1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
|
Network Working Group F. Baker
Request for Comments: 1232 Advanced Computer Communications, Inc.
C. Kolb
Performance Systems International, Inc.
Editors
May 1991
Definitions of Managed Objects
for the DS1 Interface Type
Status of this Memo
This memo defines objects for managing DS1 Interface objects for use
with the SNMP protocol. This memo is a product of the Transmission
MIB Working Group of the Internet Engineering Task Force (IETF).
This RFC specifies an IAB standards track protocol for the Internet
community, and requests discussion and suggestions for improvements.
Please refer to the current edition of the "IAB Official Protocol
Standards" for the standardization state and status of this protocol.
Distribution of this memo is unlimited.
Table of Contents
1. Abstract .............................................. 1
2. The Network Management Framework....................... 2
3. Objects ............................................... 2
3.1 Format of Definitions ............................... 3
4. Overview .............................................. 3
4.1 Binding between Interfaces and CSUs ................. 3
4.2 Objectives of this MIB Module ....................... 4
4.3 DS1 Terminology ..................................... 4
5. Definitions ........................................... 6
5.1 The DS1 Configuration Group ......................... 6
5.2 The DS1 Interval Group .............................. 13
5.3 The DS1 Current Group ............................... 16
5.4 The DS1 Total Group ................................. 19
5.5 The DS1 Fractional Group ............................ 22
6. Acknowledgements ...................................... 25
7. References ............................................ 26
8. Security Considerations................................ 27
9. Authors' Addresses..................................... 28
1. Abstract
This memo defines an experimental portion of the Management
Information Base (MIB) for use with network management protocols in
TCP/IP-based internets. In particular, this memo defines MIB objects
Transmission MIB Working Group [Page 1]
^L
RFC 1232 DS1 Interface Objects May 1991
for representing DS1 physical interfaces. Implementors should
consult in addition to this memo the companion document that
describes that DS3 managed objects.
2. The Network Management Framework
The Internet-standard Network Management Framework consists of three
components. They are:
RFC 1155 which defines the SMI, the mechanisms used for describing
and naming objects for the purpose of management. RFC 1212
defines a more concise description mechanism, which is wholly
consistent with the SMI.
RFC 1156 which defines MIB-I, the core set of managed objects for
the Internet suite of protocols. RFC 1213, defines MIB-II, an
evolution of MIB-I based on implementation experience and new
operational requirements.
RFC 1157 which defines the SNMP, the protocol used for network
access to managed objects.
The Framework permits new objects to be defined for the purpose of
experimentation and evaluation.
3. Objects
Managed objects are accessed via a virtual information store, termed
the Management Information Base or MIB. Objects in the MIB are
defined using the subset of Abstract Syntax Notation One (ASN.1) [7]
defined in the SMI. In particular, each object has a name, a syntax,
and an encoding. The name is an object identifier, an
administratively assigned name, which specifies an object type. The
object type together with an object instance serves to uniquely
identify a specific instantiation of the object. For human
convenience, we often use a textual string, termed the OBJECT
DESCRIPTOR, to also refer to the object type.
The syntax of an object type defines the abstract data structure
corresponding to that object type. The ASN.1 language is used for
this purpose. However, the SMI [3] purposely restricts the ASN.1
constructs which may be used. These restrictions are explicitly made
for simplicity.
The encoding of an object type is simply how that object type is
represented using the object type's syntax. Implicitly tied to the
notion of an object type's syntax and encoding is how the object type
is represented when being transmitted on the network.
Transmission MIB Working Group [Page 2]
^L
RFC 1232 DS1 Interface Objects May 1991
The SMI specifies the use of the basic encoding rules of ASN.1 [8],
subject to the additional requirements imposed by the SNMP.
3.1. Format of Definitions
Section 5 contains contains the specification of all object types
contained in this MIB module. The object types are defined using the
conventions defined in the SMI, as amended by the extensions
specified in [13].
4. Overview
These objects are used when the particular media being used to
realize an interface is a DS1 physical interface. At present, this
applies to these values of the ifType variable in the Internet-
standard MIB:
ds1 (18)
e1 (19)
The definitions contained herein are based on the AT&T T-1
specifications and Extended Superframe (ESF) format [9, 10], the
latter of which conforms to proposed ANSI specifications [14, 15].
The various T1 and E1 line disciplines are similar enough that
separate MIBs are unwarranted, although there are some differences.
For example, Loss of Frame is defined more rigorously in the ESF
specification than in the D4 specification, but it is defined in
both.
4.1. Binding between Interfaces and CSUs
It should be noted that it is possible to multiplex multiple bit
streams onto a single DS1 physical interface (CSU), realizing
multiple interfaces from the perspective of the Internet-standard
MIB. It is also possible to concatenate physical interfaces to
provide a single logical interface. As such, it is important to be
able to distinguish between the indices used to identify the CSUs
attached to a node and the indices used to identify an interface (in
the MIB sense) attached to a node.
