1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
|
Network Working Group S. Waldbusser
Request for Comments: 2021 INS
Category: Standards Track January 1997
Remote Network Monitoring Management Information Base
Version 2
using SMIv2
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Abstract
This memo defines a portion of the Management Information Base (MIB)
for use with network management protocols in TCP/IP-based internets.
In particular, it defines objects for managing remote network
monitoring devices.
Table of Contents
1 The Network Management Framework ...................... 2
2 Overview .............................................. 2
2.1 Remote Network Management Goals ..................... 3
2.2 Structure of MIB .................................... 5
3 Control of Remote Network Monitoring Devices .......... 6
3.1 Resource Sharing Among Multiple Management Sta-
tions .............................................. 7
3.2 Row Addition Among Multiple Management Stations ..... 9
4 Conventions ........................................... 10
5 RMON 2 Conventions .................................... 10
5.1 Usage of the term Application Level ................. 10
5.2 Protocol Directory and Limited Extensibility ........ 11
5.3 Errors in packets ................................... 11
6 Definitions ........................................... 12
7 Security Considerations ............................... 122
8 Appendix - TimeFilter Implementation Notes ........... 123
9 Acknowledgments ...................................... 129
10 References ........................................... 129
11 Author's Address...................................... 130
Waldbusser Standards Track [Page 1]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
1. The Network Management Framework
The Internet-standard Network Management Framework consists of three
components. They are:
RFC 1902 [1] which defines the SMI, the mechanisms used for
describing and naming objects for the purpose of management.
RFC 1213, STD 17, [3] which defines MIB-II, the core set of
managed objects for the Internet suite of protocols.
RFC 1905 [4] which defines the SNMP, the protocol used for
network access to managed objects.
The Framework permits new objects to be defined for the purpose of
experimentation and evaluation.
Managed objects are accessed via a virtual information store, termed
the Management Information Base or MIB. Within a given MIB module,
objects are defined using the SMI's OBJECT-TYPE macro. At a minimum,
each object has a name, a syntax, an access-level, and an
implementation-status.
The name is an object identifier, an administratively assigned name,
which specifies an object type. The object type together with an
object instance serves to uniquely identify a specific instantiation
of the object. For human convenience, we often use a textual string,
termed the object descriptor, to also refer to the object type.
The syntax of an object type defines the abstract data structure
corresponding to that object type. The ASN.1 [6] language is used
for this purpose. However, RFC 1902 purposely restricts the ASN.1
constructs which may be used. These restrictions are explicitly made
for simplicity.
The access-level of an object type defines whether it makes "protocol
sense" to read and/or write the value of an instance of the object
type. (This access-level is independent of any administrative
authorization policy.)
The implementation-status of an object type indicates whether the
object is mandatory, optional, obsolete, or deprecated.
2. Overview
This document continues the architecture created in the RMON MIB [RFC
1757] by providing a major feature upgrade, primarily by providing
RMON analysis up to the application layer.
Waldbusser Standards Track [Page 2]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
Remote network monitoring devices, often called monitors or probes,
are instruments that exist for the purpose of managing a network.
Often these remote probes are stand-alone devices and devote
significant internal resources for the sole purpose of managing a
network. An organization may employ many of these devices, one per
network segment, to manage its internet. In addition, these devices
may be used for a network management service provider to access a
client network, often geographically remote.
The objects defined in this document are intended as an interface
between an RMON agent and an RMON management application and are not
intended for direct manipulation by humans. While some users may
tolerate the direct display of some of these objects, few will
tolerate the complexity of manually manipulating objects to
accomplish row creation. These functions should be handled by the
management application.
2.1. Remote Network Management Goals
o Offline Operation
There are sometimes conditions when a management
station will not be in constant contact with its
remote monitoring devices. This is sometimes by
design in an attempt to lower communications costs
(especially when communicating over a WAN or
dialup link), or by accident as network failures
affect the communications between the management
station and the probe.
For this reason, this MIB allows a probe to be
configured to perform diagnostics and to collect
statistics continuously, even when communication with
the management station may not be possible or
efficient. The probe may then attempt to notify
the management station when an exceptional condition
occurs. Thus, even in circumstances where
communication between management station and probe is
not continuous, fault, performance, and configuration
information may be continuously accumulated and
communicated to the management station conveniently
and efficiently.
Waldbusser Standards Track [Page 3]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
o Proactive Monitoring
Given the resources available on the monitor, it
is potentially helpful for it continuously to run
diagnostics and to log network performance. The
monitor is always available at the onset of any
failure. It can notify the management station of the
failure and can store historical statistical
information about the failure. This historical
information can be played back by the management
station in an attempt to perform further diagnosis
into the cause of the problem.
o Problem Detection and Reporting
The monitor can be configured to recognize
conditions, most notably error conditions, and
continuously to check for them. When one of these
conditions occurs, the event may be logged, and
management stations may be notified in a number of
ways.
o Value Added Data
Because a remote monitoring device represents a
network resource dedicated exclusively to network
management functions, and because it is located
directly on the monitored portion of the network, the
remote network monitoring device has the opportunity
to add significant value to the data it collects.
For instance, by highlighting those hosts on the
network that generate the most traffic or errors, the
probe can give the management station precisely the
information it needs to solve a class of problems.
o Multiple Managers
An organization may have multiple management stations
for different units of the organization, for different
functions (e.g. engineering and operations), and in an
attempt to provide disaster recovery. Because
environments with multiple management stations are
common, the remote network monitoring device has to
deal with more than own management station,
potentially using its resources concurrently.
Waldbusser Standards Track [Page 4]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
2.2. Structure of MIB
The objects are arranged into the following groups:
- protocol directory
- protocol distribution
- address mapping
- network layer host
- network layer matrix
- application layer host
- application layer matrix
- user history
- probe configuration
These groups are the basic units of conformance. If a remote
monitoring device implements a group, then it must implement all
objects in that group. For example, a managed agent that implements
the network layer matrix group must implement the nlMatrixSDTable and
the nlMatrixDSTable.
Implementations of this MIB must also implement the system and
interfaces group of MIB-II [3]. MIB-II may also mandate the
implementation of additional groups.
These groups are defined to provide a means of assigning object
identifiers, and to provide a method for managed agents to know which
objects they must implement.
This document also contains enhancements to tables defined in the
RMON MIB [RFC 1757]. These enhancements include:
1) Adding the DroppedFrames and LastCreateTime
conventions to each table defined in the RMON MIB.
2) Augmenting the RMON filter table with a mechanism
that allows filtering based on an offset from the
beginning of a particular protocol, even if the
protocol headers are variable length.
Waldbusser Standards Track [Page 5]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
3) Augmenting the RMON filter and capture status bits
with additional bits for WAN media and generic media.
These bits are defined here as:
Bit Definition
6 For WAN media, this bit is set for packets
coming from one direction and cleared for
packets coming from the other direction.
It is an implementation specific matter
as to which bit is assigned to which
direction, but it must be consistent for
all packets received by the agent, and if
the agent knows which end of the link is
"local" and which end is "network", the bit
should be set for packets from the "local"
side and should be cleared for packets from
the "network" side.
7 For any media, this bit is set for any packet
with a physical layer error. This bit may be
set in addition to other media-specific bits
that denote the same condition.
8 For any media, this bit is set for any packet
that is too short for the media. This bit may
be set in addition to other media-specific
bits that denote the same condition.
9 For any media, this bit is set for any packet
that is too long for the media. This bit may
be set in addition to other media-specific bits
that denote the same condition.
These enhancements are implemented by RMON-2 probes that also
implement RMON and do not add any requirements to probes that are
compliant to just RMON.
3. Control of Remote Network Monitoring Devices
Due to the complex nature of the available functions in these
devices, the functions often need user configuration. In many cases,
the function requires parameters to be set up for a data collection
operation. The operation can proceed only after these parameters are
fully set up.
Many functional groups in this MIB have one or more tables in which
to set up control parameters, and one or more data tables in which to
place the results of the operation. The control tables are typically
read/write in nature, while the data tables are typically read/only.
Waldbusser Standards Track [Page 6]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
Because the parameters in the control table often describe resulting
data in the data table, many of the parameters can be modified only
when the control entry is not active. Thus, the method for modifying
these parameters is to de-activate the entry, perform the SNMP Set
operations to modify the entry, and then re-activate the entry.
Deleting the control entry causes the deletion of any associated data
entries, which also gives a convenient method for reclaiming the
resources used by the associated data.
Some objects in this MIB provide a mechanism to execute an action on
the remote monitoring device. These objects may execute an action as
a result of a change in the state of the object. For those objects
in this MIB, a request to set an object to the same value as it
currently holds would thus cause no action to occur.
To facilitate control by multiple managers, resources have to be
shared among the managers. These resources are typically the memory
and computation resources that a function requires.
3.1. Resource Sharing Among Multiple Management Stations
When multiple management stations wish to use functions that compete
for a finite amount of resources on a device, a method to facilitate
this sharing of resources is required. Potential conflicts include:
o Two management stations wish to simultaneously use
resources that together would exceed the capability of
the device.
o A management station uses a significant amount of
resources for a long period of time.
o A management station uses resources and then crashes,
forgetting to free the resources so others may
use them.
The OwnerString mechanism is provided for each management station
initiated function in this MIB to avoid these conflicts and to help
resolve them when they occur. Each function has a label identifying
the initiator (owner) of the function. This label is set by the
initiator to provide for the following possibilities:
o A management station may recognize resources it owns
and no longer needs.
o A network operator can find the management station that
owns the resource and negotiate for it to be freed.
o A network operator may decide to unilaterally free
resources another network operator has reserved.
Waldbusser Standards Track [Page 7]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
o Upon initialization, a management station may recognize
resources it had reserved in the past. With this
information it may free the resources if it no longer
needs them.
Management stations and probes should support any format of the owner
string dictated by the local policy of the organization. It is
suggested that this name contain one or more of the following: IP
address, management station name, network manager's name, location,
or phone number. This information will help users to share the
resources more effectively.
There is often default functionality that the device or the
administrator of the probe (often the network administrator) wishes
to set up. The resources associated with this functionality are then
owned by the device itself or by the network administrator, and are
intended to be long-lived. In this case, the device or the
administrator will set the relevant owner object to a string starting
with 'monitor'. Indiscriminate modification of the monitor-owned
configuration by network management stations is discouraged. In
fact, a network management station should only modify these objects
under the direction of the administrator of the probe.
Resources on a probe are scarce and are typically allocated when
control rows are created by an application. Since many applications
may be using a probe simultaneously, indiscriminate allocation of
resources to particular applications is very likely to cause resource
shortages in the probe.
When a network management station wishes to utilize a function in a
monitor, it is encouraged to first scan the control table of that
function to find an instance with similar parameters to share. This
is especially true for those instances owned by the monitor, which
can be assumed to change infrequently. If a management station
decides to share an instance owned by another management station, it
should understand that the management station that owns the instance
may indiscriminately modify or delete it.
It should be noted that a management application should have the most
trust in a monitor-owned row because it should be changed very
infrequently. A row owned by the management application is less
long-lived because a network administrator is more likely to re-
assign resources from a row that is in use by one user than from a
monitor-owned row that is potentially in use by many users. A row
owned by another application would be even less long-lived because
the other application may delete or modify that row completely at its
discretion.
Waldbusser Standards Track [Page 8]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
3.2. Row Addition Among Multiple Management Stations
The addition of new rows is achieved using the RowStatus method
described in RFC 1903 [2]. In this MIB, rows are often added to a
table in order to configure a function. This configuration usually
involves parameters that control the operation of the function. The
agent must check these parameters to make sure they are appropriate
given restrictions defined in this MIB as well as any implementation
specific restrictions such as lack of resources. The agent
implementor may be confused as to when to check these parameters and
when to signal to the management station that the parameters are
invalid. There are two opportunities:
o When the management station sets each parameter object.
o When the management station sets the row status object
to active.
If the latter is chosen, it would be unclear to the management
station which of the several parameters was invalid and caused the
badValue error to be emitted. Thus, wherever possible, the
implementor should choose the former as it will provide more
information to the management station.
A problem can arise when multiple management stations attempt to set
configuration information simultaneously using SNMP. When this
involves the addition of a new conceptual row in the same control
table, the managers may collide, attempting to create the same entry.
To guard against these collisions, each such control entry contains a
status object with special semantics that help to arbitrate among the
managers. If an attempt is made with the row addition mechanism to
create such a status object and that object already exists, an error
is returned. When more than one manager simultaneously attempts to
create the same conceptual row, only the first will succeed. The
others will receive an error.
In the RMON MIB [RFC 1757], the EntryStatus textual convention was
introduced to provide this mutual exclusion function. Since then,
this function was added to the SNMP framework as the RowStatus
textual convention. The RowStatus textual convention is used for the
definition of all new tables.
When a manager wishes to create a new control entry, it needs to
choose an index for that row. It may choose this index in a variety
of ways, hopefully minimizing the chances that the index is in use by
another manager. If the index is in use, the mechanism mentioned
previously will guard against collisions. Examples of schemes to
choose index values include random selection or scanning the control
Waldbusser Standards Track [Page 9]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
table looking for the first unused index. Because index values may
be any valid value in the range and they are chosen by the manager,
the agent must allow a row to be created with any unused index value
if it has the resources to create a new row.
Some tables in this MIB reference other tables within this MIB. When
creating or deleting entries in these tables, it is generally
allowable for dangling references to exist. There is no defined
order for creating or deleting entries in these tables.
4. Conventions
The following conventions are used throughout the RMON MIB and its
companion documents.
Good Packets
Good packets are error-free packets that have a valid frame length.
For example, on Ethernet, good packets are error-free packets that
are between 64 octets long and 1518 octets long. They follow the
form defined in IEEE 802.3 section 3.2.all.
Bad Packets
Bad packets are packets that have proper framing and are therefore
recognized as packets, but contain errors within the packet or have
an invalid length. For example, on Ethernet, bad packets have a
valid preamble and SFD, but have a bad CRC, or are either shorter
than 64 octets or longer than 1518 octets.
5. RMON 2 Conventions
The following practices and conventions are introduced in the RMON 2
MIB.
5.1. Usage of the term Application Level
There are many cases in this MIB where the term Application Level is
used to describe a class of protocols or a capability. This does not
typically mean a protocol that is an OSI Layer 7 protocol. Rather,
it is used to identify a class of protocols that is not limited to
MAC-layer and network-layer protocols, but can also include
transport, session, presentation, and application-layer protocols.
Waldbusser Standards Track [Page 10]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
5.2. Protocol Directory and Limited Extensibility
Every RMON 2 implementation will have the capability to parse certain
types of packets and identify their protocol type at multiple levels,
The protocol directory presents an inventory of those protocol types
the probe is capable of monitoring, and allows the addition,
deletion, and configuration of protocol types in this list.
One concept deserves special attention: the "limited extensibility"
of the protocol directory table. The RMON 2 model is that protocols
are detected by static software that has been written at
implementation time. Therefore, as a matter of configuration, an
implementation does not have the ability to suddenly learn how to
parse new packet types. However, an implementation may be written
such that the software knows where the demultiplexing field is for a
particular protocol, and can be written in such a way that the
decoding of the next layer up is table-driven. This works when the
code has been written to accomodate it and can be extended no more
than one level higher. This extensibility is called "limited
extensibility" to highlight these limitations. However, this can be
a very useful tool.
For example, suppose that an implementation has C code that
understands how to decode IP packets on any of several ethernet
encapsulations, and also knows how to interpret the IP protocol field
to recognize UDP packets and how to decode the UDP port number
fields. That implementation may be table- driven so that among the
many different UDP port numbers possible, it is configured to
recognize 161 as SNMP, port 53 as DNS, and port 69 as TFTP. The
limited extensibility of the protocol directory table would allow an
SNMP operation to create an entry that would create an additional
table mapping for UDP that would recognize UDP port 123 as NTP and
begin counting such packets.
This limited extensibility is an option that an implementation can
choose to allow or disallow for any protocol that has child
protocols.
5.3. Errors in packets
Packets with link-level errors are not counted anywhere in this MIB
because most variables in this MIB requires the decoding of the
contents of the packet, which is meaningless if there is a link-level
error.
Packets in which protocol errors are detected are counted for all
protocols below the layer in which the error was encountered. The
implication of this is that packets in which errors are detected at
Waldbusser Standards Track [Page 11]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
the network-layer are not counted anywhere in this MIB, while packets
with errors detected at the transport layer may have network-layer
statistics counted.
