39f6258074e1bc2e0 + Q1.x = 0125c0b69bcf55eab49280b14f707883405028e05c927cd7625d4e + 04115bd0e0e6323b12f5d43d0d6d2eff16dbcf244542f84ec05891 + 1260dc3bb6512ab5db285fbd + Q1.y = 008bddfb803b3f4c761458eb5f8a0aee3e1f7f68e9d7424405fa69 + 172919899317fb6ac1d6903a432d967d14e0f80af63e7035aaae0c + 123e56862ce969456f99f102 + +J.3.2. P521_XMD:SHA-512_SSWU_NU_ + + suite = P521_XMD:SHA-512_SSWU_NU_ + dst = QUUX-V01-CS02-with-P521_XMD:SHA-512_SSWU_NU_ + + msg = + P.x = 01ec604b4e1e3e4c7449b7a41e366e876655538acf51fd40d08b97 + be066f7d020634e906b1b6942f9174b417027c953d75fb6ec64b8c + ee2a3672d4f1987d13974705 + P.y = 00944fc439b4aad2463e5c9cfa0b0707af3c9a42e37c5a57bb4ecd + 12fef9fb21508568aedcdd8d2490472df4bbafd79081c81e99f4da + 3286eddf19be47e9c4cf0e91 + u[0] = 01e4947fe62a4e47792cee2798912f672fff820b2556282d9843b4 + b465940d7683a986f93ccb0e9a191fbc09a6e770a564490d2a4ae5 + 1b287ca39f69c3d910ba6a4f + Q.x = 01ec604b4e1e3e4c7449b7a41e366e876655538acf51fd40d08b97 + be066f7d020634e906b1b6942f9174b417027c953d75fb6ec64b8c + ee2a3672d4f1987d13974705 + Q.y = 00944fc439b4aad2463e5c9cfa0b0707af3c9a42e37c5a57bb4ecd + 12fef9fb21508568aedcdd8d2490472df4bbafd79081c81e99f4da + 3286eddf19be47e9c4cf0e91 + + msg = abc + P.x = 00c720ab56aa5a7a4c07a7732a0a4e1b909e32d063ae1b58db5f0e + b5e09f08a9884bff55a2bef4668f715788e692c18c1915cd034a6b + 998311fcf46924ce66a2be9a + P.y = 003570e87f91a4f3c7a56be2cb2a078ffc153862a53d5e03e5dad5 + bccc6c529b8bab0b7dbb157499e1949e4edab21cf5d10b782bc1e9 + 45e13d7421ad8121dbc72b1d + u[0] = 0019b85ef78596efc84783d42799e80d787591fe7432dee1d9fa2b + 7651891321be732ddf653fa8fefa34d86fb728db569d36b5b6ed39 + 83945854b2fc2dc6a75aa25b + Q.x = 00c720ab56aa5a7a4c07a7732a0a4e1b909e32d063ae1b58db5f0e + b5e09f08a9884bff55a2bef4668f715788e692c18c1915cd034a6b + 998311fcf46924ce66a2be9a + Q.y = 003570e87f91a4f3c7a56be2cb2a078ffc153862a53d5e03e5dad5 + bccc6c529b8bab0b7dbb157499e1949e4edab21cf5d10b782bc1e9 + 45e13d7421ad8121dbc72b1d + + msg = abcdef0123456789 + P.x = 00bcaf32a968ff7971b3bbd9ce8edfbee1309e2019d7ff373c3838 + 7a782b005dce6ceffccfeda5c6511c8f7f312f343f3a891029c585 + 8f45ee0bf370aba25fc990cc + P.y = 00923517e767532d82cb8a0b59705eec2b7779ce05f9181c7d5d5e + 25694ef8ebd4696343f0bc27006834d2517215ecf79482a84111f5 + 0c1bae25044fe1dd77744bbd + u[0] = 01dba0d7fa26a562ee8a9014ebc2cca4d66fd9de036176aca8fc11 + ef254cd1bc208847ab7701dbca7af328b3f601b11a1737a899575a + 5c14f4dca5aaca45e9935e07 + Q.x = 00bcaf32a968ff7971b3bbd9ce8edfbee1309e2019d7ff373c3838 + 7a782b005dce6ceffccfeda5c6511c8f7f312f343f3a891029c585 + 8f45ee0bf370aba25fc990cc + Q.y = 00923517e767532d82cb8a0b59705eec2b7779ce05f9181c7d5d5e + 25694ef8ebd4696343f0bc27006834d2517215ecf79482a84111f5 + 0c1bae25044fe1dd77744bbd + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + P.x = 001ac69014869b6c4ad7aa8c443c255439d36b0e48a0f57b03d6fe + 9c40a66b4e2eaed2a93390679a5cc44b3a91862b34b673f0e92c83 + 187da02bf3db967d867ce748 + P.y = 00d5603d530e4d62b30fccfa1d90c2206654d74291c1db1c25b86a + 051ee3fffc294e5d56f2e776853406bd09206c63d40f37ad882952 + 4cf89ad70b5d6e0b4a3b7341 + u[0] = 00844da980675e1244cb209dcf3ea0aabec23bd54b2cda69fff86e + b3acc318bf3d01bae96e9cd6f4c5ceb5539df9a7ad7fcc5e9d5469 + 6081ba9782f3a0f6d14987e3 + Q.x = 001ac69014869b6c4ad7aa8c443c255439d36b0e48a0f57b03d6fe + 9c40a66b4e2eaed2a93390679a5cc44b3a91862b34b673f0e92c83 + 187da02bf3db967d867ce748 + Q.y = 00d5603d530e4d62b30fccfa1d90c2206654d74291c1db1c25b86a + 051ee3fffc294e5d56f2e776853406bd09206c63d40f37ad882952 + 4cf89ad70b5d6e0b4a3b7341 + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + P.x = 01801de044c517a80443d2bd4f503a9e6866750d2f94a22970f62d + 721f96e4310e4a828206d9cdeaa8f2d476705cc3bbc490a6165c68 + 7668f15ec178a17e3d27349b + P.y = 0068889ea2e1442245fe42bfda9e58266828c0263119f35a61631a + 3358330f3bb84443fcb54fcd53a1d097fccbe310489b74ee143fc2 + 938959a83a1f7dd4a6fd395b + u[0] = 01aab1fb7e5cd44ba4d9f32353a383cb1bb9eb763ed40b32bdd5f6 + 66988970205998c0e44af6e2b5f6f8e48e969b3f649cae3c6ab463 + e1b274d968d91c02f00cce91 + Q.x = 01801de044c517a80443d2bd4f503a9e6866750d2f94a22970f62d + 721f96e4310e4a828206d9cdeaa8f2d476705cc3bbc490a6165c68 + 7668f15ec178a17e3d27349b + Q.y = 0068889ea2e1442245fe42bfda9e58266828c0263119f35a61631a + 3358330f3bb84443fcb54fcd53a1d097fccbe310489b74ee143fc2 + 938959a83a1f7dd4a6fd395b + +J.4. curve25519 + +J.4.1. curve25519_XMD:SHA-512_ELL2_RO_ + + suite = curve25519_XMD:SHA-512_ELL2_RO_ + dst = QUUX-V01-CS02-with-curve25519_XMD:SHA-512_ELL2_RO_ + + msg = + P.x = 2de3780abb67e861289f5749d16d3e217ffa722192d16bbd9d1bfb + 9d112b98c0 + P.y = 3b5dc2a498941a1033d176567d457845637554a2fe7a3507d21abd + 1c1bd6e878 + u[0] = 005fe8a7b8fef0a16c105e6cadf5a6740b3365e18692a9c05bfbb4 + d97f645a6a + u[1] = 1347edbec6a2b5d8c02e058819819bee177077c9d10a4ce165aab0 + fd0252261a + Q0.x = 36b4df0c864c64707cbf6cf36e9ee2c09a6cb93b28313c169be295 + 61bb904f98 + Q0.y = 6cd59d664fb58c66c892883cd0eb792e52055284dac3907dd756b4 + 5d15c3983d + Q1.x = 3fa114783a505c0b2b2fbeef0102853c0b494e7757f2a089d0daae + 7ed9a0db2b + Q1.y = 76c0fe7fec932aaafb8eefb42d9cbb32eb931158f469ff3050af15 + cfdbbeff94 + + msg = abc + P.x = 2b4419f1f2d48f5872de692b0aca72cc7b0a60915dd70bde432e82 + 6b6abc526d + P.y = 1b8235f255a268f0a6fa8763e97eb3d22d149343d495da1160eff9 + 703f2d07dd + u[0] = 49bed021c7a3748f09fa8cdfcac044089f7829d3531066ac9e74e0 + 994e05bc7d + u[1] = 5c36525b663e63389d886105cee7ed712325d5a97e60e140aba7e2 + ce5ae851b6 + Q0.x = 16b3d86e056b7970fa00165f6f48d90b619ad618791661b7b5e1ec + 78be10eac1 + Q0.y = 4ab256422d84c5120b278cbdfc4e1facc5baadffeccecf8ee9bf39 + 46106d50ca + Q1.x = 7ec29ddbf34539c40adfa98fcb39ec36368f47f30e8f888cc7e86f + 4d46e0c264 + Q1.y = 10d1abc1cae2d34c06e247f2141ba897657fb39f1080d54f09ce0a + f128067c74 + + msg = abcdef0123456789 + P.x = 68ca1ea5a6acf4e9956daa101709b1eee6c1bb0df1de3b90d46023 + 82a104c036 + P.y = 2a375b656207123d10766e68b938b1812a4a6625ff83cb8d5e86f5 + 8a4be08353 + u[0] = 6412b7485ba26d3d1b6c290a8e1435b2959f03721874939b21782d + f17323d160 + u[1] = 24c7b46c1c6d9a21d32f5707be1380ab82db1054fde82865d5c9e3 + d968f287b2 + Q0.x = 71de3dadfe268872326c35ac512164850860567aea0e7325e6b91a + 98f86533ad + Q0.y = 26a08b6e9a18084c56f2147bf515414b9b63f1522e1b6c5649f7d4 + b0324296ec + Q1.x = 5704069021f61e41779e2ba6b932268316d6d2a6f064f997a22fef + 16d1eaeaca + Q1.y = 50483c7540f64fb4497619c050f2c7fe55454ec0f0e79870bb4430 + 2e34232210 + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + P.x = 096e9c8bae6c06b554c1ee69383bb0e82267e064236b3a30608d4e + d20b73ac5a + P.y = 1eb5a62612cafb32b16c3329794645b5b948d9f8ffe501d4e26b07 + 3fef6de355 + u[0] = 5e123990f11bbb5586613ffabdb58d47f64bb5f2fa115f8ea8df01 + 88e0c9e1b5 + u[1] = 5e8553eb00438a0bb1e7faa59dec6d8087f9c8011e5fb8ed9df31c + b6c0d4ac19 + Q0.x = 7a94d45a198fb5daa381f45f2619ab279744efdd8bd8ed587fc5b6 + 5d6cea1df0 + Q0.y = 67d44f85d376e64bb7d713585230cdbfafc8e2676f7568e0b6ee59 + 361116a6e1 + Q1.x = 30506fb7a32136694abd61b6113770270debe593027a968a01f271 + e146e60c18 + Q1.y = 7eeee0e706b40c6b5174e551426a67f975ad5a977ee2f01e8e20a6 + d612458c3b + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + P.x = 1bc61845a138e912f047b5e70ba9606ba2a447a4dade024c8ef3dd + 42b7bbc5fe + P.y = 623d05e47b70e25f7f1d51dda6d7c23c9a18ce015fe3548df596ea + 9e38c69bf1 + u[0] = 20f481e85da7a3bf60ac0fb11ed1d0558fc6f941b3ac5469aa8b56 + ec883d6d7d + u[1] = 017d57fd257e9a78913999a23b52ca988157a81b09c5442501d07f + ed20869465 + Q0.x = 02d606e2699b918ee36f2818f2bc5013e437e673c9f9b9cdc15fd0 + c5ee913970 + Q0.y = 29e9dc92297231ef211245db9e31767996c5625dfbf92e1c8107ef + 887365de1e + Q1.x = 38920e9b988d1ab7449c0fa9a6058192c0c797bb3d42ac34572434 + 1a1aa98745 + Q1.y = 24dcc1be7c4d591d307e89049fd2ed30aae8911245a9d8554bf603 + 2e5aa40d3d + +J.4.2. curve25519_XMD:SHA-512_ELL2_NU_ + + suite = curve25519_XMD:SHA-512_ELL2_NU_ + dst = QUUX-V01-CS02-with-curve25519_XMD:SHA-512_ELL2_NU_ + + msg = + P.x = 1bb913f0c9daefa0b3375378ffa534bda5526c97391952a7789eb9 + 76edfe4d08 + P.y = 4548368f4f983243e747b62a600840ae7c1dab5c723991f85d3a97 + 68479f3ec4 + u[0] = 608d892b641f0328523802a6603427c26e55e6f27e71a91a478148 + d45b5093cd + Q.x = 51125222da5e763d97f3c10fcc92ea6860b9ccbbd2eb1285728f56 + 6721c1e65b + Q.y = 343d2204f812d3dfc5304a5808c6c0d81a903a5d228b342442aa3c + 9ba5520a3d + + msg = abc + P.x = 7c22950b7d900fa866334262fcaea47a441a578df43b894b4625c9 + b450f9a026 + P.y = 5547bc00e4c09685dcbc6cb6765288b386d8bdcb595fa5a6e3969e + 08097f0541 + u[0] = 46f5b22494bfeaa7f232cc8d054be68561af50230234d7d1d63d1d + 9abeca8da5 + Q.x = 7d56d1e08cb0ccb92baf069c18c49bb5a0dcd927eff8dcf75ca921 + ef7f3e6eeb + Q.y = 404d9a7dc25c9c05c44ab9a94590e7c3fe2dcec74533a0b24b188a + 5d5dacf429 + + msg = abcdef0123456789 + P.x = 31ad08a8b0deeb2a4d8b0206ca25f567ab4e042746f792f4b7973f + 3ae2096c52 + P.y = 405070c28e78b4fa269427c82827261991b9718bd6c6e95d627d70 + 1a53c30db1 + u[0] = 235fe40c443766ce7e18111c33862d66c3b33267efa50d50f9e8e5 + d252a40aaa + Q.x = 3fbe66b9c9883d79e8407150e7c2a1c8680bee496c62fabe4619a7 + 2b3cabe90f + Q.y = 08ec476147c9a0a3ff312d303dbbd076abb7551e5fce82b48ab14b + 433f8d0a7b + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + P.x = 027877759d155b1997d0d84683a313eb78bdb493271d935b622900 + 459d52ceaa + P.y = 54d691731a53baa30707f4a87121d5169fb5d587d70fb0292b5830 + dedbec4c18 + u[0] = 001e92a544463bda9bd04ddbe3d6eed248f82de32f522669efc5dd + ce95f46f5b + Q.x = 227e0bb89de700385d19ec40e857db6e6a3e634b1c32962f370d26 + f84ff19683 + Q.y = 5f86ff3851d262727326a32c1bf7655a03665830fa7f1b8b1e5a09 + d85bc66e4a + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + P.x = 5fd892c0958d1a75f54c3182a18d286efab784e774d1e017ba2fb2 + 52998b5dc1 + P.y = 750af3c66101737423a4519ac792fb93337bd74ee751f19da4cf1e + 94f4d6d0b8 + u[0] = 1a68a1af9f663592291af987203393f707305c7bac9c8d63d6a729 + bdc553dc19 + Q.x = 3bcd651ee54d5f7b6013898aab251ee8ecc0688166fce6e9548d38 + 472f6bd196 + Q.y = 1bb36ad9197299f111b4ef21271c41f4b7ecf5543db8bb5931307e + bdb2eaa465 + +J.5. edwards25519 + +J.5.1. edwards25519_XMD:SHA-512_ELL2_RO_ + + suite = edwards25519_XMD:SHA-512_ELL2_RO_ + dst = QUUX-V01-CS02-with-edwards25519_XMD:SHA-512_ELL2_RO_ + + msg = + P.x = 3c3da6925a3c3c268448dcabb47ccde5439559d9599646a8260e47 + b1e4822fc6 + P.y = 09a6c8561a0b22bef63124c588ce4c62ea83a3c899763af26d7953 + 02e115dc21 + u[0] = 03fef4813c8cb5f98c6eef88fae174e6e7d5380de2b007799ac7ee + 712d203f3a + u[1] = 780bdddd137290c8f589dc687795aafae35f6b674668d92bf92ae7 + 93e6a60c75 + Q0.x = 6549118f65bb617b9e8b438decedc73c496eaed496806d3b2eb9ee + 60b88e09a7 + Q0.y = 7315bcc8cf47ed68048d22bad602c6680b3382a08c7c5d3f439a97 + 3fb4cf9feb + Q1.x = 31dcfc5c58aa1bee6e760bf78cbe71c2bead8cebb2e397ece0f37a + 3da19c9ed2 + Q1.y = 7876d81474828d8a5928b50c82420b2bd0898d819e9550c5c82c39 + fc9bafa196 + + msg = abc + P.x = 608040b42285cc0d72cbb3985c6b04c935370c7361f4b7fbdb1ae7 + f8c1a8ecad + P.y = 1a8395b88338f22e435bbd301183e7f20a5f9de643f11882fb237f + 88268a5531 + u[0] = 5081955c4141e4e7d02ec0e36becffaa1934df4d7a270f70679c78 + f9bd57c227 + u[1] = 005bdc17a9b378b6272573a31b04361f21c371b256252ae5463119 + aa0b925b76 + Q0.x = 5c1525bd5d4b4e034512949d187c39d48e8cd84242aa4758956e4a + dc7d445573 + Q0.y = 2bf426cf7122d1a90abc7f2d108befc2ef415ce8c2d09695a74072 + 40faa01f29 + Q1.x = 37b03bba828860c6b459ddad476c83e0f9285787a269df2156219b + 7e5c86210c + Q1.y = 285ebf5412f84d0ad7bb4e136729a9ffd2195d5b8e73c0dc85110c + e06958f432 + + msg = abcdef0123456789 + P.x = 6d7fabf47a2dc03fe7d47f7dddd21082c5fb8f86743cd020f3fb14 + 7d57161472 + P.y = 53060a3d140e7fbcda641ed3cf42c88a75411e648a1add71217f70 + ea8ec561a6 + u[0] = 285ebaa3be701b79871bcb6e225ecc9b0b32dff2d60424b4c50642 + 636a78d5b3 + u[1] = 2e253e6a0ef658fedb8e4bd6a62d1544fd6547922acb3598ec6b36 + 9760b81b31 + Q0.x = 3ac463dd7fddb773b069c5b2b01c0f6b340638f54ee3bd92d452fc + ec3015b52d + Q0.y = 7b03ba1e8db9ec0b390d5c90168a6a0b7107156c994c674b61fe69 + 6cbeb46baf + Q1.x = 0757e7e904f5e86d2d2f4acf7e01c63827fde2d363985aa7432106 + f1b3a444ec + Q1.y = 50026c96930a24961e9d86aa91ea1465398ff8e42015e2ec1fa397 + d416f6a1c0 + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + P.x = 5fb0b92acedd16f3bcb0ef83f5c7b7a9466b5f1e0d8d217421878e + a3686f8524 + P.y = 2eca15e355fcfa39d2982f67ddb0eea138e2994f5956ed37b7f72e + ea5e89d2f7 + u[0] = 4fedd25431c41f2a606952e2945ef5e3ac905a42cf64b8b4d4a83c + 533bf321af + u[1] = 02f20716a5801b843987097a8276b6d869295b2e11253751ca72c1 + 09d37485a9 + Q0.x = 703e69787ea7524541933edf41f94010a201cc841c1cce60205ec3 + 8513458872 + Q0.y = 32bb192c4f89106466f0874f5fd56a0d6b6f101cb714777983336c + 159a9bec75 + Q1.x = 0c9077c5c31720ed9413abe59bf49ce768506128d810cb882435aa + 90f713ef6b + Q1.y = 7d5aec5210db638c53f050597964b74d6dda4be5b54fa73041bf90 + 9ccb3826cb + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + P.x = 0efcfde5898a839b00997fbe40d2ebe950bc81181afbd5cd6b9618 + aa336c1e8c + P.y = 6dc2fc04f266c5c27f236a80b14f92ccd051ef1ff027f26a07f8c0 + f327d8f995 + u[0] = 6e34e04a5106e9bd59f64aba49601bf09d23b27f7b594e56d5de06 + df4a4ea33b + u[1] = 1c1c2cb59fc053f44b86c5d5eb8c1954b64976d0302d3729ff66e8 + 4068f5fd96 + Q0.x = 21091b2e3f9258c7dfa075e7ae513325a94a3d8a28e1b1cb3b5b6f + 5d65675592 + Q0.y = 41a33d324c89f570e0682cdf7bdb78852295daf8084c669f2cc969 + 2896ab5026 + Q1.x = 4c07ec48c373e39a23bd7954f9e9b66eeab9e5ee1279b867b3d531 + 5aa815454f + Q1.y = 67ccac7c3cb8d1381242d8d6585c57eabaddbb5dca5243a68a8aeb + 5477d94b3a + +J.5.2. edwards25519_XMD:SHA-512_ELL2_NU_ + + suite = edwards25519_XMD:SHA-512_ELL2_NU_ + dst = QUUX-V01-CS02-with-edwards25519_XMD:SHA-512_ELL2_NU_ + + msg = + P.x = 1ff2b70ecf862799e11b7ae744e3489aa058ce805dd323a936375a + 84695e76da + P.y = 222e314d04a4d5725e9f2aff9fb2a6b69ef375a1214eb19021ceab + 2d687f0f9b + u[0] = 7f3e7fb9428103ad7f52db32f9df32505d7b427d894c5093f7a0f0 + 374a30641d + Q.x = 42836f691d05211ebc65ef8fcf01e0fb6328ec9c4737c26050471e + 50803022eb + Q.y = 22cb4aaa555e23bd460262d2130d6a3c9207aa8bbb85060928beb2 + 63d6d42a95 + + msg = abc + P.x = 5f13cc69c891d86927eb37bd4afc6672360007c63f68a33ab423a3 + aa040fd2a8 + P.y = 67732d50f9a26f73111dd1ed5dba225614e538599db58ba30aaea1 + f5c827fa42 + u[0] = 09cfa30ad79bd59456594a0f5d3a76f6b71c6787b04de98be5cd20 + 1a556e253b + Q.x = 333e41b61c6dd43af220c1ac34a3663e1cf537f996bab50ab66e33 + c4bd8e4e19 + Q.y = 51b6f178eb08c4a782c820e306b82c6e273ab22e258d972cd0c511 + 787b2a3443 + + msg = abcdef0123456789 + P.x = 1dd2fefce934ecfd7aae6ec998de088d7dd03316aa1847198aecf6 + 99ba6613f1 + P.y = 2f8a6c24dd1adde73909cada6a4a137577b0f179d336685c4a955a + 0a8e1a86fb + u[0] = 475ccff99225ef90d78cc9338e9f6a6bb7b17607c0c4428937de75 + d33edba941 + Q.x = 55186c242c78e7d0ec5b6c9553f04c6aeef64e69ec2e824472394d + a32647cfc6 + Q.y = 5b9ea3c265ee42256a8f724f616307ef38496ef7eba391c08f99f3 + bea6fa88f0 + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + P.x = 35fbdc5143e8a97afd3096f2b843e07df72e15bfca2eaf6879bf97 + c5d3362f73 + P.y = 2af6ff6ef5ebba128b0774f4296cb4c2279a074658b083b8dcca91 + f57a603450 + u[0] = 049a1c8bd51bcb2aec339f387d1ff51428b88d0763a91bcdf69298 + 14ac95d03d + Q.x = 024b6e1621606dca8071aa97b43dce4040ca78284f2a527dcf5d0f + bfac2b07e7 + Q.y = 5102353883d739bdc9f8a3af650342b171217167dcce34f8db5720 + 8ec1dfdbf2 + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + P.x = 6e5e1f37e99345887fc12111575fc1c3e36df4b289b8759d23af14 + d774b66bff + P.y = 2c90c3d39eb18ff291d33441b35f3262cdd307162cc97c31bfcc7a + 4245891a37 + u[0] = 3cb0178a8137cefa5b79a3a57c858d7eeeaa787b2781be4a362a2f + 0750d24fa0 + Q.x = 3e6368cff6e88a58e250c54bd27d2c989ae9b3acb6067f2651ad28 + 2ab8c21cd9 + Q.y = 38fb39f1566ca118ae6c7af42810c0bb9767ae5960abb5a8ca7925 + 30bfb9447d + +J.6. curve448 + +J.6.1. curve448_XOF:SHAKE256_ELL2_RO_ + + suite = curve448_XOF:SHAKE256_ELL2_RO_ + dst = QUUX-V01-CS02-with-curve448_XOF:SHAKE256_ELL2_RO_ + + msg = + P.x = 5ea5ff623d27c75e73717514134e73e419f831a875ca9e82915fdf + c7069d0a9f8b532cfb32b1d8dd04ddeedbe3fa1d0d681c01e825d6 + a9ea + P.y = afadd8de789f8f8e3516efbbe313a7eba364c939ecba00dabf4ced + 5c563b18e70a284c17d8f46b564c4e6ce11784a3825d9411166221 + 28c1 + u[0] = c704c7b3d3b36614cf3eedd0324fe6fe7d1402c50efd16cff89ff6 + 3f50938506280d3843478c08e24f7842f4e3ef45f6e3c4897f9d97 + 6148 + u[1] = c25427dc97fff7a5ad0a78654e2c6c27b1c1127b5b53c7950cd1fd + 6edd2703646b25f341e73deedfebf022d1d3cecd02b93b4d585ead + 3ed7 + Q0.x = 3ba318806f89c19cc019f51e33eb6b8c038dab892e858ce7c7f2c2 + ac58618d06146a5fef31e49af49588d4d3db1bcf02bd4e4a733e37 + 065d + Q0.y = b30b4cfc2fd14d9d4b70456c0f5c6f6070be551788893d570e7955 + 675a20f6c286d01d6e90d2fb500d2efb8f4e18db7f8268bb9b7fbc + 5975 + Q1.x = f03a48cf003f63be61ca055fec87c750434da07a15f8aa6210389f + f85943b5166484339c8bea1af9fc571313d35ed2fbb779408b760c + 4cbd + Q1.y = 23943a33b2954dc54b76a8222faf5b7e18405a41f5ecc61bf1b8df + 1f9cbfad057307ed0c7b721f19c0390b8ee3a2dec223671f9ff905 + fda7 + + msg = abc + P.x = 9b2f7ce34878d7cebf34c582db14958308ea09366d1ec71f646411 + d3de0ae564d082b06f40cd30dfc08d9fb7cb21df390cf207806ad9 + d0e4 + P.y = 138a0eef0a4993ea696152ed7db61f7ddb4e8100573591e7466d61 + c0c568ecaec939e36a84d276f34c402526d8989a96e99760c4869e + d633 + u[0] = 2dd95593dfee26fe0d218d3d9a0a23d9e1a262fd1d0b602483d084 + 15213e75e2db3c69b0a5bc89e71bcefc8c723d2b6a0cf263f02ad2 + aa70 + u[1] = 272e4c79a1290cc6d2bc4f4f9d31bf7fbe956ca303c04518f117d7 + 7c0e9d850796fc3e1e2bcb9c75e8eaaded5e150333cae993186804 + 7c9d + Q0.x = 26714783887ec444fbade9ae350dc13e8d5a64150679232560726a + 73d36e28bd56766d7d0b0899d79c8d1c889ae333f601c57532ff3c + 4f09 + Q0.y = 080e486f8f5740dbbe82305160cab9fac247b0b22a54d961de6750 + 37c3036fa68464c8756478c322ae0aeb9ba386fe626cebb0bcca46 + 840c + Q1.x = 0d9741d10421691a8ebc7778b5f623260fdf8b28ae28d776efcb8e + 0d5fbb65139a2f828617835f527cb2ca24a8f5fc8e84378343c43d + 096d + Q1.y = 54f4c499bf3d5b154511913f9615bd914969b65cfb74508d7ae5a1 + 69e9595b7cbcab9a1485e07b2ce426e4fbed052f03842c4313b7db + e39a + + msg = abcdef0123456789 + P.x = f54ecd14b85a50eeeee0618452df3a75be7bfba11da5118774ae4e + a55ac204e153f77285d780c4acee6c96abe3577a0c0b00be6e790c + f194 + P.y = 935247a64bf78c107069943c7e3ecc52acb27ce4a3230407c83573 + 41685ea2152e8c3da93f8cd77da1bddb5bb759c6e7ae7d516dced4 + 2850 + u[0] = 6aab71a38391639f27e49eae8b1cb6b7172a1f478190ece293957e + 7cdb2391e7cc1c4261970d9c1bbf9c3915438f74fbd7eb5cd4d4d1 + 7ace + u[1] = c80b8380ca47a3bcbf76caa75cef0e09f3d270d5ee8f676cde11ae + df41aaca6741bd81a86232bd336ccb42efad39f06542bc06a67b65 + 909e + Q0.x = 946d91bd50c90ef70743e0dd194bddd68bb630f4e67e5b93e15a9b + 94e62cb85134467993501759525c1f4fdbf06f10ddaf817847d735 + e062 + Q0.y = 185cf511262ec1e9b3c3cbdc015ab93df4e71cbe87766917d81c9f + 3419d480407c1462385122c84982d4dae60c3ae4acce0089e37ad6 + 5934 + Q1.x = 01778f4797b717cd6f83c193b2dfb92a1606a36ede941b0f6ab0ac + 71ad0eac756d17604bf054398887da907e41065d3595f178ae802f + 2087 + Q1.y = b4ca727d0bda895e0eee7eb3cbc28710fa2e90a73b568cae26bd7c + 2e73b70a9fa0affe1096f0810198890ed65d8935886b6e60dc4c56 + 9dc6 + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + P.x = 5bd67c4f88adf6beb10f7e0d0054659776a55c97b809ec8b310172 + 9e104fd0f684e103792f267fd87cc4afc25a073956ef4f268fb028 + 24d5 + P.y = da1f5cb16a352719e4cb064cf47ba72aeba7752d03e8ca2c56229f + 419b4ef378785a5af1a53dd7ab4d467c1f92f7b139b3752faf29c9 + 6432 + u[0] = cb5c27e51f9c18ee8ffdb6be230f4eb4f2c2481963b2293484f08d + a2241c1ff59f80978e6defe9d70e34abba2fcbe12dc3a1eb2c5d3d + 2e4a + u[1] = c895e8afecec5466e126fa70fc4aa784b8009063afb10e3ee06a9b + 22318256aa8693b0c85b955cf2d6540b8ed71e729af1b8d5ca3b11 + 6cd7 + Q0.x = c2d275826d6ad55e41a22318f6b6240f1f862a2e231120ff41eadb + ec319756032e8cef2a7ac6c10214fa0608c17fcaf61ec2694a8a2b + 358b + Q0.y = 93d2e092762b135509840e609d413200df800d99da91d8b8284066 + 6cac30e7a3520adbaa4b089bfdc86132e42729f651d022f4782502 + f12c + Q1.x = 3c0880ece7244036e9a45944a85599f9809d772f770cc237ac41b2 + 1aa71615e4f3bb08f64fca618896e4f6cf5bd92e16b89d2cf6e195 + 6bfb + Q1.y = 45cce4beb96505cac5976b3d2673641e9bcd18d3462bbb453d293e + 5282740a6389cfeae610adc7bd425c728541ceec83fcc999164af4 + 3fb5 + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + P.x = ea441c10b3636ecedd5c0dfcae96384cc40de8390a0ab648765b45 + 08da12c586d55dc981275776507ebca0e4d1bcaa302bb69dcfa31b + 3451 + P.y = fee0192d49bcc0c28d954763c2cbe739b9265c4bebe3883803c649 + 71220cfda60b9ac99ad986cd908c0534b260b5cfca46f6c2b0f3f2 + 1bda + u[0] = 8cba93a007bb2c801b1769e026b1fa1640b14a34cf3029db3c7fd6 + 392745d6fec0f7870b5071d6da4402cedbbde28ae4e50ab30e1049 + a238 + u[1] = 4223746145069e4b8a981acc3404259d1a2c3ecfed5d864798a89d + 45f81a2c59e2d40eb1d5f0fe11478cbb2bb30246dd388cb932ad7b + b330 + Q0.x = 4321ab02a9849128691e9b80a5c5576793a218de14885fddccb91f + 17ceb1646ea00a28b69ad211e1f14f17739612dbde3782319bdf00 + 9689 + Q0.y = 1b8a7b539519eec0ea9f7a46a43822e16cba39a439733d6847ac44 + a806b8adb3e1a75ea48a1228b8937ba85c6cb6ee01046e10cad895 + 3b1e + Q1.x = 126d744da6a14fddec0f78a9cee4571c1320ac7645b600187812e4 + d7021f98fc4703732c54daec787206e1f34d9dbbf4b292c68160b8 + bfbd + Q1.y = 136eebe6020f2389d448923899a1a38a4c8ad74254e0686e91c4f9 + 3c1f8f8e1bd619ffb7c1281467882a9c957d22d50f65c5b72b2aee + 11af + +J.6.2. curve448_XOF:SHAKE256_ELL2_NU_ + + suite = curve448_XOF:SHAKE256_ELL2_NU_ + dst = QUUX-V01-CS02-with-curve448_XOF:SHAKE256_ELL2_NU_ + + msg = + P.x = b65e8dbb279fd656f926f68d463b13ca7a982b32f5da9c7cc58afc + f6199e4729863fb75ca9ae3c95c6887d95a5102637a1c5c40ff0aa + fadc + P.y = ea1ea211cf29eca11c057fe8248181591a19f6ac51d45843a65d4b + b8b71bc83a64c771ed7686218a278ef1c5d620f3d26b5316218864 + 5453 + u[0] = 242c70f74eac8184116c71630d284cf8a742fc463e710545847ff6 + 4d8e9161cb9f599728a18a32dbd8b67c3bec5d64c9b1d2f2cde7b5 + 888d + Q.x = e6304424de5af3f556d3e645600530c53ad949891c3e60ba041dd5 + f68a93901beff8440164477d348c13d28e27bfcd360c44c80b4c7d + 4cea + Q.y = 4160a8f2043a347185406a6a7e50973b98b82edbdfa3209b0e1c90 + 118e10eeb45045b0990d4b2b0708a30eca17df40ad53c9100f20c1 + 0b44 + + msg = abc + P.x = 51aceca4fa95854bbaba58d8a5e17a86c07acadef32e1188cafda2 + 6232131800002cc2f27c7aec454e5e0c615bddffb7df6a5f7f0f14 + 793f + P.y = c590c9246eb28b08dee816d608ef233ea5d76e305dc458774a1e1b + d880387e6734219e2018e4aa50a49486dce0ba8740065da37e6cf5 + 212c + u[0] = ef6dcb75b696d325fb36d66b104700df1480c4c17ea9190d447eee + 1e7e4c9b7f36bbfb8ba7ba7c4cb6b07fed16531c1ac7a26a3618b4 + 0b34 + Q.x = de0dc93df9ce7953452f20e270699c1e7dacd5d571c226d77f53b7 + e3053d16f8a81b1601efb362054e973c8e733b663af93f00cb81ba + f130 + Q.y = 8c5bdec6fa6690905f6eff966b0f98f5a8161493bd04976684d4ec + 1f4512fa8743d86860b2ff2c5d67e9c145fd906f2cb89ff812c6b9 + 883f + + msg = abcdef0123456789 + P.x = c6d65987f146b8d0cb5d2c44e1872ac3af1f458f6a8bd8c232ffe8 + b9d09496229a5a27f350eb7d97305bcc4e0f38328718352e8e3129 + ed71 + P.y = 4d2f901bf333fdc4135b954f20d59207e9f6a4ecf88ce5af11c892 + b44f79766ec4ecc9f60d669b95ca8940f39b1b7044140ac2040c1b + f659 + u[0] = 3012ba5d9b3bb648e4613833a26ecaeadb3e8c8bba07fc90ac3da0 + 375769289c44d3dc87474b23df7f45f9a4030892cda689e343aeee + a6ad + Q.x = dc29532761f03c24d57f530da4c24acc4c676d185becaa89fcc083 + 266541fb7f10ecec91dac64a34cd988274633ae25c4d784aee52de + 47a8 + Q.y = a5f6da11259c69f2e07fce6a7b6afec4c25bd2df83426765f9c070 + 4111da24c6a0550d5c7aac7d648d55f7640d50be99c926195e852a + daac + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + P.x = 9b8d008863beb4a02fb9e4efefd2eba867307fb1c7ce01746115d3 + 2e1db551bb254e8e3e4532d5c74a83949a69a60519ecc9178083cb + e943 + P.y = 346a1fca454d1e67c628437c270ec0f0c4256bb774fe6c0e49de70 + 04ff6d9199e2cd99d8f7575a96aafc4dc8db1811ba0a44317581f4 + 1371 + u[0] = fe952ac0149f92436bba12ea2e542aa226f4fc074d79ff462c41b3 + 27968a649a495a8a93b6c3044af2273456abb5e166ce4fb8c9b10c + 8c2e + Q.x = 512803d89f59c57376e6570cd54c4e901643e089cd9456f549daa4 + 