1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
|
Network Working Group E. Decker
Request for Comments: 1286 cisco Systems, Inc.
P. Langille
Digital Equipment Corporation
A. Rijsinghani
Digital Equipment Corporation
K. McCloghrie
Hughes LAN Systems, Inc.
December 1991
Definitions of Managed Objects for Bridges
Status of this Memo
This memo is an extension to the SNMP MIB. This RFC specifies an IAB
standards track protocol for the Internet community, and requests
discussion and suggestions for improvements. Please refer to the
current edition of the "IAB Official Protocol Standards" for the
standardization state and status of this protocol. Distribution of
this memo is unlimited.
Table of Contents
1. Abstract ............................................. 2
2. The Network Management Framework...................... 2
3. Objects .............................................. 2
3.1 Format of Definitions ............................... 3
4. Overview ............................................. 3
4.1 Structure of MIB .................................... 4
4.1.1 The dot1dBase Group ............................... 7
4.1.2 The dot1dStp Group ................................ 7
4.1.3 The dot1dSr Group ................................. 7
4.1.4 The dot1dTp Group ................................. 7
4.1.5 The dot1dStatic Group ............................. 7
4.2 Relationship to Other MIBs .......................... 7
4.2.1 Relationship to the 'system' group ................ 8
4.2.2 Relationship to the 'interfaces' group ............ 8
4.3 Textual Conventions ................................. 9
5. Definitions .......................................... 9
5.1 Groups in the Bridge MIB ............................ 11
5.2 The dot1dBase Group Definitions ..................... 11
5.3 The dot1dStp Group Definitions ...................... 14
5.4 The dot1dSr Group Definitions ....................... 22
5.5 The dot1dTp Group Definitions ....................... 28
5.6 The dot1dStatic Group Definitions ................... 34
5.8 Traps for use by Bridges ............................ 36
6. Acknowledgments ...................................... 37
Decker, Langille, Rijsinghani & McCloghrie [Page 1]
^L
RFC 1286 Bridge MIB December 1991
7. References ........................................... 38
8. Security Considerations............................... 39
9. Authors' Addresses.................................... 40
1. Abstract
This memo defines a portion of the Management Information Base (MIB)
for use with network management protocols in TCP/IP based internets.
In particular it defines objects for managing bridges based on the
IEEE 802.1d draft standard between Local Area Network (LAN) segments.
Provisions are made for support of transparent and source route
bridging. Provisions are also made so that these objects apply to
bridges connected by subnetworks other than LAN segments.
2. The Network Management Framework
The Internet-standard Network Management Framework consists of three
components. They are:
RFC 1155 which defines the SMI, the mechanisms used for describing
and naming objects for the purpose of management. RFC 1212
defines a more concise description mechanism, which is wholly
consistent with the SMI.
RFC 1156 which defines MIB-I, the core set of managed objects for
the Internet suite of protocols. RFC 1213, defines MIB-II, an
evolution of MIB-I based on implementation experience and new
operational requirements.
RFC 1157 which defines the SNMP, the protocol used for network
access to managed objects.
The Framework permits new objects to be defined for the purpose of
experimentation and evaluation.
3. Objects
Managed objects are accessed via a virtual information store, termed
the Management Information Base or MIB. Objects in the MIB are
defined using the subset of Abstract Syntax Notation One (ASN.1) [7]
defined in the SMI. In particular, each object has a name, a syntax,
and an encoding. The name is an object identifier, an
administratively assigned name, which specifies an object type. The
object type together with an object instance serves to uniquely
identify a specific instantiation of the object. For human
convenience, we often use a textual string, termed the OBJECT
DESCRIPTOR, to also refer to the object type.
Decker, Langille, Rijsinghani & McCloghrie [Page 2]
^L
RFC 1286 Bridge MIB December 1991
The syntax of an object type defines the abstract data structure
corresponding to that object type. The ASN.1 language is used for
this purpose. However, the SMI [3] purposely restricts the ASN.1
constructs which may be used. These restrictions are explicitly made
for simplicity.
The encoding of an object type is simply how that object type is
represented using the object type's syntax. Implicitly tied to the
notion of an object type's syntax and encoding is how the object type
is represented when being transmitted on the network.
The SMI specifies the use of the basic encoding rules of ASN.1 [8],
subject to the additional requirements imposed by the SNMP.
3.1. Format of Definitions
Section 5 contains the specification of all object types contained in
this MIB module. The object types are defined using the conventions
defined in the SMI, as amended by the extensions specified in [9,10].
4. Overview
A common device present in many networks is the Bridge. This device
is used to connect Local Area Network segments below the network
layer. There are two major modes defined for this bridging;
transparent and source route. The transparent method of bridging is
defined in the draft IEEE 802.1d specification [11]. Source route
bridging has been defined by I.B.M. and is described in the Token
Ring Architecture Reference [12]. IEEE 802.1d is currently working
on combining the source route and transparent techniques in a
compatible fashion. This memo defines those objects needed for the
management of a bridging entity operating in one of these modes.
To be consistent with IAB directives and good engineering practice,
an explicit attempt was made to keep this MIB as simple as possible.
This was accomplished by applying the following criteria to objects
proposed for inclusion:
(1) Start with a small set of essential objects and add only
as further objects are needed.
(2) Require objects be essential for either fault or
configuration management.
(3) Consider evidence of current use and/or utility.
(4) Limit the total of objects.
Decker, Langille, Rijsinghani & McCloghrie [Page 3]
^L
RFC 1286 Bridge MIB December 1991
(5) Exclude objects which are simply derivable from others in
this or other MIBs.
(6) Avoid causing critical sections to be heavily
instrumented. The guideline that was followed is one
counter per critical section per layer.
4.1. Structure of MIB
Objects in this MIB are arranged into groups. Each group is
organized as a set of related objects. The overall structure and
assignment of objects to their groups is shown below. Where
appropriate the corresponding IEEE 802.1d [11] management object name
is also included.
