1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
|
Network Working Group G. Trewitt
Request for Comments: 1023 Stanford
C. Partridge
BBN/NNSC
October 1987
HEMS Monitoring and Control Language
This RFC specifies the design of a general-purpose, yet efficient,
monitoring and control language for managing network entities. The
data in the entity is modeled as a hierarchy and specific items are
named by giving the path from the root of the tree. Most items are
read-only, but some can be "set" in order to perform control
operations. Both requests and responses are represented using the
ISO ASN.1 data encoding rules.
STATUS OF THIS MEMO
The purpose of this RFC is provide a specification for monitoring and
control of network entities in the Internet. This is an experimental
specification and is intended for use in testing the ideas presented
here. No proposals in this memo are intended as standards for the
Internet at this time. After sufficient experimentation and
discussion, this RFC will be redrafted, perhaps as a standard.
Distribution of this memo is unlimited.
This language is a component of the High-Level Entity Monitoring
System (HEMS) described in RFC-1021 and RFC-1022. Readers may want
to consult these RFCs when reading this memo. RFC-1024 contains
detailed assignments of numbers and structures used in this system.
This memo assumes a knowledge of the ISO data encoding standard,
ASN.1.
OVERVIEW AND SCOPE
The basic model of monitoring and control used in this proposal is
that a query is sent to a monitored entity and the entity sends back
a response. The term query is used in the database sense -- it may
request information, modify things, or both. We will use gateway-
oriented examples, but it should be understood that this query-
response mechanism can be applied to other entities besides just
gateways.
In particular, there is no notion of an interactive "conversation" as
in SMTP [RFC-821] or FTP [RFC-959]. A query is a complete request
that stands on its own and elicits a complete response.
Trewitt & Partridge [Page 1]
^L
RFC 1023 HEMS Language October 1987
It is not necessary for a monitored entity to be able to store the
complete query. It is quite possible for an implementation to
process the query on the fly, producing portions of the response
while the query is still being received.
Other RFCs associated with HEMS are: RFC-1021 -- Overview; RFC-1022
-- transport protocol and message encapsulation; RFC-1024 -- precise
data definitions. These issues are not dealt with here. It is
assumed that there is some mechanism to transport a sequence of
octets to a query processor within the monitored entity and that
there is some mechanism to return a sequence of octets to the entity
making the query.
ENCODING OF QUERIES AND RESPONSES
Both queries and responses are encoded using the representation
defined in ISO Standard ASN.1 (Abstract Syntax Notation 1). ASN.1
represents data as sequences of <tag,length,contents> triples that
are encoded as a stream of octets. The data tuples may be
recursively nested to represent structured data such as arrays or
records. For a full description of this notation, see the ISO
documents IS 8824 and IS 8825. See the end of this memo for
information about ordering these documents.
NOTATION USED IN THIS PROPOSAL
The notation used in this memo is similar to that used in ASN.1, but
less formal, smaller, and (hopefully) easier to read. The most
important difference is that, in this memo, we are not concerned with
the length of the data items.
ASN.1 data items may be either a "simple type" such as integer or
octet string or a "structured type", a collection of data items. The
notation or a "structured type", a collection of data items. The
notation:
ID(value)
represents a simple data item whose tag is "ID" with the given value.
A structured data item is represented as:
ID { ... contents ... }
where contents is a sequence of data items. Remember that the
contents may include both simple and structured types, so the
structure is fully recursive.
There are situations where it is desirable to specify a type but give
no value, such as when there is no meaningful value for a particular
measured parameter or when the entire contents of a structured type
is being specified. In this situation, the same notation is used,
Trewitt & Partridge [Page 2]
^L
RFC 1023 HEMS Language October 1987
but with the value omitted:
ID()
or
ID{}
The representation of this is obvious -- the data item has zero for
the length and no contents.
DATA MODEL
Data in a monitored entity is modeled as a hierarchy.
Implementations are not required to organize the data internally as a
hierarchy, but they must provide this view of the data through the
query language. A hierarchy offers useful structure for the
following operations:
Organization A hierarchy allows related data to be grouped
together in a natural way.