6. Definitions
RMON2-MIB DEFINITIONS ::= BEGIN
IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, Counter32, Integer32,
Gauge32, IpAddress, TimeTicks FROM SNMPv2-SMI
TEXTUAL-CONVENTION, RowStatus, DisplayString, TimeStamp
FROM SNMPv2-TC
MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF
mib-2, ifIndex FROM RFC1213-MIB
OwnerString, statistics, history, hosts,
matrix, filter, etherStatsEntry, historyControlEntry,
hostControlEntry, matrixControlEntry, filterEntry,
channelEntry FROM RMON-MIB
tokenRing, tokenRingMLStatsEntry, tokenRingPStatsEntry,
ringStationControlEntry, sourceRoutingStatsEntry
FROM TOKEN-RING-RMON-MIB;
-- Remote Network Monitoring MIB
rmon MODULE-IDENTITY
LAST-UPDATED "9605270000Z"
ORGANIZATION "IETF RMON MIB Working Group"
CONTACT-INFO
"Steve Waldbusser (WG Editor)
Postal: International Network Services
650 Castro Street, Suite 260
Mountain View, CA 94041
Phone: +1 415 254 4251
Email: waldbusser@ins.com
Andy Bierman (WG Chair)
Phone: +1 805 648 2028
Email: abierman@west.net"
DESCRIPTION
"The MIB module for managing remote monitoring
device implementations. This MIB module
augments the original RMON MIB as specified in
RFC 1757."
::= { mib-2 16 }
-- { rmon 1 } through { rmon 10 } are defined in RMON and
-- the Token Ring RMON MIB [RFC 1513]
Waldbusser Standards Track [Page 12]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
protocolDir OBJECT IDENTIFIER ::= { rmon 11 }
protocolDist OBJECT IDENTIFIER ::= { rmon 12 }
addressMap OBJECT IDENTIFIER ::= { rmon 13 }
nlHost OBJECT IDENTIFIER ::= { rmon 14 }
nlMatrix OBJECT IDENTIFIER ::= { rmon 15 }
alHost OBJECT IDENTIFIER ::= { rmon 16 }
alMatrix OBJECT IDENTIFIER ::= { rmon 17 }
usrHistory OBJECT IDENTIFIER ::= { rmon 18 }
probeConfig OBJECT IDENTIFIER ::= { rmon 19 }
rmonConformance OBJECT IDENTIFIER ::= { rmon 20 }
-- Textual Conventions
ZeroBasedCounter32 ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"This TC describes an object which counts events with the
following semantics: objects of this type will be set to
zero(0) on creation and will thereafter count appropriate
events, wrapping back to zero(0) when the value 2^32 is
reached.
Provided that an application discovers the new object within
the minimum time to wrap it can use the initial value as a
delta since it last polled the table of which this object is
part. It is important for a management station to be aware of
this minimum time and the actual time between polls, and to
discard data if the actual time is too long or there is no
defined minimum time.
Typically this TC is used in tables where the INDEX space is
constantly changing and/or the TimeFilter mechanism is in use."
SYNTAX Gauge32
LastCreateTime ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"This TC describes an object that stores the last time its
entry was created.
This can be used for polling applications to determine that an
entry has been deleted and re-created between polls, causing
an otherwise undetectable discontinuity in the data."
SYNTAX TimeStamp
TimeFilter ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
Waldbusser Standards Track [Page 13]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
"To be used for the index to a table. Allows an application
to download only those rows changed since a particular time.
A row is considered changed if the value of any object in the
row changes or if the row is created or deleted.
When sysUpTime is equal to zero, this table shall be empty.
One entry exists for each past value of sysUpTime, except that
the whole table is purged should sysUpTime wrap.
As this basic row is updated new conceptual rows are created
(which still share the now updated object values with all
other instances). The number of instances which are created
is determined by the value of sysUpTime at which the basic row
was last updated. One instance will exist for each value of
sysUpTime at the last update time for the row. A new
timeMark instance is created for each new sysUpTime value.
Each new conceptual row will be associated with the timeMark
instance which was created at the value of sysUpTime with
which the conceptual row is to be associated.
By definition all conceptual rows were updated at or after
time zero and so at least one conceptual row (associated with
timeMark.0) must exist for each underlying (basic) row.
See the appendix for further discussion of this variable.
Consider the following fooTable:
fooTable ...
INDEX { fooTimeMark, fooIndex }
FooEntry {
fooTimeMark TimeFilter
fooIndex INTEGER,
fooCounts Counter
}
Should there be two basic rows in this table (fooIndex == 1,
fooIndex == 2) and row 1 was updated most recently at time 6,
while row 2 was updated most recently at time 8, and both rows
had been updated on several earlier occasions such that the
current values were 5 and 9 respectively then the following
fooCounts instances would exist.
fooCounts.0.1 5
fooCounts.0.2 9
fooCounts.1.1 5
Waldbusser Standards Track [Page 14]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
fooCounts.1.2 9
fooCounts.2.1 5
fooCounts.2.2 9
fooCounts.3.1 5
fooCounts.3.2 9
fooCounts.4.1 5
fooCounts.4.2 9
fooCounts.5.1 5
fooCounts.5.2 9
fooCounts.6.1 5
fooCounts.6.2 9
fooCounts.7.2 9 -- note that row 1 doesn't exist for
fooCounts.8.2 9 -- times 7 and 8"
SYNTAX TimeTicks
DataSource ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Identifies the source of the data that the associated
function is configured to analyze. This source can be any
interface on this device.
In order to identify a particular interface, this
object shall identify the instance of the ifIndex
object, defined in [3,5], for the desired interface.
For example, if an entry were to receive data from
interface #1, this object would be set to ifIndex.1."
SYNTAX OBJECT IDENTIFIER
--
-- Protocol Directory Group
--
-- Lists the inventory of protocols the probe has the capability of
-- monitoring and allows the addition, deletion, and configuration of
-- entries in this list.
protocolDirLastChange OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime at the time the protocol directory
was last modified, either through insertions or deletions,
or through modifications of either the
protocolDirAddressMapConfig, protocolDirHostConfig, or
protocolDirMatrixConfig."
::= { protocolDir 1 }
Waldbusser Standards Track [Page 15]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
protocolDirTable OBJECT-TYPE
SYNTAX SEQUENCE OF ProtocolDirEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table lists the protocols that this agent has the
capability to decode and count. There is one entry in this
table for each such protocol. These protocols represent
different network layer, transport layer, and higher-layer
protocols. The agent should boot up with this table
preconfigured with those protocols that it knows about and
wishes to monitor. Implementations are strongly encouraged to
support protocols higher than the network layer (at least for
the protocol distribution group), even for implementations
that don't support the application layer groups."
::= { protocolDir 2 }
protocolDirEntry OBJECT-TYPE
SYNTAX ProtocolDirEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A conceptual row in the protocolDirTable.
An example of the indexing of this entry is
protocolDirLocalIndex.8.0.0.0.1.0.0.8.0.2.0.0, which is the
encoding of a length of 8, followed by 8 subids encoding the
protocolDirID of 1.2048, followed by a length of 2 and the
2 subids encoding zero-valued parameters."
INDEX { protocolDirID, protocolDirParameters }
::= { protocolDirTable 1 }
ProtocolDirEntry ::= SEQUENCE {
protocolDirID OCTET STRING,
protocolDirParameters OCTET STRING,
protocolDirLocalIndex Integer32,
protocolDirDescr DisplayString,
protocolDirType BITS,
protocolDirAddressMapConfig INTEGER,
protocolDirHostConfig INTEGER,
protocolDirMatrixConfig INTEGER,
protocolDirOwner OwnerString,
protocolDirStatus RowStatus
}
protocolDirID OBJECT-TYPE
SYNTAX OCTET STRING
MAX-ACCESS not-accessible
Waldbusser Standards Track [Page 16]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
STATUS current
DESCRIPTION
"A unique identifier for a particular protocol. Standard
identifiers will be defined in a manner such that they
can often be used as specifications for new protocols - i.e.
a tree-structured assignment mechanism that matches the
protocol encapsulation `tree' and which has algorithmic
assignment mechanisms for certain subtrees. See RFC XXX for
more details.
Despite the algorithmic mechanism, the probe will only place
entries in here for those protocols it chooses to collect. In
other words, it need not populate this table with all of the
possible ethernet protocol types, nor need it create them on
the fly when it sees them. Whether or not it does these
things is a matter of product definition (cost/benefit,
usability), and is up to the designer of the product.
If an entry is written to this table with a protocolDirID that
the agent doesn't understand, either directly or
algorithmically, the SET request will be rejected with an
inconsistentName or badValue (for SNMPv1) error."
::= { protocolDirEntry 1 }
protocolDirParameters OBJECT-TYPE
SYNTAX OCTET STRING
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A set of parameters for the associated protocolDirID.
See the associated RMON2 Protocol Identifiers document
for a description of the possible parameters. There
will be one octet in this string for each sub-identifier in
the protocolDirID, and the parameters will appear here in the
same order as the associated sub-identifiers appear in the
protocolDirID.
Every node in the protocolDirID tree has a different, optional
set of parameters defined (that is, the definition of
parameters for a node is optional). The proper parameter
value for each node is included in this string. Note that the
inclusion of a parameter value in this string for each node is
not optional - what is optional is that a node may have no
parameters defined, in which case the parameter field for that
node will be zero."
::= { protocolDirEntry 2 }
protocolDirLocalIndex OBJECT-TYPE
Waldbusser Standards Track [Page 17]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The locally arbitrary, but unique identifier associated
with this protocolDir entry.
The value for each supported protocol must remain constant at
least from one re-initialization of the entity's network
management system to the next re-initialization, except that
if a protocol is deleted and re-created, it must be re-created
with a new value that has not been used since the last
re-initialization.
The specific value is meaningful only within a given SNMP
entity. A protocolDirLocalIndex must not be re-used until the
next agent-restart in the event the protocol directory entry
is deleted."
::= { protocolDirEntry 3 }
protocolDirDescr OBJECT-TYPE
SYNTAX DisplayString (SIZE (1..64))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"A textual description of the protocol encapsulation.
A probe may choose to describe only a subset of the
entire encapsulation (e.g. only the highest layer).
This object is intended for human consumption only.
This object may not be modified if the associated
protocolDirStatus object is equal to active(1)."
::= { protocolDirEntry 4 }
protocolDirType OBJECT-TYPE
SYNTAX BITS {
extensible(0),
addressRecognitionCapable(1)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object describes 2 attributes of this protocol
directory entry.
The presence or absence of the `extensible' bit describes
whether or not this protocol directory entry can be extended
Waldbusser Standards Track [Page 18]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
by the user by creating protocol directory entries which are
children of this protocol.
An example of an entry that will often allow extensibility is
`ip.udp'. The probe may automatically populate some children
of this node such as `ip.udp.snmp' and `ip.udp.dns'.
A probe administrator or user may also populate additional
children via remote SNMP requests that create entries in this
table. When a child node is added for a protocol for which the
probe has no built in support, extending a parent node (for
which the probe does have built in support),
that child node is not extendible. This is termed `limited
extensibility'.
When a child node is added through this extensibility
mechanism, the values of protocolDirLocalIndex and
protocolDirType shall be assigned by the agent.
The other objects in the entry will be assigned by the
manager who is creating the new entry.
This object also describes whether or not this agent can
recognize addresses for this protocol, should it be a network
level protocol. That is, while a probe may be able to
recognize packets of a particular network layer protocol and
count them, it takes additional logic to be able to recognize
the addresses in this protocol and to populate network layer
or application layer tables with the addresses in this
protocol. If this bit is set, the agent will recognize
network layer addresses for this protoocl and populate the
network and application layer host and matrix tables with
these protocols.
Note that when an entry is created, the agent will supply
values for the bits that match the capabilities of the agent
with respect to this protocol. Note that since row creations
usually exercise the limited extensibility feature, these
bits will usually be set to zero."
::= { protocolDirEntry 5 }
protocolDirAddressMapConfig OBJECT-TYPE
SYNTAX INTEGER {
notSupported(1),
supportedOff(2),
supportedOn(3)
}
MAX-ACCESS read-create
STATUS current
Waldbusser Standards Track [Page 19]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
DESCRIPTION
"This object describes and configures the probe's support for
address mapping for this protocol. When the probe creates
entries in this table for all protocols that it understands,
it will set the entry to notSupported(1) if it doesn't have
the capability to perform address mapping for the protocol or
if this protocol is not a network-layer protocol. When
an entry is created in this table by a management operation as
part of the limited extensibility feature, the probe must set
this value to notSupported(1), because limited extensibility
of the protocolDirTable does not extend to interpreting
addresses of the extended protocols.
If the value of this object is notSupported(1), the probe
will not perform address mapping for this protocol and
shall not allow this object to be changed to any other value.
If the value of this object is supportedOn(3), the probe
supports address mapping for this protocol and is configured
to perform address mapping for this protocol for all
addressMappingControlEntries and all interfaces.
If the value of this object is supportedOff(2), the probe
supports address mapping for this protocol but is configured
to not perform address mapping for this protocol for any
addressMappingControlEntries and all interfaces.
Whenever this value changes from supportedOn(3) to
supportedOff(2), the probe shall delete all related entries in
the addressMappingTable."
::= { protocolDirEntry 6 }
protocolDirHostConfig OBJECT-TYPE
SYNTAX INTEGER {
notSupported(1),
supportedOff(2),
supportedOn(3)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object describes and configures the probe's support for
the network layer and application layer host tables for this
protocol. When the probe creates entries in this table for
all protocols that it understands, it will set the entry to
notSupported(1) if it doesn't have the capability to track the
nlHostTable for this protocol or if the alHostTable is
implemented but doesn't have the capability to track this
protocol. Note that if the alHostTable is implemented, the
probe may only support a protocol if it is supported in both
the nlHostTable and the alHostTable.
Waldbusser Standards Track [Page 20]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
If the associated protocolDirType object has the
addressRecognitionCapable bit set, then this is a network
layer protocol for which the probe recognizes addresses, and
thus the probe will populate the nlHostTable and alHostTable
with addresses it discovers for this protocol.
If the value of this object is notSupported(1), the probe
will not track the nlHostTable or alHostTable for this
protocol and shall not allow this object to be changed to any
other value. If the value of this object is supportedOn(3),
the probe supports tracking of the nlHostTable and alHostTable
for this protocol and is configured to track both tables
for this protocol for all control entries and all interfaces.
If the value of this object is supportedOff(2), the probe
supports tracking of the nlHostTable and alHostTable for this
protocol but is configured to not track these tables
for any control entries or interfaces.
Whenever this value changes from supportedOn(3) to
supportedOff(2), the probe shall delete all related entries in
the nlHostTable and alHostTable.
Note that since each alHostEntry references 2 protocol
directory entries, one for the network address and one for the
type of the highest protocol recognized, that an entry will
only be created in that table if this value is supportedOn(3)
for both protocols."
::= { protocolDirEntry 7 }
protocolDirMatrixConfig OBJECT-TYPE
SYNTAX INTEGER {
notSupported(1),
supportedOff(2),
supportedOn(3)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object describes and configures the probe's support for
the network layer and application layer matrix tables for this
protocol. When the probe creates entries in this table for
all protocols that it understands, it will set the entry to
notSupported(1) if it doesn't have the capability to track the
nlMatrixTables for this protocol or if the alMatrixTables are
implemented but don't have the capability to track this
protocol. Note that if the alMatrix tables are implemented,
the probe may only support a protocol if it is supported in
the the both of the nlMatrixTables and both of the
alMatrixTables.
Waldbusser Standards Track [Page 21]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
If the associated protocolDirType object has the
addressRecognitionCapable bit set, then this is a network
layer protocol for which the probe recognizes addresses, and
thus the probe will populate both of the nlMatrixTables and
both of the alMatrixTables with addresses it discovers for
this protocol.
If the value of this object is notSupported(1), the probe
will not track either of the nlMatrixTables or the
alMatrixTables for this protocol and shall not allow this
object to be changed to any other value. If the value of this
object is supportedOn(3), the probe supports tracking of both
of the nlMatrixTables and (if implemented) both of the
alMatrixTables for this protocol and is configured to track
these tables for this protocol for all control entries and all
interfaces. If the value of this object is supportedOff(2),
the probe supports tracking of both of the nlMatrixTables and
(if implemented) both of the alMatrixTables for this protocol
but is configured to not track these tables for this
protocol for any control entries or interfaces.
Whenever this value changes from supportedOn(3) to
supportedOff(2), the probe shall delete all related entries in
the nlMatrixTables and the alMatrixTables.
Note that since each alMatrixEntry references 2 protocol
directory entries, one for the network address and one for the
type of the highest protocol recognized, that an entry will
only be created in that table if this value is supportedOn(3)
for both protocols."
::= { protocolDirEntry 8 }
protocolDirOwner OBJECT-TYPE
SYNTAX OwnerString
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The entity that configured this entry and is
therefore using the resources assigned to it."
::= { protocolDirEntry 9 }
protocolDirStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The status of this protocol directory entry.
An entry may not exist in the active state unless all
Waldbusser Standards Track [Page 22]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
objects in the entry have an appropriate value.
If this object is not equal to active(1), all associated
entries in the nlHostTable, nlMatrixSDTable, nlMatrixDSTable,
alHostTable, alMatrixSDTable, and alMatrixDSTable shall be
deleted."
::= { protocolDirEntry 10 }
--
-- Protocol Distribution Group (protocolDist)
--
-- Collects the relative amounts of octets and packets for the
-- different protocols detected on a network segment.