Bridge MIB Name IEEE 802.1d Name
dot1dBridge
dot1dBase
BridgeAddress Bridge.BridgeAddress
NumPorts Bridge.NumberOfPorts
Type
PortTable
Port BridgePort.PortNumber
IfIndex
Circuit
DelayExceededDiscards .DiscardTransitDelay
MtuExceededDiscards .DiscardOnError
dot1dStp
ProtocolSpecification
Priority SpanningTreeProtocol
.BridgePriority
TimeSinceTopologyChange .TimeSinceTopologyChange
TopChanges .TopologyChangeCount
DesignatedRoot .DesignatedRoot
RootCost .RootCost
RootPort .RootPort
MaxAge .MaxAge
HelloTime .HelloTime
HoldTime .HoldTime
ForwardDelay .ForwardDelay
BridgeMaxAge .BridgeMaxAge
BridgeHelloTime .BridgeHelloTime
BridgeForwardDelay .BridgeForwardDelay
PortTable
Port SpanningTreeProtocolPort
.PortNumber
Priority .PortPriority
Decker, Langille, Rijsinghani & McCloghrie [Page 4]
^L
RFC 1286 Bridge MIB December 1991
State .SpanningTreeState
Enable
PathCost .PortPathCost
DesignatedRoot .DesignatedRoot
DesignatedCost .DesignatedCost
DesignatedBridge .DesignatedBridge
DesignatedPort .DesignatedPort
ForwardTransitions
dot1dSr
PortTable
Port
HopCount SourceRoutingPort
.PortHopCount
LocalSegment .SegmentNumber
BridgeNum .BridgeNumber
TargetSegment
LargestFrame .LargestFrameSize
STESpanMode .LimitedBroadcastMode
SpecInFrames BridgePort
.ValidSRFramesReceived
SpecOutFrames .ValidSRForwardedOutbound
ApeInFrames
ApeOutFrames .BroadcastFramesForwarded
SteInFrames
SteOutFrames .BroadcastFramesForwarded
SegmentMismatchDiscards .DiscardInvalidRI
DuplicateSegmentDiscards .LanIdMismatch
HopCountExceededDiscards .FramesDiscardedHopCountExceeded
dot1dTp
LearnedEntryDiscards BridgeFilter.DatabaseSize
.NumDynamic,NumStatic
AgingTime BridgeFilter.AgingTime
FdbTable
Address
Status
Port
PortTable
Port
MaxInfo
InFrames BridgePort.FramesReceived
OutFrames .ForwardOutbound
InDiscards .DiscardInbound
dot1dStatic
StaticTable
Address
ReceivePort
AllowedToGoTo
Decker, Langille, Rijsinghani & McCloghrie [Page 5]
^L
RFC 1286 Bridge MIB December 1991
Status
The following IEEE 802.1d management objects have not been included
in the Bridge MIB for the indicated reasons.
IEEE 802.1d Object Disposition
Bridge.BridgeName Same as sysDescr (MIB II)
Bridge.BridgeUpTime Same as sysUpTime (MIB II)
Bridge.PortAddresses Same as ifPhysAddress (MIB II)
BridgePort.PortName Same as ifDescr (MIB II)
BridgePort.PortType Same as ifType (MIB II)
BridgePort.RoutingType Derivable from the implemented
groups
SpanningTreeProtocol
.BridgeIdentifier Combination of dot1dStpPriority
and dot1dBaseBridgeAddress
.TopologyChange Since this is transitory, it
is not considered useful.
SpanningTreeProtocolPort
.Uptime Same as ifLastChange (MIB II)
.PortIdentifier Combination of dot1dStpPortNum
and dot1dStpPortPriority
.TopologyChangeAcknowledged Since this is transitory, it
is not considered useful.
.DiscardLackOfBuffers Redundant
Transmission Priority These objects are not required
as per the Pics Proforma and
not considered useful.
.TransmissionPriorityName
.OutboundUserPriority
.OutboundAccessPriority
SourceRoutingPort The Source Routing Supplement,
at the time of this writing,
is not stable. The following
objects were NOT included in
this MIB because they are
redundant or not considered
useful.
.LimitedBroadcastEnable
BridgePort.DupLanIdOrTreeError
.DiscardLackOfBuffers
.DiscardErrorDetails
.DiscardTargetLANInoperable
Decker, Langille, Rijsinghani & McCloghrie [Page 6]
^L
RFC 1286 Bridge MIB December 1991
.ValidSRDiscardedInbound
.BroadcastBytesForwarded
.NonBroadcastBytesForwarded
.FramesNotReceivedDueToCongestion
.FramesDiscardedDueToInternalError
4.1.1. The dot1dBase Group
This mandatory group contains the objects which are applicable to all
types of bridges.
4.1.2. The dot1dStp Group
This group contains the objects that denote the bridge's state with
respect to the Spanning Tree Protocol. If a node does not
implemented the Spanning Tree Protocol, this group will not be
implemented. This group is applicable to any transparent only,
source route, or SRT bridge which implements the Spanning Tree
Protocol.
4.1.3. The dot1dSr Group
This group contains the objects that describe the entity's state with
respect to source route bridging. If source routing is not supported
this group will not be implemented. This group is applicable to
source route only, and SRT bridges.
4.1.4. The dot1dTp Group
This group contains objects that describe the entity's state with
respect to transparent bridging. If transparent bridging is not
supported this group will not be implemented. This group is
applicable to transparent only and SRT bridges.
4.1.5. The dot1dStatic Group
This group contains objects that describe the entity's state with
respect to destination-address filtering. If destination-address
filtering is not supported this group will not be implemented. This
group is applicable to any type of bridge which performs
destination-address filtering.
4.2. Relationship to Other MIBs
As described above, some IEEE 802.1d management objects have not been
included in this MIB because they overlap with objects in other MIBs
applicable to a bridge implementing this MIB. In particular, it is
assumed that a bridge implementing this MIB will also implement (at
Decker, Langille, Rijsinghani & McCloghrie [Page 7]
^L
RFC 1286 Bridge MIB December 1991
least) the 'system' group and the 'interfaces' group defined in MIB-
II [6].
4.2.1. Relationship to the 'system' group
In MIB-II, the 'system' group is defined as being mandatory for all
systems such that each managed entity contains one instance of each
object in the 'system' group. Thus, those objects apply to the
entity as a whole irrespective of whether the entity's sole
functionality is bridging, or whether bridging is only a subset of
the entity's functionality.
4.2.2. Relationship to the 'interfaces' group
In MIB-II, the 'interfaces' group is defined as being mandatory for
all systems and contains information on an entity's interfaces, where
each interface is thought of as being attached to a `subnetwork'.
(Note that this term is not to be confused with `subnet' which refers
to an addressing partitioning scheme used in the Internet suite of
protocols.) The term 'segment' is used in this memo to refer to such
a subnetwork, whether it be an Ethernet segment, a 'ring', a WAN
link, or even an X.25 virtual circuit.
Implicit in this Bridge MIB is the notion of ports on a bridge. Each
of these ports is associated with one interface of the 'interfaces'
group, and in most situations, each port is associated with a
different interface. However, there are situations in which multiple
ports are associated with the same interface. An example of such a
situation would be several ports each corresponding one-to-one with
several X.25 virtual circuits but all on the same interface.
Each port is uniquely identified by a port number. A port number has
no mandatory relationship to an interface number, but in the simple
case a port number will have the same value as the corresponding
interface's interface number. Port numbers are in the range
(1..dot1dBaseNumPorts).
Some entities perform other functionality as well as bridging through
the sending and receiving of data on their interfaces. In such
situations, only a subset of the data sent/received on an interface
is within the domain of the entity's bridging functionality. This
subset is considered to be delineated according to a set of
protocols, with some protocols being bridged, and other protocols not
being bridged. For example, in an entity which exclusively performed
bridging, all protocols would be considered as being bridged, whereas
in an entity which performed IP routing on IP datagrams and only
bridged other protocols, only the non-IP data would be considered as
being bridged.