Each agent which resides on a host which uses DS1 physical interfaces
is required to assign a small, positive integer uniquely to each CSU.
This is known as the "CSUIndex", and is used to distinguish between
different CSUs attached to a node. The CSUIndex is also used as the
"key" when accessing tabular information about DS1 physical
interfaces.
The potentially many-to-one binding between CSU indices and the
Transmission MIB Working Group [Page 3]
^L
RFC 1232 DS1 Interface Objects May 1991
ifIndex value assigned to each MIB interface are defined in the
ds1ConfigTable table defined in the next section.
4.2. Objectives of this MIB Module
There are numerous things that could be included in a MIB for DS1
Interfaces: the management of multiplexors, CSUs, DSUs, and the like.
The intent of this document is to facilitate the common management of
CSUs, both in-chassis and external via proxy. As such, a design
decision was made up front to very closely align the MIB with the set
of objects that can generally be read from CSUs that are currently
deployed, which is to say ESF CSUs conforming to AT&T specifications.
However, by simple generalization of these objects, the MIB is also
made applicable to D4 and G.704 devices.
To meet a requirement not easily satisfied in other places, there is
one additional group present, the Fractional DS1 group. This is
intended to facilitate the use of fractional DS1 devices (i.e.,
devices which utilize a subset of the 8 bit channels available in the
frame) over the managed CSUs.
4.3. DS1 Terminology
The terminology used in this document to describe error conditions on
a T1 or E1 circuit monitored by a CSU are from references [10], [11],
[14], and [15].
Out of Frame event
An Out of Frame event is declared when the receiver
detects two or more framing-bit errors within a 3
millisecond period, or two or more errors out of five or
less consecutive framing-bits. At this time, the framer
enters the Out of Frame State, and starts searching for a
correct framing pattern. The Out of Frame state ends
when reframe occurs.
Loss of Signal
This event is declared upon observing 175 +/- 75
contiguous pulse positions with no pulses of either
positive or negative polarity (also called keep alive).
Code Violation Error Event
A Code Violation Error Event is the occurrence of a
received Cyclic Redundancy Check code that is not
identical to the corresponding locally-calculated code.
Bipolar Violation
A Bipolar Violation, for B8ZS-coded signals, is the
Transmission MIB Working Group [Page 4]
^L
RFC 1232 DS1 Interface Objects May 1991
occurrence of a received bipolar violation that is not
part of a zero-substitution code. It also includes other
error patterns such as: eight or more consecutive zeros
and incorrect parity.
Errored Seconds
An Errored Second is a second with one or more Code
Violation Error Events OR one or more Out of Frame
events. In D4 and G.704 section 2.1.3.2 (eg, G.704 which
does not implement the CRC), the presence of Bipolar
Violations also triggers an Errored Second.
Severely Errored Seconds
A Severely Errored Second is a second with 320 or more
Code Violation Error Events OR one or more Out of Frame
events.
Severely Errored Framing Second
An Severely Errored Framing Second is a second with one
or more Out of Frame events.
Unavailable Signal State
This state is declared at the onset of 10 consecutive
Severely Errored Seconds. It is cleared at the onset of
10 consecutive seconds with no Severely Errored Second.
Unavailable Seconds
Unavailable Seconds are calculated by counting the number
of seconds that the CSU is in the Unavailable Signal
State, including the initial 10 seconds to enter the
state but not including the 10 seconds to exit the state.
Note that any second that may be counted as an
Unavailable Second may not be counted as an Errored
Second, a Severely Errored Second. Since the 10 Severely
Errored Seconds that comprise the transition from the
available to Unavailable Signal State may also be counted
as Errored Seconds, and Severely Errored Seconds previous
to entering the state, these three counters are adjusted
so that any second counted during this transition is then
subtracted. The 10 seconds in the transition from
unavailable to available may be counted as Errored
Seconds.
A special case exists when the 10 or more second period
crosses the 900 second statistics window boundary, as the
foregoing description implies that the Severely Errored
Second and Unavailable Second counters must be adjusted
Transmission MIB Working Group [Page 5]
^L
RFC 1232 DS1 Interface Objects May 1991
when the Unavailable Signal State is entered. Clearly,
successive GETs of the affected ds1IntervalSES and
ds1IntervalUAS objects will return differing values if
the first GET occurs during the first few seconds of the
window. This is viewed as an unavoidable side-effect of
selecting the presently deployed AT&T objects as a basis
for this memo.
Yellow Alarm
A Yellow Alarm is declared because of an incoming Yellow
Signal from the far-end. In effect, the circuit is
declared to be a one way link.
Red Alarm
A Red Alarm is declared because of an incoming Loss of
Signal, Loss of Framing, Alarm Indication Signal. After
a Red Alarm is declared, the device sends a Yellow Signal
to the far-end. The far-end, when receives the Yellow
Signal, declares a Yellow Alarm.