-- protocolDistControlTable,
-- protocolDistStatsTable
protocolDistControlTable OBJECT-TYPE
SYNTAX SEQUENCE OF ProtocolDistControlEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Controls the setup of protocol type distribution statistics
tables.
Implementations are encouraged to add an entry per monitored
interface upon initialization so that a default collection
of protocol statistics is available.
Rationale:
This table controls collection of very basic statistics
for any or all of the protocols detected on a given interface.
An NMS can use this table to quickly determine bandwidth
allocation utilized by different protocols.
A media-specific statistics collection could also
be configured (e.g. etherStats, trPStats) to easily obtain
total frame, octet, and droppedEvents for the same
interface."
::= { protocolDist 1 }
protocolDistControlEntry OBJECT-TYPE
SYNTAX ProtocolDistControlEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A conceptual row in the protocolDistControlTable.
An example of the indexing of this entry is
Waldbusser Standards Track [Page 23]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
protocolDistControlDroppedFrames.7"
INDEX { protocolDistControlIndex }
::= { protocolDistControlTable 1 }
ProtocolDistControlEntry ::= SEQUENCE {
protocolDistControlIndex Integer32,
protocolDistControlDataSource DataSource,
protocolDistControlDroppedFrames Counter32,
protocolDistControlCreateTime LastCreateTime,
protocolDistControlOwner OwnerString,
protocolDistControlStatus RowStatus
}
protocolDistControlIndex OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A unique index for this protocolDistControlEntry."
::= { protocolDistControlEntry 1 }
protocolDistControlDataSource OBJECT-TYPE
SYNTAX DataSource
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The source of data for the this protocol distribution.
The statistics in this group reflect all packets
on the local network segment attached to the
identified interface.
This object may not be modified if the associated
protocolDistControlStatus object is equal to active(1)."
::= { protocolDistControlEntry 2 }
protocolDistControlDroppedFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of frames which were received by the probe
and therefore not accounted for in the *StatsDropEvents, but
for which the probe chose not to count for this entry for
whatever reason. Most often, this event occurs when the probe
is out of some resources and decides to shed load from this
collection.
Waldbusser Standards Track [Page 24]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
This count does not include packets that were not counted
because they had MAC-layer errors.
Note that, unlike the dropEvents counter, this number is the
exact number of frames dropped."
::= { protocolDistControlEntry 3 }
protocolDistControlCreateTime OBJECT-TYPE
SYNTAX LastCreateTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime when this control entry was last
activated. This can be used by the management station to
ensure that the table has not been deleted and recreated
between polls."
::= { protocolDistControlEntry 4 }
protocolDistControlOwner OBJECT-TYPE
SYNTAX OwnerString
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The entity that configured this entry and is
therefore using the resources assigned to it."
::= { protocolDistControlEntry 5 }
protocolDistControlStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The status of this row.
An entry may not exist in the active state unless all
objects in the entry have an appropriate value.
If this object is not equal to active(1), all associated
entries in the protocolDistStatsTable shall be deleted."
::= { protocolDistControlEntry 6 }
-- per interface protocol distribution statistics table
protocolDistStatsTable OBJECT-TYPE
SYNTAX SEQUENCE OF ProtocolDistStatsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry is made in this table for every protocol in the
Waldbusser Standards Track [Page 25]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
protocolDirTable which has been seen in at least one packet.
Counters are updated in this table for every protocol type
that is encountered when parsing a packet, but no counters are
updated for packets with MAC-layer errors.
Note that if a protocolDirEntry is deleted, all associated
entries in this table are removed."
::= { protocolDist 2 }
protocolDistStatsEntry OBJECT-TYPE
SYNTAX ProtocolDistStatsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A conceptual row in the protocolDistStatsTable.
The index is composed of the protocolDistControlIndex of the
associated protocolDistControlEntry followed by the
protocolDirLocalIndex of the associated protocol that this
entry represents. In other words, the index identifies the
protocol distribution an entry is a part of as well as the
particular protocol that it represents.
An example of the indexing of this entry is
protocolDistStatsPkts.1.18"
INDEX { protocolDistControlIndex, protocolDirLocalIndex }
::= { protocolDistStatsTable 1 }
ProtocolDistStatsEntry ::= SEQUENCE {
protocolDistStatsPkts ZeroBasedCounter32,
protocolDistStatsOctets ZeroBasedCounter32
}
protocolDistStatsPkts OBJECT-TYPE
SYNTAX ZeroBasedCounter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of packets without errors received of this
protocol type. Note that this is the number of link-layer
packets, so if a single network-layer packet is fragmented
into several link-layer frames, this counter is incremented
several times."
::= { protocolDistStatsEntry 1 }
protocolDistStatsOctets OBJECT-TYPE
SYNTAX ZeroBasedCounter32
MAX-ACCESS read-only
Waldbusser Standards Track [Page 26]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
STATUS current
DESCRIPTION
"The number of octets in packets received of this protocol
type since it was added to the protocolDistStatsTable
(excluding framing bits but including FCS octets), except for
those octets in packets that contained errors.
Note this doesn't count just those octets in the particular
protocol frames, but includes the entire packet that contained
the protocol."
::= { protocolDistStatsEntry 2 }
--
-- Address Map Group (addressMap)
--
-- Lists MAC address to network address bindings discovered by the
-- probe and what interface they were last seen on.
-- addressMapControlTable
-- addressMapTable
addressMapInserts OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of times an address mapping entry has been
inserted into the addressMapTable. If an entry is inserted,
then deleted, and then inserted, this counter will be
incremented by 2.
Note that the table size can be determined by subtracting
addressMapDeletes from addressMapInserts."
::= { addressMap 1 }
addressMapDeletes OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of times an address mapping entry has been
deleted from the addressMapTable (for any reason). If
an entry is deleted, then inserted, and then deleted, this
counter will be incremented by 2.
Note that the table size can be determined by subtracting
addressMapDeletes from addressMapInserts."
::= { addressMap 2 }
Waldbusser Standards Track [Page 27]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
addressMapMaxDesiredEntries OBJECT-TYPE
SYNTAX Integer32 (-1..2147483647)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The maximum number of entries that are desired in the
addressMapTable. The probe will not create more than
this number of entries in the table, but may choose to create
fewer entries in this table for any reason including the lack
of resources.
If this object is set to a value less than the current number
of entries, enough entries are chosen in an
implementation-dependent manner and deleted so that the number
of entries in the table equals the value of this object.
If this value is set to -1, the probe may create any number
of entries in this table.
This object may be used to control how resources are allocated
on the probe for the various RMON functions."
::= { addressMap 3 }
addressMapControlTable OBJECT-TYPE
SYNTAX SEQUENCE OF AddressMapControlEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table to control the collection of network layer address to
physical address to interface mappings.
Note that this is not like the typical RMON
controlTable and dataTable in which each entry creates
its own data table. Each entry in this table enables the
discovery of addresses on a new interface and the placement
of address mappings into the central addressMapTable.
Implementations are encouraged to add an entry per monitored
interface upon initialization so that a default collection
of address mappings is available."
::= { addressMap 4 }
addressMapControlEntry OBJECT-TYPE
SYNTAX AddressMapControlEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A conceptual row in the addressMapControlTable.
Waldbusser Standards Track [Page 28]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
An example of the indexing of this entry is
addressMapControlDroppedFrames.1"
INDEX { addressMapControlIndex }
::= { addressMapControlTable 1 }
AddressMapControlEntry ::= SEQUENCE {
addressMapControlIndex Integer32,
addressMapControlDataSource DataSource,
addressMapControlDroppedFrames Counter32,
addressMapControlOwner OwnerString,
addressMapControlStatus RowStatus
}
addressMapControlIndex OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A unique index for this entry in the addressMapControlTable."
::= { addressMapControlEntry 1 }
addressMapControlDataSource OBJECT-TYPE
SYNTAX DataSource
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The source of data for this addressMapControlEntry."
::= { addressMapControlEntry 2 }
addressMapControlDroppedFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of frames which were received by the probe
and therefore not accounted for in the *StatsDropEvents, but
for which the probe chose not to count for this entry for
whatever reason. Most often, this event occurs when the probe
is out of some resources and decides to shed load from this
collection.
This count does not include packets that were not counted
because they had MAC-layer errors.
Note that, unlike the dropEvents counter, this number is the
exact number of frames dropped."
::= { addressMapControlEntry 3 }
Waldbusser Standards Track [Page 29]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
addressMapControlOwner OBJECT-TYPE
SYNTAX OwnerString
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The entity that configured this entry and is
therefore using the resources assigned to it."
::= { addressMapControlEntry 4 }
addressMapControlStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The status of this addressMap control entry.
An entry may not exist in the active state unless all
objects in the entry have an appropriate value.
If this object is not equal to active(1), all associated
entries in the addressMapTable shall be deleted."
::= { addressMapControlEntry 5 }
addressMapTable OBJECT-TYPE
SYNTAX SEQUENCE OF AddressMapEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table of network layer address to physical address to
interface mappings.
The probe will add entries to this table based on the source
MAC and network addresses seen in packets without MAC-level
errors. The probe will populate this table for all protocols
in the protocol directory table whose value of
protocolDirAddressMapConfig is equal to supportedOn(3), and
will delete any entries whose protocolDirEntry is deleted or
has a protocolDirAddressMapConfig value of supportedOff(2)."
::= { addressMap 5 }
addressMapEntry OBJECT-TYPE
SYNTAX AddressMapEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A conceptual row in the addressMapTable.
The protocolDirLocalIndex in the index identifies the network
layer protocol of the addressMapNetworkAddress.
Waldbusser Standards Track [Page 30]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
An example of the indexing of this entry is
addressMapSource.783495.18.4.128.2.6.6.11.1.3.6.1.2.1.2.2.1.1.1"
INDEX { addressMapTimeMark, protocolDirLocalIndex,
addressMapNetworkAddress, addressMapSource }
::= { addressMapTable 1 }
AddressMapEntry ::= SEQUENCE {
addressMapTimeMark TimeFilter,
addressMapNetworkAddress OCTET STRING,
addressMapSource OBJECT IDENTIFIER,
addressMapPhysicalAddress OCTET STRING,
addressMapLastChange TimeStamp
}
addressMapTimeMark OBJECT-TYPE
SYNTAX TimeFilter
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A TimeFilter for this entry. See the TimeFilter textual
convention to see how this works."
::= { addressMapEntry 1 }
addressMapNetworkAddress OBJECT-TYPE
SYNTAX OCTET STRING
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The network address for this relation.
This is represented as an octet string with
specific semantics and length as identified
by the protocolDirLocalIndex component of the
index.
For example, if the protocolDirLocalIndex indicates an
encapsulation of ip, this object is encoded as a length
octet of 4, followed by the 4 octets of the ip address,
in network byte order."
::= { addressMapEntry 2 }
addressMapSource OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The interface or port on which the associated network
address was most recently seen.
Waldbusser Standards Track [Page 31]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
If this address mapping was discovered on an interface, this
object shall identify the instance of the ifIndex
object, defined in [3,5], for the desired interface.
For example, if an entry were to receive data from
interface #1, this object would be set to ifIndex.1.
If this address mapping was discovered on a port, this
object shall identify the instance of the rptrGroupPortIndex
object, defined in [RFC1516], for the desired port.
For example, if an entry were to receive data from
group #1, port #1, this object would be set to
rptrGroupPortIndex.1.1.
Note that while the dataSource associated with this entry
may only point to index objects, this object may at times
point to repeater port objects. This situation occurs when
the dataSource points to an interface which is a locally
attached repeater and the agent has additional information
about the source port of traffic seen on that repeater."
::= { addressMapEntry 3 }
addressMapPhysicalAddress OBJECT-TYPE
SYNTAX OCTET STRING
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The last source physical address on which the associated
network address was seen. If the protocol of the associated
network address was encapsulated inside of a network-level or
higher protocol, this will be the address of the next-lower
protocol with the addressRecognitionCapable bit enabled and
will be formatted as specified for that protocol."
::= { addressMapEntry 4 }
addressMapLastChange OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime at the time this entry was last
created or the values of the physical address changed.
This can be used to help detect duplicate address problems, in
which case this object will be updated frequently."
::= { addressMapEntry 5 }
--
-- Network Layer Host Group
Waldbusser Standards Track [Page 32]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
--
-- Counts the amount of traffic sent from and to each network address
-- discovered by the probe.
-- Note that while the hlHostControlTable also has objects that
-- control an optional alHostTable, implementation of the alHostTable is
-- not required to fully implement this group.
hlHostControlTable OBJECT-TYPE
SYNTAX SEQUENCE OF HlHostControlEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A list of higher layer (i.e. non-MAC) host table control entries.
These entries will enable the collection of the network and
application level host tables indexed by network addresses.
Both the network and application level host tables are
controlled by this table is so that they will both be created
and deleted at the same time, further increasing the ease with
which they can be implemented as a single datastore (note that
if an implementation stores application layer host records in
memory, it can derive network layer host records from them).
Entries in the nlHostTable will be created on behalf of each
entry in this table. Additionally, if this probe implements
the alHostTable, entries in the alHostTable will be created on
behalf of each entry in this table.
Implementations are encouraged to add an entry per monitored
interface upon initialization so that a default collection
of host statistics is available."
::= { nlHost 1 }
hlHostControlEntry OBJECT-TYPE
SYNTAX HlHostControlEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A conceptual row in the hlHostControlTable.
An example of the indexing of this entry is
hlHostControlNlDroppedFrames.1"
INDEX { hlHostControlIndex }
::= { hlHostControlTable 1 }
HlHostControlEntry ::= SEQUENCE {
hlHostControlIndex Integer32,
hlHostControlDataSource DataSource,
Waldbusser Standards Track [Page 33]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
hlHostControlNlDroppedFrames Counter32,
hlHostControlNlInserts Counter32,
hlHostControlNlDeletes Counter32,
hlHostControlNlMaxDesiredEntries Integer32,
hlHostControlAlDroppedFrames Counter32,
hlHostControlAlInserts Counter32,
hlHostControlAlDeletes Counter32,
hlHostControlAlMaxDesiredEntries Integer32,
hlHostControlOwner OwnerString,
hlHostControlStatus RowStatus
}
hlHostControlIndex OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An index that uniquely identifies an entry in the
hlHostControlTable. Each such entry defines
a function that discovers hosts on a particular
interface and places statistics about them in the
nlHostTable, and optionally in the alHostTable, on
behalf of this hlHostControlEntry."
::= { hlHostControlEntry 1 }
hlHostControlDataSource OBJECT-TYPE
SYNTAX DataSource
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The source of data for the associated host tables.
The statistics in this group reflect all packets
on the local network segment attached to the
identified interface.
This object may not be modified if the associated
hlHostControlStatus object is equal to active(1)."
::= { hlHostControlEntry 2 }
hlHostControlNlDroppedFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of frames which were received by the probe
and therefore not accounted for in the *StatsDropEvents, but
for which the probe chose not to count for the associated
Waldbusser Standards Track [Page 34]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
nlHost entries for whatever reason. Most often, this event
occurs when the probe is out of some resources and decides to
shed load from this collection.
This count does not include packets that were not counted
because they had MAC-layer errors.
Note that if the nlHostTable is inactive because no protocols
are enabled in the protocol directory, this value should be 0.
Note that, unlike the dropEvents counter, this number is the
exact number of frames dropped."
::= { hlHostControlEntry 3 }
hlHostControlNlInserts OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of times an nlHost entry has been
inserted into the nlHost table. If an entry is inserted, then
deleted, and then inserted, this counter will be incremented
by 2.
To allow for efficient implementation strategies, agents may
delay updating this object for short periods of time. For
example, an implementation strategy may allow internal
data structures to differ from those visible via SNMP for
short periods of time. This counter may reflect the internal
data structures for those short periods of time.
Note that the table size can be determined by subtracting
hlHostControlNlDeletes from hlHostControlNlInserts."
::= { hlHostControlEntry 4 }
hlHostControlNlDeletes OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of times an nlHost entry has been
deleted from the nlHost table (for any reason). If an entry
is deleted, then inserted, and then deleted, this counter will
be incremented by 2.
To allow for efficient implementation strategies, agents may
delay updating this object for short periods of time. For
example, an implementation strategy may allow internal
Waldbusser Standards Track [Page 35]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
data structures to differ from those visible via SNMP for
short periods of time. This counter may reflect the internal
data structures for those short periods of time.
Note that the table size can be determined by subtracting
hlHostControlNlDeletes from hlHostControlNlInserts."
::= { hlHostControlEntry 5 }
hlHostControlNlMaxDesiredEntries OBJECT-TYPE
SYNTAX Integer32 (-1..2147483647)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The maximum number of entries that are desired in the
nlHostTable on behalf of this control entry. The probe will
not create more than this number of associated entries in the
table, but may choose to create fewer entries in this table
for any reason including the lack of resources.
If this object is set to a value less than the current number
of entries, enough entries are chosen in an
implementation-dependent manner and deleted so that the number
of entries in the table equals the value of this object.