Decker, Langille, Rijsinghani & McCloghrie [Page 8]
^L
RFC 1286 Bridge MIB December 1991
Thus, this Bridge MIB (and in particular, its counters) are
applicable only to that subset of the data on an entity's interfaces
which is sent/received for a protocol being bridged. All such data
is sent/received via the ports of the bridge.
4.3. Textual Conventions
The datatypes, MacAddress, BridgeId and Timeout, are used as textual
conventions in this document. These textual conventions have NO
effect on either the syntax nor the semantics of any managed object.
Objects defined using these conventions are always encoded by means
of the rules that define their primitive type. Hence, no changes to
the SMI or the SNMP are necessary to accommodate these textual
conventions which are adopted merely for the convenience of readers.
5. Definitions
RFC1286-MIB DEFINITIONS ::= BEGIN
IMPORTS
Counter, Gauge, TimeTicks
FROM RFC1155-SMI
mib-2
FROM RFC1213-MIB
OBJECT-TYPE
FROM RFC-1212
TRAP-TYPE
FROM RFC-1215;
-- All representations of MAC addresses in this MIB Module use,
-- as a textual convention (i.e. this convention does not affect
-- their encoding), the data type:
MacAddress ::= OCTET STRING (SIZE (6)) -- a 6 octet address in
-- the "canonical" order
-- defined by IEEE 802.1a, i.e., as if it were transmitted least
-- significant bit first, even though 802.5 (in contrast to other
-- 802.x protocols) requires MAC addresses to be transmitted most
-- significant bit first.
--
-- 16-bit addresses, if needed, are represented by setting their
-- upper 4 octets to all 0's, i.e., AAFF would be represented
-- as 00000000AAFF.
-- Similarly, all representations of Bridge-Id in this MIB Module
-- use, as a textual convention (i.e. this convention does not affect
-- their encoding), the data type:
Decker, Langille, Rijsinghani & McCloghrie [Page 9]
^L
RFC 1286 Bridge MIB December 1991
BridgeId ::= OCTET STRING (SIZE (8)) -- the Bridge-Identifier as
-- used in the Spanning Tree
-- Protocol to uniquely identify a bridge. Its first two octets
-- (in network byte order) contain a priority value and its last
-- 6 octets contain the MAC address used to refer to a bridge in a
-- unique fashion (typically, the numerically smallest MAC address
-- of all ports on the bridge).
-- Several objects in this MIB module represent values of timers
-- used by the Spanning Tree Protocol. In this MIB, these timers
-- have values in units of hundreths of a second (i.e. 1/100 secs).
-- These timers, when stored in a Spanning Tree Protocol's BPDU,
-- are in units of 1/256 seconds. Note, however, that 802.1d/D9
-- specifies a settable granularity of no more than 1 second for
-- these timers. To avoid ambiguity, a data type is defined here
-- as a textual convention and all representation of these timers
-- in this MIB module are defined using this data type. An algorithm
-- is also defined for converting between the different units, to
-- ensure a timer's value is not distorted by multiple conversions.
-- The data type is:
Timeout ::= INTEGER -- a STP timer in units of 1/100 seconds
-- To convert a Timeout value into a value in units of
-- 1/256 seconds, the following algorithm should be used:
--
-- b = floor( (n * 256) / 100)
--
-- where:
-- floor = quotient [ignore remainder]
-- n is the value in 1/100 second units
-- b is the value in 1/256 second units
--
-- To convert the value from 1/256 second units back to
-- 1/100 seconds, the following algorithm should be used:
--
-- n = ceiling( (b * 100) / 256)
--
-- where:
-- ceiling = quotient [if remainder is 0], or
-- quotient + 1 [if remainder is non-zero]
-- n is the value in 1/100 second units
-- b is the value in 1/256 second units
--
-- Note: it is important that the arithmetic operations are done
-- in the order specified (i.e., multiply first, divide second).
dot1dBridge OBJECT IDENTIFIER ::= { mib-2 17 }
Decker, Langille, Rijsinghani & McCloghrie [Page 10]
^L
RFC 1286 Bridge MIB December 1991
-- groups in the Bridge MIB
dot1dBase OBJECT IDENTIFIER ::= { dot1dBridge 1 }
dot1dStp OBJECT IDENTIFIER ::= { dot1dBridge 2 }
dot1dSr OBJECT IDENTIFIER ::= { dot1dBridge 3 }
dot1dTp OBJECT IDENTIFIER ::= { dot1dBridge 4 }
dot1dStatic OBJECT IDENTIFIER ::= { dot1dBridge 5 }
-- the dot1dBase group
-- Implementation of the dot1dBase group is mandatory for all
-- bridges.
dot1dBaseBridgeAddress OBJECT-TYPE
SYNTAX MacAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The MAC address used by this bridge when it must
be referred to in a unique fashion. It is
recommended that this be the numerically smallest
MAC address of all ports that belong to this
bridge. However it is only required to be unique.
When concatenated with dot1dStpPriority a unique
BridgeIdentifier is formed which is used in the
Spanning Tree Protocol."
REFERENCE
"P802.1d/D9, July 14, 1989: Sections 6.4.1.1.3 and 3.12.5"
::= { dot1dBase 1 }
dot1dBaseNumPorts OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ports controlled by this bridging
entity."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 6.4.1.1.3"
::= { dot1dBase 2 }
dot1dBaseType OBJECT-TYPE
SYNTAX INTEGER {
Decker, Langille, Rijsinghani & McCloghrie [Page 11]
^L
RFC 1286 Bridge MIB December 1991
unknown(1),
transparent-only(2),
sourceroute-only(3),
srt(4)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Indicates what type of bridging this bridge can
perform. If a bridge is actually performing a
certain type of bridging this will be indicated by
entries in the port table for the given type."
::= { dot1dBase 3 }
-- The Generic Bridge Port Table
dot1dBasePortTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1dBasePortEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A table that contains generic information about
every port that is associated with this bridge.
Transparent, source-route, and srt ports are
included."
::= { dot1dBase 4 }
dot1dBasePortEntry OBJECT-TYPE
SYNTAX Dot1dBasePortEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of information for each port of the
bridge."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 6.4.2, 6.6.1"
INDEX { dot1dBasePort }
::= { dot1dBasePortTable 1 }
Dot1dBasePortEntry ::=
SEQUENCE {
dot1dBasePort
INTEGER,
dot1dBasePortIfIndex
INTEGER,
dot1dBasePortCircuit
OBJECT IDENTIFIER,
dot1dBasePortDelayExceededDiscards
Decker, Langille, Rijsinghani & McCloghrie [Page 12]
^L
RFC 1286 Bridge MIB December 1991
Counter,
dot1dBasePortMtuExceededDiscards
Counter
}
dot1dBasePort OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The port number of the port for which this entry
contains bridge management information."
::= { dot1dBasePortEntry 1 }
dot1dBasePortIfIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of the instance of the ifIndex object,
defined in [4,6], for the interface corresponding
to this port."