Circuit Identifier
This is a character string specified by the circuit
vendor, and is useful when communicating with the vendor
during the troubleshooting process.
5. Definitions
RFC1232-MIB DEFINITIONS ::= BEGIN
IMPORTS
experimental, Counter
FROM RFC1155-SMI
DisplayString
FROM RFC1158-MIB
OBJECT-TYPE
FROM RFC-1212;
-- This MIB module uses the extended OBJECT-TYPE macro as
-- defined in [13].
-- this is the MIB module for ds1 objects
ds1 OBJECT IDENTIFIER ::= { experimental 2 }
-- the DS1 Configuration group
Transmission MIB Working Group [Page 6]
^L
RFC 1232 DS1 Interface Objects May 1991
-- Although the objects in this group are read-only, at the
-- agent's discretion they may be made read-write so that the
-- management station, when appropriately authorized, may
-- change the behavior of the CSU, e.g., to place the device
-- into a loopback state or emit a QRSS BER test.
-- Implementation of this group is mandatory for all systems
-- that attach to a ds1.
ds1ConfigTable OBJECT-TYPE
SYNTAX SEQUENCE OF DS1ConfigEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The DS1 Configuration table."
::= { ds1 1 }
ds1ConfigEntry OBJECT-TYPE
SYNTAX DS1ConfigEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"An entry in the DS1 Configuration table."
INDEX { ds1CSUIndex }
::= { ds1ConfigTable 1 }
DS1ConfigEntry ::=
SEQUENCE {
ds1CSUIndex
INTEGER,
ds1Index
INTEGER,
ds1TimeElapsed
INTEGER (1..900),
ds1ValidIntervals
INTEGER (0..96),
ds1LineType
INTEGER,
ds1ZeroCoding
INTEGER,
ds1Loopback
INTEGER,
ds1SendCode
INTEGER,
ds1YellowAlarm
INTEGER,
ds1RedAlarm
INTEGER,
Transmission MIB Working Group [Page 7]
^L
RFC 1232 DS1 Interface Objects May 1991
ds1CircuitIdentifier
DisplayString (SIZE (0..255))
}
ds1CSUIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The index value which uniquely identifies the CSU
to which this entry is applicable."
::= { ds1ConfigEntry 1 }
ds1Index OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An index value that uniquely identifies an
interface to a ds1. The interface identified by a
particular value of this index is the same
interface as identified by the same value an
ifIndex object instance."
::= { ds1ConfigEntry 2 }
ds1TimeElapsed OBJECT-TYPE
SYNTAX INTEGER (1..900)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of seconds that have elapsed since the
beginning of the current error-measurement period.
Any fraction is rounded up."
::= { ds1ConfigEntry 3 }
ds1ValidIntervals OBJECT-TYPE
SYNTAX INTEGER (0..96)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of previous intervals for which valid
data was collected. The value will be 96 unless
the CSU device was brought online within the last
24 hours, in which case the value will be the
number of complete 15 minute intervals the CSU has
been online."
::= { ds1ConfigEntry 4 }
Transmission MIB Working Group [Page 8]
^L
RFC 1232 DS1 Interface Objects May 1991
ds1LineType OBJECT-TYPE
SYNTAX INTEGER {
other(1),
ds1ESF(2),
ds1D4(3),
ds1ANSI-ESF(4),
ds1G704(5),
ds1G704-CRC(6)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable indicates the variety of DS1 Line
implementing this circuit. The type of circuit
affects the number of bits per second that the
circuit can reasonably carry, as well as the
interpretation of the usage and error statistics.
The values, in sequence, describe:
TITLE: SPECIFICATION:
ds1ESF AT&T Extended SuperFrame DS1 [10]
ds1D4 AT&T D4 format DS1 [16], [17]
ds1ANSI-ESF ANSI Extended SuperFrame format [14]
ds1G704 CCITT Recommendation G.704 [12]
(section 2.1.3.2)
ds1G704-CRC CCITT Recommendation G.704 [12]
(section 2.1.3.1)
"
::= { ds1ConfigEntry 5 }
ds1ZeroCoding OBJECT-TYPE
SYNTAX INTEGER {
ds1JammedBit(1),
ds1B8ZS(2),
ds1InvertedHDLC(3),
ds1HDB3(4),
ds1ZBTSI(5)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable describes the variety of Zero Code
Suppression used on the link, which in turn
affects a number of its characteristics.
ds1JammedBit refers the Jammed bit Zero Encoding,
in which the AT&T specification of at least one
pulse every 8 bit periods is literally implemented
Transmission MIB Working Group [Page 9]
^L
RFC 1232 DS1 Interface Objects May 1991
by forcing a pulse in bit 8 of each channel.