If this value is set to -1, the probe may create any number
of entries in this table. If the associated
hlHostControlStatus object is equal to `active', this
object may not be modified.
This object may be used to control how resources are allocated
on the probe for the various RMON functions."
::= { hlHostControlEntry 6 }
hlHostControlAlDroppedFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of frames which were received by the probe
and therefore not accounted for in the *StatsDropEvents, but
for which the probe chose not to count for the associated
alHost entries for whatever reason. Most often, this event
occurs when the probe is out of some resources and decides to
shed load from this collection.
This count does not include packets that were not counted
because they had MAC-layer errors.
Waldbusser Standards Track [Page 36]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
Note that if the alHostTable is not implemented or is inactive
because no protocols are enabled in the protocol directory,
this value should be 0.
Note that, unlike the dropEvents counter, this number is the
exact number of frames dropped."
::= { hlHostControlEntry 7 }
hlHostControlAlInserts OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of times an alHost entry has been
inserted into the alHost table. If an entry is inserted, then
deleted, and then inserted, this counter will be incremented
by 2.
To allow for efficient implementation strategies, agents may
delay updating this object for short periods of time. For
example, an implementation strategy may allow internal
data structures to differ from those visible via SNMP for
short periods of time. This counter may reflect the internal
data structures for those short periods of time.
Note that the table size can be determined by subtracting
hlHostControlAlDeletes from hlHostControlAlInserts."
::= { hlHostControlEntry 8 }
hlHostControlAlDeletes OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of times an alHost entry has been
deleted from the alHost table (for any reason). If an entry
is deleted, then inserted, and then deleted, this counter will
be incremented by 2.
To allow for efficient implementation strategies, agents may
delay updating this object for short periods of time. For
example, an implementation strategy may allow internal
data structures to differ from those visible via SNMP for
short periods of time. This counter may reflect the internal
data structures for those short periods of time.
Note that the table size can be determined by subtracting
hlHostControlAlDeletes from hlHostControlAlInserts."
Waldbusser Standards Track [Page 37]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
::= { hlHostControlEntry 9 }
hlHostControlAlMaxDesiredEntries OBJECT-TYPE
SYNTAX Integer32 (-1..2147483647)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The maximum number of entries that are desired in the alHost
table on behalf of this control entry. The probe will not
create more than this number of associated entries in the
table, but may choose to create fewer entries in this table
for any reason including the lack of resources.
If this object is set to a value less than the current number
of entries, enough entries are chosen in an
implementation-dependent manner and deleted so that the number
of entries in the table equals the value of this object.
If this value is set to -1, the probe may create any number
of entries in this table. If the associated
hlHostControlStatus object is equal to `active', this
object may not be modified.
This object may be used to control how resources are allocated
on the probe for the various RMON functions."
::= { hlHostControlEntry 10 }
hlHostControlOwner OBJECT-TYPE
SYNTAX OwnerString
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The entity that configured this entry and is
therefore using the resources assigned to it."
::= { hlHostControlEntry 11 }
hlHostControlStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The status of this hlHostControlEntry.
An entry may not exist in the active state unless all
objects in the entry have an appropriate value.
If this object is not equal to active(1), all associated
entries in the nlHostTable and alHostTable shall be deleted."
Waldbusser Standards Track [Page 38]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
::= { hlHostControlEntry 12 }
nlHostTable OBJECT-TYPE
SYNTAX SEQUENCE OF NlHostEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A collection of statistics for a particular network layer
address that has been discovered on an interface of this
device.
The probe will populate this table for all network layer
protocols in the protocol directory table whose value of
protocolDirHostConfig is equal to supportedOn(3), and
will delete any entries whose protocolDirEntry is deleted or
has a protocolDirHostConfig value of supportedOff(2).
The probe will add to this table all addresses seen
as the source or destination address in all packets with no
MAC errors, and will increment octet and packet counts in the
table for all packets with no MAC errors."
::= { nlHost 2 }
nlHostEntry OBJECT-TYPE
SYNTAX NlHostEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A conceptual row in the nlHostTable.
The hlHostControlIndex value in the index identifies the
hlHostControlEntry on whose behalf this entry was created.
The protocolDirLocalIndex value in the index identifies the
network layer protocol of the nlHostAddress.
An example of the indexing of this entry is
nlHostOutPkts.1.783495.18.4.128.2.6.6."
INDEX { hlHostControlIndex, nlHostTimeMark,
protocolDirLocalIndex, nlHostAddress }
::= { nlHostTable 1 }
NlHostEntry ::= SEQUENCE {
nlHostTimeMark TimeFilter,
nlHostAddress OCTET STRING,
nlHostInPkts ZeroBasedCounter32,
nlHostOutPkts ZeroBasedCounter32,
nlHostInOctets ZeroBasedCounter32,
nlHostOutOctets ZeroBasedCounter32,
Waldbusser Standards Track [Page 39]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
nlHostOutMacNonUnicastPkts ZeroBasedCounter32,
nlHostCreateTime LastCreateTime
}
nlHostTimeMark OBJECT-TYPE
SYNTAX TimeFilter
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A TimeFilter for this entry. See the TimeFilter textual
convention to see how this works."
::= { nlHostEntry 1 }
nlHostAddress OBJECT-TYPE
SYNTAX OCTET STRING
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The network address for this nlHostEntry.
This is represented as an octet string with
specific semantics and length as identified
by the protocolDirLocalIndex component of the index.
For example, if the protocolDirLocalIndex indicates an
encapsulation of ip, this object is encoded as a length
octet of 4, followed by the 4 octets of the ip address,
in network byte order."
::= { nlHostEntry 2 }
nlHostInPkts OBJECT-TYPE
SYNTAX ZeroBasedCounter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of packets without errors transmitted to
this address since it was added to the nlHostTable. Note that
this is the number of link-layer packets, so if a single
network-layer packet is fragmented into several link-layer
frames, this counter is incremented several times."
::= { nlHostEntry 3 }
nlHostOutPkts OBJECT-TYPE
SYNTAX ZeroBasedCounter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of packets without errors transmitted by
Waldbusser Standards Track [Page 40]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
this address since it was added to the nlHostTable. Note that
this is the number of link-layer packets, so if a single
network-layer packet is fragmented into several link-layer
frames, this counter is incremented several times."
::= { nlHostEntry 4 }
nlHostInOctets OBJECT-TYPE
SYNTAX ZeroBasedCounter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of octets transmitted to this address
since it was added to the nlHostTable (excluding
framing bits but including FCS octets), excluding
those octets in packets that contained errors.
Note this doesn't count just those octets in the particular
protocol frames, but includes the entire packet that contained
the protocol."
::= { nlHostEntry 5 }
nlHostOutOctets OBJECT-TYPE
SYNTAX ZeroBasedCounter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of octets transmitted by this address
since it was added to the nlHostTable (excluding
framing bits but including FCS octets), excluding
those octets in packets that contained errors.
Note this doesn't count just those octets in the particular
protocol frames, but includes the entire packet that contained
the protocol."
::= { nlHostEntry 6 }
nlHostOutMacNonUnicastPkts OBJECT-TYPE
SYNTAX ZeroBasedCounter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of packets without errors transmitted by this
address that were directed to any MAC broadcast addresses
or to any MAC multicast addresses since this host was
added to the nlHostTable. Note that this is the number of
link-layer packets, so if a single network-layer packet is
fragmented into several link-layer frames, this counter is
incremented several times."
Waldbusser Standards Track [Page 41]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
::= { nlHostEntry 7 }
nlHostCreateTime OBJECT-TYPE
SYNTAX LastCreateTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime when this entry was last activated.
This can be used by the management station to ensure that the
entry has not been deleted and recreated between polls."
::= { nlHostEntry 8 }
--
-- Network Layer Matrix Group
--
-- Counts the amount of traffic sent between each pair of network
-- addresses discovered by the probe.
-- Note that while the hlMatrixControlTable also has objects that
-- control optional alMatrixTables, implementation of the
-- alMatrixTables is not required to fully implement this group.
hlMatrixControlTable OBJECT-TYPE
SYNTAX SEQUENCE OF HlMatrixControlEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A list of higher layer (i.e. non-MAC) matrix control entries.
These entries will enable the collection of the network and
application level matrix tables containing conversation
statistics indexed by pairs of network addresses.
Both the network and application level matrix tables are
controlled by this table is so that they will both be created
and deleted at the same time, further increasing the ease with
which they can be implemented as a single datastore (note that
if an implementation stores application layer matrix records
in memory, it can derive network layer matrix records from
them).
Entries in the nlMatrixSDTable and nlMatrixDSTable will be
created on behalf of each entry in this table. Additionally,
if this probe implements the alMatrix tables, entries in the
alMatrix tables will be created on behalf of each entry in
this table."
::= { nlMatrix 1 }
hlMatrixControlEntry OBJECT-TYPE
SYNTAX HlMatrixControlEntry
Waldbusser Standards Track [Page 42]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A conceptual row in the hlMatrixControlTable.
An example of indexing of this entry is
hlMatrixControlNlDroppedFrames.1"
INDEX { hlMatrixControlIndex }
::= { hlMatrixControlTable 1 }
HlMatrixControlEntry ::= SEQUENCE {
hlMatrixControlIndex Integer32,
hlMatrixControlDataSource DataSource,
hlMatrixControlNlDroppedFrames Counter32,
hlMatrixControlNlInserts Counter32,
hlMatrixControlNlDeletes Counter32,
hlMatrixControlNlMaxDesiredEntries Integer32,
hlMatrixControlAlDroppedFrames Counter32,
hlMatrixControlAlInserts Counter32,
hlMatrixControlAlDeletes Counter32,
hlMatrixControlAlMaxDesiredEntries Integer32,
hlMatrixControlOwner OwnerString,
hlMatrixControlStatus RowStatus
}
hlMatrixControlIndex OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An index that uniquely identifies an entry in the
hlMatrixControlTable. Each such entry defines
a function that discovers conversations on a particular
interface and places statistics about them in the
nlMatrixSDTable and the nlMatrixDSTable, and optionally the
alMatrixSDTable and alMatrixDSTable, on behalf of this
hlMatrixControlEntry."
::= { hlMatrixControlEntry 1 }
hlMatrixControlDataSource OBJECT-TYPE
SYNTAX DataSource
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The source of the data for the associated matrix tables.
The statistics in this group reflect all packets
on the local network segment attached to the
Waldbusser Standards Track [Page 43]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
identified interface.
This object may not be modified if the associated
hlMatrixControlStatus object is equal to active(1)."
::= { hlMatrixControlEntry 2 }
hlMatrixControlNlDroppedFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of frames which were received by the probe
and therefore not accounted for in the *StatsDropEvents, but
for which the probe chose not to count for this entry for
whatever reason. Most often, this event occurs when the probe
is out of some resources and decides to shed load from this
collection.
This count does not include packets that were not counted
because they had MAC-layer errors.
Note that if the nlMatrixTables are inactive because no
protocols are enabled in the protocol directory, this value
should be 0.
Note that, unlike the dropEvents counter, this number is the
exact number of frames dropped."
::= { hlMatrixControlEntry 3 }
hlMatrixControlNlInserts OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of times an nlMatrix entry has been
inserted into the nlMatrix tables. If an entry is inserted,
then deleted, and then inserted, this counter will be
incremented by 2. The addition of a conversation into both
the nlMatrixSDTable and nlMatrixDSTable shall be counted as
two insertions (even though every addition into one table must
be accompanied by an insertion into the other).
To allow for efficient implementation strategies, agents may
delay updating this object for short periods of time. For
example, an implementation strategy may allow internal
data structures to differ from those visible via SNMP for
short periods of time. This counter may reflect the internal
data structures for those short periods of time.
Waldbusser Standards Track [Page 44]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
Note that the sum of then nlMatrixSDTable and nlMatrixDSTable
sizes can be determined by subtracting
hlMatrixControlNlDeletes from hlMatrixControlNlInserts."
::= { hlMatrixControlEntry 4 }
hlMatrixControlNlDeletes OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of times an nlMatrix entry has been
deleted from the nlMatrix tables (for any reason). If an
entry is deleted, then inserted, and then deleted, this
counter will be incremented by 2. The deletion of a
conversation from both the nlMatrixSDTable and nlMatrixDSTable
shall be counted as two deletions (even though every deletion
from one table must be accompanied by a deletion from the
other).
To allow for efficient implementation strategies, agents may
delay updating this object for short periods of time. For
example, an implementation strategy may allow internal
data structures to differ from those visible via SNMP for
short periods of time. This counter may reflect the internal
data structures for those short periods of time.
Note that the table size can be determined by subtracting
hlMatrixControlNlDeletes from hlMatrixControlNlInserts."
::= { hlMatrixControlEntry 5 }
hlMatrixControlNlMaxDesiredEntries OBJECT-TYPE
SYNTAX Integer32 (-1..2147483647)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The maximum number of entries that are desired in the
nlMatrix tables on behalf of this control entry. The probe
will not create more than this number of associated entries in
the table, but may choose to create fewer entries in this
table for any reason including the lack of resources.
If this object is set to a value less than the current number
of entries, enough entries are chosen in an
implementation-dependent manner and deleted so that the number
of entries in the table equals the value of this object.
If this value is set to -1, the probe may create any number
of entries in this table. If the associated
Waldbusser Standards Track [Page 45]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
hlMatrixControlStatus object is equal to `active', this
object may not be modified.
This object may be used to control how resources are allocated
on the probe for the various RMON functions."
::= { hlMatrixControlEntry 6 }
hlMatrixControlAlDroppedFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of frames which were received by the probe
and therefore not accounted for in the *StatsDropEvents, but
for which the probe chose not to count for this entry for
whatever reason. Most often, this event occurs when the probe
is out of some resources and decides to shed load from this
collection.
This count does not include packets that were not counted
because they had MAC-layer errors.
Note that if the alMatrixTables are not implemented or are
inactive because no protocols are enabled in the protocol
directory, this value should be 0.
Note that, unlike the dropEvents counter, this number is the
exact number of frames dropped."
::= { hlMatrixControlEntry 7 }
hlMatrixControlAlInserts OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of times an alMatrix entry has been
inserted into the alMatrix tables. If an entry is inserted,
then deleted, and then inserted, this counter will be
incremented by 2. The addition of a conversation into both
the alMatrixSDTable and alMatrixDSTable shall be counted as
two insertions (even though every addition into one table must
be accompanied by an insertion into the other).
To allow for efficient implementation strategies, agents may
delay updating this object for short periods of time. For
example, an implementation strategy may allow internal
data structures to differ from those visible via SNMP for
short periods of time. This counter may reflect the internal
Waldbusser Standards Track [Page 46]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
data structures for those short periods of time.
Note that the table size can be determined by subtracting
hlMatrixControlAlDeletes from hlMatrixControlAlInserts."
::= { hlMatrixControlEntry 8 }
hlMatrixControlAlDeletes OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of times an alMatrix entry has been
deleted from the alMatrix tables. If an entry is deleted,
then inserted, and then deleted, this counter will be
incremented by 2. The deletion of a conversation from both
the alMatrixSDTable and alMatrixDSTable shall be counted as
two deletions (even though every deletion from one table must
be accompanied by a deletion from the other).
To allow for efficient implementation strategies, agents may
delay updating this object for short periods of time. For
example, an implementation strategy may allow internal
data structures to differ from those visible via SNMP for
short periods of time. This counter may reflect the internal
data structures for those short periods of time.
Note that the table size can be determined by subtracting
hlMatrixControlAlDeletes from hlMatrixControlAlInserts."
::= { hlMatrixControlEntry 9 }
hlMatrixControlAlMaxDesiredEntries OBJECT-TYPE
SYNTAX Integer32 (-1..2147483647)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The maximum number of entries that are desired in the
alMatrix tables on behalf of this control entry. The probe
will not create more than this number of associated entries in
the table, but may choose to create fewer entries in this
table for any reason including the lack of resources.
If this object is set to a value less than the current number
of entries, enough entries are chosen in an
implementation-dependent manner and deleted so that the number
of entries in the table equals the value of this object.
If this value is set to -1, the probe may create any number
of entries in this table. If the associated
Waldbusser Standards Track [Page 47]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
hlMatrixControlStatus object is equal to `active', this
object may not be modified.
This object may be used to control how resources are allocated
on the probe for the various RMON functions."
::= { hlMatrixControlEntry 10 }
hlMatrixControlOwner OBJECT-TYPE
SYNTAX OwnerString
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The entity that configured this entry and is
therefore using the resources assigned to it."
::= { hlMatrixControlEntry 11 }
hlMatrixControlStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The status of this hlMatrixControlEntry.
An entry may not exist in the active state unless all
objects in the entry have an appropriate value.
If this object is not equal to active(1), all
associated entries in the nlMatrixSDTable,
nlMatrixDSTable, alMatrixSDTable, and the alMatrixDSTable
shall be deleted by the agent."