::= { dot1dBasePortEntry 2 }
dot1dBasePortCircuit OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"For a port which (potentially) has the same value
of dot1dBasePortIfIndex as another port on the
same bridge, this object contains the name of an
object instance unique to this port. For example,
in the case where multiple ports correspond one-
to-one with multiple X.25 virtual circuits, this
value might identify an (e.g., the first) object
instance associated with the X.25 virtual circuit
corresponding to this port.
For a port which has a unique value of
dot1dBasePortIfIndex, this object can have the
value { 0 0 }."
::= { dot1dBasePortEntry 3 }
dot1dBasePortDelayExceededDiscards OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
Decker, Langille, Rijsinghani & McCloghrie [Page 13]
^L
RFC 1286 Bridge MIB December 1991
DESCRIPTION
"The number of frames discarded by this port due
to excessive transit delay through the bridge. It
is incremented by both transparent and source
route bridges."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 6.6.1.1.3"
::= { dot1dBasePortEntry 4 }
dot1dBasePortMtuExceededDiscards OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of frames discarded by this port due
to an excessive size. It is incremented by both
transparent and source route bridges."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 6.6.1.1.3"
::= { dot1dBasePortEntry 5 }
-- the dot1dStp group
-- Implementation of the dot1dStp group is optional. It is
-- implemented by those bridges that support the Spanning Tree
-- Protocol. Transparent, Source Route, and SRT bridges will
-- implement this group only if they support the Spanning Tree
-- Protocol.
dot1dStpProtocolSpecification OBJECT-TYPE
SYNTAX INTEGER {
unknown(1),
decLb100(2),
ieee8021d(3)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An indication of what version of the Spanning
Tree Protocol is being run. The value
'decLb100(2)' indicates the DEC LANbridge 100
Spanning Tree protocol. IEEE 802.1d
implementations will return 'ieee8021d(3)'. If
future versions of the IEEE Spanning Tree Protocol
are released that are incompatible with the
current version a new value will be defined."
Decker, Langille, Rijsinghani & McCloghrie [Page 14]
^L
RFC 1286 Bridge MIB December 1991
::= { dot1dStp 1 }
dot1dStpPriority OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The value of the write-able portion of the Bridge
ID, i.e., the first two octets of the (8 octet
long) Bridge ID. The other (last) 6 octets of the
Bridge ID are given by the value of
dot1dBaseBridgeAddress."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.3.7"
::= { dot1dStp 2 }
dot1dStpTimeSinceTopologyChange OBJECT-TYPE
SYNTAX TimeTicks
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The time (in hundredths of a second) since the
last time a topology change was detected by the
bridge entity."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 6.8.1.1.3"
::= { dot1dStp 3 }
dot1dStpTopChanges OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of topology changes detected by
this bridge since the management entity was last
reset or initialized."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 6.8.1.1.3"
::= { dot1dStp 4 }
dot1dStpDesignatedRoot OBJECT-TYPE
SYNTAX BridgeId
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The bridge identifier of the root of the spanning
tree as determined by the Spanning Tree Protocol
as executed by this node. This value is used as
Decker, Langille, Rijsinghani & McCloghrie [Page 15]
^L
RFC 1286 Bridge MIB December 1991
the Root Identifier parameter in all Configuration
Bridge PDUs originated by this node."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.3.1"
::= { dot1dStp 5 }
dot1dStpRootCost OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The cost of the path to the root as seen from
this bridge."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.3.2"
::= { dot1dStp 6 }
dot1dStpRootPort OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The port number of the port which offers the
lowest cost path from this bridge to the root
bridge."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.3.3"
::= { dot1dStp 7 }
dot1dStpMaxAge OBJECT-TYPE
SYNTAX Timeout
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The maximum age of Spanning Tree Protocol
information learned from the network on any port
before it is discarded, in units of hundredths of
a second. This is the actual value that this
bridge is currently using."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.3.4"
::= { dot1dStp 8 }
dot1dStpHelloTime OBJECT-TYPE
SYNTAX Timeout
ACCESS read-only
STATUS mandatory
DESCRIPTION
Decker, Langille, Rijsinghani & McCloghrie [Page 16]
^L
RFC 1286 Bridge MIB December 1991
"The amount of time between the transmission of
Configuration bridge PDUs by this node on any port
when it is the root of the spanning tree or trying
to become so, in units of hundredths of a second.
This is the actual value that this bridge is
currently using."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.3.5"
::= { dot1dStp 9 }
dot1dStpHoldTime OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This time value determines the interval length
during which no more than two Configuration bridge
PDUs shall be transmitted by this node, in units
of hundredths of a second."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.3.14"
::= { dot1dStp 10 }
dot1dStpForwardDelay OBJECT-TYPE
SYNTAX Timeout
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This time value, measured in units of hundredths
of a second, controls how fast a port changes its
spanning state when moving towards the Forwarding
state. The value determines how long the port
stays in a particular state before moving to the
next state. For example, how long a port stays in
the Listening state when moving from Blocking to
Learning. This value is also used, when a
topology change has been detected and is underway,
to age all dynamic entries in the Forwarding
Database. [Note that this value is the one that
this bridge is currently using, in contrast to
dot1dStpBridgeForwardDelay which is the value that
this bridge and all others would start using
if/when this bridge were to become the root.]"
REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.3.6"
::= { dot1dStp 11 }
Decker, Langille, Rijsinghani & McCloghrie [Page 17]
^L
RFC 1286 Bridge MIB December 1991
dot1dStpBridgeMaxAge OBJECT-TYPE
SYNTAX Timeout (600..4000)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The value that all bridges use for MaxAge when
this bridge is acting as the root. Note that
802.1d/D9 specifies that the range for this
parameter is related to the value of
dot1dStpBridgeHelloTime. The granularity of this
timer is specified by 802.1d/D9 to be 1 second.
An agent may return a badValue error if a set is
attempted to a value which is not a whole number
of seconds."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.3.8"
::= { dot1dStp 12 }
dot1dStpBridgeHelloTime OBJECT-TYPE
SYNTAX Timeout (100..1000)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The value that all bridges use for HelloTime when
this bridge is acting as the root. The
granularity of this timer is specified by
802.1d/D9 to be 1 second. An agent may return a
badValue error if a set is attempted to a value
which is not a whole number of seconds."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.3.9"
::= { dot1dStp 13 }
dot1dStpBridgeForwardDelay OBJECT-TYPE
SYNTAX Timeout (400..3000)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The value that all bridges use for ForwardDelay
when this bridge is acting as the root. Note that
802.1d/D9 specifies that the range for this
parameter is related to the value of
dot1dStpBridgeMaxAge. The granularity of this
timer is specified by 802.1d/D9 to be 1 second.
An agent may return a badValue error if a set is
attempted to a value which is not a whole number
of seconds."
REFERENCE
Decker, Langille, Rijsinghani & McCloghrie [Page 18]
^L
RFC 1286 Bridge MIB December 1991
"P802.1d/D9, July 14, 1989: Section 4.5.3.10"
::= { dot1dStp 14 }
-- The Spanning Tree Port Table
dot1dStpPortTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1dStpPortEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A table that contains port-specific information
for the Spanning Tree Protocol."