372b8b52679860b68aa8bedfaa88970f15ab6098d5f252083ac98a + 58c9 + Q.y = 3d9b6593c7941a20d76161c9a171f1e507495a08f03dfcae33a2ac + 3602698e46a74d1039b583c984036f590eaa43d20ba5aada3ffb55 + 2f77 + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + P.x = 8746dc34799112d1f20acda9d7f722c9abb29b1fb6b7e9e5669838 + 43c20bd7c9bfad21b45c5166b808d2f5d44e188f1fdaf29cdee8a7 + 2e4c + P.y = 7c1293484c9287c298a1a0600c64347eee8530acf563cd8705e057 + 28274d8cd8101835f8003b6f3b78b5beb28f5be188a3d7bce1ec5a + 36b1 + u[0] = afd3d7ad9d819be7561706e050d4f30b634b203387ab682739365f + 62cd7393ca2cf18cd07a3d3af8dd163f043ac7457c2eb145b4a561 + 70a9 + Q.x = 08aed6480793218034fd3b3b0867943d7e0bd1b6f76b4929e0885b + d082b84d4449341da6038bb08229ad9eb7d518dff2c7ea50148e70 + a4db + Q.y = e00d32244561ebd4b5f4ef70fcac75a06416be0a1c1b304e7bd361 + a6a6586915bb902a323eaf73cf7738e70d34282f61485395ab2833 + d2c1 + +J.7. edwards448 + +J.7.1. edwards448_XOF:SHAKE256_ELL2_RO_ + + suite = edwards448_XOF:SHAKE256_ELL2_RO_ + dst = QUUX-V01-CS02-with-edwards448_XOF:SHAKE256_ELL2_RO_ + + msg = + P.x = 73036d4a88949c032f01507005c133884e2f0d81f9a950826245dd + a9e844fc78186c39daaa7147ead3e462cff60e9c6340b58134480b + 4d17 + P.y = 94c1d61b43728e5d784ef4fcb1f38e1075f3aef5e99866911de5a2 + 34f1aafdc26b554344742e6ba0420b71b298671bbeb2b773661863 + 4610 + u[0] = 0847c5ebf957d3370b1f98fde499fb3e659996d9fc9b5707176ade + 785ba72cd84b8a5597c12b1024be5f510fa5ba99642c4cec7f3f69 + d3e7 + u[1] = f8cbd8a7ae8c8deed071f3ac4b93e7cfcb8f1eac1645d699fd6d38 + 81cb295a5d3006d9449ed7cad412a77a1fe61e84a9e41d59ef384d + 6f9a + Q0.x = c08177330869db17fb81a5e6e53b36d29086d806269760f2e4caba + a4015f5dbadb7ca2ba594d96a89d0ca4f0944489e1ef393d53db85 + 096f + Q0.y = 02e894598c050eeb7195f5791f1a5f65da3776b7534be37640bcbf + 95d4b915bd22333c50387583507169708fbd7bea0d7aa385dcc614 + be9c + Q1.x = 770877fd3b6c5503398157b68a9d3609f585f40e1ebebdd69bb0e4 + d3d9aa811995ce75333fdadfa50db886a35959cc59cffd5c9710da + ca25 + Q1.y = b27fef77aa6231fbbc27538fa90eaca8abd03eb1e62fdae4ec5e82 + 8117c3b8b3ff8c34d0a6e6d79fff16d339b94ae8ede33331d5b464 + c792 + + msg = abc + P.x = 4e0158acacffa545adb818a6ed8e0b870e6abc24dfc1dc45cf9a05 + 2e98469275d9ff0c168d6a5ac7ec05b742412ee090581f12aa398f + 9f8c + P.y = 894d3fa437b2d2e28cdc3bfaade035430f350ec5239b6b406b5501 + da6f6d6210ff26719cad83b63e97ab26a12df6dec851d6bf38e294 + af9a + u[0] = 04d975cd938ab49be3e81703d6a57cca84ed80d2ff6d4756d3f229 + 47fb5b70ab0231f0087cbfb4b7cae73b41b0c9396b356a4831d9a1 + 4322 + u[1] = 2547ca887ac3db7b5fad3a098aa476e90078afe1358af6c63d677d + 6edfd2100bc004e0f5db94dd2560fc5b308e223241d00488c9ca6b + 0ef2 + Q0.x = 7544612a97f4419c94ab0f621a1ee8ccf46c6657b8e0778ec9718b + f4b41bc774487ad87d9b1e617aa49d3a4dd35a3cf57cd390ebf042 + 9952 + Q0.y = d3ab703e60267d796b485bb58a28f934bd0133a6d1bbdfeda5277f + a293310be262d7f653a5adffa608c37ed45c0e6008e54a16e1a342 + e4df + Q1.x = 6262f18d064bc131ade1b8bbcf1cbdf984f4f88153fcc9f94c888a + f35d5e41aae84c12f169a55d8abf06e6de6c5b23079e587a58cf73 + 303e + Q1.y = 6d57589e901abe7d947c93ab02c307ad9093ed9a83eb0b6e829fb7 + 318d590381ca25f3cc628a36a924a9ddfcf3cbedf94edf3b338ea7 + 7403 + + msg = abcdef0123456789 + P.x = 2c25b4503fadc94b27391933b557abdecc601c13ed51c5de683894 + 84f93dbd6c22e5f962d9babf7a39f39f994312f8ca23344847e1fb + f176 + P.y = d5e6f5350f430e53a110f5ac7fcc82a96cb865aeca982029522d32 + 601e41c042a9dfbdfbefa2b0bdcdc3bc58cca8a7cd546803083d3a + 8548 + u[0] = 10659ce25588db4e4be6f7c791a79eb21a7f24aaaca76a6ca3b83b + 80aaf95aa328fe7d569a1ac99f9cd216edf3915d72632f1a8b990e + 250c + u[1] = 9243e5b6c480683fd533e81f4a778349a309ce00bd163a29eb9fa8 + dbc8f549242bef33e030db21cffacd408d2c4264b93e476c6a8590 + e7aa + Q0.x = 1457b60c12e00e47ceb3ce64b57e7c3c61636475443d704a8e2b2a + b0a5ac7e4b3909435416784e16e19929c653b1bdcd9478a8e5331c + a9ae + Q0.y = 935d9f75f7a0babbc39c0a1c3b412518ed8a24bc2c4886722fb4b7 + d4a747af98e4e2528c75221e2dffd3424abb436e10539a74caaafa + 3ea3 + Q1.x = b44d9e34211b4028f24117e856585ed81448f3c8b934987a1c5939 + c86048737a08d85934fec6b3c2ef9f09cbd365cf22744f2e4ce697 + 62a4 + Q1.y = dc996c1736f4319868f897d9a27c45b02dd3bc6b7ca356a039606e + 5406e131a0bbe8238208b327b00853e8af84b58b13443e70542556 + 3323 + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + P.x = a1861a9464ae31249a0e60bf38791f3663049a3f5378998499a832 + 92e159a2fecff838eb9bc6939e5c6ae76eb074ad4aae39b55b72ca + 0b9a + P.y = 580a2798c5b904f8adfec5bd29fb49b4633cd9f8c2935eb4a0f12e + 5dfa0285680880296bb729c6405337525fb5ed3dff930c137314f6 + 0401 + u[0] = c80390020e578f009ead417029eff6cd0926110922db63ab98395e + 3bdfdd5d8a65b1a2b8d495dc8c5e59b7f3518731f7dfc0f93ace5d + ee4b + u[1] = 1c4dc6653a445bbef2add81d8e90a6c8591a788deb91d0d3f1519a + 2e4a460313041b77c1b0817f2e80b388e5c3e49f37d787dc1f85e4 + 324a + Q0.x = 9d355251e245e4b13ed4ea3e5a3c55bf9b7211f1704771f2e1d8f1 + a65610c468b1cf70c6c2ce30dcaad54ad9e5439471ec554b862ec8 + 875a + Q0.y = 6689ba36a242af69ac2aadb955d15e982d9b04f5d77f7609ebf742 + 9587feb7e5ce27490b9c72114509f89565122074e46a614d7fd7c8 + 00bd + Q1.x = c4b3d3ad4d2d62739a62989532992c1081e9474a201085b4616da5 + 706cab824693b9fb428a201bcd1639a4588cc43b9eb841dbca7421 + 9b1f + Q1.y = 265286f5dee8f3d894b5649da8565b58e96b4cfd44b462a2883ea6 + 4dbcda21a00706ea3fea53fc2d769084b0b74589e91d0384d71189 + 09fb + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + P.x = 987c5ac19dd4b47835466a50b2d9feba7c8491b8885a04edf577e1 + 5a9f2c98b203ec2cd3e5390b3d20bba0fa6fc3eecefb5029a31723 + 4401 + P.y = 5e273fcfff6b007bb6771e90509275a71ff1480c459ded26fc7b10 + 664db0a68aaa98bc7ecb07e49cf05b80ae5ac653fbdd14276bbd35 + ccbc + u[0] = 163c79ab0210a4b5e4f44fb19437ea965bf5431ab233ef16606f0b + 03c5f16a3feb7d46a5a675ce8f606e9c2bf74ee5336c54a1e54919 + f13f + u[1] = f99666bde4995c4088333d6c2734687e815f80a99c6da02c47df4b + 51f6c9d9ed466b4fecf7d9884990a8e0d0be6907fa437e0b1a27f4 + 9265 + Q0.x = d1a5eba4a332514b69760948af09ceaeddbbb9fd4cb1f19b78349c + 2ee4cf9ee86dbcf9064659a4a0566fe9c34d90aec86f0801edc131 + ad9b + Q0.y = 5d0a75a3014c3269c33b1b5da80706a4f097893461df286353484d + 8031cd607c98edc2a846c77a841f057c7251eb45077853c7b20595 + 7e52 + Q1.x = 69583b00dc6b2aced6ffa44630cc8c8cd0dd0649f57588dd0fb1da + ad2ce132e281d01e3f25ccd3f405be759975c6484268bfe8f5e5f2 + 3c30 + Q1.y = 8418484035f60bdccf48cb488634c2dfb40272123435f7e654fb6f + 254c6c42e7e38f1fa79a637a168a28de6c275232b704f9ded0ff76 + dd94 + +J.7.2. edwards448_XOF:SHAKE256_ELL2_NU_ + + suite = edwards448_XOF:SHAKE256_ELL2_NU_ + dst = QUUX-V01-CS02-with-edwards448_XOF:SHAKE256_ELL2_NU_ + + msg = + P.x = eb5a1fc376fd73230af2de0f3374087cc7f279f0460114cf0a6c12 + d6d044c16de34ec2350c34b26bf110377655ab77936869d085406a + f71e + P.y = df5dcea6d42e8f494b279a500d09e895d26ac703d75ca6d118e8ca + 58bf6f608a2a383f292fce1563ff995dce75aede1fdc8e7c0c737a + e9ad + u[0] = 1368aefc0416867ea2cfc515416bcbeecc9ec81c4ecbd52ccdb91e + 06996b3f359bc930eef6743c7a2dd7adb785bc7093ed044efed950 + 86d7 + Q.x = 4b2abf8c0fca49d027c2a81bf73bb5990e05f3e76c7ba137cc0b89 + 415ccd55ce7f191cc0c11b0560c1cdc2a8085dd56996079e05a3cd + 8dde + Q.y = 82532f5b0cb3bfb8542d3228d055bfe61129dbeae8bace80cf61f1 + 7725e8ec8226a24f0e687f78f01da88e3b2715194a03dca7c0a96b + bf04 + + msg = abc + P.x = 4623a64bceaba3202df76cd8b6e3daf70164f3fcbda6d6e340f7fa + b5cdf89140d955f722524f5fe4d968fef6ba2853ff4ea086c2f67d + 8110 + P.y = abaac321a169761a8802ab5b5d10061fec1a83c670ac6bc9595470 + 0317ee5f82870120e0e2c5a21b12a0c7ad17ebd343363604c4bcec + afd1 + u[0] = cda3b0ecfe054c4077007d7300969ec24f4c741300b630ec9188eb + ab31a5ae0065612ee22d9f793733179ffc2e10c53ca5b539057aaf + dc2f + Q.x = b1ca5bef2f157673a210f56c9b0039db8399e4749585abac64f831 + f74ed1ec5f591928976c687c06d57686bacb98440e77af878349cd + f2d2 + Q.y = 5bbfd6a3730d517b03c3cd9e2eed94af12891334ec090e0495c2ed + c588e9e10b6f63b03a62076808cbcd6da95adfb5af76c136b2d42e + 0dac + + msg = abcdef0123456789 + P.x = e9eb562e76db093baa43a31b7edd04ec4aadcef3389a7b9c58a19c + f87f8ae3d154e134b6b3ed45847a741e33df51903da681629a4b8b + cc2e + P.y = 0cf6606927ad7eb15dbc193993bc7e4dda744b311a8ec4274c8f73 + 8f74f605934582474c79260f60280fe35bd37d4347e59184cbfa12 + cbc4 + u[0] = d36bae98351512c382c7a3e1eba22497574f11fef9867901b1a270 + 0b39fa2cd0d38ed4380387a99162b7ba0240c743f0532ef60d577c + 413d + Q.x = 958a51e2f02e0dfd3930709010d5d16f869adb9d8a8f7c01139911 + d206c20cdb7bfb40ee33ba30536a99f49362fa7633d0f417fc3914 + fe21 + Q.y = f4307a36ab6612fa97501497f01afa109733ce85875935551c3ca9 + 0f0fa7e0097a8640bb7e5dbcc38ab32b23b748790f2261f2c44c3b + f3ba + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + P.x = 122a3234d34b26c69749f23356452bf9501efa2d94859d5ef741fe + f024156d9d191a03a2ad24c38186f93e02d05572575968b083d8a3 + 9738 + P.y = ddf55e74eb4414c2c1fa4aa6bc37c4ab470a3fed6bb5af1e435703 + 09b162fb61879bb15f9ea49c712efd42d0a71666430f9f0d4a2050 + 5050 + u[0] = 5945744d27122f89da3daf76ab4db9616053df64e25d30ec9a0066 + 7ee6710240579c1db8f8ef3386f3f4f413cfb325ac14094d582026 + a971 + Q.x = e7e1f2d13548ac2c8fcd346e4c63606545bf93652011721e83ac3b + 64226f77a8823d3881e164bc6ca45505b236e8e3721c028052fcc9 + ade5 + Q.y = 7e0f340501bf25f018b9d374c2acbdd43c07261d85a6ef3c855113 + d4e023634db59a87b8fab9efe04ed1fee302c8a4994e83bdda32bd + 9c0b + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + P.x = 221704949b1ce1ab8dd174dc9b8c56fcffa27179569ce9219c0c2f + e183d3d23343a4c42a0e2e9d6b9d0feb1df3883ec489b6671d1fa6 + 4089 + P.y = ebdecfdc87142d1a919034bf22ecfad934c9a85effff14b594ae2c + 00943ca62a39d6ee3be9df0bb504ce8a9e1669bc6959c42ad6a1d3 + b686 + u[0] = 1192e378043f01cedc7ea0209321519213b0184ea0d8575816bcd9 + 182a367823e1eecc2faf1df8f79b24027a4b9bfa208cd320e79bef + 06ea + Q.x = 0fd3bb833c1d7a5b319d1d4117406a23b9aece976186ecb18a11a6 + 35e6fbdb920d47e04762b1f2a8c59d2f8435d0fdefe501f544cda2 + 3dbf + Q.y = f13b0dad4d5eeb120f2443ac4392f8096a1396f5014ec2a3506a34 + 7fef8076a7282035cf619599b1919cf29df5ce87711c11688aab77 + 00a6 + +J.8. secp256k1 + +J.8.1. secp256k1_XMD:SHA-256_SSWU_RO_ + + suite = secp256k1_XMD:SHA-256_SSWU_RO_ + dst = QUUX-V01-CS02-with-secp256k1_XMD:SHA-256_SSWU_RO_ + + msg = + P.x = c1cae290e291aee617ebaef1be6d73861479c48b841eaba9b7b585 + 2ddfeb1346 + P.y = 64fa678e07ae116126f08b022a94af6de15985c996c3a91b64c406 + a960e51067 + u[0] = 6b0f9910dd2ba71c78f2ee9f04d73b5f4c5f7fc773a701abea1e57 + 3cab002fb3 + u[1] = 1ae6c212e08fe1a5937f6202f929a2cc8ef4ee5b9782db68b0d579 + 9fd8f09e16 + Q0.x = 74519ef88b32b425a095e4ebcc84d81b64e9e2c2675340a720bb1a + 1857b99f1e + Q0.y = c174fa322ab7c192e11748beed45b508e9fdb1ce046dee9c2cd3a2 + a86b410936 + Q1.x = 44548adb1b399263ded3510554d28b4bead34b8cf9a37b4bd0bd2b + a4db87ae63 + Q1.y = 96eb8e2faf05e368efe5957c6167001760233e6dd2487516b46ae7 + 25c4cce0c6 + + msg = abc + P.x = 3377e01eab42db296b512293120c6cee72b6ecf9f9205760bd9ff1 + 1fb3cb2c4b + P.y = 7f95890f33efebd1044d382a01b1bee0900fb6116f94688d487c6c + 7b9c8371f6 + u[0] = 128aab5d3679a1f7601e3bdf94ced1f43e491f544767e18a4873f3 + 97b08a2b61 + u[1] = 5897b65da3b595a813d0fdcc75c895dc531be76a03518b044daaa0 + f2e4689e00 + Q0.x = 07dd9432d426845fb19857d1b3a91722436604ccbbbadad8523b8f + c38a5322d7 + Q0.y = 604588ef5138cffe3277bbd590b8550bcbe0e523bbaf1bed4014a4 + 67122eb33f + Q1.x = e9ef9794d15d4e77dde751e06c182782046b8dac05f8491eb88764 + fc65321f78 + Q1.y = cb07ce53670d5314bf236ee2c871455c562dd76314aa41f012919f + e8e7f717b3 + + msg = abcdef0123456789 + P.x = bac54083f293f1fe08e4a70137260aa90783a5cb84d3f35848b324 + d0674b0e3a + P.y = 4436476085d4c3c4508b60fcf4389c40176adce756b398bdee27bc + a19758d828 + u[0] = ea67a7c02f2cd5d8b87715c169d055a22520f74daeb080e6180958 + 380e2f98b9 + u[1] = 7434d0d1a500d38380d1f9615c021857ac8d546925f5f2355319d8 + 23a478da18 + Q0.x = 576d43ab0260275adf11af990d130a5752704f7947862876172080 + 8862544b5d + Q0.y = 643c4a7fb68ae6cff55edd66b809087434bbaff0c07f3f9ec4d49b + b3c16623c3 + Q1.x = f89d6d261a5e00fe5cf45e827b507643e67c2a947a20fd9ad71039 + f8b0e29ff8 + Q1.y = b33855e0cc34a9176ead91c6c3acb1aacb1ce936d563bc1cee1dcf + fc806caf57 + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + P.x = e2167bc785333a37aa562f021f1e881defb853839babf52a7f72b1 + 02e41890e9 + P.y = f2401dd95cc35867ffed4f367cd564763719fbc6a53e969fb8496a + 1e6685d873 + u[0] = eda89a5024fac0a8207a87e8cc4e85aa3bce10745d501a30deb873 + 41b05bcdf5 + u[1] = dfe78cd116818fc2c16f3837fedbe2639fab012c407eac9dfe9245 + bf650ac51d + Q0.x = 9c91513ccfe9520c9c645588dff5f9b4e92eaf6ad4ab6f1cd720d1 + 92eb58247a + Q0.y = c7371dcd0134412f221e386f8d68f49e7fa36f9037676e163d4a06 + 3fbf8a1fb8 + Q1.x = 10fee3284d7be6bd5912503b972fc52bf4761f47141a0015f1c6ae + 36848d869b + Q1.y = 0b163d9b4bf21887364332be3eff3c870fa053cf508732900fc69a + 6eb0e1b672 + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + P.x = e3c8d35aaaf0b9b647e88a0a0a7ee5d5bed5ad38238152e4e6fd8c + 1f8cb7c998 + P.y = 8446eeb6181bf12f56a9d24e262221cc2f0c4725c7e3803024b588 + 8ee5823aa6 + u[0] = 8d862e7e7e23d7843fe16d811d46d7e6480127a6b78838c277bca1 + 7df6900e9f + u[1] = 68071d2530f040f081ba818d3c7188a94c900586761e9115efa47a + e9bd847938 + Q0.x = b32b0ab55977b936f1e93fdc68cec775e13245e161dbfe556bbb1f + 72799b4181 + Q0.y = 2f5317098360b722f132d7156a94822641b615c91f8663be691698 + 70a12af9e8 + Q1.x = 148f98780f19388b9fa93e7dc567b5a673e5fca7079cd9cdafd719 + 82ec4c5e12 + Q1.y = 3989645d83a433bc0c001f3dac29af861f33a6fd1e04f4b36873f5 + bff497298a + +J.8.2. secp256k1_XMD:SHA-256_SSWU_NU_ + + suite = secp256k1_XMD:SHA-256_SSWU_NU_ + dst = QUUX-V01-CS02-with-secp256k1_XMD:SHA-256_SSWU_NU_ + + msg = + P.x = a4792346075feae77ac3b30026f99c1441b4ecf666ded19b7522cf + 65c4c55c5b + P.y = 62c59e2a6aeed1b23be5883e833912b08ba06be7f57c0e9cdc663f + 31639ff3a7 + u[0] = 0137fcd23bc3da962e8808f97474d097a6c8aa2881fceef4514173 + 635872cf3b + Q.x = a4792346075feae77ac3b30026f99c1441b4ecf666ded19b7522cf + 65c4c55c5b + Q.y = 62c59e2a6aeed1b23be5883e833912b08ba06be7f57c0e9cdc663f + 31639ff3a7 + + msg = abc + P.x = 3f3b5842033fff837d504bb4ce2a372bfeadbdbd84a1d2b678b6e1 + d7ee426b9d + P.y = 902910d1fef15d8ae2006fc84f2a5a7bda0e0407dc913062c3a493 + c4f5d876a5 + u[0] = e03f894b4d7caf1a50d6aa45cac27412c8867a25489e32c5ddeb50 + 3229f63a2e + Q.x = 3f3b5842033fff837d504bb4ce2a372bfeadbdbd84a1d2b678b6e1 + d7ee426b9d + Q.y = 902910d1fef15d8ae2006fc84f2a5a7bda0e0407dc913062c3a493 + c4f5d876a5 + + msg = abcdef0123456789 + P.x = 07644fa6281c694709f53bdd21bed94dab995671e4a8cd1904ec4a + a50c59bfdf + P.y = c79f8d1dad79b6540426922f7fbc9579c3018dafeffcd4552b1626 + b506c21e7b + u[0] = e7a6525ae7069ff43498f7f508b41c57f80563c1fe4283510b3224 + 46f32af41b + Q.x = 07644fa6281c694709f53bdd21bed94dab995671e4a8cd1904ec4a + a50c59bfdf + Q.y = c79f8d1dad79b6540426922f7fbc9579c3018dafeffcd4552b1626 + b506c21e7b + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + P.x = b734f05e9b9709ab631d960fa26d669c4aeaea64ae62004b9d34f4 + 83aa9acc33 + P.y = 03fc8a4a5a78632e2eb4d8460d69ff33c1d72574b79a35e402e801 + f2d0b1d6ee + u[0] = d97cf3d176a2f26b9614a704d7d434739d194226a706c886c5c3c3 + 9806bc323c + Q.x = b734f05e9b9709ab631d960fa26d669c4aeaea64ae62004b9d34f4 + 83aa9acc33 + Q.y = 03fc8a4a5a78632e2eb4d8460d69ff33c1d72574b79a35e402e801 + f2d0b1d6ee + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + P.x = 17d22b867658977b5002dbe8d0ee70a8cfddec3eec50fb93f36136 + 070fd9fa6c + P.y = e9178ff02f4dab73480f8dd590328aea99856a7b6cc8e5a6cdf289 + ecc2a51718 + u[0] = a9ffbeee1d6e41ac33c248fb3364612ff591b502386c1bf6ac4aaf + 1ea51f8c3b + Q.x = 17d22b867658977b5002dbe8d0ee70a8cfddec3eec50fb93f36136 + 070fd9fa6c + Q.y = e9178ff02f4dab73480f8dd590328aea99856a7b6cc8e5a6cdf289 + ecc2a51718 + +J.9. BLS12-381 G1 + +J.9.1. BLS12381G1_XMD:SHA-256_SSWU_RO_ + + suite = BLS12381G1_XMD:SHA-256_SSWU_RO_ + dst = QUUX-V01-CS02-with-BLS12381G1_XMD:SHA-256_SSWU_RO_ + + msg = + P.x = 052926add2207b76ca4fa57a8734416c8dc95e24501772c8142787 + 00eed6d1e4e8cf62d9c09db0fac349612b759e79a1 + P.y = 08ba738453bfed09cb546dbb0783dbb3a5f1f566ed67bb6be0e8c6 + 7e2e81a4cc68ee29813bb7994998f3eae0c9c6a265 + u[0] = 0ba14bd907ad64a016293ee7c2d276b8eae71f25a4b941eece7b0d + 89f17f75cb3ae5438a614fb61d6835ad59f29c564f + u[1] = 019b9bd7979f12657976de2884c7cce192b82c177c80e0ec604436 + a7f538d231552f0d96d9f7babe5fa3b19b3ff25ac9 + Q0.x = 11a3cce7e1d90975990066b2f2643b9540fa40d6137780df4e753a + 8054d07580db3b7f1f03396333d4a359d1fe3766fe + Q0.y = 0eeaf6d794e479e270da10fdaf768db4c96b650a74518fc67b04b0 + 3927754bac66f3ac720404f339ecdcc028afa091b7 + Q1.x = 160003aaf1632b13396dbad518effa00fff532f604de1a7fc2082f + f4cb0afa2d63b2c32da1bef2bf6c5ca62dc6b72f9c + Q1.y = 0d8bb2d14e20cf9f6036152ed386d79189415b6d015a20133acb4e + 019139b94e9c146aaad5817f866c95d609a361735e + + msg = abc + P.x = 03567bc5ef9c690c2ab2ecdf6a96ef1c139cc0b2f284dca0a9a794 + 3388a49a3aee664ba5379a7655d3c68900be2f6903 + P.y = 0b9c15f3fe6e5cf4211f346271d7b01c8f3b28be689c8429c85b67 + af215533311f0b8dfaaa154fa6b88176c229f2885d + u[0] = 0d921c33f2bad966478a03ca35d05719bdf92d347557ea166e5bba + 579eea9b83e9afa5c088573c2281410369fbd32951 + u[1] = 003574a00b109ada2f26a37a91f9d1e740dffd8d69ec0c35e1e9f4 + 652c7dba61123e9dd2e76c655d956e2b3462611139 + Q0.x = 125435adce8e1cbd1c803e7123f45392dc6e326d292499c2c45c58 + 65985fd74fe8f042ecdeeec5ecac80680d04317d80 + Q0.y = 0e8828948c989126595ee30e4f7c931cbd6f4570735624fd25aef2 + fa41d3f79cfb4b4ee7b7e55a8ce013af2a5ba20bf2 + Q1.x = 11def93719829ecda3b46aa8c31fc3ac9c34b428982b898369608e + 4f042babee6c77ab9218aad5c87ba785481eff8ae4 + Q1.y = 0007c9cef122ccf2efd233d6eb9bfc680aa276652b0661f4f820a6 + 53cec1db7ff69899f8e52b8e92b025a12c822a6ce6 + + msg = abcdef0123456789 + P.x = 11e0b079dea29a68f0383ee94fed1b940995272407e3bb916bbf26 + 8c263ddd57a6a27200a784cbc248e84f357ce82d98 + P.y = 03a87ae2caf14e8ee52e51fa2ed8eefe80f02457004ba4d486d6aa + 1f517c0889501dc7413753f9599b099ebcbbd2d709 + u[0] = 062d1865eb80ebfa73dcfc45db1ad4266b9f3a93219976a3790ab8 + d52d3e5f1e62f3b01795e36834b17b70e7b76246d4 + u[1] = 0cdc3e2f271f29c4ff75020857ce6c5d36008c9b48385ea2f2bf6f + 96f428a3deb798aa033cd482d1cdc8b30178b08e3a + Q0.x = 08834484878c217682f6d09a4b51444802fdba3d7f2df9903a0dda + db92130ebbfa807fffa0eabf257d7b48272410afff + Q0.y = 0b318f7ecf77f45a0f038e62d7098221d2dbbca2a394164e2e3fe9 + 53dc714ac2cde412d8f2d7f0c03b259e6795a2508e + Q1.x = 158418ed6b27e2549f05531a8281b5822b31c3bf3144277fbb977f + 8d6e2694fedceb7011b3c2b192f23e2a44b2bd106e + Q1.y = 1879074f344471fac5f839e2b4920789643c075792bec5af4282c7 + 3f7941cda5aa77b00085eb10e206171b9787c4169f + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + P.x = 15f68eaa693b95ccb85215dc65fa81038d69629f70aeee0d0f677c + f22285e7bf58d7cb86eefe8f2e9bc3f8cb84fac488 + P.y = 1807a1d50c29f430b8cafc4f8638dfeeadf51211e1602a5f184443 + 076715f91bb90a48ba1e370edce6ae1062f5e6dd38 + u[0] = 010476f6a060453c0b1ad0b628f3e57c23039ee16eea5e71bb87c3 + b5419b1255dc0e5883322e563b84a29543823c0e86 + u[1] = 0b1a912064fb0554b180e07af7e787f1f883a0470759c03c1b6509 + eb8ce980d1670305ae7b928226bb58fdc0a419f46e + Q0.x = 0cbd7f84ad2c99643fea7a7ac8f52d63d66cefa06d9a56148e58b9 + 84b3dd25e1f41ff47154543343949c64f88d48a710 + Q0.y = 052c00e4ed52d000d94881a5638ae9274d3efc8bc77bc0e5c650de + 04a000b2c334a9e80b85282a00f3148dfdface0865 + Q1.x = 06493fb68f0d513af08be0372f849436a787e7b701ae31cb964d96 + 8021d6ba6bd7d26a38aaa5a68e8c21a6b17dc8b579 + Q1.y = 02e98f2ccf5802b05ffaac7c20018bc0c0b2fd580216c4aa2275d2 + 909dc0c92d0d0bdc979226adeb57a29933536b6bb4 + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + P.x = 082aabae8b7dedb0e78aeb619ad3bfd9277a2f77ba7fad20ef6aab + dc6c31d19ba5a6d12283553294c1825c4b3ca2dcfe + P.y = 05b84ae5a942248eea39e1d91030458c40153f3b654ab7872d779a + d1e942856a20c438e8d99bc8abfbf74729ce1f7ac8 + u[0] = 0a8ffa7447f6be1c5a2ea4b959c9454b431e29ccc0802bc052413a + 9c5b4f9aac67a93431bd480d15be1e057c8a08e8c6 + u[1] = 05d487032f602c90fa7625dbafe0f4a49ef4a6b0b33d7bb349ff4c + f5410d297fd6241876e3e77b651cfc8191e40a68b7 + Q0.x = 0cf97e6dbd0947857f3e578231d07b309c622ade08f2c08b32ff37 + 2bd90db19467b2563cc997d4407968d4ac80e154f8 + Q0.y = 127f0cddf2613058101a5701f4cb9d0861fd6c2a1b8e0afe194fcc + f586a3201a53874a2761a9ab6d7220c68661a35ab3 + Q1.x = 092f1acfa62b05f95884c6791fba989bbe58044ee6355d100973bf + 9553ade52b47929264e6ae770fb264582d8dce512a + Q1.y = 028e6d0169a72cfedb737be45db6c401d3adfb12c58c619c82b93a + 5dfcccef12290de530b0480575ddc8397cda0bbebf + +J.9.2. BLS12381G1_XMD:SHA-256_SSWU_NU_ + + suite = BLS12381G1_XMD:SHA-256_SSWU_NU_ + dst = QUUX-V01-CS02-with-BLS12381G1_XMD:SHA-256_SSWU_NU_ + + msg = + P.x = 184bb665c37ff561a89ec2122dd343f20e0f4cbcaec84e3c3052ea + 81d1834e192c426074b02ed3dca4e7676ce4ce48ba + P.y = 04407b8d35af4dacc809927071fc0405218f1401a6d15af775810e + 4e460064bcc9468beeba82fdc751be70476c888bf3 + u[0] = 156c8a6a2c184569d69a76be144b5cdc5141d2d2ca4fe341f011e2 + 5e3969c55ad9e9b9ce2eb833c81a908e5fa4ac5f03 + Q.x = 11398d3b324810a1b093f8e35aa8571cced95858207e7f49c4fd74 + 656096d61d8a2f9a23cdb18a4dd11cd1d66f41f709 + Q.y = 19316b6fb2ba7717355d5d66a361899057e1e84a6823039efc7bec + cefe09d023fb2713b1c415fcf278eb0c39a89b4f72 + + msg = abc + P.x = 009769f3ab59bfd551d53a5f846b9984c59b97d6842b20a2c565ba + a167945e3d026a3755b6345df8ec7e6acb6868ae6d + P.y = 1532c00cf61aa3d0ce3e5aa20c3b531a2abd2c770a790a26138183 + 03c6b830ffc0ecf6c357af3317b9575c567f11cd2c + u[0] = 147e1ed29f06e4c5079b9d14fc89d2820d32419b990c1c7bb7dbea + 2a36a045124b31ffbde7c99329c05c559af1c6cc82 + Q.x = 1998321bc27ff6d71df3051b5aec12ff47363d81a5e9d2dff55f44 + 4f6ca7e7d6af45c56fd029c58237c266ef5cda5254 + Q.y = 034d274476c6307ae584f951c82e7ea85b84f72d28f4d647173235 + 6121af8d62a49bc263e8eb913a6cf6f125995514ee + + msg = abcdef0123456789 + P.x = 1974dbb8e6b5d20b84df7e625e2fbfecb2cdb5f77d5eae5fb2955e + 5ce7313cae8364bc2fff520a6c25619739c6bdcb6a + P.y = 15f9897e11c6441eaa676de141c8d83c37aab8667173cbe1dfd6de + 74d11861b961dccebcd9d289ac633455dfcc7013a3 + u[0] = 04090815ad598a06897dd89bcda860f25837d54e897298ce31e694 + 7378134d3761dc59a572154963e8c954919ecfa82d + Q.x = 17d502fa43bd6a4cad2859049a0c3ecefd60240d129be65da271a4 + c03a9c38fa78163b9d2a919d2beb57df7d609b4919 + Q.y = 109019902ae93a8732abecf2ff7fecd2e4e305eb91f41c9c3267f1 + 6b6c19de138c7272947f25512745da6c466cdfd1ac + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + P.x = 0a7a047c4a8397b3446450642c2ac64d7239b61872c9ae7a59707a + 8f4f950f101e766afe58223b3bff3a19a7f754027c + P.y = 1383aebba1e4327ccff7cf9912bda0dbc77de048b71ef8c8a81111 + d71dc33c5e3aa6edee9cf6f5fe525d50cc50b77cc9 + u[0] = 08dccd088ca55b8bfbc96fb50bb25c592faa867a8bb78d4e94a8cc + 2c92306190244532e91feba2b7fed977e3c3bb5a1f + Q.x = 112eb92dd2b3aa9cd38b08de4bef603f2f9fb0ca226030626a9a2e + 47ad1e9847fe0a5ed13766c339e38f514bba143b21 + Q.y = 17542ce2f8d0a54f2c5ba8c4b14e10b22d5bcd7bae2af3c965c8c8 + 72b571058c720eac448276c99967ded2bf124490e1 + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + P.x = 0e7a16a975904f131682edbb03d9560d3e48214c9986bd50417a77 + 108d13dc957500edf96462a3d01e62dc6cd468ef11 + P.y = 0ae89e677711d05c30a48d6d75e76ca9fb70fe06c6dd6ff988683d + 89ccde29ac7d46c53bb97a59b1901abf1db66052db + u[0] = 0dd824886d2123a96447f6c56e3a3fa992fbfefdba17b6673f9f63 + 0ff19e4d326529db37e1c1be43f905bf9202e0278d + Q.x = 1775d400a1bacc1c39c355da7e96d2d1c97baa9430c4a3476881f8 + 521c09a01f921f592607961efc99c4cd46bd78ca19 + Q.y = 1109b5d59f65964315de65a7a143e86eabc053104ed289cf480949 + 317a5685fad7254ff8e7fe6d24d3104e5d55ad6370 + +J.10. BLS12-381 G2 + +J.10.1. BLS12381G2_XMD:SHA-256_SSWU_RO_ + + suite = BLS12381G2_XMD:SHA-256_SSWU_RO_ + dst = QUUX-V01-CS02-with-BLS12381G2_XMD:SHA-256_SSWU_RO_ + + msg = + P.x = 0141ebfbdca40eb85b87142e130ab689c673cf60f1a3e98d693352 + 66f30d9b8d4ac44c1038e9dcdd5393faf5c41fb78a + + I * 05cb8437535e20ecffaef7752baddf98034139c38452458baeefab + 379ba13dff5bf5dd71b72418717047f5b0f37da03d + P.y = 0503921d7f6a12805e72940b963c0cf3471c7b2a524950ca195d11 + 062ee75ec076daf2d4bc358c4b190c0c98064fdd92 + + I * 12424ac32561493f3fe3c260708a12b7c620e7be00099a974e259d + dc7d1f6395c3c811cdd19f1e8dbf3e9ecfdcbab8d6 + u[0] = 03dbc2cce174e91ba93cbb08f26b917f98194a2ea08d1cce75b2b9 + cc9f21689d80bd79b594a613d0a68eb807dfdc1cf8 + + I * 05a2acec64114845711a54199ea339abd125ba38253b70a92c876d + f10598bd1986b739cad67961eb94f7076511b3b39a + u[1] = 02f99798e8a5acdeed60d7e18e9120521ba1f47ec090984662846b + c825de191b5b7641148c0dbc237726a334473eee94 + + I * 145a81e418d4010cc027a68f14391b30074e89e60ee7a22f87217b + 2f6eb0c4b94c9115b436e6fa4607e95a98de30a435 + Q0.x = 019ad3fc9c72425a998d7ab1ea0e646a1f6093444fc6965f1cad5a + 3195a7b1e099c050d57f45e3fa191cc6d75ed7458c + + I * 171c88b0b0efb5eb2b88913a9e74fe111a4f68867b59db252ce586 + 8af4d1254bfab77ebde5d61cd1a86fb2fe4a5a1c1d + Q0.y = 0ba10604e62bdd9eeeb4156652066167b72c8d743b050fb4c1016c + 31b505129374f76e03fa127d6a156213576910fef3 + + I * 0eb22c7a543d3d376e9716a49b72e79a89c9bfe9feee8533ed931c + bb5373dde1fbcd7411d8052e02693654f71e15410a + Q1.x = 113d2b9cd4bd98aee53470b27abc658d91b47a78a51584f3d4b950 + 677cfb8a3e99c24222c406128c91296ef6b45608be + + I * 13855912321c5cb793e9d1e88f6f8d342d49c0b0dbac613ee9e17e + 3c0b3c97dfbb5a49cc3fb45102fdbaf65e0efe2632 + Q1.y = 0fd3def0b7574a1d801be44fde617162aa2e89da47f464317d9bb5 + abc3a7071763ce74180883ad7ad9a723a9afafcdca + + I * 056f617902b3c0d0f78a9a8cbda43a26b65f602f8786540b9469b0 + 60db7b38417915b413ca65f875c130bebfaa59790c + + msg = abc + P.x = 02c2d18e033b960562aae3cab37a27ce00d80ccd5ba4b7fe0e7a21 + 0245129dbec7780ccc7954725f4168aff2787776e6 + + I * 139cddbccdc5e91b9623efd38c49f81a6f83f175e80b06fc374de9 + eb4b41dfe4ca3a230ed250fbe3a2acf73a41177fd8 + P.y = 1787327b68159716a37440985269cf584bcb1e621d3a7202be6ea0 + 5c4cfe244aeb197642555a0645fb87bf7466b2ba48 + + I * 00aa65dae3c8d732d10ecd2c50f8a1baf3001578f71c694e03866e + 9f3d49ac1e1ce70dd94a733534f106d4cec0eddd16 + u[0] = 15f7c0aa8f6b296ab5ff9c2c7581ade64f4ee6f1bf18f55179ff44 + a2cf355fa53dd2a2158c5ecb17d7c52f63e7195771 + + I * 01c8067bf4c0ba709aa8b9abc3d1cef589a4758e09ef53732d670f + d8739a7274e111ba2fcaa71b3d33df2a3a0c8529dd + u[1] = 187111d5e088b6b9acfdfad078c4dacf72dcd17ca17c82be35e79f + 8c372a693f60a033b461d81b025864a0ad051a06e4 + + I * 08b852331c96ed983e497ebc6dee9b75e373d923b729194af8e72a + 051ea586f3538a6ebb1e80881a082fa2b24df9f566 + Q0.x = 12b2e525281b5f4d2276954e84ac4f42cf4e13b6ac4228624e1776 + 0faf94ce5706d53f0ca1952f1c5ef75239aeed55ad + + I * 05d8a724db78e570e34100c0bc4a5fa84ad5839359b40398151f37 + cff5a51de945c563463c9efbdda569850ee5a53e77 + Q0.y = 02eacdc556d0bdb5d18d22f23dcb086dd106cad713777c7e640794 + 3edbe0b3d1efe391eedf11e977fac55f9b94f2489c + + I * 04bbe48bfd5814648d0b9e30f0717b34015d45a861425fabc1ee06 + fdfce36384ae2c808185e693ae97dcde118f34de41 + Q1.x = 19f18cc5ec0c2f055e47c802acc3b0e40c337256a208001dde14b2 + 5afced146f37ea3d3ce16834c78175b3ed61f3c537 + + I * 15b0dadc256a258b4c68ea43605dffa6d312eef215c19e6474b3e1 + 01d33b661dfee43b51abbf96fee68fc6043ac56a58 + Q1.y = 05e47c1781286e61c7ade887512bd9c2cb9f640d3be9cf87ea0bad + 24bd0ebfe946497b48a581ab6c7d4ca74b5147287f + + I * 19f98db2f4a1fcdf56a9ced7b320ea9deecf57c8e59236b0dc21f6 + ee7229aa9705ce9ac7fe7a31c72edca0d92370c096 + + msg = abcdef0123456789 + P.x = 121982811d2491fde9ba7ed31ef9ca474f0e1501297f68c298e9f4 + c0028add35aea8bb83d53c08cfc007c1e005723cd0 + + I * 190d119345b94fbd15497bcba94ecf7db2cbfd1e1fe7da034d26cb + ba169fb3968288b3fafb265f9ebd380512a71c3f2c + P.y = 05571a0f8d3c08d094576981f4a3b8eda0a8e771fcdcc8ecceaf13 + 56a6acf17574518acb506e435b639353c2e14827c8 + + I * 0bb5e7572275c567462d91807de765611490205a941a5a6af3b169 + 1bfe596c31225d3aabdf15faff860cb4ef17c7c3be + u[0] = 0313d9325081b415bfd4e5364efaef392ecf69b087496973b22930 + 3e1816d2080971470f7da112c4eb43053130b785e1 + + I * 062f84cb21ed89406890c051a0e8b9cf6c575cf6e8e18ecf63ba86 + 826b0ae02548d83b483b79e48512b82a6c0686df8f + u[1] = 1739123845406baa7be5c5dc74492051b6d42504de008c635f3535 + bb831d478a341420e67dcc7b46b2e8cba5379cca97 + + I * 01897665d9cb5db16a27657760bbea7951f67ad68f8d55f7113f24 + ba6ddd82caef240a9bfa627972279974894701d975 + Q0.x = 0f48f1ea1318ddb713697708f7327781fb39718971d72a9245b973 + 1faaca4dbaa7cca433d6c434a820c28b18e20ea208 + + I * 06051467c8f85da5ba2540974758f7a1e0239a5981de441fdd8768 + 0a995649c211054869c50edbac1f3a86c561ba3162 + Q0.y = 168b3d6df80069dbbedb714d41b32961ad064c227355e1ce5fac8e + 105de5e49d77f0c64867f3834848f152497eb76333 + + I * 134e0e8331cee8cb12f9c2d0742714ed9eee78a84d634c9a95f6a7 + 391b37125ed48bfc6e90bf3546e99930ff67cc97bc + Q1.x = 004fd03968cd1c99a0dd84551f44c206c84dcbdb78076c5bfee24e + 89a92c8508b52b88b68a92258403cbe1ea2da3495f + + I * 1674338ea298281b636b2eb0fe593008d03171195fd6dcd4531e8a + 1ed1f02a72da238a17a635de307d7d24aa2d969a47 + Q1.y = 0dc7fa13fff6b12558419e0a1e94bfc3cfaf67238009991c5f24ee + 94b632c3d09e27eca329989aee348a67b50d5e236c + + I * 169585e164c131103d85324f2d7747b23b91d66ae5d947c449c819 + 4a347969fc6bbd967729768da485ba71868df8aed2 + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + P.x = 19a84dd7248a1066f737cc34502ee5555bd3c19f2ecdb3c7d9e24d + c65d4e25e50d83f0f77105e955d78f4762d33c17da + + I * 0934aba516a52d8ae479939a91998299c76d39cc0c035cd18813be + c433f587e2d7a4fef038260eef0cef4d02aae3eb91 + P.y = 14f81cd421617428bc3b9fe25afbb751d934a00493524bc4e06563 + 5b0555084dd54679df1536101b2c979c0152d09192 + + I * 09bcccfa036b4847c9950780733633f13619994394c23ff0b32fa6 + b795844f4a0673e20282d07bc69641cee04f5e5662 + u[0] = 025820cefc7d06fd38de7d8e370e0da8a52498be9b53cba9927b2e + f5c6de1e12e12f188bbc7bc923864883c57e49e253 + + I * 034147b77ce337a52e5948f66db0bab47a8d038e712123bb381899 + b6ab5ad20f02805601e6104c29df18c254b8618c7b + u[1] = 0930315cae1f9a6017c3f0c8f2314baa130e1cf13f6532bff0a8a1 + 790cd70af918088c3db94bda214e896e1543629795 + + I * 10c4df2cacf67ea3cb3108b00d4cbd0b3968031ebc8eac4b1ebcef + e84d6b715fde66bef0219951ece29d1facc8a520ef + Q0.x = 09eccbc53df677f0e5814e3f86e41e146422834854a224bf5a83a5 + 0e4cc0a77bfc56718e8166ad180f53526ea9194b57 + + I * 0c3633943f91daee715277bd644fba585168a72f96ded64fc5a384 + cce4ec884a4c3c30f08e09cd2129335dc8f67840ec + Q0.y = 0eb6186a0457d5b12d132902d4468bfeb7315d83320b6c32f1c875 + f344efcba979952b4aa418589cb01af712f98cc555 + + I * 119e3cf167e69eb16c1c7830e8df88856d48be12e3ff0a40791a5c + d2f7221311d4bf13b1847f371f467357b3f3c0b4c7 + Q1.x = 0eb3aabc1ddfce17ff18455fcc7167d15ce6b60ddc9eb9b59f8d40 + ab49420d35558686293d046fc1e42f864b7f60e381 + + I * 198bdfb19d7441ebcca61e8ff774b29d17da16547d2c10c273227a + 635cacea3f16826322ae85717630f0867539b5ed8b + Q1.y = 0aaf1dee3adf3ed4c80e481c09b57ea4c705e1b8d25b897f0ceeec + 3990748716575f92abff22a1c8f4582aff7b872d52 + + I * 0d058d9061ed27d4259848a06c96c5ca68921a5d269b078650c882 + cb3c2bd424a8702b7a6ee4e0ead9982baf6843e924 + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + P.x = 01a6ba2f9a11fa5598b2d8ace0fbe0a0eacb65deceb476fbbcb64f + d24557c2f4b18ecfc5663e54ae16a84f5ab7f62534 + + I * 11fca2ff525572795a801eed17eb12785887c7b63fb77a42be46ce + 4a34131d71f7a73e95fee3f812aea3de78b4d01569 + P.y = 0b6798718c8aed24bc19cb27f866f1c9effcdbf92397ad6448b5c9 + db90d2b9da6cbabf48adc1adf59a1a28344e79d57e + + I * 03a47f8e6d1763ba0cad63d6114c0accbef65707825a511b251a66 + 0a9b3994249ae4e63fac38b23da0c398689ee2ab52 + u[0] = 190b513da3e66fc9a3587b78c76d1d132b1152174d0b83e3c11140 + 66392579a45824c5fa17649ab89299ddd4bda54935 + + I * 12ab625b0fe0ebd1367fe9fac57bb1168891846039b4216b9d9400 + 7b674de2d79126870e88aeef54b2ec717a887dcf39 + u[1] = 0e6a42010cf435fb5bacc156a585e1ea3294cc81d0ceb81924d950 + 40298380b164f702275892cedd81b62de3aba3f6b5 + + I * 117d9a0defc57a33ed208428cb84e54c85a6840e7648480ae42883 + 8989d25d97a0af8e3255be62b25c2a85630d2dddd8 + Q0.x = 17cadf8d04a1a170f8347d42856526a24cc466cb2ddfd506cff011 + 91666b7f944e31244d662c904de5440516a2b09004 + + I * 0d13ba91f2a8b0051cf3279ea0ee63a9f19bc9cb8bfcc7d78b3cbd + 8cc4fc43ba726774b28038213acf2b0095391c523e + Q0.y = 17ef19497d6d9246fa94d35575c0f8d06ee02f21a284dbeaa78768 + cb1e25abd564e3381de87bda26acd04f41181610c5 + + I * 12c3c913ba4ed03c24f0721a81a6be7430f2971ffca8fd1729aafe + 496bb725807531b44b34b59b3ae5495e5a2dcbd5c8 + Q1.x = 16ec57b7fe04c71dfe34fb5ad84dbce5a2dbbd6ee085f1d8cd17f4 + 5e8868976fc3c51ad9eeda682c7869024d24579bfd + + I * 13103f7aace1ae1420d208a537f7d3a9679c287208026e4e3439ab + 8cd534c12856284d95e27f5e1f33eec2ce656533b0 + Q1.y = 0958b2c4c2c10fcef5a6c59b9e92c4a67b0fae3e2e0f1b6b5edad9 + c940b8f3524ba9ebbc3f2ceb3cfe377655b3163bd7 + + I * 0ccb594ed8bd14ca64ed9cb4e0aba221be540f25dd0d6ba15a4a4b + e5d67bcf35df7853b2d8dad3ba245f1ea3697f66aa + +J.10.2. BLS12381G2_XMD:SHA-256_SSWU_NU_ + + suite = BLS12381G2_XMD:SHA-256_SSWU_NU_ + dst = QUUX-V01-CS02-with-BLS12381G2_XMD:SHA-256_SSWU_NU_ + + msg = + P.x = 00e7f4568a82b4b7dc1f14c6aaa055edf51502319c723c4dc2688c + 7fe5944c213f510328082396515734b6612c4e7bb7 + + I * 126b855e9e69b1f691f816e48ac6977664d24d99f8724868a18418 + 6469ddfd4617367e94527d4b74fc86413483afb35b + P.y = 0caead0fd7b6176c01436833c79d305c78be307da5f6af6c133c47 + 311def6ff1e0babf57a0fb5539fce7ee12407b0a42 + + I * 1498aadcf7ae2b345243e281ae076df6de84455d766ab6fcdaad71 + fab60abb2e8b980a440043cd305db09d283c895e3d + u[0] = 07355d25caf6e7f2f0cb2812ca0e513bd026ed09dda65b177500fa + 31714e09ea0ded3a078b526bed3307f804d4b93b04 + + I * 02829ce3c021339ccb5caf3e187f6370e1e2a311dec9b753631170 + 63ab2015603ff52c3d3b98f19c2f65575e99e8b78c + Q.x = 18ed3794ad43c781816c523776188deafba67ab773189b8f18c49b + c7aa841cd81525171f7a5203b2a340579192403bef + + I * 0727d90785d179e7b5732c8a34b660335fed03b913710b60903cf4 + 954b651ed3466dc3728e21855ae822d4a0f1d06587 + Q.y = 00764a5cf6c5f61c52c838523460eb2168b5a5b43705e19cb612e0 + 06f29b717897facfd15dd1c8874c915f6d53d0342d + + I * 19290bb9797c12c1d275817aa2605ebe42275b66860f0e4d04487e + bc2e47c50b36edd86c685a60c20a2bd584a82b011a + + msg = abc + P.x = 108ed59fd9fae381abfd1d6bce2fd2fa220990f0f837fa30e0f279 + 14ed6e1454db0d1ee957b219f61da6ff8be0d6441f + + I * 0296238ea82c6d4adb3c838ee3cb2346049c90b96d602d7bb1b469 + b905c9228be25c627bffee872def773d5b2a2eb57d + P.y = 033f90f6057aadacae7963b0a0b379dd46750c1c94a6357c99b65f + 63b79e321ff50fe3053330911c56b6ceea08fee656 + + I * 153606c417e59fb331b7ae6bce4fbf7c5190c33ce9402b5ebe2b70 + e44fca614f3f1382a3625ed5493843d0b0a652fc3f + u[0] = 138879a9559e24cecee8697b8b4ad32cced053138ab913b9987277 + 2dc753a2967ed50aabc907937aefb2439ba06cc50c + + I * 0a1ae7999ea9bab1dcc9ef8887a6cb6e8f1e22566015428d220b7e + ec90ffa70ad1f624018a9ad11e78d588bd3617f9f2 + Q.x = 0f40e1d5025ecef0d850aa0bb7bbeceab21a3d4e85e6bee857805b + 09693051f5b25428c6be343edba5f14317fcc30143 + + I * 02e0d261f2b9fee88b82804ec83db330caa75fbb12719cfa71ccce + 1c532dc4e1e79b0a6a281ed8d3817524286c8bc04c + Q.y = 0cf4a4adc5c66da0bca4caddc6a57ecd97c8252d7526a8ff478e0d + fed816c4d321b5c3039c6683ae9b1e6a3a38c9c0ae + + I * 11cad1646bb3768c04be2ab2bbe1f80263b7ff6f8f9488f5bc3b68 + 50e5a3e97e20acc583613c69cf3d2bfe8489744ebb + + msg = abcdef0123456789 + P.x = 038af300ef34c7759a6caaa4e69363cafeed218a1f207e93b2c70d + 91a1263d375d6730bd6b6509dcac3ba5b567e85bf3 + + I * 0da75be60fb6aa0e9e3143e40c42796edf15685cafe0279afd2a67 + c3dff1c82341f17effd402e4f1af240ea90f4b659b + P.y = 19b148cbdf163cf0894f29660d2e7bfb2b68e37d54cc83fd4e6e62 + c020eaa48709302ef8e746736c0e19342cc1ce3df4 + + I * 0492f4fed741b073e5a82580f7c663f9b79e036b70ab3e51162359 + cec4e77c78086fe879b65ca7a47d34374c8315ac5e + u[0] = 18c16fe362b7dbdfa102e42bdfd3e2f4e6191d479437a59db4eb71 + 6986bf08ee1f42634db66bde97d6c16bbfd342b3b8 + + I * 0e37812ce1b146d998d5f92bdd5ada2a31bfd63dfe18311aa91637 + b5f279dd045763166aa1615e46a50d8d8f475f184e + Q.x = 13a9d4a738a85c9f917c7be36b240915434b58679980010499b9ae + 8d7a1bf7fbe617a15b3cd6060093f40d18e0f19456 + + I * 16fa88754e7670366a859d6f6899ad765bf5a177abedb2740aacc9 + 252c43f90cd0421373fbd5b2b76bb8f5c4886b5d37 + Q.y = 0a7fa7d82c46797039398253e8765a4194100b330dfed6d7fbb46d + 6fbf01e222088779ac336e3675c7a7a0ee05bbb6e3 + + I * 0c6ee170ab766d11fa9457cef53253f2628010b2cffc102b3b2835 + 1eb9df6c281d3cfc78e9934769d661b72a5265338d + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + P.x = 0c5ae723be00e6c3f0efe184fdc0702b64588fe77dda152ab13099 + a3bacd3876767fa7bbad6d6fd90b3642e902b208f9 + + I * 12c8c05c1d5fc7bfa847f4d7d81e294e66b9a78bc9953990c35894 + 5e1f042eedafce608b67fdd3ab0cb2e6e263b9b1ad + P.y = 04e77ddb3ede41b5ec4396b7421dd916efc68a358a0d7425bddd25 + 3547f2fb4830522358491827265dfc5bcc1928a569 + + I * 11c624c56dbe154d759d021eec60fab3d8b852395a89de497e4850 + 4366feedd4662d023af447d66926a28076813dd646 + u[0] = 08d4a0997b9d52fecf99427abb721f0fa779479963315fe21c6445 + 250de7183e3f63bfdf86570da8929489e421d4ee95 + + I * 16cb4ccad91ec95aab070f22043916cd6a59c4ca94097f7f510043 + d48515526dc8eaaea27e586f09151ae613688d5a89 + Q.x = 0a08b2f639855dfdeaaed972702b109e2241a54de198b2b4cd12ad + 9f88fa419a6086a58d91fc805de812ea29bee427c2 + + I * 04a7442e4cb8b42ef0f41dac9ee74e65ecad3ce0851f0746dc4756 + 8b0e7a8134121ed09ba054509232c49148aef62cda + Q.y = 05d60b1f04212b2c87607458f71d770f43973511c260f0540eef3a + 565f42c7ce59aa1cea684bb2a7bcab84acd2f36c8c + + I * 1017aa5747ba15505ece266a86b0ca9c712f41a254b76ca04094ca + 442ce45ecd224bd5544cd16685d0d1b9d156dd0531 + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + P.x = 0ea4e7c33d43e17cc516a72f76437c4bf81d8f4eac69ac355d3bf9 + b71b8138d55dc10fd458be115afa798b55dac34be1 + + I * 1565c2f625032d232f13121d3cfb476f45275c303a037faa255f9d + a62000c2c864ea881e2bcddd111edc4a3c0da3e88d + P.y = 043b6f5fe4e52c839148dc66f2b3751e69a0f6ebb3d056d6465d50 + d4108543ecd956e10fa1640dfd9bc0030cc2558d28 + + I * 0f8991d2a1ad662e7b6f58ab787947f1fa607fce12dde171bc1790 + 3b012091b657e15333e11701edcf5b63ba2a561247 + u[0] = 03f80ce4ff0ca2f576d797a3660e3f65b274285c054feccc3215c8 + 79e2c0589d376e83ede13f93c32f05da0f68fd6a10 + + I * 006488a837c5413746d868d1efb7232724da10eca410b07d8b505b + 9363bdccf0a1fc0029bad07d65b15ccfe6dd25e20d + Q.x = 19592c812d5a50c5601062faba14c7d670711745311c879de1235a + 0a11c75aab61327bf2d1725db07ec4d6996a682886 + + I * 0eef4fa41ddc17ed47baf447a2c498548f3c72a02381313d13bef9 + 16e240b61ce125539090d62d9fbb14a900bf1b8e90 + Q.y = 1260d6e0987eae96af9ebe551e08de22b37791d53f4db9e0d59da7 + 36e66699735793e853e26362531fe4adf99c1883e3 + + I * 0dbace5df0a4ac4ac2f45d8fdf8aee45484576fdd6efc4f98ab9b9 + f4112309e628255e183022d98ea5ed6e47ca00306c + +Appendix K. Expand Test Vectors + + This section gives test vectors for expand_message variants specified + in Section 5.3. The test vectors in this section were generated + using code that is available from [hash2curve-repo]. + + Each test vector in this section lists the expand_message name, hash + function, and DST, along with a series of tuples of the function + inputs (msg and len_in_bytes), output (uniform_bytes), and + intermediate values (dst_prime and msg_prime). DST and msg are + represented as ASCII strings. Intermediate and output values are + represented as byte strings in hexadecimal. + +K.1. expand_message_xmd(SHA-256) + + name = expand_message_xmd + DST = QUUX-V01-CS02-with-expander-SHA256-128 + hash = SHA256 + k = 128 + + msg = + len_in_bytes = 0x20 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348413235362d31323826 + msg_prime = 0000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 0000000000000000000000002000515555582d5630312d43533032 + 2d776974682d657870616e6465722d5348413235362d31323826 + uniform_bytes = 68a985b87eb6b46952128911f2a4412bbc302a9d759667f8 + 7f7a21d803f07235 + + msg = abc + len_in_bytes = 0x20 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348413235362d31323826 + msg_prime = 0000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 0000000000000000000000616263002000515555582d5630312d43 + 5330322d776974682d657870616e6465722d5348413235362d3132 + 3826 + uniform_bytes = d8ccab23b5985ccea865c6c97b6e5b8350e794e603b4b979 + 02f53a8a0d605615 + + msg = abcdef0123456789 + len_in_bytes = 0x20 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348413235362d31323826 + msg_prime = 0000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000061626364656630313233343536373839 + 002000515555582d5630312d435330322d776974682d657870616e + 6465722d5348413235362d31323826 + uniform_bytes = eff31487c770a893cfb36f912fbfcbff40d5661771ca4b2c + b4eafe524333f5c1 + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + len_in_bytes = 0x20 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348413235362d31323826 + msg_prime = 0000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 0000000000000000000000713132385f7171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171002000515555582d5630312d435330322d77 + 6974682d657870616e6465722d5348413235362d31323826 + uniform_bytes = b23a1d2b4d97b2ef7785562a7e8bac7eed54ed6e97e29aa5 + 1bfe3f12ddad1ff9 + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + len_in_bytes = 0x20 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348413235362d31323826 + msg_prime = 0000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 0000000000000000000000613531325f6161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161002000515555582d5630312d + 435330322d776974682d657870616e6465722d5348413235362d31 + 323826 + uniform_bytes = 4623227bcc01293b8c130bf771da8c298dede7383243dc09 + 93d2d94823958c4c + + msg = + len_in_bytes = 0x80 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348413235362d31323826 + msg_prime = 0000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 0000000000000000000000008000515555582d5630312d43533032 + 2d776974682d657870616e6465722d5348413235362d31323826 + uniform_bytes = af84c27ccfd45d41914fdff5df25293e221afc53d8ad2ac0 + 6d5e3e29485dadbee0d121587713a3e0dd4d5e69e93eb7cd4f5df4 + cd103e188cf60cb02edc3edf18eda8576c412b18ffb658e3dd6ec8 + 49469b979d444cf7b26911a08e63cf31f9dcc541708d3491184472 + c2c29bb749d4286b004ceb5ee6b9a7fa5b646c993f0ced + + msg = abc + len_in_bytes = 0x80 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348413235362d31323826 + msg_prime = 0000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 0000000000000000000000616263008000515555582d5630312d43 + 5330322d776974682d657870616e6465722d5348413235362d3132 + 3826 + uniform_bytes = abba86a6129e366fc877aab32fc4ffc70120d8996c88aee2 + fe4b32d6c7b6437a647e6c3163d40b76a73cf6a5674ef1d890f95b + 664ee0afa5359a5c4e07985635bbecbac65d747d3d2da7ec2b8221 + b17b0ca9dc8a1ac1c07ea6a1e60583e2cb00058e77b7b72a298425 + cd1b941ad4ec65e8afc50303a22c0f99b0509b4c895f40 + + msg = abcdef0123456789 + len_in_bytes = 0x80 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348413235362d31323826 + msg_prime = 0000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000061626364656630313233343536373839 + 008000515555582d5630312d435330322d776974682d657870616e + 6465722d5348413235362d31323826 + uniform_bytes = ef904a29bffc4cf9ee82832451c946ac3c8f8058ae97d8d6 + 29831a74c6572bd9ebd0df635cd1f208e2038e760c4994984ce73f + 0d55ea9f22af83ba4734569d4bc95e18350f740c07eef653cbb9f8 + 7910d833751825f0ebefa1abe5420bb52be14cf489b37fe1a72f7d + e2d10be453b2c9d9eb20c7e3f6edc5a60629178d9478df + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + len_in_bytes = 0x80 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348413235362d31323826 + msg_prime = 0000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 0000000000000000000000713132385f7171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171008000515555582d5630312d435330322d77 + 6974682d657870616e6465722d5348413235362d31323826 + uniform_bytes = 80be107d0884f0d881bb460322f0443d38bd222db8bd0b0a + 5312a6fedb49c1bbd88fd75d8b9a09486c60123dfa1d73c1cc3169 + 761b17476d3c6b7cbbd727acd0e2c942f4dd96ae3da5de368d26b3 + 2286e32de7e5a8cb2949f866a0b80c58116b29fa7fabb3ea7d520e + e603e0c25bcaf0b9a5e92ec6a1fe4e0391d1cdbce8c68a + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + len_in_bytes = 0x80 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348413235362d31323826 + msg_prime = 0000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 0000000000000000000000613531325f6161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161008000515555582d5630312d + 435330322d776974682d657870616e6465722d5348413235362d31 + 323826 + uniform_bytes = 546aff5444b5b79aa6148bd81728704c32decb73a3ba76e9 + e75885cad9def1d06d6792f8a7d12794e90efed817d96920d72889 + 6a4510864370c207f99bd4a608ea121700ef01ed879745ee3e4cee + f777eda6d9e5e38b90c86ea6fb0b36504ba4a45d22e86f6db5dd43 + d98a294bebb9125d5b794e9d2a81181066eb954966a487 + +K.2. expand_message_xmd(SHA-256) (Long DST) + + name = expand_message_xmd + DST = QUUX-V01-CS02-with-expander-SHA256-128-long-DST-111111 + 111111111111111111111111111111111111111111111111111111 + 111111111111111111111111111111111111111111111111111111 + 111111111111111111111111111111111111111111111111111111 + 1111111111111111111111111111111111111111 + hash = SHA256 + k = 128 + + msg = + len_in_bytes = 0x20 + DST_prime = 412717974da474d0f8c420f320ff81e8432adb7c927d9bd082b4 + fb4d16c0a23620 + msg_prime = 0000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 0000000000000000000000002000412717974da474d0f8c420f320 + ff81e8432adb7c927d9bd082b4fb4d16c0a23620 + uniform_bytes = e8dc0c8b686b7ef2074086fbdd2f30e3f8bfbd3bdf177f73 + f04b97ce618a3ed3 + + msg = abc + len_in_bytes = 0x20 + DST_prime = 412717974da474d0f8c420f320ff81e8432adb7c927d9bd082b4 + fb4d16c0a23620 + msg_prime = 0000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 0000000000000000000000616263002000412717974da474d0f8c4 + 20f320ff81e8432adb7c927d9bd082b4fb4d16c0a23620 + uniform_bytes = 52dbf4f36cf560fca57dedec2ad924ee9c266341d8f3d6af + e5171733b16bbb12 + + msg = abcdef0123456789 + len_in_bytes = 0x20 + DST_prime = 412717974da474d0f8c420f320ff81e8432adb7c927d9bd082b4 + fb4d16c0a23620 + msg_prime = 0000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000061626364656630313233343536373839 + 002000412717974da474d0f8c420f320ff81e8432adb7c927d9bd0 + 82b4fb4d16c0a23620 + uniform_bytes = 35387dcf22618f3728e6c686490f8b431f76550b0b2c61cb + c1ce7001536f4521 + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + len_in_bytes = 0x20 + DST_prime = 412717974da474d0f8c420f320ff81e8432adb7c927d9bd082b4 + fb4d16c0a23620 + msg_prime = 0000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 0000000000000000000000713132385f7171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171002000412717974da474d0f8c420f320ff81 + e8432adb7c927d9bd082b4fb4d16c0a23620 + uniform_bytes = 01b637612bb18e840028be900a833a74414140dde0c4754c + 198532c3a0ba42bc + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + len_in_bytes = 0x20 + DST_prime = 412717974da474d0f8c420f320ff81e8432adb7c927d9bd082b4 + fb4d16c0a23620 + msg_prime = 0000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 0000000000000000000000613531325f6161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161002000412717974da474d0f8 + c420f320ff81e8432adb7c927d9bd082b4fb4d16c0a23620 + uniform_bytes = 20cce7033cabc5460743180be6fa8aac5a103f56d481cf36 + 9a8accc0c374431b + + msg = + len_in_bytes = 0x80 + DST_prime = 412717974da474d0f8c420f320ff81e8432adb7c927d9bd082b4 + fb4d16c0a23620 + msg_prime = 0000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 0000000000000000000000008000412717974da474d0f8c420f320 + ff81e8432adb7c927d9bd082b4fb4d16c0a23620 + uniform_bytes = 14604d85432c68b757e485c8894db3117992fc57e0e136f7 + 1ad987f789a0abc287c47876978e2388a02af86b1e8d1342e5ce4f + 7aaa07a87321e691f6fba7e0072eecc1218aebb89fb14a0662322d + 5edbd873f0eb35260145cd4e64f748c5dfe60567e126604bcab1a3 + ee2dc0778102ae8a5cfd1429ebc0fa6bf1a53c36f55dfc + + msg = abc + len_in_bytes = 0x80 + DST_prime = 412717974da474d0f8c420f320ff81e8432adb7c927d9bd082b4 + fb4d16c0a23620 + msg_prime = 0000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 0000000000000000000000616263008000412717974da474d0f8c4 + 20f320ff81e8432adb7c927d9bd082b4fb4d16c0a23620 + uniform_bytes = 1a30a5e36fbdb87077552b9d18b9f0aee16e80181d5b951d + 0471d55b66684914aef87dbb3626eaabf5ded8cd0686567e503853 + e5c84c259ba0efc37f71c839da2129fe81afdaec7fbdc0ccd4c794 + 727a17c0d20ff0ea55e1389d6982d1241cb8d165762dbc39fb0cee + 4474d2cbbd468a835ae5b2f20e4f959f56ab24cd6fe267 + + msg = abcdef0123456789 + len_in_bytes = 0x80 + DST_prime = 412717974da474d0f8c420f320ff81e8432adb7c927d9bd082b4 + fb4d16c0a23620 + msg_prime = 0000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000061626364656630313233343536373839 + 008000412717974da474d0f8c420f320ff81e8432adb7c927d9bd0 + 82b4fb4d16c0a23620 + uniform_bytes = d2ecef3635d2397f34a9f86438d772db19ffe9924e28a1ca + f6f1c8f15603d4028f40891044e5c7e39ebb9b31339979ff33a424 + 9206f67d4a1e7c765410bcd249ad78d407e303675918f20f26ce6d + 7027ed3774512ef5b00d816e51bfcc96c3539601fa48ef1c07e494 + bdc37054ba96ecb9dbd666417e3de289d4f424f502a982 + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + len_in_bytes = 0x80 + DST_prime = 412717974da474d0f8c420f320ff81e8432adb7c927d9bd082b4 + fb4d16c0a23620 + msg_prime = 0000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 0000000000000000000000713132385f7171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171008000412717974da474d0f8c420f320ff81 + e8432adb7c927d9bd082b4fb4d16c0a23620 + uniform_bytes = ed6e8c036df90111410431431a232d41a32c86e296c05d42 + 6e5f44e75b9a50d335b2412bc6c91e0a6dc131de09c43110d9180d + 0a70f0d6289cb4e43b05f7ee5e9b3f42a1fad0f31bac6a625b3b5c + 50e3a83316783b649e5ecc9d3b1d9471cb5024b7ccf40d41d1751a + 04ca0356548bc6e703fca02ab521b505e8e45600508d32 + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + len_in_bytes = 0x80 + DST_prime = 412717974da474d0f8c420f320ff81e8432adb7c927d9bd082b4 + fb4d16c0a23620 + msg_prime = 0000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 0000000000000000000000613531325f6161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161008000412717974da474d0f8 + c420f320ff81e8432adb7c927d9bd082b4fb4d16c0a23620 + uniform_bytes = 78b53f2413f3c688f07732c10e5ced29a17c6a16f717179f + fbe38d92d6c9ec296502eb9889af83a1928cd162e845b0d3c5424e + 83280fed3d10cffb2f8431f14e7a23f4c68819d40617589e4c4116 + 9d0b56e0e3535be1fd71fbb08bb70c5b5ffed953d6c14bf7618b35 + fc1f4c4b30538236b4b08c9fbf90462447a8ada60be495 + +K.3. expand_message_xmd(SHA-512) + + name = expand_message_xmd + DST = QUUX-V01-CS02-with-expander-SHA512-256 + hash = SHA512 + k = 256 + + msg = + len_in_bytes = 0x20 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348413531322d32353626 + msg_prime = 0000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000002000515555 + 582d5630312d435330322d776974682d657870616e6465722d5348 + 413531322d32353626 + uniform_bytes = 6b9a7312411d92f921c6f68ca0b6380730a1a4d982c50721 + 1a90964c394179ba + + msg = abc + len_in_bytes = 0x20 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348413531322d32353626 + msg_prime = 0000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000616263002000 + 515555582d5630312d435330322d776974682d657870616e646572 + 2d5348413531322d32353626 + uniform_bytes = 0da749f12fbe5483eb066a5f595055679b976e93abe9be6f + 0f6318bce7aca8dc + + msg = abcdef0123456789 + len_in_bytes = 0x20 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348413531322d32353626 + msg_prime = 0000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000616263646566 + 30313233343536373839002000515555582d5630312d435330322d + 776974682d657870616e6465722d5348413531322d32353626 + uniform_bytes = 087e45a86e2939ee8b91100af1583c4938e0f5fc6c9db4b1 + 07b83346bc967f58 + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + len_in_bytes = 0x20 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348413531322d32353626 + msg_prime = 0000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000713132385f71 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 71717171717171717171717171717171717171002000515555582d + 5630312d435330322d776974682d657870616e6465722d53484135 + 31322d32353626 + uniform_bytes = 7336234ee9983902440f6bc35b348352013becd88938d2af + ec44311caf8356b3 + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + len_in_bytes = 0x20 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348413531322d32353626 + msg_prime = 0000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000613531325f61 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161610020 + 00515555582d5630312d435330322d776974682d657870616e6465 + 722d5348413531322d32353626 + uniform_bytes = 57b5f7e766d5be68a6bfe1768e3c2b7f1228b3e4b3134956 + dd73a59b954c66f4 + + msg = + len_in_bytes = 0x80 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348413531322d32353626 + msg_prime = 0000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000008000515555 + 582d5630312d435330322d776974682d657870616e6465722d5348 + 413531322d32353626 + uniform_bytes = 41b037d1734a5f8df225dd8c7de38f851efdb45c372887be + 655212d07251b921b052b62eaed99b46f72f2ef4cc96bfaf254ebb + bec091e1a3b9e4fb5e5b619d2e0c5414800a1d882b62bb5cd1778f + 098b8eb6cb399d5d9d18f5d5842cf5d13d7eb00a7cff859b605da6 + 78b318bd0e65ebff70bec88c753b159a805d2c89c55961 + + msg = abc + len_in_bytes = 0x80 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348413531322d32353626 + msg_prime = 0000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000616263008000 + 515555582d5630312d435330322d776974682d657870616e646572 + 2d5348413531322d32353626 + uniform_bytes = 7f1dddd13c08b543f2e2037b14cefb255b44c83cc397c178 + 6d975653e36a6b11bdd7732d8b38adb4a0edc26a0cef4bb4521713 + 5456e58fbca1703cd6032cb1347ee720b87972d63fbf232587043e + d2901bce7f22610c0419751c065922b488431851041310ad659e4b + 23520e1772ab29dcdeb2002222a363f0c2b1c972b3efe1 + + msg = abcdef0123456789 + len_in_bytes = 0x80 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348413531322d32353626 + msg_prime = 0000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000616263646566 + 30313233343536373839008000515555582d5630312d435330322d + 776974682d657870616e6465722d5348413531322d32353626 + uniform_bytes = 3f721f208e6199fe903545abc26c837ce59ac6fa45733f1b + aaf0222f8b7acb0424814fcb5eecf6c1d38f06e9d0a6ccfbf85ae6 + 12ab8735dfdf9ce84c372a77c8f9e1c1e952c3a61b7567dd069301 + 6af51d2745822663d0c2367e3f4f0bed827feecc2aaf98c949b5ed + 0d35c3f1023d64ad1407924288d366ea159f46287e61ac + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + len_in_bytes = 0x80 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348413531322d32353626 + msg_prime = 0000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000713132385f71 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 71717171717171717171717171717171717171008000515555582d + 5630312d435330322d776974682d657870616e6465722d53484135 + 31322d32353626 + uniform_bytes = b799b045a58c8d2b4334cf54b78260b45eec544f9f2fb5bd + 12fb603eaee70db7317bf807c406e26373922b7b8920fa29142703 + dd52bdf280084fb7ef69da78afdf80b3586395b433dc66cde048a2 + 58e476a561e9deba7060af40adf30c64249ca7ddea79806ee5beb9 + a1422949471d267b21bc88e688e4014087a0b592b695ed + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + len_in_bytes = 0x80 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348413531322d32353626 + msg_prime = 0000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000000000000000 + 000000000000000000000000000000000000000000613531325f61 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161610080 + 00515555582d5630312d435330322d776974682d657870616e6465 + 722d5348413531322d32353626 + uniform_bytes = 05b0bfef265dcee87654372777b7c44177e2ae4c13a27f10 + 3340d9cd11c86cb2426ffcad5bd964080c2aee97f03be1ca18e30a + 1f14e27bc11ebbd650f305269cc9fb1db08bf90bfc79b42a952b46 + daf810359e7bc36452684784a64952c343c52e5124cd1f71d474d5 + 197fefc571a92929c9084ffe1112cf5eea5192ebff330b + +K.4. expand_message_xof(SHAKE128) + + name = expand_message_xof + DST = QUUX-V01-CS02-with-expander-SHAKE128 + hash = SHAKE128 + k = 128 + + msg = + len_in_bytes = 0x20 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348414b4531323824 + msg_prime = 0020515555582d5630312d435330322d776974682d657870616e + 6465722d5348414b4531323824 + uniform_bytes = 86518c9cd86581486e9485aa74ab35ba150d1c75c88e26b7 + 043e44e2acd735a2 + + msg = abc + len_in_bytes = 0x20 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348414b4531323824 + msg_prime = 6162630020515555582d5630312d435330322d776974682d6578 + 70616e6465722d5348414b4531323824 + uniform_bytes = 8696af52a4d862417c0763556073f47bc9b9ba43c99b5053 + 05cb1ec04a9ab468 + + msg = abcdef0123456789 + len_in_bytes = 0x20 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348414b4531323824 + msg_prime = 616263646566303132333435363738390020515555582d563031 + 2d435330322d776974682d657870616e6465722d5348414b453132 + 3824 + uniform_bytes = 912c58deac4821c3509dbefa094df54b34b8f5d01a191d1d + 3108a2c89077acca + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + len_in_bytes = 0x20 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348414b4531323824 + msg_prime = 713132385f717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717100 + 20515555582d5630312d435330322d776974682d657870616e6465 + 722d5348414b4531323824 + uniform_bytes = 1adbcc448aef2a0cebc71dac9f756b22e51839d348e031e6 + 3b33ebb50faeaf3f + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + len_in_bytes = 0x20 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348414b4531323824 + msg_prime = 613531325f616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 61616161610020515555582d5630312d435330322d776974682d65 + 7870616e6465722d5348414b4531323824 + uniform_bytes = df3447cc5f3e9a77da10f819218ddf31342c310778e0e4ef + 72bbaecee786a4fe + + msg = + len_in_bytes = 0x80 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348414b4531323824 + msg_prime = 0080515555582d5630312d435330322d776974682d657870616e + 6465722d5348414b4531323824 + uniform_bytes = 7314ff1a155a2fb99a0171dc71b89ab6e3b2b7d59e38e644 + 19b8b6294d03ffee42491f11370261f436220ef787f8f76f5b26bd + cd850071920ce023f3ac46847744f4612b8714db8f5db83205b2e6 + 25d95afd7d7b4d3094d3bdde815f52850bb41ead9822e08f22cf41 + d615a303b0d9dde73263c049a7b9898208003a739a2e57 + + msg = abc + len_in_bytes = 0x80 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348414b4531323824 + msg_prime = 6162630080515555582d5630312d435330322d776974682d6578 + 70616e6465722d5348414b4531323824 + uniform_bytes = c952f0c8e529ca8824acc6a4cab0e782fc3648c563ddb00d + a7399f2ae35654f4860ec671db2356ba7baa55a34a9d7f79197b60 + ddae6e64768a37d699a78323496db3878c8d64d909d0f8a7de4927 + dcab0d3dbbc26cb20a49eceb0530b431cdf47bc8c0fa3e0d88f53b + 318b6739fbed7d7634974f1b5c386d6230c76260d5337a + + msg = abcdef0123456789 + len_in_bytes = 0x80 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348414b4531323824 + msg_prime = 616263646566303132333435363738390080515555582d563031 + 2d435330322d776974682d657870616e6465722d5348414b453132 + 3824 + uniform_bytes = 19b65ee7afec6ac06a144f2d6134f08eeec185f1a890fe34 + e68f0e377b7d0312883c048d9b8a1d6ecc3b541cb4987c26f45e0c + 82691ea299b5e6889bbfe589153016d8131717ba26f07c3c14ffbe + f1f3eff9752e5b6183f43871a78219a75e7000fbac6a7072e2b83c + 790a3a5aecd9d14be79f9fd4fb180960a3772e08680495 + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + len_in_bytes = 0x80 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348414b4531323824 + msg_prime = 713132385f717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717100 + 80515555582d5630312d435330322d776974682d657870616e6465 + 722d5348414b4531323824 + uniform_bytes = ca1b56861482b16eae0f4a26212112362fcc2d76dcc80c93 + c4182ed66c5113fe41733ed68be2942a3487394317f3379856f482 + 2a611735e50528a60e7ade8ec8c71670fec6661e2c59a09ed36386 + 