::= { hlMatrixControlEntry 12 }
nlMatrixSDTable OBJECT-TYPE
SYNTAX SEQUENCE OF NlMatrixSDEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A list of traffic matrix entries which collect statistics for
conversations between two network-level addresses. This table
is indexed first by the source address and then by the
destination address to make it convenient to collect all
conversations from a particular address.
The probe will populate this table for all network layer
protocols in the protocol directory table whose value of
protocolDirMatrixConfig is equal to supportedOn(3), and
will delete any entries whose protocolDirEntry is deleted or
has a protocolDirMatrixConfig value of supportedOff(2).
Waldbusser Standards Track [Page 48]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
The probe will add to this table all pairs of addresses
seen in all packets with no MAC errors, and will increment
octet and packet counts in the table for all packets with no
MAC errors.
Further, this table will only contain entries that have a
corresponding entry in the nlMatrixDSTable with the same
source address and destination address."
::= { nlMatrix 2 }
nlMatrixSDEntry OBJECT-TYPE
SYNTAX NlMatrixSDEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A conceptual row in the nlMatrixSDTable.
The hlMatrixControlIndex value in the index identifies the
hlMatrixControlEntry on whose behalf this entry was created.
The protocolDirLocalIndex value in the index identifies the
network layer protocol of the nlMatrixSDSourceAddress and
nlMatrixSDDestAddress.
An example of the indexing of this table is
nlMatrixSDPkts.1.783495.18.4.128.2.6.6.4.128.2.6.7"
INDEX { hlMatrixControlIndex, nlMatrixSDTimeMark,
protocolDirLocalIndex,
nlMatrixSDSourceAddress, nlMatrixSDDestAddress }
::= { nlMatrixSDTable 1 }
NlMatrixSDEntry ::= SEQUENCE {
nlMatrixSDTimeMark TimeFilter,
nlMatrixSDSourceAddress OCTET STRING,
nlMatrixSDDestAddress OCTET STRING,
nlMatrixSDPkts ZeroBasedCounter32,
nlMatrixSDOctets ZeroBasedCounter32,
nlMatrixSDCreateTime LastCreateTime
}
nlMatrixSDTimeMark OBJECT-TYPE
SYNTAX TimeFilter
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A TimeFilter for this entry. See the TimeFilter textual
convention to see how this works."
::= { nlMatrixSDEntry 1 }
Waldbusser Standards Track [Page 49]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
nlMatrixSDSourceAddress OBJECT-TYPE
SYNTAX OCTET STRING
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The network source address for this nlMatrixSDEntry.
This is represented as an octet string with
specific semantics and length as identified
by the protocolDirLocalIndex component of the index.
For example, if the protocolDirLocalIndex indicates an
encapsulation of ip, this object is encoded as a length
octet of 4, followed by the 4 octets of the ip address,
in network byte order."
::= { nlMatrixSDEntry 2 }
nlMatrixSDDestAddress OBJECT-TYPE
SYNTAX OCTET STRING
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The network destination address for this
nlMatrixSDEntry.
This is represented as an octet string with
specific semantics and length as identified
by the protocolDirLocalIndex component of the index.
For example, if the protocolDirLocalIndex indicates an
encapsulation of ip, this object is encoded as a length
octet of 4, followed by the 4 octets of the ip address,
in network byte order."
::= { nlMatrixSDEntry 3 }
nlMatrixSDPkts OBJECT-TYPE
SYNTAX ZeroBasedCounter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of packets without errors transmitted from the
source address to the destination address since this entry was
added to the nlMatrixSDTable. Note that this is the number of
link-layer packets, so if a single network-layer packet is
fragmented into several link-layer frames, this counter is
incremented several times."
::= { nlMatrixSDEntry 4 }
Waldbusser Standards Track [Page 50]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
nlMatrixSDOctets OBJECT-TYPE
SYNTAX ZeroBasedCounter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of octets transmitted from the source address to
the destination address since this entry was added to the
nlMatrixSDTable (excluding framing bits but
including FCS octets), excluding those octets in packets that
contained errors.
Note this doesn't count just those octets in the particular
protocol frames, but includes the entire packet that contained
the protocol."
::= { nlMatrixSDEntry 5 }
nlMatrixSDCreateTime OBJECT-TYPE
SYNTAX LastCreateTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime when this entry was last activated.
This can be used by the management station to ensure that the
entry has not been deleted and recreated between polls."
::= { nlMatrixSDEntry 6 }
-- Traffic matrix tables from destination to source
nlMatrixDSTable OBJECT-TYPE
SYNTAX SEQUENCE OF NlMatrixDSEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A list of traffic matrix entries which collect statistics for
conversations between two network-level addresses. This table
is indexed first by the destination address and then by the
source address to make it convenient to collect all
conversations to a particular address.
The probe will populate this table for all network layer
protocols in the protocol directory table whose value of
protocolDirMatrixConfig is equal to supportedOn(3), and
will delete any entries whose protocolDirEntry is deleted or
has a protocolDirMatrixConfig value of supportedOff(2).
The probe will add to this table all pairs of addresses
seen in all packets with no MAC errors, and will increment
Waldbusser Standards Track [Page 51]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
octet and packet counts in the table for all packets with no
MAC errors.
Further, this table will only contain entries that have a
corresponding entry in the nlMatrixSDTable with the same
source address and destination address."
::= { nlMatrix 3 }
nlMatrixDSEntry OBJECT-TYPE
SYNTAX NlMatrixDSEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A conceptual row in the nlMatrixDSTable.
The hlMatrixControlIndex value in the index identifies the
hlMatrixControlEntry on whose behalf this entry was created.
The protocolDirLocalIndex value in the index identifies the
network layer protocol of the nlMatrixDSSourceAddress and
nlMatrixDSDestAddress.
An example of the indexing of this table is
nlMatrixDSPkts.1.783495.18.4.128.2.6.7.4.128.2.6.6"
INDEX { hlMatrixControlIndex, nlMatrixDSTimeMark,
protocolDirLocalIndex,
nlMatrixDSDestAddress, nlMatrixDSSourceAddress }
::= { nlMatrixDSTable 1 }
NlMatrixDSEntry ::= SEQUENCE {
nlMatrixDSTimeMark TimeFilter,
nlMatrixDSSourceAddress OCTET STRING,
nlMatrixDSDestAddress OCTET STRING,
nlMatrixDSPkts ZeroBasedCounter32,
nlMatrixDSOctets ZeroBasedCounter32,
nlMatrixDSCreateTime LastCreateTime
}
nlMatrixDSTimeMark OBJECT-TYPE
SYNTAX TimeFilter
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A TimeFilter for this entry. See the TimeFilter textual
convention to see how this works."
::= { nlMatrixDSEntry 1 }
nlMatrixDSSourceAddress OBJECT-TYPE
SYNTAX OCTET STRING
Waldbusser Standards Track [Page 52]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The network source address for this nlMatrixDSEntry.
This is represented as an octet string with
specific semantics and length as identified
by the protocolDirLocalIndex component of the index.
For example, if the protocolDirLocalIndex indicates an
encapsulation of ip, this object is encoded as a length
octet of 4, followed by the 4 octets of the ip address,
in network byte order."
::= { nlMatrixDSEntry 2 }
nlMatrixDSDestAddress OBJECT-TYPE
SYNTAX OCTET STRING
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The network destination address for this
nlMatrixDSEntry.
This is represented as an octet string with
specific semantics and length as identified
by the protocolDirLocalIndex component of the index.
For example, if the protocolDirLocalIndex indicates an
encapsulation of ip, this object is encoded as a length
octet of 4, followed by the 4 octets of the ip address,
in network byte order."
::= { nlMatrixDSEntry 3 }
nlMatrixDSPkts OBJECT-TYPE
SYNTAX ZeroBasedCounter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of packets without errors transmitted from the
source address to the destination address since this entry was
added to the nlMatrixDSTable. Note that this is the number of
link-layer packets, so if a single network-layer packet is
fragmented into several link-layer frames, this counter is
incremented several times."
::= { nlMatrixDSEntry 4 }
nlMatrixDSOctets OBJECT-TYPE
SYNTAX ZeroBasedCounter32
Waldbusser Standards Track [Page 53]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of octets transmitted from the source address
to the destination address since this entry was added to the
nlMatrixDSTable (excluding framing bits but
including FCS octets), excluding those octets in packets that
contained errors.
Note this doesn't count just those octets in the particular
protocol frames, but includes the entire packet that contained
the protocol."
::= { nlMatrixDSEntry 5 }
nlMatrixDSCreateTime OBJECT-TYPE
SYNTAX LastCreateTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime when this entry was last activated.
This can be used by the management station to ensure that the
entry has not been deleted and recreated between polls."
::= { nlMatrixDSEntry 6 }
nlMatrixTopNControlTable OBJECT-TYPE
SYNTAX SEQUENCE OF NlMatrixTopNControlEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A set of parameters that control the creation of a
report of the top N matrix entries according to
a selected metric."
::= { nlMatrix 4 }
nlMatrixTopNControlEntry OBJECT-TYPE
SYNTAX NlMatrixTopNControlEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A conceptual row in the nlMatrixTopNControlTable.
An example of the indexing of this table is
nlMatrixTopNControlDuration.3"
INDEX { nlMatrixTopNControlIndex }
::= { nlMatrixTopNControlTable 1 }
NlMatrixTopNControlEntry ::= SEQUENCE {
nlMatrixTopNControlIndex Integer32,
Waldbusser Standards Track [Page 54]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
nlMatrixTopNControlMatrixIndex Integer32,
nlMatrixTopNControlRateBase INTEGER,
nlMatrixTopNControlTimeRemaining Integer32,
nlMatrixTopNControlGeneratedReports Counter32,
nlMatrixTopNControlDuration Integer32,
nlMatrixTopNControlRequestedSize Integer32,
nlMatrixTopNControlGrantedSize Integer32,
nlMatrixTopNControlStartTime TimeStamp,
nlMatrixTopNControlOwner OwnerString,
nlMatrixTopNControlStatus RowStatus
}
nlMatrixTopNControlIndex OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An index that uniquely identifies an entry
in the nlMatrixTopNControlTable. Each such
entry defines one top N report prepared for
one interface."
::= { nlMatrixTopNControlEntry 1 }
nlMatrixTopNControlMatrixIndex OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The nlMatrix[SD/DS] table for which a top N report will be
prepared on behalf of this entry. The nlMatrix[SD/DS] table
is identified by the value of the hlMatrixControlIndex
for that table - that value is used here to identify the
particular table.
This object may not be modified if the associated
nlMatrixTopNControlStatus object is equal to active(1)."
::= { nlMatrixTopNControlEntry 2 }
nlMatrixTopNControlRateBase OBJECT-TYPE
SYNTAX INTEGER {
nlMatrixTopNPkts(1),
nlMatrixTopNOctets(2)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The variable for each nlMatrix[SD/DS] entry that the
nlMatrixTopNEntries are sorted by.
Waldbusser Standards Track [Page 55]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
This object may not be modified if the associated
nlMatrixTopNControlStatus object is equal to active(1)."
::= { nlMatrixTopNControlEntry 3 }
nlMatrixTopNControlTimeRemaining OBJECT-TYPE
SYNTAX Integer32 (0..2147483647)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The number of seconds left in the report currently
being collected. When this object is modified by
the management station, a new collection is started,
possibly aborting a currently running report. The
new value is used as the requested duration of this
report, and is immediately loaded into the associated
nlMatrixTopNControlDuration object.
When the report finishes, the probe will automatically
start another collection with the same initial value
of nlMatrixTopNControlTimeRemaining. Thus the management
station may simply read the resulting reports repeatedly,
checking the startTime and duration each time to ensure that a
report was not missed or that the report parameters were not
changed.
While the value of this object is non-zero, it decrements
by one per second until it reaches zero. At the time
that this object decrements to zero, the report is made
accessible in the nlMatrixTopNTable, overwriting any report
that may be there.
When this object is modified by the management station, any
associated entries in the nlMatrixTopNTable shall be deleted.
(Note that this is a different algorithm than the one used in
the hostTopNTable)."
DEFVAL { 1800 }
::= { nlMatrixTopNControlEntry 4 }
nlMatrixTopNControlGeneratedReports OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of reports that have been generated by this entry."
::= { nlMatrixTopNControlEntry 5 }
nlMatrixTopNControlDuration OBJECT-TYPE
SYNTAX Integer32
Waldbusser Standards Track [Page 56]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of seconds that this report has collected
during the last sampling interval.
When the associated nlMatrixTopNControlTimeRemaining object is
set, this object shall be set by the probe to the
same value and shall not be modified until the next
time the nlMatrixTopNControlTimeRemaining is set.
This value shall be zero if no reports have been
requested for this nlMatrixTopNControlEntry."
::= { nlMatrixTopNControlEntry 6 }
nlMatrixTopNControlRequestedSize OBJECT-TYPE
SYNTAX Integer32 (0..2147483647)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The maximum number of matrix entries requested for this report.
When this object is created or modified, the probe
should set nlMatrixTopNControlGrantedSize as closely to this
object as is possible for the particular probe
implementation and available resources."
DEFVAL { 150 }
::= { nlMatrixTopNControlEntry 7 }
nlMatrixTopNControlGrantedSize OBJECT-TYPE
SYNTAX Integer32 (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The maximum number of matrix entries in this report.
When the associated nlMatrixTopNControlRequestedSize object is
created or modified, the probe should set this
object as closely to the requested value as is
possible for the particular implementation and
available resources. The probe must not lower this
value except as a result of a set to the associated
nlMatrixTopNControlRequestedSize object.
If the value of nlMatrixTopNControlRateBase is equal to
nlMatrixTopNPkts, when the next topN report is generated,
matrix entries with the highest value of nlMatrixTopNPktRate
shall be placed in this table in decreasing order of this rate
until there is no more room or until there are no more
Waldbusser Standards Track [Page 57]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
matrix entries.
If the value of nlMatrixTopNControlRateBase is equal to
nlMatrixTopNOctets, when the next topN report is generated,
matrix entries with the highest value of nlMatrixTopNOctetRate
shall be placed in this table in decreasing order of this rate
until there is no more room or until there are no more
matrix entries.
It is an implementation-specific matter how entries with the
same value of nlMatrixTopNPktRate or nlMatrixTopNOctetRate are
sorted. It is also an implementation-specific matter as to
whether or not zero-valued entries are available."
::= { nlMatrixTopNControlEntry 8 }
nlMatrixTopNControlStartTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime when this top N report was
last started. In other words, this is the time that
the associated nlMatrixTopNControlTimeRemaining object was
modified to start the requested report or the time
the report was last automatically (re)started.
This object may be used by the management station to
determine if a report was missed or not."
::= { nlMatrixTopNControlEntry 9 }
nlMatrixTopNControlOwner OBJECT-TYPE
SYNTAX OwnerString
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The entity that configured this entry and is
therefore using the resources assigned to it."
::= { nlMatrixTopNControlEntry 10 }
nlMatrixTopNControlStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The status of this nlMatrixTopNControlEntry.
An entry may not exist in the active state unless all
objects in the entry have an appropriate value.
Waldbusser Standards Track [Page 58]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
If this object is not equal to active(1), all
associated entries in the nlMatrixTopNTable shall be deleted
by the agent."
::= { nlMatrixTopNControlEntry 11 }
nlMatrixTopNTable OBJECT-TYPE
SYNTAX SEQUENCE OF NlMatrixTopNEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A set of statistics for those network layer matrix entries
that have counted the highest number of octets or packets."
::= { nlMatrix 5 }
nlMatrixTopNEntry OBJECT-TYPE
SYNTAX NlMatrixTopNEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A conceptual row in the nlMatrixTopNTable.
The nlMatrixTopNControlIndex value in the index identifies the
nlMatrixTopNControlEntry on whose behalf this entry was
created.
An example of the indexing of this table is
nlMatrixTopNPktRate.3.10"
INDEX { nlMatrixTopNControlIndex, nlMatrixTopNIndex }
::= { nlMatrixTopNTable 1 }
NlMatrixTopNEntry ::= SEQUENCE {
nlMatrixTopNIndex Integer32,
nlMatrixTopNProtocolDirLocalIndex Integer32,
nlMatrixTopNSourceAddress OCTET STRING,
nlMatrixTopNDestAddress OCTET STRING,
nlMatrixTopNPktRate Gauge32,
nlMatrixTopNReversePktRate Gauge32,
nlMatrixTopNOctetRate Gauge32,
nlMatrixTopNReverseOctetRate Gauge32
}
nlMatrixTopNIndex OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An index that uniquely identifies an entry in
the nlMatrixTopNTable among those in the same report.
Waldbusser Standards Track [Page 59]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
This index is between 1 and N, where N is the
number of entries in this report.
If the value of nlMatrixTopNControlRateBase is equal to
nlMatrixTopNPkts, increasing values of nlMatrixTopNIndex shall
be assigned to entries with decreasing values of
nlMatrixTopNPktRate until index N is assigned or there are no
more nlMatrixTopNEntries.