::= { dot1dStp 15 }
dot1dStpPortEntry OBJECT-TYPE
SYNTAX Dot1dStpPortEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of information maintained by every port
about the Spanning Tree Protocol state for that
port."
INDEX { dot1dStpPort }
::= { dot1dStpPortTable 1 }
Dot1dStpPortEntry ::=
SEQUENCE {
dot1dStpPort
INTEGER,
dot1dStpPortPriority
INTEGER,
dot1dStpPortState
INTEGER,
dot1dStpPortEnable
INTEGER,
dot1dStpPortPathCost
INTEGER,
dot1dStpPortDesignatedRoot
BridgeId,
dot1dStpPortDesignatedCost
INTEGER,
dot1dStpPortDesignatedBridge
BridgeId,
dot1dStpPortDesignatedPort
OCTET STRING,
dot1dStpPortForwardTransitions
Counter
Decker, Langille, Rijsinghani & McCloghrie [Page 19]
^L
RFC 1286 Bridge MIB December 1991
}
dot1dStpPort OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The port number of the port for which this entry
contains Spanning Tree Protocol management
information."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 6.8.2.1.2"
::= { dot1dStpPortEntry 1 }
dot1dStpPortPriority OBJECT-TYPE
SYNTAX INTEGER (0..255)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The value of the priority field which is
contained in the first (in network byte order)
octet of the (2 octet long) Port ID. The other
octet of the Port ID is given by the value of
dot1dStpPort."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.5.1"
::= { dot1dStpPortEntry 2 }
dot1dStpPortState OBJECT-TYPE
SYNTAX INTEGER {
disabled(1),
blocking(2),
listening(3),
learning(4),
forwarding(5),
broken(6)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The port's current state as defined by
application of the Spanning Tree Protocol. This
state controls what action a port takes on
reception of a frame. If the bridge has detected
a port that is malfunctioning it will place that
port into the broken(6) state. For ports which
are disabled (see dot1dStpPortEnable), this object
will have a value of disabled(1)."
Decker, Langille, Rijsinghani & McCloghrie [Page 20]
^L
RFC 1286 Bridge MIB December 1991
REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.5.2"
::= { dot1dStpPortEntry 3 }
dot1dStpPortEnable OBJECT-TYPE
SYNTAX INTEGER {
enabled(1),
disabled(2)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The enabled/disabled status of the port."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.5.2"
::= { dot1dStpPortEntry 4 }
dot1dStpPortPathCost OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The contribution of this port to the path cost of
paths towards the spanning tree root which include
this port."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.5.3"
::= { dot1dStpPortEntry 5 }
dot1dStpPortDesignatedRoot OBJECT-TYPE
SYNTAX BridgeId
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The unique Bridge Identifier of the Bridge
recorded as the Root in the Configuration BPDUs
transmitted by the Designated Bridge for the
segment to which the port is attached."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.5.4"
::= { dot1dStpPortEntry 6 }
dot1dStpPortDesignatedCost OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The path cost of the Designated Port of the
Decker, Langille, Rijsinghani & McCloghrie [Page 21]
^L
RFC 1286 Bridge MIB December 1991
segment connected to this port. This value is
compared to the Root Path Cost field in received
bridge PDUs."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.5.5"
::= { dot1dStpPortEntry 7 }
dot1dStpPortDesignatedBridge OBJECT-TYPE
SYNTAX BridgeId
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The Bridge Identifier of the bridge which this
port considers to be the Designated Bridge for
this port's segment."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.5.6"
::= { dot1dStpPortEntry 8 }
dot1dStpPortDesignatedPort OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (2))
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The Port Identifier of the port on the Designated
Bridge for this port's segment."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.5.7"
::= { dot1dStpPortEntry 9 }
dot1dStpPortForwardTransitions OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times this port has transitioned
from the Learning state to the Forwarding state."
::= { dot1dStpPortEntry 10 }
-- the dot1dSr group
-- Implementation of the dot1dSr group is optional. It is
-- implemented by those bridges that support the source route
-- bridging mode, including Source Route and SRT bridges.
Decker, Langille, Rijsinghani & McCloghrie [Page 22]
^L
RFC 1286 Bridge MIB December 1991
dot1dSrPortTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1dSrPortEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A table that contains information about every
port that is associated with this source route
bridge."
::= { dot1dSr 1 }
dot1dSrPortEntry OBJECT-TYPE
SYNTAX Dot1dSrPortEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of information for each port of a source
route bridge."
INDEX { dot1dSrPort }
::= { dot1dSrPortTable 1 }
Dot1dSrPortEntry ::=
SEQUENCE {
dot1dSrPort
INTEGER,
dot1dSrPortHopCount
INTEGER,
dot1dSrPortLocalSegment
INTEGER,
dot1dSrPortBridgeNum
INTEGER,
dot1dSrPortTargetSegment
INTEGER,
dot1dSrPortLargestFrame
INTEGER,
dot1dSrPortSTESpanMode
INTEGER,
dot1dSrPortSpecInFrames
Counter,
dot1dSrPortSpecOutFrames
Counter,
dot1dSrPortApeInFrames
Counter,
dot1dSrPortApeOutFrames
Counter,
dot1dSrPortSteInFrames
Counter,
dot1dSrPortSteOutFrames
Counter,
Decker, Langille, Rijsinghani & McCloghrie [Page 23]
^L
RFC 1286 Bridge MIB December 1991
dot1dSrPortSegmentMismatchDiscards
Counter,
dot1dSrPortDuplicateSegmentDiscards
Counter,
dot1dSrPortHopCountExceededDiscards
Counter
}
dot1dSrPort OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The port number of the port for which this entry
contains Source Route management information."
::= { dot1dSrPortEntry 1 }
dot1dSrPortHopCount OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The maximum number of routing descriptors allowed
in an All Paths or Spanning Tree Explorer frames."
::= { dot1dSrPortEntry 2 }
dot1dSrPortLocalSegment OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The segment number that uniquely identifies the
segment to which this port is connected. Current
source routing protocols limit this value to the
range: 0 through 4095. A value of 65535 signifies
that no segment number is assigned to this port."
::= { dot1dSrPortEntry 3 }
dot1dSrPortBridgeNum OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"A bridge number uniquely identifies a bridge when
more than one bridge is used to span the same two
segments. Current source routing protocols limit
this value to the range: 0 through 15. A value of
65535 signifies that no bridge number is assigned
Decker, Langille, Rijsinghani & McCloghrie [Page 24]
^L
RFC 1286 Bridge MIB December 1991
to this bridge."
::= { dot1dSrPortEntry 4 }
dot1dSrPortTargetSegment OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The segment number that corresponds to the target
segment this port is considered to be connected to
by the bridge. Current source routing protocols
limit this value to the range: 0 through 4095. A
value of 65535 signifies that no target segment is
assigned to this port."