Naming The name of a piece of data is just the path from
the root to the data of interest.
Mapping onto ASN.1
ASN.1 can easily represent a hierarchy by using
"constructor" types as an envelope for an entire
subtree.
Efficient Representation
Hierarchical structures are quite compact and can
be traversed very quickly.
Each node in the hierarchy must have names for its component parts.
Although we would normally think of names as being ASCII strings such
as "input errors", the actual name would just be an ASN.1 tag. Such
names would be small integers (typically, less than 100) and so could
easily be mapped by the monitored entity onto its internal
representation.
We will use the term "dictionary" to represent an internal node in
the hierarchy. Here is a possible organization of the hierarchy in
an entity that has several network interfaces and multiple processes.
The exact organization of data in entities is specified in RFC-1024.
Trewitt & Partridge [Page 3]
^L
RFC 1023 HEMS Language October 1987
system {
name -- host name
clock-msec -- msec since boot
interfaces -- # of interfaces
}
interfaces { -- one per interface
interface { type, ip-addr, in-pkts, out-pkts, . . . }
interface { type, ip-addr, in-pkts, out-pkts, . . . }
interface { type, ip-addr, in-pkts, out-pkts, . . . }
:
}
processes {
process { name, stack, interrupts, . . . }
process { name, stack, interrupts, . . . }
:
}
route-table {
route-entry { dest, interface, nexthop, cost, . . . }
route-entry { dest, interface, nexthop, cost, . . . }
:
}
arp-table {
arp-entry { hard-addr, ip-addr, age }
arp-entry { hard-addr, ip-addr, age }
:
}
memory { }
The "name" of the clock in this entity would be:
system{ clock-msec }
and the name of a route-entry's IP address would be:
route-table{ route-entry{ ip-addr } }.
Actually, this is the name of the IP addresses of ALL of the routing
table entries. This ambiguity is a problem in any situation where
there are several instances of an item being monitored. If there was
a meaningful index for such tabular data (e.g., "routing table entry
#1"), there would be no problem. Unfortunately, there usually isn't
such an index. The solution to this problem requires that the data
be accessed on the basis of some of its content. More on this later.
More than one piece of data can be named by a single ASN.1 object.
The entire collection of system information is named by:
system{ }
and the name of a routing table's IP address and cost would be:
route-table{ route-entry{ ip-addr, cost } }.
Trewitt & Partridge [Page 4]
^L
RFC 1023 HEMS Language October 1987
Arrays
There is one sub-type of a dictionary that is used as the basis for
tables of objects with identical types. We call these dictionaries
arrays. In the example above, the dictionaries for interfaces,
processes, routing tables, and ARP tables are all arrays. In fact,
we expect that most of the interesting data in an entity will be
contained in arrays.
The primary difference between arrays and plain dictionaries is that
arrays may contain only one type of item, while dictionaries, in
general, will contain many different types of items. Arrays are
usually accessed associatively using special operators in the
language.
The fact that these objects are viewed externally as arrays does not
mean that they are represented in an implementation as linear lists
of objects. Any collection of same-typed objects is viewed as an
array, even though it might be represented as, for example, a hash
table.
REPRESENTATION OF A REPLY
The data returned to the monitoring entity is a sequence of ASN.1
data items. Each of these corresponds to one the top-level
dictionaries maintained by the monitored entity. The tags for these
data items will be in the "application-specific" class (e.g., if an
entity has the above structure for its data, then the only top-level
data items that will be returned will have tags corresponding to
these groups). If a query returned data from two of these, the
representation might look like:
interfaces{ . . . } route-table{ . . . }
which is just a stream of two ASN.1 objects (each of which may
consist of many sub-objects).
Data not in the root dictionary will have tags from the context-
specific class. Therefore, data must always be fully qualified. For
example, the name of the entity would always be returned encapsulated
inside an ASN.1 object for "system". If it were not, there would be
no way to tell if the object that was returned were "name" inside the
"system" dictionary or "dest" inside the "interfaces" dictionary
(assuming in this case that "name" and "dest" were assigned the same
ASN.1 tag).