Thus, only seven bits per channel, or 1.344 Mbps,
is available for data.
ds1B8ZS refers to the use of a specified pattern
of normal bits and bipolar violations which are
used to replace a sequence of eight zero bits (see
[14]). In this context, all eight bits in a
channel are technically available for data, but
care must be taken with D4 encoded data to avoid
having HDLC Flag streams imitate spurious Yellow
Alarm conditions. Typically, one bit per frame is
ignored to force flag streams to rotate, thereby
avoiding this error type. CCITT Recommendation
G.703 [11] may be referred to for further
definition of these.
ds1InvertedHDLC refers to the practice, common on
HDLC encoded DS1 data links, of inverting the data
between the serial interface chip and the CSU.
Since HDLC guarantees one zero every 6 bits in the
worst case, while the standards call for (in
effect) at least one pulse every eight, inverted
HDLC enjoys 4/24 one's density on the line, which
may improve the effective clock stability of a DS1
line. As with B8ZS, all eight bits in a channel
are technically available for data, but care must
be taken with D4 encoded data to avoid having HDLC
Flag streams imitate spurious Yellow Alarm
conditions. Typically, one bit per frame is
ignored to force flag streams to rotate, thereby
avoiding this error type.
ANSI Clear Channels may use ds1ZBTSI, or Zero Byte
Time Slot Interchange (see [14]).
G.704 links, with or without CRC, use ds1HDB3 (see
[11]). "
::= { ds1ConfigEntry 6 }
ds1Loopback OBJECT-TYPE
SYNTAX INTEGER {
ds1NoLoop(1),
ds1LocalLoopbackLocalSide(2),
ds1LocalLoopbackRemoteSide(3),
ds1RemoteLoopbackLocalSide(4),
ds1RemoteLoopbackRemoteSide(5)
}
Transmission MIB Working Group [Page 10]
^L
RFC 1232 DS1 Interface Objects May 1991
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable represents the loopback state of
the CSU. Devices supporting read/write access
should return badValue in response to a requested
loopback state that the CSU does not support. The
values mean:
ds1NoLoop
Not in the loopback state. A device that is
not capable of performing a loopback on either
interface shall always return this as it's
value.
ds1LocalLoopbackLocalSide
Signal received from the local side of the
device is looped back at the local connector
(eg, without involving the CSU).
ds1LocalLoopbackRemoteSide
Signal received from the local side of the
device is looped back at the remote connector
(eg, through the CSU).
ds1RemoteLoopbackLocalSide
Signal received from the remote side of the
device is looped back at the local connector
(eg, through the CSU).
ds1RemoteLoopbackRemoteSide
Signal received from the remote side of the
device is looped back at the remote connector
(eg, without involving the CSU)."
::= { ds1ConfigEntry 7 }
ds1SendCode OBJECT-TYPE
SYNTAX INTEGER {
ds1OtherTest(1),
ds1SendNoCode(2),
ds1SendSetCode(3),
ds1SendResetCode(4),
ds1SendQRSS(5)
Transmission MIB Working Group [Page 11]
^L
RFC 1232 DS1 Interface Objects May 1991
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable indicates what type of code is
being sent across the DS1 circuit by the CSU. The
values mean:
ds1SendNoCode sending looped or normal data
ds1SendSetCode sending a loopback request
ds1SendResetCode sending a loopback termination request
ds1SendQRSS sending the BERT pattern described in
ANSI T1.403-1989 section 5.6
ds1OtherTest sending a different BERT/BLERT pattern,
such as all zeroes, all ones, etc."
::= { ds1ConfigEntry 8 }
ds1YellowAlarm OBJECT-TYPE
SYNTAX INTEGER {
ds1NoYellowAlarm (1),
ds1YellowAlarm (2)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable indicates if a Yellow Alarm
condition exists.
Note that G.704 interfaces do not support Yellow
Alarms. Accordingly, such agents should return
the value ds1NoYellowAlarm."
::= { ds1ConfigEntry 9 }
ds1RedAlarm OBJECT-TYPE
SYNTAX INTEGER {
ds1NoRedAlarm (1),
ds1RedAlarm (2)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable indicates if a Red Alarm condition
exists.
Note that G.704 interfaces do not support Red
Alarms. Accordingly, such agents should return
the value ds1NoRedAlarm."
::= { ds1ConfigEntry 10 }
Transmission MIB Working Group [Page 12]
^L
RFC 1232 DS1 Interface Objects May 1991
ds1CircuitIdentifier OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable contains the transmission vendor's
circuit identifier, for the purpose of
facilitating troubleshooting."
::= { ds1ConfigEntry 11 }
-- the DS1 Interval group
-- Implementation of this group is mandatory for all systems
-- that attach to a ds1.
-- It is recognized that some currently deployed CSUs do not
-- record the entire set of statistics specified in this
-- group. Accordingly, some agents queried for these objects
-- may treat these objects as having an ACCESS clause value
-- of not-accessible.
-- The DS1 Interval Table contains various statistics
-- collected by each CSU over the previous 24 hours of
-- operation. The past 24 hours are broken into 96 completed
-- 15 minute intervals.
ds1IntervalTable OBJECT-TYPE
SYNTAX SEQUENCE OF DS1IntervalEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The DS1 Interval table."