::= { dot1dSrPortEntry 5 }
-- It would be nice if we could use ifMtu as the size of the
-- largest frame, but we can't because ifMtu is defined to be
-- the size that the (inter-)network layer can use which can
-- differ from the MAC layer (especially if several layers of
-- encapsulation are used).
dot1dSrPortLargestFrame OBJECT-TYPE
SYNTAX INTEGER {
dot1dSrMtu516 (516),
dot1dSrMtu1500 (1500),
dot1dSrMtu2052 (2052),
dot1dSrMtu4472 (4472),
dot1dSrMtu8144 (8144),
dot1dSrMtu11407 (11407), -- yes this is correct don't
dot1dSrMtu17800 (17800), -- ask me where it came from.
dot1dSrMtu65535 (65535)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The maximum size of the INFO field (LLC and
above) that this port can send/receive. It does
not include any MAC level (framing) octets. The
value of this object is used by this bridge to
determine whether a modification of the
LargestFrame (LF, see [14]) field of the Routing
Control field of the Routing Information Field is
necessary. Valid values as defined by the 802.5
source routing bridging specification[14] are 516,
1500, 2052, 4472, 8144, 11407, 17800, and 65535
octets. Behavior of the port when an illegal
Decker, Langille, Rijsinghani & McCloghrie [Page 25]
^L
RFC 1286 Bridge MIB December 1991
value is written is implementation specific. It
is recommended that a reasonable legal value be
chosen."
::= { dot1dSrPortEntry 6 }
dot1dSrPortSTESpanMode OBJECT-TYPE
SYNTAX INTEGER {
auto-span(1),
disabled(2),
forced(3)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Determines how this port behaves when presented
with a Spanning Tree Explorer frame. The value
'disabled(2)' indicates that the port will not
accept or send Spanning Tree Explorer packets; any
STE packets received will be silently discarded.
The value 'forced(3)' indicates the port will
always accept and propagate Spanning Tree Explorer
frames. This allows a manually configured
Spanning Tree for this class of packet to be
configured. Note that unlike transparent bridging
this is not catastrophic to the network if there
are loops. The value 'auto-span(1)' can only be
returned by a bridge that both implements the
Spanning Tree Protocol and has use of the protocol
enabled on this port. The behavior of the port for
Spanning Tree Explorer frames is determined by the
state of dot1dStpPortState. If the port is in the
'forwarding' state, the frame will be accepted or
propagated. Otherwise it will be silently
discarded."
::= { dot1dSrPortEntry 7 }
dot1dSrPortSpecInFrames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of specifically routed frames that
have been received from this port's segment."
::= { dot1dSrPortEntry 8 }
dot1dSrPortSpecOutFrames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
Decker, Langille, Rijsinghani & McCloghrie [Page 26]
^L
RFC 1286 Bridge MIB December 1991
STATUS mandatory
DESCRIPTION
"The number of specifically routed frames that
this port has transmitted on its segment."
::= { dot1dSrPortEntry 9 }
dot1dSrPortApeInFrames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of all paths explorer frames that have
been received by this port from its segment."
::= { dot1dSrPortEntry 10 }
dot1dSrPortApeOutFrames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of all paths explorer frames that have
been transmitted by this port on its segment."
::= { dot1dSrPortEntry 11 }
dot1dSrPortSteInFrames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of spanning tree explorer frames that
have been received by this port from its segment."
::= { dot1dSrPortEntry 12 }
dot1dSrPortSteOutFrames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of spanning tree explorer frames that
have been transmitted by this port on its
segment."
::= { dot1dSrPortEntry 13 }
dot1dSrPortSegmentMismatchDiscards OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
Decker, Langille, Rijsinghani & McCloghrie [Page 27]
^L
RFC 1286 Bridge MIB December 1991
"The number of explorer frames that have been
discarded by this port because the routing
descriptor field contained an invalid adjacent
segment value."
::= { dot1dSrPortEntry 14 }
dot1dSrPortDuplicateSegmentDiscards OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of frames that have been discarded by
this port because the routing descriptor field
contained a duplicate segment identifier."
::= { dot1dSrPortEntry 15 }
dot1dSrPortHopCountExceededDiscards OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of explorer frames that have been
discarded by this port because the Routing
Information Field has exceeded the maximum route
descriptor length."
::= { dot1dSrPortEntry 16 }
-- the dot1dTp group
-- Implementation of the dot1dTp group is optional. It is
-- implemented by those bridges that support the transparent
-- bridging mode. A transparent or SRT bridge will implement
-- this group.
dot1dTpLearnedEntryDiscards OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of Forwarding Database entries,
which have been or would have been learnt, but
have been discarded due to a lack of space to
store them in the Forwarding Database. If this
counter is increasing, it indicates that the
Forwarding Database is regularly becoming full (a
condition which has unpleasant performance effects
Decker, Langille, Rijsinghani & McCloghrie [Page 28]
^L
RFC 1286 Bridge MIB December 1991
on the subnetwork). If this counter has a
significant value but is not presently increasing,
it indicates that the problem has been occurring
but is not persistent."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 6.7.1.1.3"
::= { dot1dTp 1 }
dot1dTpAgingTime OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The timeout period in seconds for aging out
dynamically learned forwarding information."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 6.7.1.1.3"
::= { dot1dTp 2 }
-- The Forwarding Database for Transparent Bridges
dot1dTpFdbTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1dTpFdbEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A table that contains information about unicast
entries for which the bridge has forwarding and/or
filtering information. This information is used
by the transparent bridging function in
determining how to propagate a received frame."
::= { dot1dTp 3 }
dot1dTpFdbEntry OBJECT-TYPE
SYNTAX Dot1dTpFdbEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"Information about a specific unicast MAC address
for which the bridge has some forwarding and/or
filtering information."
INDEX { dot1dTpFdbAddress }
::= { dot1dTpFdbTable 1 }
Dot1dTpFdbEntry ::=
SEQUENCE {
dot1dTpFdbAddress
Decker, Langille, Rijsinghani & McCloghrie [Page 29]
^L
RFC 1286 Bridge MIB December 1991
MacAddress,
dot1dTpFdbPort
INTEGER,
dot1dTpFdbStatus
INTEGER
}
dot1dTpFdbAddress OBJECT-TYPE
SYNTAX MacAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A unicast MAC address for which the bridge has
forwarding and/or filtering information."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 3.9.1, 3.9.2"
::= { dot1dTpFdbEntry 1 }
dot1dTpFdbPort OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Either the value '0', or the port number of the
port on which a frame having a source address
equal to the value of the corresponding instance
of dot1dTpFdbAddress has been seen. A value of
'0' indicates that the port number has not been
learned but that the bridge does have some
forwarding/filtering information about this
address (e.g. in the dot1dStaticTable).
Implementors are encouraged to assign the port
value to this object whenever it is learned even
for addresses for which the corresponding value of
dot1dTpFdbStatus is not learned(3)."