Having fully-qualified data simplifies decoding of the data at the
receiving end and allows the tags to be locally chosen (e.g.,
definitions for tags dealing with ARP tables can't conflict with
definitions for tags dealing with interfaces). Therefore, the people
Trewitt & Partridge [Page 5]
^L
RFC 1023 HEMS Language October 1987
doing the name assignments are less constrained. In addition, most
of the identifiers will be fairly small integers.
It will often be the case that requested data may not be available,
either because the request was badly formed (asked for data that
couldn't exist) or because the particular data item wasn't defined in
a particular situation (time since last error, when there hasn't been
an error). In this situation, the returned data item will have the
same tag as in the request, but will have zero-length data.
Therefore, there can NEVER be an "undefined data" error.
This allows completely generic queries to be composed without regard
to whether the data is defined at all of the entities that will
receive the request. All of the available data will be returned,
without generating errors that might otherwise terminate the
processing of the query.
REPRESENTATION OF A REQUEST
A request to a monitored entity is also a sequence of ASN.1 data
items. Each item will fit into one of the following categories:
Template These are objects with the same types as the
objects returned by a request. The difference
is that a template only specifies the shape of
the data -- there are no values contained in
it. Templates are used to select specific data
to be returned. No ordering of returned data
is implied by the ordering in a template. A
template may be either simple or structured,
depending upon what data it is naming. The
representations of the simple data items in a
template all have a length of zero.
Tag A tag is a special case of a template that is a
simple (non-structured) type (i.e., it names
exactly one node in the dictionary tree).
Opcodes These objects tell the query interpreter to do
something. They are described in detail later in
this report. Opcodes are represented as an
application-specific type whose value determines
the operation. These values are defined in
RFC-1024.
Data These are the same objects that are used to
represent information returned from an entity.
It is occasionally be necessary to send data as
Trewitt & Partridge [Page 6]
^L
RFC 1023 HEMS Language October 1987
part of a request. For example, when requesting
information about the interface with IP address
"10.0.0.51", the address would be sent in the
same format in the request as it would be seen
in a reply.
Data, Tags, and Templates are usually in either the context-specific
class, except for items in the root dictionary and a few special
cases, which are in the application-specific class.
QUERY LANGUAGE
Although queries are formed in a flexible way using what we term a
"language", this is not a programming language. There are operations
that operate on data, but most other features of programming
languages are not present. In particular:
- Programs are not stored in the query processor.
- The only form of temporary storage is a stack.
In the current version of the query language:
- There are no subroutines.
- There are no control structures defined in the language.
- There are no arithmetic or conditional operators.
These features could be added to the language if needed.
This language is designed with the goal of being expressive enough to
write useful queries with, but to guarantee simplicity, both of query
execution and language implementation.
The central element of the language is the stack. It may contain
templates, (and therefore tags), data, or dictionaries (and therefore
arrays) from the entity being monitored. Initially, it contains one
item, the root dictionary.
The overall operation consists of reading ASN.1 objects from the
input stream. All objects that aren't opcodes are pushed onto the
stack as soon as they are read. Each opcode is executed immediately
and may remove things from the stack and may generate ASN.1 objects
and send them to the output stream. Note that portions of the
response may be generated while the query is still being received.
The following opcodes are defined in the language. This is a
Trewitt & Partridge [Page 7]
^L
RFC 1023 HEMS Language October 1987
provisional list -- changes may need to be made to deal with
additional needs.
In the descriptions below, opcode names are in capital letters,
preceded by the arguments used from the stack and followed by results
left on the stack. For example:
OP a b OP t
means that the OP operator takes <a> and <b> off of the
stack and leaves <t> on the stack. Many of the operators
below leave the first operand (<a> in this example) on
the stack for future use.
Here are the operators defined in the query language:
GET dict template GET dict
Emit an ASN.1 object with the same "shape" as the given
template. Any items in the template that are not in
<dictionary> (or its components) are represented as
objects with a length of zero. This handles requests for
data that isn't available, either because it isn't
defined or because it doesn't apply in this situation.
or dict GET dict
If there is no template, get all of the items in the
dictionary. This is equivalent to providing a template
that lists all of the items in the dictionary.