513221688b35dc47e3c3111ee8c67ff49579089d661caa29db1ef1 + 0eb6eace575bf3dc9806e7c4016bd50f3c0e2a6481ee6d + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + len_in_bytes = 0x80 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348414b4531323824 + msg_prime = 613531325f616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 61616161610080515555582d5630312d435330322d776974682d65 + 7870616e6465722d5348414b4531323824 + uniform_bytes = 9d763a5ce58f65c91531b4100c7266d479a5d9777ba76169 + 3d052acd37d149e7ac91c796a10b919cd74a591a1e38719fb91b72 + 03e2af31eac3bff7ead2c195af7d88b8bc0a8adf3d1e90ab9bed6d + dc2b7f655dd86c730bdeaea884e73741097142c92f0e3fc1811b69 + 9ba593c7fbd81da288a29d423df831652e3a01a9374999 + +K.5. expand_message_xof(SHAKE128) (Long DST) + + name = expand_message_xof + DST = QUUX-V01-CS02-with-expander-SHAKE128-long-DST-11111111 + 111111111111111111111111111111111111111111111111111111 + 111111111111111111111111111111111111111111111111111111 + 111111111111111111111111111111111111111111111111111111 + 1111111111111111111111111111111111111111 + hash = SHAKE128 + k = 128 + + msg = + len_in_bytes = 0x20 + DST_prime = acb9736c0867fdfbd6385519b90fc8c034b5af04a95897321295 + 0132d035792f20 + msg_prime = 0020acb9736c0867fdfbd6385519b90fc8c034b5af04a9589732 + 12950132d035792f20 + uniform_bytes = 827c6216330a122352312bccc0c8d6e7a146c5257a776dbd + 9ad9d75cd880fc53 + + msg = abc + len_in_bytes = 0x20 + DST_prime = acb9736c0867fdfbd6385519b90fc8c034b5af04a95897321295 + 0132d035792f20 + msg_prime = 6162630020acb9736c0867fdfbd6385519b90fc8c034b5af04a9 + 58973212950132d035792f20 + uniform_bytes = 690c8d82c7213b4282c6cb41c00e31ea1d3e2005f93ad19b + bf6da40f15790c5c + + msg = abcdef0123456789 + len_in_bytes = 0x20 + DST_prime = acb9736c0867fdfbd6385519b90fc8c034b5af04a95897321295 + 0132d035792f20 + msg_prime = 616263646566303132333435363738390020acb9736c0867fdfb + d6385519b90fc8c034b5af04a958973212950132d035792f20 + uniform_bytes = 979e3a15064afbbcf99f62cc09fa9c85028afcf3f825eb07 + 11894dcfc2f57057 + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + len_in_bytes = 0x20 + DST_prime = acb9736c0867fdfbd6385519b90fc8c034b5af04a95897321295 + 0132d035792f20 + msg_prime = 713132385f717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717100 + 20acb9736c0867fdfbd6385519b90fc8c034b5af04a95897321295 + 0132d035792f20 + uniform_bytes = c5a9220962d9edc212c063f4f65b609755a1ed96e62f9db5 + d1fd6adb5a8dc52b + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + len_in_bytes = 0x20 + DST_prime = acb9736c0867fdfbd6385519b90fc8c034b5af04a95897321295 + 0132d035792f20 + msg_prime = 613531325f616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 61616161610020acb9736c0867fdfbd6385519b90fc8c034b5af04 + a958973212950132d035792f20 + uniform_bytes = f7b96a5901af5d78ce1d071d9c383cac66a1dfadb508300e + c6aeaea0d62d5d62 + + msg = + len_in_bytes = 0x80 + DST_prime = acb9736c0867fdfbd6385519b90fc8c034b5af04a95897321295 + 0132d035792f20 + msg_prime = 0080acb9736c0867fdfbd6385519b90fc8c034b5af04a9589732 + 12950132d035792f20 + uniform_bytes = 3890dbab00a2830be398524b71c2713bbef5f4884ac2e6f0 + 70b092effdb19208c7df943dc5dcbaee3094a78c267ef276632ee2 + c8ea0c05363c94b6348500fae4208345dd3475fe0c834c2beac7fa + 7bc181692fb728c0a53d809fc8111495222ce0f38468b11becb15b + 32060218e285c57a60162c2c8bb5b6bded13973cd41819 + + msg = abc + len_in_bytes = 0x80 + DST_prime = acb9736c0867fdfbd6385519b90fc8c034b5af04a95897321295 + 0132d035792f20 + msg_prime = 6162630080acb9736c0867fdfbd6385519b90fc8c034b5af04a9 + 58973212950132d035792f20 + uniform_bytes = 41b7ffa7a301b5c1441495ebb9774e2a53dbbf4e54b9a1af + 6a20fd41eafd69ef7b9418599c5545b1ee422f363642b01d4a5344 + 9313f68da3e49dddb9cd25b97465170537d45dcbdf92391b5bdff3 + 44db4bd06311a05bca7dcd360b6caec849c299133e5c9194f4e15e + 3e23cfaab4003fab776f6ac0bfae9144c6e2e1c62e7d57 + + msg = abcdef0123456789 + len_in_bytes = 0x80 + DST_prime = acb9736c0867fdfbd6385519b90fc8c034b5af04a95897321295 + 0132d035792f20 + msg_prime = 616263646566303132333435363738390080acb9736c0867fdfb + d6385519b90fc8c034b5af04a958973212950132d035792f20 + uniform_bytes = 55317e4a21318472cd2290c3082957e1242241d9e0d04f47 + 026f03401643131401071f01aa03038b2783e795bdfa8a3541c194 + ad5de7cb9c225133e24af6c86e748deb52e560569bd54ef4dac034 + 65111a3a44b0ea490fb36777ff8ea9f1a8a3e8e0de3cf0880b4b2f + 8dd37d3a85a8b82375aee4fa0e909f9763319b55778e71 + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + len_in_bytes = 0x80 + DST_prime = acb9736c0867fdfbd6385519b90fc8c034b5af04a95897321295 + 0132d035792f20 + msg_prime = 713132385f717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717100 + 80acb9736c0867fdfbd6385519b90fc8c034b5af04a95897321295 + 0132d035792f20 + uniform_bytes = 19fdd2639f082e31c77717ac9bb032a22ff0958382b2dbb3 + 9020cdc78f0da43305414806abf9a561cb2d0067eb2f7bc544482f + 75623438ed4b4e39dd9e6e2909dd858bd8f1d57cd0fce2d3150d90 + aa67b4498bdf2df98c0100dd1a173436ba5d0df6be1defb0b2ce55 + ccd2f4fc05eb7cb2c019c35d5398b85adc676da4238bc7 + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + len_in_bytes = 0x80 + DST_prime = acb9736c0867fdfbd6385519b90fc8c034b5af04a95897321295 + 0132d035792f20 + msg_prime = 613531325f616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 61616161610080acb9736c0867fdfbd6385519b90fc8c034b5af04 + a958973212950132d035792f20 + uniform_bytes = 945373f0b3431a103333ba6a0a34f1efab2702efde41754c + 4cb1d5216d5b0a92a67458d968562bde7fa6310a83f53dda138368 + 0a276a283438d58ceebfa7ab7ba72499d4a3eddc860595f63c93b1 + c5e823ea41fc490d938398a26db28f61857698553e93f0574eb8c5 + 017bfed6249491f9976aaa8d23d9485339cc85ca329308 + +K.6. expand_message_xof(SHAKE256) + + name = expand_message_xof + DST = QUUX-V01-CS02-with-expander-SHAKE256 + hash = SHAKE256 + k = 256 + + msg = + len_in_bytes = 0x20 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348414b4532353624 + msg_prime = 0020515555582d5630312d435330322d776974682d657870616e + 6465722d5348414b4532353624 + uniform_bytes = 2ffc05c48ed32b95d72e807f6eab9f7530dd1c2f013914c8 + fed38c5ccc15ad76 + + msg = abc + len_in_bytes = 0x20 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348414b4532353624 + msg_prime = 6162630020515555582d5630312d435330322d776974682d6578 + 70616e6465722d5348414b4532353624 + uniform_bytes = b39e493867e2767216792abce1f2676c197c0692aed06156 + 0ead251821808e07 + + msg = abcdef0123456789 + len_in_bytes = 0x20 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348414b4532353624 + msg_prime = 616263646566303132333435363738390020515555582d563031 + 2d435330322d776974682d657870616e6465722d5348414b453235 + 3624 + uniform_bytes = 245389cf44a13f0e70af8665fe5337ec2dcd138890bb7901 + c4ad9cfceb054b65 + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + len_in_bytes = 0x20 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348414b4532353624 + msg_prime = 713132385f717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717100 + 20515555582d5630312d435330322d776974682d657870616e6465 + 722d5348414b4532353624 + uniform_bytes = 719b3911821e6428a5ed9b8e600f2866bcf23c8f0515e52d + 6c6c019a03f16f0e + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + len_in_bytes = 0x20 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348414b4532353624 + msg_prime = 613531325f616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 61616161610020515555582d5630312d435330322d776974682d65 + 7870616e6465722d5348414b4532353624 + uniform_bytes = 9181ead5220b1963f1b5951f35547a5ea86a820562287d6c + a4723633d17ccbbc + + msg = + len_in_bytes = 0x80 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348414b4532353624 + msg_prime = 0080515555582d5630312d435330322d776974682d657870616e + 6465722d5348414b4532353624 + uniform_bytes = 7a1361d2d7d82d79e035b8880c5a3c86c5afa719478c007d + 96e6c88737a3f631dd74a2c88df79a4cb5e5d9f7504957c70d669e + c6bfedc31e01e2bacc4ff3fdf9b6a00b17cc18d9d72ace7d6b81c2 + e481b4f73f34f9a7505dccbe8f5485f3d20c5409b0310093d5d649 + 2dea4e18aa6979c23c8ea5de01582e9689612afbb353df + + msg = abc + len_in_bytes = 0x80 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348414b4532353624 + msg_prime = 6162630080515555582d5630312d435330322d776974682d6578 + 70616e6465722d5348414b4532353624 + uniform_bytes = a54303e6b172909783353ab05ef08dd435a558c3197db0c1 + 32134649708e0b9b4e34fb99b92a9e9e28fc1f1d8860d85897a8e0 + 21e6382f3eea10577f968ff6df6c45fe624ce65ca25932f679a42a + 404bc3681efe03fcd45ef73bb3a8f79ba784f80f55ea8a3c367408 + f30381299617f50c8cf8fbb21d0f1e1d70b0131a7b6fbe + + msg = abcdef0123456789 + len_in_bytes = 0x80 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348414b4532353624 + msg_prime = 616263646566303132333435363738390080515555582d563031 + 2d435330322d776974682d657870616e6465722d5348414b453235 + 3624 + uniform_bytes = e42e4d9538a189316e3154b821c1bafb390f78b2f010ea40 + 4e6ac063deb8c0852fcd412e098e231e43427bd2be1330bb47b403 + 9ad57b30ae1fc94e34993b162ff4d695e42d59d9777ea18d3848d9 + d336c25d2acb93adcad009bcfb9cde12286df267ada283063de0bb + 1505565b2eb6c90e31c48798ecdc71a71756a9110ff373 + + msg = q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq + qqqqqqqqqqqqqqqqqqqqqqqqq + len_in_bytes = 0x80 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348414b4532353624 + msg_prime = 713132385f717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717171 + 717171717171717171717171717171717171717171717171717100 + 80515555582d5630312d435330322d776974682d657870616e6465 + 722d5348414b4532353624 + uniform_bytes = 4ac054dda0a38a65d0ecf7afd3c2812300027c8789655e47 + aecf1ecc1a2426b17444c7482c99e5907afd9c25b991990490bb9c + 686f43e79b4471a23a703d4b02f23c669737a886a7ec28bddb92c3 + a98de63ebf878aa363a501a60055c048bea11840c4717beae7eee2 + 8c3cfa42857b3d130188571943a7bd747de831bd6444e0 + + msg = a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa + len_in_bytes = 0x80 + DST_prime = 515555582d5630312d435330322d776974682d657870616e6465 + 722d5348414b4532353624 + msg_prime = 613531325f616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 616161616161616161616161616161616161616161616161616161 + 61616161610080515555582d5630312d435330322d776974682d65 + 7870616e6465722d5348414b4532353624 + uniform_bytes = 09afc76d51c2cccbc129c2315df66c2be7295a231203b8ab + 2dd7f95c2772c68e500bc72e20c602abc9964663b7a03a389be128 + c56971ce81001a0b875e7fd17822db9d69792ddf6a23a151bf4700 + 79c518279aef3e75611f8f828994a9988f4a8a256ddb8bae161e65 + 8d5a2a09bcfe839c6396dc06ee5c8ff3c22d3b1f9deb7e + +Acknowledgements + + The authors would like to thank Adam Langley for his detailed writeup + of Elligator 2 with Curve25519 [L13]; Dan Boneh, Benjamin Lipp, + Christopher Patton, and Leonid Reyzin for educational discussions; + and David Benjamin, Daniel Bourdrez, Frank Denis, Sean Devlin, Justin + Drake, Bjoern Haase, Mike Hamburg, Dan Harkins, Daira Hopwood, Thomas + Icart, Andy Polyakov, Thomas Pornin, Mamy Ratsimbazafy, Michael + Scott, Filippo Valsorda, and Mathy Vanhoef for helpful reviews and + feedback. + +Contributors + + Sharon Goldberg + Boston University + Email: goldbe@cs.bu.edu + + + Ela Lee + Royal Holloway, University of London + Email: Ela.Lee.2010@live.rhul.ac.uk + + + Michele Orru + Email: michele.orru@ens.fr + + +Authors' Addresses + + Armando Faz-Hernandez + Cloudflare, Inc. + 101 Townsend St + San Francisco, CA 94107 + United States of America + Email: armfazh@cloudflare.com + + + Sam Scott + Oso Security, Inc. + 335 Madison Ave + New York, NY 10017 + United States of America + Email: sam.scott89@gmail.com + + + Nick Sullivan + Cloudflare, Inc. + 101 Townsend St + San Francisco, CA 94107 + United States of America + Email: nicholas.sullivan@gmail.com + + + Riad S. Wahby + Stanford University + Email: rsw@cs.stanford.edu + + + Christopher A. Wood + Cloudflare, Inc. + 101 Townsend St + San Francisco, CA 94107 + United States of America + Email: caw@heapingbits.net |