If the value of nlMatrixTopNControlRateBase is equal to
nlMatrixTopNOctets, increasing values of nlMatrixTopNIndex
shall be assigned to entries with decreasing values of
nlMatrixTopNOctetRate until index N is assigned or there are
no more nlMatrixTopNEntries."
::= { nlMatrixTopNEntry 1 }
nlMatrixTopNProtocolDirLocalIndex OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The protocolDirLocalIndex of the network layer protocol of
this entry's network address."
::= { nlMatrixTopNEntry 2 }
nlMatrixTopNSourceAddress OBJECT-TYPE
SYNTAX OCTET STRING
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The network layer address of the source host in this
conversation.
This is represented as an octet string with
specific semantics and length as identified
by the associated nlMatrixTopNProtocolDirLocalIndex.
For example, if the protocolDirLocalIndex indicates an
encapsulation of ip, this object is encoded as a length
octet of 4, followed by the 4 octets of the ip address,
in network byte order."
::= { nlMatrixTopNEntry 3 }
nlMatrixTopNDestAddress OBJECT-TYPE
SYNTAX OCTET STRING
MAX-ACCESS read-only
STATUS current
DESCRIPTION
Waldbusser Standards Track [Page 60]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
"The network layer address of the destination host in this
conversation.
This is represented as an octet string with
specific semantics and length as identified
by the associated nlMatrixTopNProtocolDirLocalIndex.
For example, if the nlMatrixTopNProtocolDirLocalIndex
indicates an encapsulation of ip, this object is encoded as a
length octet of 4, followed by the 4 octets of the ip address,
in network byte order."
::= { nlMatrixTopNEntry 4 }
nlMatrixTopNPktRate OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of packets seen from the source host
to the destination host during this sampling interval, counted
using the rules for counting the nlMatrixSDPkts object.
If the value of nlMatrixTopNControlRateBase is
nlMatrixTopNPkts, this variable will be used to sort this
report."
::= { nlMatrixTopNEntry 5 }
nlMatrixTopNReversePktRate OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of packets seen from the destination host to the
source host during this sampling interval, counted
using the rules for counting the nlMatrixSDPkts object (note
that the corresponding nlMatrixSDPkts object selected is the
one whose source address is equal to nlMatrixTopNDestAddress
and whose destination address is equal to
nlMatrixTopNSourceAddress.)
Note that if the value of nlMatrixTopNControlRateBase is equal
to nlMatrixTopNPkts, the sort of topN entries is based
entirely on nlMatrixTopNPktRate, and not on the value of this
object."
::= { nlMatrixTopNEntry 6 }
nlMatrixTopNOctetRate OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
Waldbusser Standards Track [Page 61]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
STATUS current
DESCRIPTION
"The number of octets seen from the source host
to the destination host during this sampling interval, counted
using the rules for counting the nlMatrixSDOctets object. If
the value of nlMatrixTopNControlRateBase is
nlMatrixTopNOctets, this variable will be used to sort this
report."
::= { nlMatrixTopNEntry 7 }
nlMatrixTopNReverseOctetRate OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of octets seen from the destination host to the
source host during this sampling interval, counted
using the rules for counting the nlMatrixDSOctets object (note
that the corresponding nlMatrixSDOctets object selected is the
one whose source address is equal to nlMatrixTopNDestAddress
and whose destination address is equal to
nlMatrixTopNSourceAddress.)
Note that if the value of nlMatrixTopNControlRateBase is equal
to nlMatrixTopNOctets, the sort of topN entries is based
entirely on nlMatrixTopNOctetRate, and not on the value of
this object."
::= { nlMatrixTopNEntry 8 }
-- Application Layer Functions
--
-- The application layer host, matrix, and matrixTopN functions report
-- on protocol usage at the network layer or higher. Note that the
-- use of the term application layer does not imply that only
-- application-layer protocols are counted, rather it means that
-- protocols up to and including the application layer are supported.
--
-- Application Layer Host Group
--
-- Counts the amount of traffic, by protocol, sent from and to each
-- network address discovered by the probe.
-- Implementation of this group requires implementation of the Network
-- Layer Host Group.
alHostTable OBJECT-TYPE
SYNTAX SEQUENCE OF AlHostEntry
MAX-ACCESS not-accessible
Waldbusser Standards Track [Page 62]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
STATUS current
DESCRIPTION
"A collection of statistics for a particular protocol from a
particular network address that has been discovered on an
interface of this device.
The probe will populate this table for all protocols in the
protocol directory table whose value of
protocolDirHostConfig is equal to supportedOn(3), and
will delete any entries whose protocolDirEntry is deleted or
has a protocolDirHostConfig value of supportedOff(2).
The probe will add to this table all addresses
seen as the source or destination address in all packets with
no MAC errors, and will increment octet and packet counts in
the table for all packets with no MAC errors. Further,
entries will only be added to this table if their address
exists in the nlHostTable and will be deleted from this table
if their address is deleted from the nlHostTable."
::= { alHost 1 }
alHostEntry OBJECT-TYPE
SYNTAX AlHostEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A conceptual row in the alHostTable.
The hlHostControlIndex value in the index identifies the
hlHostControlEntry on whose behalf this entry was created.
The first protocolDirLocalIndex value in the index identifies
the network layer protocol of the address.
The nlHostAddress value in the index identifies the network
layer address of this entry.
The second protocolDirLocalIndex value in the index identifies
the protocol that is counted by this entry.
An example of the indexing in this entry is
alHostOutPkts.1.783495.18.4.128.2.6.6.34"
INDEX { hlHostControlIndex, alHostTimeMark,
protocolDirLocalIndex, nlHostAddress,
protocolDirLocalIndex }
::= { alHostTable 1 }
AlHostEntry ::= SEQUENCE {
alHostTimeMark TimeFilter,
alHostInPkts ZeroBasedCounter32,
alHostOutPkts ZeroBasedCounter32,
Waldbusser Standards Track [Page 63]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
alHostInOctets ZeroBasedCounter32,
alHostOutOctets ZeroBasedCounter32,
alHostCreateTime LastCreateTime
}
alHostTimeMark OBJECT-TYPE
SYNTAX TimeFilter
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A TimeFilter for this entry. See the TimeFilter textual
convention to see how this works."
::= { alHostEntry 1 }
alHostInPkts OBJECT-TYPE
SYNTAX ZeroBasedCounter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of packets of this protocol type without errors
transmitted to this address since it was added to the
alHostTable. Note that this is the number of link-layer
packets, so if a single network-layer packet is fragmented
into several link-layer frames, this counter is incremented
several times."
::= { alHostEntry 2 }
alHostOutPkts OBJECT-TYPE
SYNTAX ZeroBasedCounter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of packets of this protocol type without errors
transmitted by this address since it was added to the
alHostTable. Note that this is the number of link-layer
packets, so if a single network-layer packet is fragmented
into several link-layer frames, this counter is incremented
several times."
::= { alHostEntry 3 }
alHostInOctets OBJECT-TYPE
SYNTAX ZeroBasedCounter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of octets transmitted to this address
of this protocol type since it was added to the
alHostTable (excluding framing bits but including
Waldbusser Standards Track [Page 64]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
FCS octets), excluding those octets in packets that
contained errors.
Note this doesn't count just those octets in the particular
protocol frames, but includes the entire packet that contained
the protocol."
::= { alHostEntry 4 }
alHostOutOctets OBJECT-TYPE
SYNTAX ZeroBasedCounter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of octets transmitted by this address
of this protocol type since it was added to the
alHostTable (excluding framing bits but including
FCS octets), excluding those octets in packets that
contained errors.
Note this doesn't count just those octets in the particular
protocol frames, but includes the entire packet that contained
the protocol."
::= { alHostEntry 5 }
alHostCreateTime OBJECT-TYPE
SYNTAX LastCreateTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime when this entry was last activated.
This can be used by the management station to ensure that the
entry has not been deleted and recreated between polls."
::= { alHostEntry 6 }
--
-- Application Layer Matrix Group
--
-- Counts the amount of traffic, by protocol, sent between each pair
-- of network addresses discovered by the probe.
-- Implementation of this group requires implementation of the Network
-- Layer Matrix Group.
alMatrixSDTable OBJECT-TYPE
SYNTAX SEQUENCE OF AlMatrixSDEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A list of application traffic matrix entries which collect
Waldbusser Standards Track [Page 65]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
statistics for conversations of a particular protocol between
two network-level addresses. This table is indexed first by
the source address and then by the destination address to make
it convenient to collect all statistics from a particular
address.
The probe will populate this table for all protocols in the
protocol directory table whose value of
protocolDirMatrixConfig is equal to supportedOn(3), and
will delete any entries whose protocolDirEntry is deleted or
has a protocolDirMatrixConfig value of supportedOff(2).
The probe will add to this table all pairs of addresses for
all protocols seen in all packets with no MAC errors, and will
increment octet and packet counts in the table for all packets
with no MAC errors. Further, entries will only be added to
this table if their address pair exists in the nlMatrixSDTable
and will be deleted from this table if the address pair is
deleted from the nlMatrixSDTable."
::= { alMatrix 1 }
alMatrixSDEntry OBJECT-TYPE
SYNTAX AlMatrixSDEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A conceptual row in the alMatrixSDTable.
The hlMatrixControlIndex value in the index identifies the
hlMatrixControlEntry on whose behalf this entry was created.
The first protocolDirLocalIndex value in the index identifies
the network layer protocol of the nlMatrixSDSourceAddress and
nlMatrixSDDestAddress.
The nlMatrixSDSourceAddress value in the index identifies the
network layer address of the source host in this conversation.
The nlMatrixSDDestAddress value in the index identifies the
network layer address of the destination host in this
conversation.
The second protocolDirLocalIndex value in the index identifies
the protocol that is counted by this entry.
An example of the indexing of this entry is
alMatrixSDPkts.1.783495.18.4.128.2.6.6.4.128.2.6.7.34"
INDEX { hlMatrixControlIndex, alMatrixSDTimeMark,
protocolDirLocalIndex,
nlMatrixSDSourceAddress, nlMatrixSDDestAddress,
protocolDirLocalIndex }
::= { alMatrixSDTable 1 }
Waldbusser Standards Track [Page 66]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
AlMatrixSDEntry ::= SEQUENCE {
alMatrixSDTimeMark TimeFilter,
alMatrixSDPkts ZeroBasedCounter32,
alMatrixSDOctets ZeroBasedCounter32,
alMatrixSDCreateTime LastCreateTime
}
alMatrixSDTimeMark OBJECT-TYPE
SYNTAX TimeFilter
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A TimeFilter for this entry. See the TimeFilter textual
convention to see how this works."
::= { alMatrixSDEntry 1 }
alMatrixSDPkts OBJECT-TYPE
SYNTAX ZeroBasedCounter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of packets of this protocol type without errors
transmitted from the source address to the destination address
since this entry was added to the alMatrixSDTable. Note that
this is the number of link-layer packets, so if a single
network-layer packet is fragmented into several link-layer
frames, this counter is incremented several times."
::= { alMatrixSDEntry 2 }
alMatrixSDOctets OBJECT-TYPE
SYNTAX ZeroBasedCounter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of octets in packets of this protocol type
transmitted from the source address to the destination address
since this entry was added to the alMatrixSDTable (excluding
framing bits but including FCS octets), excluding those octets
in packets that contained errors.
Note this doesn't count just those octets in the particular
protocol frames, but includes the entire packet that contained
the protocol."
::= { alMatrixSDEntry 3 }
alMatrixSDCreateTime OBJECT-TYPE
SYNTAX LastCreateTime
MAX-ACCESS read-only
Waldbusser Standards Track [Page 67]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
STATUS current
DESCRIPTION
"The value of sysUpTime when this entry was last activated.
This can be used by the management station to ensure that the
entry has not been deleted and recreated between polls."
::= { alMatrixSDEntry 4 }
-- Traffic matrix tables from destination to source
alMatrixDSTable OBJECT-TYPE
SYNTAX SEQUENCE OF AlMatrixDSEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A list of application traffic matrix entries which collect
statistics for conversations of a particular protocol between
two network-level addresses. This table is indexed first by
the destination address and then by the source address to make
it convenient to collect all statistics to a particular
address.
The probe will populate this table for all protocols in the
protocol directory table whose value of
protocolDirMatrixConfig is equal to supportedOn(3), and
will delete any entries whose protocolDirEntry is deleted or
has a protocolDirMatrixConfig value of supportedOff(2).
The probe will add to this table all pairs of addresses for
all protocols seen in all packets with no MAC errors, and will
increment octet and packet counts in the table for all packets
with no MAC errors. Further, entries will only be added to
this table if their address pair exists in the nlMatrixDSTable
and will be deleted from this table if the address pair is
deleted from the nlMatrixDSTable."
::= { alMatrix 2 }
alMatrixDSEntry OBJECT-TYPE
SYNTAX AlMatrixDSEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A conceptual row in the alMatrixDSTable.
The hlMatrixControlIndex value in the index identifies the
hlMatrixControlEntry on whose behalf this entry was created.
The first protocolDirLocalIndex value in the index identifies
the network layer protocol of the alMatrixDSSourceAddress and
alMatrixDSDestAddress.
Waldbusser Standards Track [Page 68]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
The nlMatrixDSDestAddress value in the index identifies the
network layer address of the destination host in this
conversation.
The nlMatrixDSSourceAddress value in the index identifies the
network layer address of the source host in this conversation.
The second protocolDirLocalIndex value in the index identifies
the protocol that is counted by this entry.
An example of the indexing of this entry is
alMatrixDSPkts.1.783495.18.4.128.2.6.7.4.128.2.6.6.34"
INDEX { hlMatrixControlIndex, alMatrixDSTimeMark,
protocolDirLocalIndex,
nlMatrixDSDestAddress, nlMatrixDSSourceAddress,
protocolDirLocalIndex }
::= { alMatrixDSTable 1 }
AlMatrixDSEntry ::= SEQUENCE {
alMatrixDSTimeMark TimeFilter,
alMatrixDSPkts ZeroBasedCounter32,
alMatrixDSOctets ZeroBasedCounter32,
alMatrixDSCreateTime LastCreateTime
}
alMatrixDSTimeMark OBJECT-TYPE
SYNTAX TimeFilter
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A TimeFilter for this entry. See the TimeFilter textual
convention to see how this works."
::= { alMatrixDSEntry 1 }
alMatrixDSPkts OBJECT-TYPE
SYNTAX ZeroBasedCounter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of packets of this protocol type without errors
transmitted from the source address to the destination address
since this entry was added to the alMatrixDSTable. Note that
this is the number of link-layer packets, so if a single
network-layer packet is fragmented into several link-layer
frames, this counter is incremented several times."
::= { alMatrixDSEntry 2 }
alMatrixDSOctets OBJECT-TYPE
SYNTAX ZeroBasedCounter32
MAX-ACCESS read-only
Waldbusser Standards Track [Page 69]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
STATUS current
DESCRIPTION
"The number of octets in packets of this protocol type
transmitted from the source address to the destination address
since this entry was added to the alMatrixDSTable (excluding
framing bits but including FCS octets), excluding those octets
in packets that contained errors.
Note this doesn't count just those octets in the particular
protocol frames, but includes the entire packet that contained
the protocol."
::= { alMatrixDSEntry 3 }
alMatrixDSCreateTime OBJECT-TYPE
SYNTAX LastCreateTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime when this entry was last activated.
This can be used by the management station to ensure that the
entry has not been deleted and recreated between polls."
::= { alMatrixDSEntry 4 }
alMatrixTopNControlTable OBJECT-TYPE
SYNTAX SEQUENCE OF AlMatrixTopNControlEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A set of parameters that control the creation of a
report of the top N matrix entries according to
a selected metric."
::= { alMatrix 3 }
alMatrixTopNControlEntry OBJECT-TYPE
SYNTAX AlMatrixTopNControlEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A conceptual row in the alMatrixTopNControlTable.
An example of the indexing of this table is
alMatrixTopNControlDuration.3"
INDEX { alMatrixTopNControlIndex }
::= { alMatrixTopNControlTable 1 }
AlMatrixTopNControlEntry ::= SEQUENCE {
alMatrixTopNControlIndex Integer32,
alMatrixTopNControlMatrixIndex Integer32,
Waldbusser Standards Track [Page 70]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
alMatrixTopNControlRateBase INTEGER,
alMatrixTopNControlTimeRemaining Integer32,
alMatrixTopNControlGeneratedReports Counter32,
alMatrixTopNControlDuration Integer32,
alMatrixTopNControlRequestedSize Integer32,
alMatrixTopNControlGrantedSize Integer32,
alMatrixTopNControlStartTime TimeStamp,
alMatrixTopNControlOwner OwnerString,
alMatrixTopNControlStatus RowStatus
}
alMatrixTopNControlIndex OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An index that uniquely identifies an entry
in the alMatrixTopNControlTable. Each such
entry defines one top N report prepared for
one interface."