::= { ds1 2 }
ds1IntervalEntry OBJECT-TYPE
SYNTAX DS1IntervalEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"An entry in the DS1 Interval table."
INDEX { ds1IntervalIndex, ds1IntervalNumber }
::= { ds1IntervalTable 1 }
DS1IntervalEntry ::=
SEQUENCE {
ds1IntervalIndex
INTEGER,
Transmission MIB Working Group [Page 13]
^L
RFC 1232 DS1 Interface Objects May 1991
ds1IntervalNumber
INTEGER (1..96),
ds1IntervalESs
Counter,
ds1IntervalSESs
Counter,
ds1IntervalSEFSs
Counter,
ds1IntervalUASs
Counter,
ds1IntervalCSSs
Counter,
ds1IntervalBPVs
Counter,
ds1IntervalCVs
Counter
}
ds1IntervalIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The index value which uniquely identifies the CSU
to which this entry is applicable. The interface
identified by a particular value of this index is
the same interface as identified by the same value
an ds1CSUIndex object instance."
::= { ds1IntervalEntry 1 }
ds1IntervalNumber OBJECT-TYPE
SYNTAX INTEGER (1..96)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A number between 1 and 96, where 1 is the most
recently completed 15 minute interval and 96 is
the least recently completed 15 minute interval
(assuming that all 96 intervals are valid)."
::= { ds1IntervalEntry 2 }
ds1IntervalESs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of Errored
Seconds, as defined by ANSI Draft Standard
Transmission MIB Working Group [Page 14]
^L
RFC 1232 DS1 Interface Objects May 1991
T1M1.3/90 - 027R2[15], encountered by a DS1 CSU
during one of the previous 96 fifteen minute
intervals."
::= { ds1IntervalEntry 3 }
ds1IntervalSESs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of
Severely Errored Seconds, as defined by ANSI Draft
Standard T1M1.3/90 - 027R2[15], encountered by a
DS1 CSU during one of the previous 96 fifteen
minute intervals."
::= { ds1IntervalEntry 4 }
ds1IntervalSEFSs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of
Severely Errored Framing Seconds, as defined by
ANSI Draft Standard T1M1.3/90 - 027R2[15],
encountered by a DS1 CSU during one of the
previous 96 fifteen minute intervals."
::= { ds1IntervalEntry 5 }
ds1IntervalUASs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of
Unavailable Seconds, as defined by ANSI Draft
Standard T1M1.3/90 - 027R2[15], encountered by a
DS1 CSU during one of the previous 96 fifteen
minute intervals."
::= { ds1IntervalEntry 6 }
ds1IntervalCSSs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of
Controlled Slip Seconds, as defined by ANSI Draft
Transmission MIB Working Group [Page 15]
^L
RFC 1232 DS1 Interface Objects May 1991
Standard T1M1.3/90 - 027R2[15], encountered by a
DS1 CSU during one of the previous 96 fifteen
minute intervals."
::= { ds1IntervalEntry 7 }
ds1IntervalBPVs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of Bipolar
Violations, as defined by ANSI Draft Standard
T1M1.3/90 - 027R2[15], encountered by a DS1 CSU
during one of the previous 96 fifteen minute
intervals."
::= { ds1IntervalEntry 8 }
ds1IntervalCVs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of Code
Violation Error Events, as defined by ANSI Draft
Standard T1M1.3/90 - 027R2[15], encountered by a
DS1 CSU during one of the previous 96 fifteen
minute intervals.
Note that D4 and G.704 (section 2.1.3.2)
interfaces do not support Code Violation Error
Events. Accordingly, such agents may treat this
object as having an ACCESS clause value of not-
accessible."
::= { ds1IntervalEntry 9 }
-- the DS1 Current group
-- Implementation of this group is mandatory for all systems
-- that attach to a ds1.
-- It is recognized that some currently deployed CSUs do not
-- record the entire set of statistics specified in this
-- group. Accordingly, some agents queried for these objects
-- may treat these objects as having an ACCESS clause value
-- of not-accessible.
-- The DS1 current table contains various statistics being
Transmission MIB Working Group [Page 16]
^L
RFC 1232 DS1 Interface Objects May 1991
-- collected for the current 15 minute interval.
ds1CurrentTable OBJECT-TYPE
SYNTAX SEQUENCE OF DS1CurrentEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The DS1 Current table."
::= { ds1 3 }
ds1CurrentEntry OBJECT-TYPE
SYNTAX DS1CurrentEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"An entry in the DS1 Current table."