BEGIN dict1 tag BEGIN dict1 dict
Pushes the value for dict{ tag } on the stack, which
should be another dictionary. At the same time, produce
the beginning octets of an ASN.1 object corresponding to
that dictionary. It is up to the implementation to
choose between using the "indefinite length"
representation or going back and filling the length in
later.
END dict END --
Pop the dictionary off of the stack and terminate the
currently open ASN.1 object. Must be paired with a
BEGIN.
Getting Items Based on Their Values
One problem that has not been dealt with was alluded to earlier:
When dealing with array data, how do you specify one or more entries
based upon some value in the array entries? Consider the situation
where there are several interfaces. The data might be organized as:
Trewitt & Partridge [Page 8]
^L
RFC 1023 HEMS Language October 1987
interfaces {
interface { type, ip-addr, in-pkts, out-pkts, ...}
interface { type, ip-addr, in-pkts, out-pkts, ...}
:
:
}
If you only want information about one interface (perhaps because
there is an enormous amount of data about each), then you have to
have some way to name it. One possibility is to just number the
interfaces and refer to the desired interface as:
interfaces(3)
for the third one.
But this is probably not sufficient since interface numbers may
change over time, perhaps from one reboot to the next. This method
is not sufficient at all for arrays with many elements, such as
processes, routing tables, etc. Large, changing arrays are probably
the more common case, in fact.
Because of the lack of utility of indexing in this context, there is
no general mechanism in the language for indexing.
A better scheme is to select objects based upon some value contained
in them, such as the IP address or process name. The GET-MATCH
operator provides this functionality in a fairly general way.
GET-MATCH array value template GET-MATCH array
<array> should be a array (dictionary containing only
one type of item). The first tag in <value> and
<template> must match this type. For each entry in
<array>, match the <value> against the contents of
the entry. If there is a match, emit the entry based
upon <template>, just as in a GET operation.
If there are several leaf items in the value to be matched against,
as in:
route-entry{ interface(1), cost(3) }
all of them must match an array entry for it to be emitted.
Here is an example of how this operator would be used to obtain the
input and output packet counts for the interface with ip-address
10.0.0.51.
Trewitt & Partridge [Page 9]
^L
RFC 1023 HEMS Language October 1987
interfaces BEGIN -- get dictionary
interface{ ip-addr(10.0.0.51) } -- value to match
interface{ in-pkts out-pkts } -- data template to get
GET-MATCH
END -- finished with dict
The exact meaning of a "match" is dependent upon the characteristics
of the entities being compared. In almost all cases, it is a
comparison for exact equality. However, it is quite reasonable to
define values that allow matches to do interesting things. For
example, one might define three different flavors of "ip-addr": one
that has only the IP net number, one with the IP net+subnet, and the
whole IP address. Another possibility is to allow for wildcards in
IP addresses (e.g., if the "host" part of an IP address was all ones,
then that would match against any IP address with the same net
number).
So, for all data items defined, the behavior of the match operation
must be defined if it is not simple equality.
Implementations don't have to provide the ability to use all items in
an object to match against. It is expected that some data structures
that provide for efficient lookup for one item may be very
inefficient for matching against others. (For instance, routing
tables are designed for lookup with IP addresses. It may be very
difficult to search the routing table, matching against costs.)
NOTE: It would be desirable to provide a general-purpose filtering
capability, rather than just "equality" as provided by GET-MATCH.
However, because of the potential complexity of such a facility, lack
of a widely-accepted representation for filter expressions, and time
pressure, we are not defining this mechanism now.
However, if a generalized filtering mechanism is devised, the GET-
MATCH operator will disappear.
Data Attributes
Although ASN.1 data is self-describing as far as the structure goes,
it gives no information about what the data means (e.g., By looking
at the raw data, it is possible to tell that an item is of type
[context 5] and 4 octets long). That does not tell how to interpret
the data (is this an integer, an IP address, or a 4-character
string?), or what the data means (IP address of what?).