::= { alMatrixTopNControlEntry 1 }
alMatrixTopNControlMatrixIndex OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The alMatrix[SD/DS] table for which a top N report will be
prepared on behalf of this entry. The alMatrix[SD/DS] table
is identified by the value of the hlMatrixControlIndex
for that table - that value is used here to identify the
particular table.
This object may not be modified if the associated
alMatrixTopNControlStatus object is equal to active(1)."
::= { alMatrixTopNControlEntry 2 }
alMatrixTopNControlRateBase OBJECT-TYPE
SYNTAX INTEGER {
alMatrixTopNTerminalsPkts(1),
alMatrixTopNTerminalsOctets(2),
alMatrixTopNAllPkts(3),
alMatrixTopNAllOctets(4)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The variable for each alMatrix[SD/DS] entry that the
Waldbusser Standards Track [Page 71]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
alMatrixTopNEntries are sorted by, as well as the
selector of the view of the matrix table that will be
used.
The values alMatrixTopNTerminalsPkts and
alMatrixTopNTerminalsOctets cause collection only from
protocols that have no child protocols that are counted. The
values alMatrixTopNAllPkts and alMatrixTopNAllOctets cause
collection from all alMatrix entries.
This object may not be modified if the associated
alMatrixTopNControlStatus object is equal to active(1)."
::= { alMatrixTopNControlEntry 3 }
alMatrixTopNControlTimeRemaining OBJECT-TYPE
SYNTAX Integer32 (0..2147483647)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The number of seconds left in the report currently
being collected. When this object is modified by
the management station, a new collection is started,
possibly aborting a currently running report. The
new value is used as the requested duration of this
report, and is immediately loaded into the associated
alMatrixTopNControlDuration object.
When the report finishes, the probe will automatically
start another collection with the same initial value
of alMatrixTopNControlTimeRemaining. Thus the management
station may simply read the resulting reports repeatedly,
checking the startTime and duration each time to ensure that a
report was not missed or that the report parameters were not
changed.
While the value of this object is non-zero, it decrements
by one per second until it reaches zero. At the time
that this object decrements to zero, the report is made
accessible in the alMatrixTopNTable, overwriting any report
that may be there.
When this object is modified by the management station, any
associated entries in the alMatrixTopNTable shall be deleted.
(Note that this is a different algorithm than the one used in
the hostTopNTable)."
DEFVAL { 1800 }
::= { alMatrixTopNControlEntry 4 }
Waldbusser Standards Track [Page 72]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
alMatrixTopNControlGeneratedReports OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of reports that have been generated by this entry."
::= { alMatrixTopNControlEntry 5 }
alMatrixTopNControlDuration OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of seconds that this report has collected
during the last sampling interval.
When the associated alMatrixTopNControlTimeRemaining object
is set, this object shall be set by the probe to the
same value and shall not be modified until the next
time the alMatrixTopNControlTimeRemaining is set.
This value shall be zero if no reports have been
requested for this alMatrixTopNControlEntry."
::= { alMatrixTopNControlEntry 6 }
alMatrixTopNControlRequestedSize OBJECT-TYPE
SYNTAX Integer32 (0..2147483647)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The maximum number of matrix entries requested for this report.
When this object is created or modified, the probe
should set alMatrixTopNControlGrantedSize as closely to this
object as is possible for the particular probe
implementation and available resources."
DEFVAL { 150 }
::= { alMatrixTopNControlEntry 7 }
alMatrixTopNControlGrantedSize OBJECT-TYPE
SYNTAX Integer32 (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The maximum number of matrix entries in this report.
When the associated alMatrixTopNControlRequestedSize object
is created or modified, the probe should set this
Waldbusser Standards Track [Page 73]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
object as closely to the requested value as is
possible for the particular implementation and
available resources. The probe must not lower this
value except as a result of a set to the associated
alMatrixTopNControlRequestedSize object.
If the value of alMatrixTopNControlRateBase is equal to
alMatrixTopNTerminalsPkts or alMatrixTopNAllPkts, when the
next topN report is generated, matrix entries with the highest
value of alMatrixTopNPktRate shall be placed in this table in
decreasing order of this rate until there is no more room or
until there are no more matrix entries.
If the value of alMatrixTopNControlRateBase is equal to
alMatrixTopNTerminalsOctets or alMatrixTopNAllOctets, when the
next topN report is generated, matrix entries with the highest
value of alMatrixTopNOctetRate shall be placed in this table
in decreasing order of this rate until there is no more room
or until there are no more matrix entries.
It is an implementation-specific matter how entries with the
same value of alMatrixTopNPktRate or alMatrixTopNOctetRate are
sorted. It is also an implementation-specific matter as to
whether or not zero-valued entries are available."
::= { alMatrixTopNControlEntry 8 }
alMatrixTopNControlStartTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime when this top N report was
last started. In other words, this is the time that
the associated alMatrixTopNControlTimeRemaining object
was modified to start the requested report or the time
the report was last automatically (re)started.
This object may be used by the management station to
determine if a report was missed or not."
::= { alMatrixTopNControlEntry 9 }
alMatrixTopNControlOwner OBJECT-TYPE
SYNTAX OwnerString
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The entity that configured this entry and is
therefore using the resources assigned to it."
Waldbusser Standards Track [Page 74]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
::= { alMatrixTopNControlEntry 10 }
alMatrixTopNControlStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The status of this alMatrixTopNControlEntry.
An entry may not exist in the active state unless all
objects in the entry have an appropriate value.
If this object is not equal to active(1), all
associated entries in the alMatrixTopNTable shall be
deleted by the agent."
::= { alMatrixTopNControlEntry 11 }
alMatrixTopNTable OBJECT-TYPE
SYNTAX SEQUENCE OF AlMatrixTopNEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A set of statistics for those application layer matrix
entries that have counted the highest number of octets or
packets."
::= { alMatrix 4 }
alMatrixTopNEntry OBJECT-TYPE
SYNTAX AlMatrixTopNEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A conceptual row in the alMatrixTopNTable.
The alMatrixTopNControlIndex value in the index identifies
the alMatrixTopNControlEntry on whose behalf this entry was
created.
An example of the indexing of this table is
alMatrixTopNPktRate.3.10"
INDEX { alMatrixTopNControlIndex, alMatrixTopNIndex }
::= { alMatrixTopNTable 1 }
AlMatrixTopNEntry ::= SEQUENCE {
alMatrixTopNIndex Integer32,
alMatrixTopNProtocolDirLocalIndex Integer32,
alMatrixTopNSourceAddress OCTET STRING,
alMatrixTopNDestAddress OCTET STRING,
Waldbusser Standards Track [Page 75]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
alMatrixTopNAppProtocolDirLocalIndex Integer32,
alMatrixTopNPktRate Gauge32,
alMatrixTopNReversePktRate Gauge32,
alMatrixTopNOctetRate Gauge32,
alMatrixTopNReverseOctetRate Gauge32
}
alMatrixTopNIndex OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An index that uniquely identifies an entry in
the alMatrixTopNTable among those in the same report.
This index is between 1 and N, where N is the
number of entries in this report.
If the value of alMatrixTopNControlRateBase is equal to
alMatrixTopNTerminalsPkts or alMatrixTopNAllPkts, increasing
values of alMatrixTopNIndex shall be assigned to entries with
decreasing values of alMatrixTopNPktRate until index N is
assigned or there are no more alMatrixTopNEntries.
If the value of alMatrixTopNControlRateBase is equal to
alMatrixTopNTerminalsOctets or alMatrixTopNAllOctets,
increasing values of alMatrixTopNIndex shall be assigned to
entries with decreasing values of alMatrixTopNOctetRate until
index N is assigned or there are no more alMatrixTopNEntries."
::= { alMatrixTopNEntry 1 }
alMatrixTopNProtocolDirLocalIndex OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The protocolDirLocalIndex of the network layer protocol of
this entry's network address."
::= { alMatrixTopNEntry 2 }
alMatrixTopNSourceAddress OBJECT-TYPE
SYNTAX OCTET STRING
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The network layer address of the source host in this
conversation.
This is represented as an octet string with
specific semantics and length as identified
Waldbusser Standards Track [Page 76]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
by the associated alMatrixTopNProtocolDirLocalIndex.
For example, if the alMatrixTopNProtocolDirLocalIndex
indicates an encapsulation of ip, this object is encoded as a
length octet of 4, followed by the 4 octets of the ip address,
in network byte order."
::= { alMatrixTopNEntry 3 }
alMatrixTopNDestAddress OBJECT-TYPE
SYNTAX OCTET STRING
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The network layer address of the destination host in this
conversation.
This is represented as an octet string with
specific semantics and length as identified
by the associated alMatrixTopNProtocolDirLocalIndex.
For example, if the alMatrixTopNProtocolDirLocalIndex
indicates an encapsulation of ip, this object is encoded as a
length octet of 4, followed by the 4 octets of the ip address,
in network byte order."
::= { alMatrixTopNEntry 4 }
alMatrixTopNAppProtocolDirLocalIndex OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The type of the protocol counted by this matrix entry."
::= { alMatrixTopNEntry 5 }
alMatrixTopNPktRate OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of packets seen of this protocol from the source
host to the destination host during this sampling interval,
counted using the rules for counting the alMatrixSDPkts
object.
If the value of alMatrixTopNControlRateBase is
alMatrixTopNTerminalsPkts or alMatrixTopNAllPkts, this
variable will be used to sort this report."
::= { alMatrixTopNEntry 6 }
Waldbusser Standards Track [Page 77]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
alMatrixTopNReversePktRate OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of packets seen of this protocol from the
destination host to the source host during this sampling
interval, counted using the rules for counting the
alMatrixDSPkts object (note that the corresponding
alMatrixSDPkts object selected is the one whose source address
is equal to alMatrixTopNDestAddress and whose destination
address is equal to alMatrixTopNSourceAddress.)
Note that if the value of alMatrixTopNControlRateBase is equal
to alMatrixTopNTerminalsPkts or alMatrixTopNAllPkts, the sort
of topN entries is based entirely on alMatrixTopNPktRate, and
not on the value of this object."
::= { alMatrixTopNEntry 7 }
alMatrixTopNOctetRate OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of octets seen of this protocol from the source
host to the destination host during this sampling interval,
counted using the rules for counting the alMatrixSDOctets
object.
If the value of alMatrixTopNControlRateBase is
alMatrixTopNTerminalsOctets or alMatrixTopNAllOctets, this
variable will be used to sort this report."
::= { alMatrixTopNEntry 8 }
alMatrixTopNReverseOctetRate OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of octets seen of this protocol from the
destination host to the source host during this sampling
interval, counted using the rules for counting the
alMatrixDSOctets object (note that the corresponding
alMatrixSDOctets object selected is the one whose source
address is equal to alMatrixTopNDestAddress and whose
destination address is equal to alMatrixTopNSourceAddress.)
Note that if the value of alMatrixTopNControlRateBase is equal
Waldbusser Standards Track [Page 78]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
to alMatrixTopNTerminalsOctets or alMatrixTopNAllOctets, the
sort of topN entries is based entirely on
alMatrixTopNOctetRate, and not on the value of this object."
::= { alMatrixTopNEntry 9 }
--
-- User History Collection Group (usrHistory)
--
-- The usrHistory group combines mechanisms seen in the alarm and
-- history groups to provide user-specified history collection,
-- utilizing two additional control tables and one additional data
-- table. This function has traditionally been done by NMS
-- applications, via periodic polling. The usrHistory group allows
-- this task to be offloaded to an RMON probe.
--
-- Data (an ASN.1 INTEGER based object) is collected in the same
-- manner as any history data table (e.g. etherHistoryTable) except
-- that the user specifies the MIB instances to be collected. Objects
-- are collected in bucket-groups, with the intent that all MIB
-- instances in the same bucket-group are collected as atomically as
-- possible by the RMON probe.
--
-- The usrHistoryControlTable is a one-dimensional read-create table.
-- Each row configures a collection of user history buckets, much
-- the same as a historyControlEntry, except that the creation of a
-- row in this table will cause one or more associated instances in
-- the usrHistoryObjectTable to be created. The user specifies the
-- number of bucket elements (rows in the usrHistoryObjectTable)
-- requested, as well as the number of buckets requested.
--
-- The usrHistoryObjectTable is a 2-d read-write table.
-- Each row configures a single MIB instance to be collected.
-- All rows with the same major index constitute a bucket-group.
--
-- The usrHistoryTable is a 3-d read-only table containing
-- the data of associated usrHistoryControlEntries. Each
-- entry represents the value of a single MIB instance
-- during a specific sampling interval (or the rate of
-- change during the interval).
--
-- A sample value is stored in two objects - an absolute value and
-- a status object. This allows numbers from -(2G-1) to +4G to be
-- stored. The status object also indicates whether a sample is
-- valid. This allows data collection to continue if periodic
-- retrieval of a particular instance fails for any reason.
--
-- Row Creation Order Relationships
--
Waldbusser Standards Track [Page 79]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
-- The static nature of the usrHistoryObjectTable creates
-- some row creation/modification issues. The rows in this
-- table need to be set before the associated
-- usrHistoryControlEntry can be activated.
--
-- Note that the usrHistoryObject entries associated with a
-- particular usrHistoryControlEntry are not required to
-- be active before the control entry is activated. However,
-- the usrHistory data entries associated with an inactive
-- usrHistoryObject entry will be inactive (i.e.
-- usrHistoryValStatus == valueNotAvailable).
--
usrHistoryControlTable OBJECT-TYPE
SYNTAX SEQUENCE OF UsrHistoryControlEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A list of data-collection configuration entries."
::= { usrHistory 1 }
usrHistoryControlEntry OBJECT-TYPE
SYNTAX UsrHistoryControlEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A list of parameters that set up a group of user-defined
MIB objects to be sampled periodically (called a
bucket-group).
For example, an instance of usrHistoryControlInterval
might be named usrHistoryControlInterval.1"
INDEX { usrHistoryControlIndex }
::= { usrHistoryControlTable 1 }
UsrHistoryControlEntry ::= SEQUENCE {
usrHistoryControlIndex Integer32,
usrHistoryControlObjects Integer32,
usrHistoryControlBucketsRequested Integer32,
usrHistoryControlBucketsGranted Integer32,
usrHistoryControlInterval Integer32,
usrHistoryControlOwner OwnerString,
usrHistoryControlStatus RowStatus
}
usrHistoryControlIndex OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS not-accessible
Waldbusser Standards Track [Page 80]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
STATUS current
DESCRIPTION
"An index that uniquely identifies an entry in the
usrHistoryControlTable. Each such entry defines a
set of samples at a particular interval for a specified
set of MIB instances available from the managed system."
::= { usrHistoryControlEntry 1 }
usrHistoryControlObjects OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The number of MIB objects to be collected
in the portion of usrHistoryTable associated with this
usrHistoryControlEntry.
This object may not be modified if the associated instance
of usrHistoryControlStatus is equal to active(1)."
::= { usrHistoryControlEntry 2 }
usrHistoryControlBucketsRequested OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The requested number of discrete time intervals
over which data is to be saved in the part of the
usrHistoryTable associated with this usrHistoryControlEntry.
When this object is created or modified, the probe
should set usrHistoryControlBucketsGranted as closely to
this object as is possible for the particular probe
implementation and available resources."
DEFVAL { 50 }
::= { usrHistoryControlEntry 3 }
usrHistoryControlBucketsGranted OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of discrete sampling intervals
over which data shall be saved in the part of
the usrHistoryTable associated with this
usrHistoryControlEntry.
When the associated usrHistoryControlBucketsRequested
Waldbusser Standards Track [Page 81]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
object is created or modified, the probe should set
this object as closely to the requested value as is
possible for the particular probe implementation and
available resources. The probe must not lower this
value except as a result of a modification to the associated
usrHistoryControlBucketsRequested object.
The associated usrHistoryControlBucketsRequested object
should be set before or at the same time as this object
to allow the probe to accurately estimate the resources
required for this usrHistoryControlEntry.
There will be times when the actual number of buckets
associated with this entry is less than the value of
this object. In this case, at the end of each sampling
interval, a new bucket will be added to the usrHistoryTable.
When the number of buckets reaches the value of this object
and a new bucket is to be added to the usrHistoryTable,
the oldest bucket associated with this usrHistoryControlEntry
shall be deleted by the agent so that the new bucket can be
added.
When the value of this object changes to a value less than
the current value, entries are deleted from the
usrHistoryTable associated with this usrHistoryControlEntry.
Enough of the oldest of these entries shall be deleted by the
agent so that their number remains less than or equal to the
new value of this object.
When the value of this object changes to a value greater
than the current value, the number of associated usrHistory
entries may be allowed to grow."
::= { usrHistoryControlEntry 4 }
usrHistoryControlInterval OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The interval in seconds over which the data is
sampled for each bucket in the part of the usrHistory
table associated with this usrHistoryControlEntry.
Because the counters in a bucket may overflow at their
maximum value with no indication, a prudent manager will
take into account the possibility of overflow in any of
Waldbusser Standards Track [Page 82]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
the associated counters. It is important to consider the
minimum time in which any counter could overflow on a
particular media type and set the usrHistoryControlInterval
object to a value less than this interval.