INDEX { ds1CurrentIndex }
::= { ds1CurrentTable 1 }
DS1CurrentEntry ::=
SEQUENCE {
ds1CurrentIndex
INTEGER,
ds1CurrentESs
Counter,
ds1CurrentSESs
Counter,
ds1CurrentSEFSs
Counter,
ds1CurrentUASs
Counter,
ds1CurrentCSSs
Counter,
ds1CurrentBPVs
Counter,
ds1CurrentCVs
Counter
}
ds1CurrentIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The index value which uniquely identifies the CSU
to which this entry is applicable. The interface
identified by a particular value of this index is
the same interface as identified by the same value
Transmission MIB Working Group [Page 17]
^L
RFC 1232 DS1 Interface Objects May 1991
an ds1CSUIndex object instance."
::= { ds1CurrentEntry 1 }
ds1CurrentESs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of Errored
Seconds, as defined by ANSI Draft Standard
T1M1.3/90 - 027R2[15], encountered by a DS1 CSU in
the current 15 minute interval."
::= { ds1CurrentEntry 2 }
ds1CurrentSESs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of
Severely Errored Seconds, as defined by ANSI Draft
Standard T1M1.3/90 - 027R2[15], encountered by a
DS1 CSU in the current 15 minute interval."
::= { ds1CurrentEntry 3 }
ds1CurrentSEFSs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of
Severely Errored Framing Seconds, as defined by
ANSI Draft Standard T1M1.3/90 - 027R2[15],
encountered by a DS1 CSU in the current 15 minute
interval."
::= { ds1CurrentEntry 4 }
ds1CurrentUASs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of
Unavailable Seconds, as defined by ANSI Draft
Standard T1M1.3/90 - 027R2[15], encountered by a
DS1 CSU in the current 15 minute interval."
::= { ds1CurrentEntry 5 }
Transmission MIB Working Group [Page 18]
^L
RFC 1232 DS1 Interface Objects May 1991
ds1CurrentCSSs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of
Controlled Slip Seconds, as defined by ANSI Draft
Standard T1M1.3/90 - 027R2[15], encountered by a
DS1 CSU in the current 15 minute interval."
::= { ds1CurrentEntry 6 }
ds1CurrentBPVs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of Bipolar
Violations, as defined by ANSI Draft Standard
T1M1.3/90 - 027R2[15], encountered by a DS1 CSU in
the current 15 minute interval."
::= { ds1CurrentEntry 7 }
ds1CurrentCVs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of Code
Violation Error Events, as defined by ANSI Draft
Standard T1M1.3/90 - 027R2[15], encountered by a
DS1 CSU in the current 15 minute interval.
Note that D4 and G.704 (section 2.1.3.2)
interfaces do not support Code Violation Error
Events. Accordingly, such agents may treat this
object as having an ACCESS clause value of not-
accessible."
::= { ds1CurrentEntry 8 }
-- the DS1 Total group
-- Implementation of this group is mandatory for all systems
-- that attach to a ds1.
-- It is recognized that some currently deployed CSUs do not
-- record the entire set of statistics specified in this
-- group. Accordingly, some agents queried for these objects
Transmission MIB Working Group [Page 19]
^L
RFC 1232 DS1 Interface Objects May 1991
-- may treat these objects as having an ACCESS clause value
-- of not-accessible.
-- The DS1 Total Table contains the cumulative sum of the
-- various statistics for the 24 hour interval preceding the
-- first valid interval in the ds1CurrentTable.
ds1TotalTable OBJECT-TYPE
SYNTAX SEQUENCE OF DS1TotalEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The DS1 Total table. 24 hour interval."
::= { ds1 4 }
ds1TotalEntry OBJECT-TYPE
SYNTAX DS1TotalEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"An entry in the DS1 Total table."
INDEX { ds1TotalIndex }
::= { ds1TotalTable 1 }
DS1TotalEntry ::=
SEQUENCE {
ds1TotalIndex
INTEGER,
ds1TotalESs
Counter,
ds1TotalSESs
Counter,
ds1TotalSEFSs
Counter,
ds1TotalUASs
Counter,
ds1TotalCSSs
Counter,
ds1TotalBPVs
Counter,
ds1TotalCVs
Counter
}
ds1TotalIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
Transmission MIB Working Group [Page 20]
^L
RFC 1232 DS1 Interface Objects May 1991
DESCRIPTION
"The index value which uniquely identifies the CSU
to which this entry is applicable. The interface
identified by a particular value of this index is
the same interface as identified by the same value
an ds1CSUIndex object instance."
::= { ds1TotalEntry 1 }
ds1TotalESs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of Errored
Seconds, as defined by ANSI Draft Standard
T1M1.3/90 - 027R2[15], encountered by a DS1 CSU in
the previous 24 hour interval"
::= { ds1TotalEntry 2 }
ds1TotalSESs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of
Severely Errored Seconds, as defined by ANSI Draft
Standard T1M1.3/90 - 027R2[15], encountered by a
DS1 CSU in the previous 24 hour interval."
::= { ds1TotalEntry 3 }
ds1TotalSEFSs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of
Severely Errored Framing Seconds, as defined by
ANSI Draft Standard T1M1.3/90 - 027R2[15],
encountered by a DS1 CSU in the previous 24 hour
interval."