Most of the time, this information will come from RFC-1024, which
defines all of the ASN.1 tags and their precise meaning. When
extensions have been made, it may not be possible to get
Trewitt & Partridge [Page 10]
^L
RFC 1023 HEMS Language October 1987
documentation on the extensions. (See the section about extensions,
page 15.)
The query language provides a set of operators parallel to the GET
and GET-MATCH operators that return a set of attributes describing
the data. This information should be sufficient to let a human
understand the meaning of the data and to let a sophisticated
application treat the data appropriately. The information is
sufficient to let an application format the information on a display
and decide whether or not to subtract one sample from another.
Some of the attributes are textual descriptions to help a human
understand the nature of the data and provide meaningful labels for
it. Extensive descriptions of standard data are optional, since they
are defined in RFC-1024. Complete descriptions of extensions must be
available, even if they are documented in a user's manual. Network
firefighters may not have the manual handy when the network is
broken.
The format of the attributes is not as simple as the format of the
data itself. It isn't possible to use the data's tag, since that
would just look exactly like the data itself. The format is:
Attributes ::= [APPLICATION 2] IMPLICIT SEQUENCE {
tagASN1 [0] IMPLICIT INTEGER,
valueFormat [1] IMPLICIT INTEGER,
longDesc [2] IMPLICIT IA5String OPTIONAL,
shortDesc [3] IMPLICIT IA5String OPTIONAL,
unitsDesc [4] IMPLICIT IA5String OPTIONAL,
precision [5] IMPLICIT INTEGER OPTIONAL,
properties [6] IMPLICIT BITSTRING OPTIONAL,
}
For example, the attributes for
system{ name, clock-msec }
might be:
system{
Attributes{
tagASN1(name), valueFormat(IA5String),
longDesc("The name of the host"),
shortDesc("hostname")
},
Attributes{
tagASN1(clock-msec), valueFormat(Integer),
longDesc("milliseconds since boot"),
shortDesc("uptime"), unitsDesc("ms")
precision(4294967296),
properties(1)
Trewitt & Partridge [Page 11]
^L
RFC 1023 HEMS Language October 1987
}
Note that in this example <name> and <clock-msec> are integer values
for the ASN.1 tags for the two data items. A complete definition of
the contents of the Attributes type is in RFC-1024.
Note that there will be exactly as many Attributes items in the
result as there are objects in the template. Attributes objects for
items which do not exist in the entity will have a valueFormat of
NULL and none of the optional elements will appear.
GET-ATTRIBUTES
dict template GET-ATTRIBUTES dict
Emit ASN.1 Attributes objects that for the objects named
in <template>. Any items in the template that are not
in <dictionary> (or its components), elicit an
Attributes object with no.
or dict GET-ATTRIBUTES dict
If there is no template, emit Attribute objects for all
of the items in the dictionary. This is equivalent to
providing a template that lists all of the items in the
dictionary. This allows a complete list of a
dictionary's contents to be obtained.
GET-ATTRIBUTES-MATCH
dict value template GET-ATTRIBUTES-MATCH dict <array>
should be an array (dictionary containing only one
type of item). The first tag in <value> and
<template> must match this type. For each entry in
<array>, match the <value> against the contents of the
entry. If there is a match, emit the atributes based
upon <template>, just as in a GET-ATTRIBUTES operation.
GET-ATTRIBUTES-MATCH is necessary because there will be situations
where the contents of the elements of an array may differ, even
though the array elements themselves are of the same type. The most
obvious example of this is the situation where several network
interfaces exist and are of different types, with different data
collected for each type.
NOTE: The GET-ATTRIBUTES-MATCH operator will disappear if a
generalized filtering mechanism is devised.