::= { dot1dTpFdbEntry 2 }
dot1dTpFdbStatus OBJECT-TYPE
SYNTAX INTEGER {
other(1),
invalid(2),
learned(3),
self(4),
mgmt(5)
}
ACCESS read-only
STATUS mandatory
Decker, Langille, Rijsinghani & McCloghrie [Page 30]
^L
RFC 1286 Bridge MIB December 1991
DESCRIPTION
"The status of this entry. The meanings of the
values are:
other(1) : none of the following. This would
include the case where some other
MIB object (not the corresponding
instance of dot1dTpFdbPort, nor an
entry in the dot1dStaticTable) is
being used to determine if and how
frames addressed to the value of
the corresponding instance of
dot1dTpFdbAddress are being
forwarded.
invalid(2) : this entry is not longer valid
(e.g., it was learned but has since
aged-out), but has not yet been
flushed from the table.
learned(3) : the value of the corresponding
instance of dot1dTpFdbPort was
learned, and is being used.
self(4) : the value of the corresponding
instance of dot1dTpFdbAddress
represents one of the bridge's
addresses. The corresponding
instance of dot1dTpFdbPort
indicates which of the bridge's
ports has this address.
mgmt(5) : the value of the corresponding
instance of dot1dTpFdbAddress is
also the value of an existing
instance of dot1dStaticAddress."
::= { dot1dTpFdbEntry 3 }
-- Port Table for Transparent Bridges
dot1dTpPortTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1dTpPortEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A table that contains information about every
port that is associated with this transparent
Decker, Langille, Rijsinghani & McCloghrie [Page 31]
^L
RFC 1286 Bridge MIB December 1991
bridge."
::= { dot1dTp 4 }
dot1dTpPortEntry OBJECT-TYPE
SYNTAX Dot1dTpPortEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of information for each port of a
transparent bridge."
INDEX { dot1dTpPort }
::= { dot1dTpPortTable 1 }
Dot1dTpPortEntry ::=
SEQUENCE {
dot1dTpPort
INTEGER,
dot1dTpPortMaxInfo
INTEGER,
dot1dTpPortInFrames
Counter,
dot1dTpPortOutFrames
Counter,
dot1dTpPortInDiscards
Counter
}
dot1dTpPort OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The port number of the port for which this entry
contains Transparent bridging management
information."
::= { dot1dTpPortEntry 1 }
-- It would be nice if we could use ifMtu as the size of the
-- largest INFO field, but we can't because ifMtu is defined
-- to be the size that the (inter-)network layer can use which
-- can differ from the MAC layer (especially if several layers
-- of encapsulation are used).
dot1dTpPortMaxInfo OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
Decker, Langille, Rijsinghani & McCloghrie [Page 32]
^L
RFC 1286 Bridge MIB December 1991
"The maximum size of the INFO (non-MAC) field that
this port will receive or transmit."
::= { dot1dTpPortEntry 2 }
dot1dTpPortInFrames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of frames that have been received by
this port from its segment. Note that a frame
received on the interface corresponding to this
port is only counted by this object if and only if
it is for a protocol being processed by the local
bridging function."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 6.6.1.1.3"
::= { dot1dTpPortEntry 3 }
dot1dTpPortOutFrames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of frames that have been transmitted
by this port to its segment. Note that a frame
transmitted on the interface corresponding to this
port is only counted by this object if and only if
it is for a protocol being processed by the local
bridging function."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 6.6.1.1.3"
::= { dot1dTpPortEntry 4 }
dot1dTpPortInDiscards OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Count of valid frames received which were
discarded (i.e., filtered) by the Forwarding
Process."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 6.6.1.1.3"
::= { dot1dTpPortEntry 5 }
Decker, Langille, Rijsinghani & McCloghrie [Page 33]
^L
RFC 1286 Bridge MIB December 1991
-- The Static (Destination-Address Filtering) Database
-- Implementation of this group is optional.
dot1dStaticTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1dStaticEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A table containing filtering information
configured into the bridge by (local or network)
management specifying the set of ports to which
frames received from specific ports and containing
specific destination addresses are allowed to be
forwarded. The value of zero in this table as the
port number from which frames with a specific
destination address are received, is used to
specify all ports for which there is no specific
entry in this table for that particular
destination address. Entries are valid for
unicast and for group/broadcast addresses."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 6.7.2"
::= { dot1dStatic 1 }
dot1dStaticEntry OBJECT-TYPE
SYNTAX Dot1dStaticEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"Filtering information configured into the bridge
by (local or network) management specifying the
set of ports to which frames received from a
specific port and containing a specific
destination address are allowed to be forwarded."
REFERENCE
"P802.1d/D9, July 14,1989: Section 6.7.2"
INDEX { dot1dStaticAddress, dot1dStaticReceivePort }
::= { dot1dStaticTable 1 }
Dot1dStaticEntry ::=
SEQUENCE {
dot1dStaticAddress
MacAddress,
dot1dStaticReceivePort
INTEGER,
dot1dStaticAllowedToGoTo
Decker, Langille, Rijsinghani & McCloghrie [Page 34]
^L
RFC 1286 Bridge MIB December 1991
OCTET STRING,
dot1dStaticStatus
INTEGER
}
dot1dStaticAddress OBJECT-TYPE
SYNTAX MacAddress
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The destination MAC address in a frame to which
this entry's filtering information applies. This
object can take the value of a unicast address, a
group address or the broadcast address."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 3.9.1, 3.9.2"
::= { dot1dStaticEntry 1 }
dot1dStaticReceivePort OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Either the value '0', or the port number of the
port from which a frame must be received in order
for this entry's filtering information to apply.
A value of zero indicates that this entry applies
on all ports of the bridge for which there is no
other applicable entry."
::= { dot1dStaticEntry 2 }
dot1dStaticAllowedToGoTo OBJECT-TYPE
SYNTAX OCTET STRING
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The set of ports to which frames received from a
specific port and destined for a specific MAC
address, are allowed to be forwarded. Each octet
within the value of this object specifies a set of
eight ports, with the first octet specifying ports
1 through 8, the second octet specifying ports 9
through 16, etc. Within each octet, the most
significant bit represents the lowest numbered
port, and the least significant bit represents the
highest numbered port. Thus, each port of the
bridge is represented by a single bit within the
value of this object. If that bit has a value of
Decker, Langille, Rijsinghani & McCloghrie [Page 35]
^L
RFC 1286 Bridge MIB December 1991
'1' then that port is included in the set of
ports; the port is not included if its bit has a
value of '0'. (Note that the setting of the bit
corresponding to the port from which a frame is
received is irrelevant.)"
::= { dot1dStaticEntry 3 }
dot1dStaticStatus OBJECT-TYPE
SYNTAX INTEGER {
other(1),
invalid(2),
permanent(3),
deleteOnReset(4),
deleteOnTimeout(5)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"This object indicates the status of this entry.
other(1) - this entry is currently in use but
the conditions under which it will
remain so are different from each of the
following values.
invalid(2) - writing this value to the object
removes the corresponding entry.
permanent(3) - this entry is currently in use
and will remain so after the next reset
of the bridge.
deleteOnReset(4) - this entry is currently in
use and will remain so until the next
reset of the bridge.
deleteOnTimeout(5) - this entry is currently
in use and will remain so until it is
aged out."