::= { ds1TotalEntry 4 }
ds1TotalUASs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of
Transmission MIB Working Group [Page 21]
^L
RFC 1232 DS1 Interface Objects May 1991
Unavailable Seconds, as defined by ANSI Draft
Standard T1M1.3/90 - 027R2[15], encountered by a
DS1 CSU in the previous 24 hour interval."
::= { ds1TotalEntry 5 }
ds1TotalCSSs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of
Controlled Slip Seconds, as defined by ANSI Draft
Standard T1M1.3/90 - 027R2[15], encountered by a
DS1 CSU in the previous 24 hour interval."
::= { ds1TotalEntry 6 }
ds1TotalBPVs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of Bipolar
Violations, as defined by ANSI Draft Standard
T1M1.3/90 - 027R2[15], encountered by a DS1 CSU in
the previous 24 hour interval."
::= { ds1TotalEntry 7 }
ds1TotalCVs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of Code
Violation Error Events, as defined by ANSI Draft
Standard T1M1.3/90 - 027R2[15], encountered by a
DS1 CSU in the previous 24 hour interval.
Note that D4 and G.704 (section 2.1.3.2)
interfaces do not support Code Violation Error
Events. Accordingly, such agents may treat this
object as having an ACCESS clause value of not-
accessible."
::= { ds1TotalEntry 8 }
-- the DS1 Fractional group
-- Implementation of this group is mandatory for those
Transmission MIB Working Group [Page 22]
^L
RFC 1232 DS1 Interface Objects May 1991
-- systems utilizing a fractional DS1 capability
-- The DS1 fractional table contains identifies which DS1
-- channels associated with a CSU are being used to support a
-- logical interface, i.e., an entry in the interfaces table
-- from the Internet-standard MIB. For Clear Channel
-- implementations, exactly one ifTable entry corresponds to
-- the CSU being managed. In this very typical case, the
-- variable ds1Index indicates the value of ifIndex which
-- corresponds to the interface being supported by a
-- particular CSU.
-- However, for fractional DS1 implementations, the
-- correspondent value of ds1Index is 0, and for each DS1
-- channel supporting a logical interface, there is an entry
-- in the DS1 fractional table which names a value for
-- ifIndex.
--
-- For ds1ESF, ds1D4, and ds1ANSI-ESF, there are 24 legal
-- channels, numbered 1 through 24.
--
-- For G.704, there are 32 legal channels, numbered 1
-- through 32. ds1G704 can carry user data in channels 2
-- through 32, channel 1 being an overhead channel.
-- ds1G704-CRC can carry user data in channels 2 through
-- 16 and 18 through 32, channels 1 and 17 being overhead
-- channels.
ds1FracTable OBJECT-TYPE
SYNTAX SEQUENCE OF DS1FracEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The DS1 Fractional table."
::= { ds1 5 }
ds1FracEntry OBJECT-TYPE
SYNTAX DS1FracEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"An entry in the DS1 Fractional table."
INDEX { ds1FracIndex, ds1FracNumber }
::= { ds1FracTable 1 }
DS1FracEntry ::=
SEQUENCE {
Transmission MIB Working Group [Page 23]
^L
RFC 1232 DS1 Interface Objects May 1991
ds1FracIndex
INTEGER,
ds1FracNumber
INTEGER (1..32),
ds1FracIfIndex
INTEGER
}
ds1FracIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The index value which uniquely identifies the CSU
to which this entry is applicable. The interface
identified by a particular value of this index is
the same interface as identified by the same value
an ds1CSUIndex object instance."
::= { ds1FracEntry 1 }
ds1FracNumber OBJECT-TYPE
SYNTAX INTEGER (1..32)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The channel number for this entry."
::= { ds1FracEntry 2 }
ds1FracIfIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An index value that uniquely identifies an
interface to a ds1. The interface identified by a
particular value of this index is the same
interface as identified by the same value an
ifIndex object instance."