ADDITIONAL NOTE: A much cleaner method would be to store the
attributes as sub-components of the data item of interest. For
example, requesting:
system{ clock-msec() } GET
would normally just get the value of the data. Asking for an
Trewitt & Partridge [Page 12]
^L
RFC 1023 HEMS Language October 1987
additional layer down the tree would now get its attributes:
system{ clock-msec{ shortDesc, unitsDesc } GET
would get the named attributes. (The attributes would be named with
application-specific tags.) Unfortunately, ASN.1 doesn't provide an
obvious notation to describe this type of organization. So, we're
stuck with the GET-ATTRIBUTES operator. However, if this cleaner
organization becomes possible, this decision may be re-thought.
Examining Memory
Even with the ability to symbolically access all of this information
in an entity, there will still be times when it is necessary to get
to very low levels and examine memory, as in remote debugging
operations. The building blocks outlined so far can easily be
extended to allow memory to be examined.
Memory is modeled as an array, with an ASN.1 representation of
OctetString. Because of the variety of addressing architectures in
existence, the conversion between the OctetString and "memory" is
very machine-dependent. The only simple case is for byte-addressed
machines with 8 bits per byte.
Each address space in an entity is represented by one dictionary. In
a one-address-space situation, this dictionary will be at the top
level. If each process has its own address space, then one "memory"
dictionary may exist for each process.
The GET-RANGE operator is provided for the primary purpose of
retrieving the contents of memory, but can be used on any array. It
is only useful in these other contexts if the array index is
meaningful.
GET-RANGE array start length GET-RANGE dict
Get <length> elements of <array> starting at <start>.
<start> and <length> are both ASN.1 INTEGER type.
The returned data may not be <length> octets long, since it may take
more than one octet to represent one memory location.
Memory is special in that it will not automatically be returned as
part of a request for an entire dictionary (e.g., If memory is part
of the "system" dictionary, then requesting:
system{}
will emit the entire contents of the system dictionary, but not the
memory item).
NOTE: The GET-RANGE operator may disappear if a generalized
filtering mechanism is devised.
Trewitt & Partridge [Page 13]
^L
RFC 1023 HEMS Language October 1987
Controlling Things
All of the operators defined so far only allow data in an entity to
be retrieved. By replacing the "template" arguments used in the GET
operators with values, data in the entity can be changed.
There are many control operations that do not correspond to simply
changing the value of a piece of data, such as bringing an interface
"down" or "up". In these cases, a special data item associated with
the component being controlled (e.g., each interface), would be
defined. Control operations then consist of "setting" this item to
an appropriate command code.
SET dict value SET dict
Set the value(s) of data in the entity to the value(s)
given in <value>.
SET-MATCH array mvalue svalue SET-MATCH dict
<array> should be a array (dictionary containing only one
type of item). The first tag in <mvalue> and <svalue>
must match this type. For each entry in <array>, match
the <mvalue> against the contents of the entry. If there
is a match, set value(s) in the entity to the value(s) in
<svalue>, just as in SET.
CREATE array value SET dict
Insert a new entry into <array>. Depending upon the
context, there may be severe restrictions about what
constitutes a valid <value>.
DELETE array value SET dict
Delete the entry(s) in <array> that have values that
match <value>.
If there are several leaf items in the matched value, as in
route-entry{ interface(1), cost(3) }
all of them must match an array entry for any values to be changed.
Here is an example of how this operator would be used to shut down
the interface with ip-address 10.0.0.51 changing its status to
"down".
interfaces BEGIN -- get dictionary
interface{ ip-addr(10.0.0.51) } -- value to match
interface{ status(down) } -- value to set
SET-MATCH
END -- finished with dict
Trewitt & Partridge [Page 14]
^L
RFC 1023 HEMS Language October 1987
Delete the routing table entry for 36.0.0.0.
route-table BEGIN -- get dictionary
route-entry{ ip-addr(36.0.0.0) } -- value to match
DELETE
END -- finished with dict
Note that this BEGIN/END pair ends up sending an empty ASN.1 item.
We don't regard this as a problem, as it is likely that there will be
some get operations executed in the same context. In addition, the
"open" ASN.1 item provides the correct context for reporting errors.
(See page 14.)
NOTE: The SET-MATCH operator will disappear and the DELETE operator
will change if a generalized filtering mechanism is devised.