::= { dot1dStaticEntry 4 }
-- Traps for use by Bridges
-- Traps for the Spanning Tree Protocol
newRoot TRAP-TYPE
ENTERPRISE dot1dBridge
DESCRIPTION
"The newRoot trap indicates that the sending agent
has become the new root of the Spanning Tree; the
trap is sent by a bridge soon after its election
as the new root, e.g., upon expiration of the
Topology Change Timer immediately subsequent to
Decker, Langille, Rijsinghani & McCloghrie [Page 36]
^L
RFC 1286 Bridge MIB December 1991
its election."
::= 1
topologyChange TRAP-TYPE
ENTERPRISE dot1dBridge
DESCRIPTION
"A topologyChange trap is sent by a bridge when
any of its configured ports transitions from the
Learning state to the Forwarding state, or from
the Forwarding state to the Blocking state. The
trap is not sent if a newRoot trap is sent for the
same transition."
::= 2
END
6. Acknowledgments
This document was produced on behalf of the Bridge Sub-Working Group
of the SNMP Working Group of the Internet Engineering Task Force.
Over the course of its deliberations, the working group received four
separate documents for consideration as the basis for its work. The
first was submitted by Stan Froyd of Advanced Computer
Communications; the second by Richard Fox of SynOptics; the third by
Eric Decker of cisco Inc. and Keith McCloghrie of Hughes LAN Systems;
and the fourth by Paul Langille and Anil Rijsinghani of Digital
Equipment Corp. After considering the submissions, the working group
chose to proceed with a document formed as a conjunction of the
latter two submissions. This document is the result.
The authors wish to thank the members of the Bridge Working Group for
their many comments and suggestions which improved this effort. In
particular, Fred Baker (chairman of the working group) of ACC, Steve
Sherry of Xyplex, and Frank Kastenholz of Clearpoint Research Corp.
Others members of the Bridge Working Group who contributed to this
effort are:
Bill Anderson, Mitre
Karl Auerbach, Epilogue
Fred Baker, ACC (chair)
Terry Bradley, Wellfleet
Ted Brunner, Bellcore
Jeffrey Buffum, Apollo
Chris ChioTasso, Fibronics
Anthony Chung, HLS
Chuck Davin, MIT-LCS
Andy Davis, Spider
Eric Decker, cisco
Decker, Langille, Rijsinghani & McCloghrie [Page 37]
^L
RFC 1286 Bridge MIB December 1991
Nadya El-Afandi, Network Systems
Gary Ellis,HP/Apollo
Richard Fox, SynOptics
Stan Froyd, ACC
Frank Kastenholz, Clearpoint Research
Shirnshon Kaufman,
Jim Kinder, Fibercom
Cheryl Krupczak,NCR
Paul Langille, Digital
Peter Lin,Vitalink
Keith McCloghrie, HLS
Donna McMaster, SynOptics
Dave Perkins, 3Com
Jim Reinstedler, Ungermann Bass
Anil Rijsinghani, Digital
Mark Schaefer, David Systems
Steve Sherry, Xyplex
Bob Stewart, Xyplex
Emil Sturniolo,
Kevin Synott, Retix
Ian Thomas, Chipcom
Maurice Turcott, Racal
Fei Xu,
7. References
[1] Cerf, V., "IAB Recommendations for the Development of Internet
Network Management Standards", RFC 1052, NRI, April 1988.
[2] Cerf, V., "Report of the Second Ad Hoc Network Management Review
Group", RFC 1109, NRI, August 1989.
[3] Rose M., and K. McCloghrie, "Structure and Identification of
Management Information for TCP/IP-based internets", RFC 1155,
Performance Systems International, Hughes LAN Systems, May 1990.
[4] McCloghrie K., and M. Rose, "Management Information Base for
Network Management of TCP/IP-based internets", RFC 1156, Hughes
LAN Systems, Performance Systems International, May 1990.
[5] Case, J., Fedor, M., Schoffstall, M., and J. Davin, "Simple
Network Management Protocol", RFC 1157, SNMP Research,
Performance Systems International, Performance Systems
International, MIT Laboratory for Computer Science, May 1990.
[6] McCloghrie K., and M. Rose, Editors, "Management Information Base
for Network Management of TCP/IP-based internets", RFC 1213,
Performance Systems International, March 1991.
Decker, Langille, Rijsinghani & McCloghrie [Page 38]
^L
RFC 1286 Bridge MIB December 1991
[7] Information processing systems - Open Systems Interconnection -
Specification of Abstract Syntax Notation One (ASN.1),
International Organization for Standardization, International
Standard 8824, December 1987.
[8] Information processing systems - Open Systems Interconnection -
Specification of Basic Encoding Rules for Abstract Notation One
(ASN.1), International Organization for Standardization,
International Standard 8825, December 1987.
[9] Rose, M., and K. McCloghrie, Editors, "Concise MIB Definitions",
RFC 1212, Performance Systems International, Hughes LAN Systems,
March 1991.
[10] Rose, M., Editor, "A Convention for Defining Traps for use with
the SNMP", RFC 1215, Performance Systems International, March
1991.
[11] ANSI/IEEE Draft P802.1d/D9 MAC Bridges, "IEEE Project 802 Local
and Metropolitan Area Networks", July 14, 1989.
[12] I.B.M. Token Ring Architecture Reference.
[13] ISO DIS 10038 MAC Bridges.
[14] ANSI/IEEE P802.1x/P802.5x, "Proposed Draft Local Area Network
Standard -- MAC Bridges, Source Routing Supplement", IEEE Project
802, September 1990.
[15] ANSI/IEEE 802.1y, "Source Routing Tutorial for End System
Operation", September 1990.
8. Security Considerations
Security issues are not discussed in this memo.
Decker, Langille, Rijsinghani & McCloghrie [Page 39]
^L
RFC 1286 Bridge MIB December 1991
9. Authors' Addresses
Eric B. Decker
cisco Systems, Inc.
1525 O'Brien Dr.
Menlo Park, CA 94025
Phone: (415) 326-1941
Email: cire@cisco.com
Paul Langille
Digital Equipment Corporation
Digital Drive, MK02-2/K03
Merrimack, NH 03054
Phone: (603) 884-4045
EMail: langille@edwin.enet.dec.com
Anil Rijsinghani
Digital Equipment Corporation
153 Taylor St.
Littleton, MA 01460
Phone: (508)952-3520
EMail: anil@levers.enet.dec.com
Keith McCloghrie
Hughes LAN Systems
1225 Charleston Road
Mountain View, CA 94043
Phone: (415) 966-7934
EMail: kzm@hls.com
Decker, Langille, Rijsinghani & McCloghrie [Page 40]
^L
|