::= { ds1FracEntry 3 }
END
Transmission MIB Working Group [Page 24]
^L
RFC 1232 DS1 Interface Objects May 1991
6. Acknowledgements
This document was produced by the SNMP and the Transmission MIB
Working Groups:
Anne Ambler, Spider
Karl Auerbach, Sun
Fred Baker, ACC
Ken Brinkerhoff
Ron Broersma, NOSC
Jack Brown, US Army
Theodore Brunner, Bellcore
Jeffrey Buffum, HP
Jeffrey D. Case, UTK
Chris Chiptasso, Spartacus
Paul Ciarfella, DEC
Bob Collet
Tracy Cox, Bellcore
James R. Davin, MIT-LCS
Kurt Dobbins, Cabletron
Nadya El-Afandi, Network Systems
Gary Ellis, HP
Fred Engle
Mike Erlinger
Richard Fox, Synoptics
Karen Frisa, CMU
Chris Gunner, DEC
Ken Hibbard, Xylogics
Ole Jacobsen, Interop
Ken Jones
Satish Joshi, Synoptics
Frank Kastenholz, Racal-Interlan
Shimshon Kaufman, Spartacus
Jim Kinder, Fibercom
Alex Koifman, BBN
Christopher Kolb, PSI
Cheryl Krupczak, NCR
Peter Lin, Vitalink
John Lunny, TWG
Carl Malamud
Keith McCloghrie, HLS
Donna McMaster, David Systems
Lynn Monsanto, Sun
Dave Perkins, 3COM
Jim Reinstedler, Ungerman Bass
Anil Rijsinghani, DEC
Kary Robertson
Marshall T. Rose, PSI (chair)
Transmission MIB Working Group [Page 25]
^L
RFC 1232 DS1 Interface Objects May 1991
L. Michael Sabo, NCSC
Jon Saperia, DEC
John Seligson
Fei Shu, NEC
Sam Sjogren, TGV
Mark Sleeper, Sparta
Lance Sprung
Mike St.Johns
Bob Stewart, Xyplex
Emil Sturniold
Kaj Tesink, Bellcore
Dean Throop, Data General
Bill Townsend, Xylogics
Maurice Turcotte
Kannan Varadhou
Sudhanshu Verma, HP
Warren Vik, Interactive Systems
David Waitzman, BBN
Steve Waldbusser, CMU
Dan Wintringhan
David Wood
Jeff Young, Cray Research
7. References
[1] Cerf, V., "IAB Recommendations for the Development of Internet
Network Management Standards", RFC 1052, NRI, April 1988.
[2] Cerf, V., "Report of the Second Ad Hoc Network Management Review
Group", RFC 1109, NRI, August 1989.
[3] Rose M., and K. McCloghrie, "Structure and Identification of
Management Information for TCP/IP-based internets", RFC 1155,
Performance Systems International, Hughes LAN Systems, May 1990.
[4] McCloghrie K., and M. Rose, "Management Information Base for
Network Management of TCP/IP-based internets", RFC 1156, Hughes
LAN Systems, Performance Systems International, May 1990.
[5] Case, J., Fedor, M., Schoffstall, M., and J. Davin, "Simple
Network Management Protocol", RFC 1157, SNMP Research,
Performance Systems International, Performance Systems
International, MIT Laboratory for Computer Science, May 1990.
[6] McCloghrie K., and M. Rose, Editors, "Management Information Base
for Network Management of TCP/IP-based internets", RFC 1213,
Performance Systems International, March 1991.
Transmission MIB Working Group [Page 26]
^L
RFC 1232 DS1 Interface Objects May 1991
[7] Information processing systems - Open Systems Interconnection -
Specification of Abstract Syntax Notation One (ASN.1),
International Organization for Standardization, International
Standard 8824, December 1987.
[8] Information processing systems - Open Systems Interconnection -
Specification of Basic Encoding Rules for Abstract Notation One
(ASN.1), International Organization for Standardization,
International Standard 8825, December 1987.
[9] AT&T Information Systems, AT&T ESF DS1 Channel Service Unit
User's Manual, 999-100-305, February 1988.
[10] AT&T Technical Reference, Requirements for Interfacing Digital
Terminal Equipment to Services Employing the Extended Superframe
Format, Publication 54016, May 1988.
[11] CCITT Specifications Volume III, Recommendation G.703,
Physical/Electrical Characteristics of Hierarchical Digital
Interfaces, July 1988.
[12] CCITT Specifications Volume III, Recommendation G.704,
Synchronous frame structures used at primary and secondary
hierarchical levels, July 1988.
[13] Rose, M., and K. McCloghrie, Editors, "Concise MIB Definitions",
RFC 1212, Performance Systems International, Hughes LAN Systems,
March 1991.
[14] ANSI T1.403-1989 American National Standard for
Telecommunications -- Carrier-to-Customer Installation -- DS1
Metallic Interface.
[15] ANSI T1M1.3/90 - 027R2 Draft Proposed Standard -- Description of
Installation and Maintenance Parameters for Digital Circuits,
Facilities, and Networks.
[16] Bell System Techical Reference, Publication 62411, High Capacity
Digital Service Channel Interface Specification, September 1983.
[17] Bell System Technical Reference, Publication 43801, "Digital
Channel Bank Requirements and Objectives", November 1982.
8. Security Considerations
Security issues are not discussed in this memo.
Transmission MIB Working Group [Page 27]
^L
RFC 1232 DS1 Interface Objects May 1991
9. Authors' Addresses
Fred Baker
Advanced Computer Communications, Inc.
720 Santa Barbara Street
Santa Barbara, California 93101
Phone: (805) 963 9431
EMail: fbaker@acc.com
Christopher P. Kolb
Performance Systems International, Inc.
Reston International Center
11800 Sunrise Valley Drive
Suite 1100
Reston, VA 22091
Phone: (703) 620-6651
EMail: kolb@psi.com
Transmission MIB Working Group [Page 28]
^L
|