Atomic Operations
Atomic operations can be provided if desired by allowing the stack to
contain a fragment of a query. A new operation would take a query
fragment and verify its executability and execute it, atomically.
This is mentioned as a possibility, but it may be difficult to
implement. More study is needed.
ERRORS
If some particular information is requested but is not available for
any reason (e.g., it doesn't apply to this implementation, isn't
collected, etc.), it can ALWAYS be returned as "no-value" by giving
the ASN.1 length as 0.
When there is any other kind of error, such as having improper
arguments on the top of the stack or trying to execute BEGIN when the
tag doesn't refer to a dictionary, an ERROR object be emitted. The
contents of this object identify the exact nature of the error and
are discussed in RFC-1024.
Since there may be several unterminated ASN.1 objects in progress at
the time the error occurs, each one must be terminated. Each
unterminated object will be closed with a copy of the ERROR object.
Depending upon the type of length encoding used for this object, this
will involve filling the value for the length (definite length form)
or emitting two zero octets (indefinite length form). After all
objects are terminated, a final copy of the ERROR object will be
emitted. This structure guarantees that the error will be noticed at
every level of interpretation on the receiving end.
Trewitt & Partridge [Page 15]
^L
RFC 1023 HEMS Language October 1987
If there was an error before any ASN.1 objects were generated, then
the result would simply be:
error(details)
If a couple of ASN.1 objects were unterminated, the result might look
like:
interfaces{
interface { name(...) type(...) error(details) }
error(details)
}
error{details}
EXTENDING THE SET OF VALUES
There are two ways to extend the set of values understood by the
query language. The first is to register the data and its meaning
and get an ASN.1 tag assigned for it. This is the preferred method
because it makes that data specification available for everyone to
use.
The second method is to use the VendorSpecific application type to
"wrap" the vendor-specific data. Wherever an implementation defines
data that is not in RFC-1024, the "VendorSpecific" tag should be used
to label a dictionary containing the vendor-specific data. For
example, if a vendor had some data associated with interfaces that
was too strange to get standard numbers assigned for, they could,
instead represent the data like this:
interfaces {
interface {
in-pkts, out-pkts, ...
VendorSpecific { ephemeris, declination }
}
}
In this case, ephemeris and declination are two context-dependent
tags assigned by the vendor for its non-standard data.
If the vendor-specific method is chosen, the private data MUST have
descriptions available through the GET-ATTRIBUTES and GET-
ATTRIBUTESMATCH operators. Even with this descriptive ability, the
preferred method is to get standard numbers assigned if possible.
IMPLEMENTATION
Although it is not normally in the spirit of RFCs to define an
implementation, the authors feel that some suggestions will be useful
Trewitt & Partridge [Page 16]
^L
RFC 1023 HEMS Language October 1987
to early implementors of the query language. This list is not meant
to be complete, but merely to give some hints about how the authors
imagine that the query processor might be implemented efficiently.
- The stack is an abstraction -- it should be implemented
with pointers, not by copying dictionaries, etc.
- An object-oriented approach should make initial
implementation fairly easy. Changes to the "shape" if the
data items (which will certainly occur, early on) will also
be easier to make.
- Only a few "messages" need to be understood by objects.
- Most interesting objects are dictionaries, each of which
can be implemented using pointers to the data and procedure
"hooks" to perform specific operations such as GET, MATCH,
SET, etc.
- The hardest part is actually extracting the data from an
existing TCP/IP implementions that weren't designed with
detailed monitoring in mind. This should be less of a
problem if a system is designed with easy monitoring as a
goal.
OBTAINING A COPY OF THE ASN.1 SPECIFICATION
Copies of ISO Standard ASN.1 (Abstract Syntax Notation 1) are
available from the following source. It comes in two parts; both are
needed:
IS 8824 -- Specification (meaning, notation)
IS 8825 -- Encoding Rules (representation)
They are available from:
Omnicom Inc.
115 Park St, S.E. (new address as of March, 1987)
Vienna, VA 22180
(703) 281-1135
Trewitt & Partridge [Page 17]
^L
|