This object may not be modified if the associated
usrHistoryControlStatus object is equal to active(1)."
DEFVAL { 1800 }
::= { usrHistoryControlEntry 5 }
usrHistoryControlOwner OBJECT-TYPE
SYNTAX OwnerString
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The entity that configured this entry and is
therefore using the resources assigned to it."
::= { usrHistoryControlEntry 6 }
usrHistoryControlStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The status of this variable history control entry.
An entry may not exist in the active state unless all
objects in the entry have an appropriate value.
If this object is not equal to active(1), all associated
entries in the usrHistoryTable shall be deleted."
::= { usrHistoryControlEntry 7 }
-- Object table
usrHistoryObjectTable OBJECT-TYPE
SYNTAX SEQUENCE OF UsrHistoryObjectEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A list of data-collection configuration entries."
::= { usrHistory 2 }
usrHistoryObjectEntry OBJECT-TYPE
SYNTAX UsrHistoryObjectEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
Waldbusser Standards Track [Page 83]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
"A list of MIB instances to be sampled periodically.
Entries in this table are created when an associated
usrHistoryControlObjects object is created.
The usrHistoryControlIndex value in the index is
that of the associated usrHistoryControlEntry.
For example, an instance of usrHistoryObjectVariable might be
usrHistoryObjectVariable.1.3"
INDEX { usrHistoryControlIndex, usrHistoryObjectIndex }
::= { usrHistoryObjectTable 1 }
UsrHistoryObjectEntry ::= SEQUENCE {
usrHistoryObjectIndex Integer32,
usrHistoryObjectVariable OBJECT IDENTIFIER,
usrHistoryObjectSampleType INTEGER
}
usrHistoryObjectIndex OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An index used to uniquely identify an entry in the
usrHistoryObject table. Each such entry defines a
MIB instance to be collected periodically."
::= { usrHistoryObjectEntry 1 }
usrHistoryObjectVariable OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The object identifier of the particular variable to be
sampled.
Only variables that resolve to an ASN.1 primitive type of
Integer32 (Integer32, Counter, Gauge, or TimeTicks) may be
sampled.
Because SNMP access control is articulated entirely in terms
of the contents of MIB views, no access control mechanism
exists that can restrict the value of this object to identify
only those objects that exist in a particular MIB view.
Because there is thus no acceptable means of restricting the
read access that could be obtained through the user history
Waldbusser Standards Track [Page 84]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
mechanism, the probe must only grant write access to this
object in those views that have read access to all objects on
the probe.
During a set operation, if the supplied variable name is not
available in the selected MIB view, a badValue error must be
returned.
This object may not be modified if the associated
usrHistoryControlStatus object is equal to active(1)."
::= { usrHistoryObjectEntry 2 }
usrHistoryObjectSampleType OBJECT-TYPE
SYNTAX INTEGER {
absoluteValue(1),
deltaValue(2)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The method of sampling the selected variable for storage in
the usrHistoryTable.
If the value of this object is absoluteValue(1), the value of
the selected variable will be copied directly into the history
bucket.
If the value of this object is deltaValue(2), the value of the
selected variable at the last sample will be subtracted from
the current value, and the difference will be stored in the
history bucket. If the associated usrHistoryObjectVariable
instance could not be obtained at the previous sample
interval, then a delta sample is not possible, and the value
of the associated usrHistoryValStatus object for this interval
will be valueNotAvailable(1).
This object may not be modified if the associated
usrHistoryControlStatus object is equal to active(1)."
::= { usrHistoryObjectEntry 3 }
-- data table
usrHistoryTable OBJECT-TYPE
SYNTAX SEQUENCE OF UsrHistoryEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A list of user defined history entries."
Waldbusser Standards Track [Page 85]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
::= { usrHistory 3 }
usrHistoryEntry OBJECT-TYPE
SYNTAX UsrHistoryEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A historical sample of user-defined variables. This sample
is associated with the usrHistoryControlEntry which set up the
parameters for a regular collection of these samples.
The usrHistoryControlIndex value in the index identifies the
usrHistoryControlEntry on whose behalf this entry was created.
The usrHistoryObjectIndex value in the index identifies the
usrHistoryObjectEntry on whose behalf this entry was created.
For example, an instance of usrHistoryAbsValue, which represents
the 14th sample of a variable collected as specified by
usrHistoryControlEntry.1 and usrHistoryObjectEntry.1.5,
would be named usrHistoryAbsValue.1.14.5"
INDEX { usrHistoryControlIndex, usrHistorySampleIndex,
usrHistoryObjectIndex }
::= { usrHistoryTable 1 }
UsrHistoryEntry ::= SEQUENCE {
usrHistorySampleIndex Integer32,
usrHistoryIntervalStart TimeStamp,
usrHistoryIntervalEnd TimeStamp,
usrHistoryAbsValue Gauge32,
usrHistoryValStatus INTEGER
}
usrHistorySampleIndex OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An index that uniquely identifies the particular sample this
entry represents among all samples associated with the same
usrHistoryControlEntry. This index starts at 1 and increases
by one as each new sample is taken."
::= { usrHistoryEntry 1 }
usrHistoryIntervalStart OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
Waldbusser Standards Track [Page 86]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
DESCRIPTION
"The value of sysUpTime at the start of the interval over
which this sample was measured. If the probe keeps track of
the time of day, it should start the first sample of the
history at a time such that when the next hour of the day
begins, a sample is started at that instant.
Note that following this rule may require the probe to delay
collecting the first sample of the history, as each sample
must be of the same interval. Also note that the sample which
is currently being collected is not accessible in this table
until the end of its interval."
::= { usrHistoryEntry 2 }
usrHistoryIntervalEnd OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime at the end of the interval over which
this sample was measured."
::= { usrHistoryEntry 3 }
usrHistoryAbsValue OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The absolute value (i.e. unsigned value) of the
user-specified statistic during the last sampling period. The
value during the current sampling period is not made available
until the period is completed.
To obtain the true value for this sampling interval, the
associated instance of usrHistoryValStatus must be checked,
and usrHistoryAbsValue adjusted as necessary.
If the MIB instance could not be accessed during the sampling
interval, then this object will have a value of zero and the
associated instance of usrHistoryValStatus will be set to
'valueNotAvailable(1)'."
::= { usrHistoryEntry 4 }
usrHistoryValStatus OBJECT-TYPE
SYNTAX INTEGER {
valueNotAvailable(1),
valuePositive(2),
Waldbusser Standards Track [Page 87]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
valueNegative(3)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates the validity and sign of the data in
the associated instance of usrHistoryAbsValue.
If the MIB instance could not be accessed during the sampling
interval, then 'valueNotAvailable(1)' will be returned.
If the sample is valid and actual value of the sample is
greater than or equal to zero then 'valuePositive(2)' is
returned.
If the sample is valid and the actual value of the sample is
less than zero, 'valueNegative(3)' will be returned. The
associated instance of usrHistoryAbsValue should be multiplied
by -1 to obtain the true sample value."
::= { usrHistoryEntry 5 }
-- The Probe Configuration Group
--
-- This group controls the configuration of various operating
-- parameters of the probe.
ControlString ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"This data type is used to communicate with a modem or a
serial data switch. A ControlString contains embedded
commands to control how the device will interact with the
remote device through the serial interface. Commands are
represented as two character sequences beginning with
the `^' character.
The following commands are recognized by the device (note
that command characters are case sensitive):
^s Send string that follows which is terminated by the
next command or the end of string.
^c Delay for the number of seconds that follows. Toss
out any data received rather than storing it in a
buffer for parsing.
^t Set timeout to the value represented by the decimal
digits that follow. The default timeout is 20
seconds. Note that this timeout may be overridden
by a smaller serialTimeout configured for the
Waldbusser Standards Track [Page 88]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
associated serial interface (see serialConfigTable).
^w Wait for the reply string that follows which is
terminated by the next command or the end of string.
Partial and case insensitive matching is applied, ie.
if the reply string (any case combination) is found
anywhere in the received string, then the a match is
found. If the current timeout elapses without a match,
then the remaining control string is ignored.
^! The ^ character.
^d Delay the number of seconds specified by the decimal
digits that follow.
^b Send break for the number of milliseconds specified by
the decimal digits that follow. If no digits follow,
break will be enforced for 250 milliseconds by default.
The following ASCII control characters may be inserted into
the `^s' send string or the `^w' reply string:
^@ 0x00
^A 0x01
..
^M 0x0D
..
^Z 0x1A
^[ 0x1B
^ 0x1C
^] 0x1D
^^ 0x1E
^_ 0x1F
Binary data may also be inserted into the data stream. The
control sequence for each byte of binary data is ^0x##, where
## is the hexadecimal representation of the data byte. Two
ASCII characters (0-9, a-f, A-F) must follow the `^0x'
control prefix. For example, `^0x0D^0x0A' is interpreted as a
carriage return followed by a line feed."
SYNTAX DisplayString
probeCapabilities OBJECT-TYPE
SYNTAX BITS {
etherStats(0),
historyControl(1),
etherHistory(2),
alarm(3),
hosts(4),
hostTopN(5),
matrix(6),
filter(7),
Waldbusser Standards Track [Page 89]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
capture(8),
event(9),
tokenRingMLStats(10),
tokenRingPStats(11),
tokenRingMLHistory(12),
tokenRingPHistory(13),
ringStation(14),
ringStationOrder(15),
ringStationConfig(16),
sourceRouting(17),
protocolDirectory(18),
protocolDistribution(19),
addressMapping(20),
nlHost(21),
nlMatrix(22),
alHost(23),
alMatrix(24),
usrHistory(25),
probeConfig(26)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"An indication of the RMON MIB groups supported
on at least one interface by this probe."
::= { probeConfig 1 }
probeSoftwareRev OBJECT-TYPE
SYNTAX DisplayString (SIZE(0..15))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The software revision of this device. This string will have
a zero length if the revision is unknown."
::= { probeConfig 2 }
probeHardwareRev OBJECT-TYPE
SYNTAX DisplayString (SIZE(0..31))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The hardware revision of this device. This string will have
a zero length if the revision is unknown."
::= { probeConfig 3 }
probeDateTime OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (0 | 8 | 11))
MAX-ACCESS read-write
Waldbusser Standards Track [Page 90]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
STATUS current
DESCRIPTION
"Probe's current date and time.
field octets contents range
----- ------ -------- -----
1 1-2 year 0..65536
2 3 month 1..12
3 4 day 1..31
4 5 hour 0..23
5 6 minutes 0..59
6 7 seconds 0..60
(use 60 for leap-second)
7 8 deci-seconds 0..9
8 9 direction from UTC '+' / '-'
9 10 hours from UTC 0..11
10 11 minutes from UTC 0..59
For example, Tuesday May 26, 1992 at 1:30:15 PM
EDT would be displayed as:
1992-5-26,13:30:15.0,-4:0
Note that if only local time is known, then
timezone information (fields 8-10) is not
present, and if no time information is known, the null
string is returned."
::= { probeConfig 4 }
probeResetControl OBJECT-TYPE
SYNTAX INTEGER {
running(1),
warmBoot(2),
coldBoot(3)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"Setting this object to warmBoot(2) causes the device to
restart the application software with current configuration
parameters saved in non-volatile memory. Setting this
object to coldBoot(3) causes the device to reinitialize
configuration parameters in non-volatile memory to default
values and restart the application software. When the device
is running normally, this variable has a value of
running(1)."
::= { probeConfig 5 }
Waldbusser Standards Track [Page 91]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
-- The following download objects do not restrict an implementation
-- from implementing additional download mechanisms (controlled in an
-- implementation-specific manner). Further, in the case where the RMON
-- agent shares a processor with other types of systems, the
-- implementation is not required to download those non-RMON functions
-- with this mechanism.
probeDownloadFile OBJECT-TYPE
SYNTAX DisplayString (SIZE(0..127))
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The file name to be downloaded from the TFTP server when a
download is next requested via this MIB. This value is set to
the zero length string when no file name has been specified."
::= { probeConfig 6 }
probeDownloadTFTPServer OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The IP address of the TFTP server that contains the boot
image to load when a download is next requested via this MIB.
This value is set to `0.0.0.0' when no IP address has been
specified."
::= { probeConfig 7 }
probeDownloadAction OBJECT-TYPE
SYNTAX INTEGER {
notDownloading(1),
downloadToPROM(2),
downloadToRAM(3)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"When this object is set to downloadToRAM(2) or
downloadToPROM(3), the device will discontinue its
normal operation and begin download of the image specified
by probeDownloadFile from the server specified by
probeDownloadTFTPServer using the TFTP protocol. If
downloadToRAM(2) is specified, the new image is copied
to RAM only (the old image remains unaltered in the flash
EPROM). If downloadToPROM(3) is specified
the new image is written to the flash EPROM
memory after its checksum has been verified to be correct.
When the download process is completed, the device will
Waldbusser Standards Track [Page 92]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
warm boot to restart the newly loaded application.
When the device is not downloading, this object will have
a value of notDownloading(1)."
::= { probeConfig 8 }
probeDownloadStatus OBJECT-TYPE
SYNTAX INTEGER {
downloadSuccess(1),
downloadStatusUnknown(2),
downloadGeneralError(3),
downloadNoResponseFromServer(4),
downloadChecksumError(5),
downloadIncompatibleImage(6),
downloadTftpFileNotFound(7),
downloadTftpAccessViolation(8)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The status of the last download procedure, if any. This
object will have a value of downloadStatusUnknown(2) if no
download process has been performed."
::= { probeConfig 9 }
serialConfigTable OBJECT-TYPE
SYNTAX SEQUENCE OF SerialConfigEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table of serial interface configuration entries. This data
will be stored in non-volatile memory and preserved across
probe resets or power loss."
::= { probeConfig 10 }
serialConfigEntry OBJECT-TYPE
SYNTAX SerialConfigEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A set of configuration parameters for a particular
serial interface on this device. If the device has no serial
interfaces, this table is empty.
The index is composed of the ifIndex assigned to this serial
line interface."
INDEX { ifIndex }
::= { serialConfigTable 1 }
Waldbusser Standards Track [Page 93]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
SerialConfigEntry ::= SEQUENCE {
serialMode INTEGER,
serialProtocol INTEGER,
serialTimeout Integer32 (1..65535),
serialModemInitString ControlString (SIZE (0..255)),
serialModemHangUpString ControlString (SIZE (0..255)),
serialModemConnectResp DisplayString (SIZE (0..255)),
serialModemNoConnectResp DisplayString (SIZE (0..255)),
serialDialoutTimeout Integer32 (1..65535),
serialStatus RowStatus
}
serialMode OBJECT-TYPE
SYNTAX INTEGER {
direct(1),
modem(2)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The type of incoming connection to expect on this serial
interface."
DEFVAL { direct }
::= { serialConfigEntry 1 }
serialProtocol OBJECT-TYPE
SYNTAX INTEGER {
other(1),
slip(2),
ppp(3)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The type of data link encapsulation to be used on this
serial interface."
DEFVAL { slip }
::= { serialConfigEntry 2 }
serialTimeout OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This timeout value is used when the Management Station has
initiated the conversation over the serial link. This variable
represents the number of seconds of inactivity allowed before
terminating the connection on this serial interface. Use the
Waldbusser Standards Track [Page 94]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
serialDialoutTimeout in the case where the probe has initiated
the connection for the purpose of sending a trap."
DEFVAL { 300 }
::= { serialConfigEntry 3 }
serialModemInitString OBJECT-TYPE
SYNTAX ControlString (SIZE (0..255))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"A control string which controls how a modem attached to this
serial interface should be initialized. The initialization
is performed once during startup and again after each
connection is terminated if the associated serialMode has the
value of modem(2).
A control string that is appropriate for a wide variety of
modems is: '^s^MATE0Q0V1X4 S0=1 S2=43^M'."
::= { serialConfigEntry 4 }
serialModemHangUpString OBJECT-TYPE
SYNTAX ControlString (SIZE (0..255))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"A control string which specifies how to disconnect a modem
connection on this serial interface. This object is only
meaningful if the associated serialMode has the value
of modem(2).
A control string that is appropriate for a wide variety of
modems is: '^d2^s+++^d2^sATH0^M^d2'."
::= { serialConfigEntry 5 }
serialModemConnectResp OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"An ASCII string containing substrings that describe the
expected modem connection response code and associated bps
rate. The substrings are delimited by the first character
in the string, for example:
/CONNECT/300/CONNECT 1200/1200/CONNECT 2400/2400/
CONNECT 4800/4800/CONNECT 9600/9600
will be interpreted as:
response code bps rate
CONNECT 300
CONNECT 1200 1200
Waldbusser Standards Track [Page 95]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
CONNECT 2400 2400
CONNECT 4800 4800
CONNECT 9600 9600
The agent will use the information in this string to adjust
the bps rate of this serial interface once a modem connection
is established.
A value that is appropriate for a wide variety of modems is:
'/CONNECT/300/CONNECT 1200/1200/CONNECT 2400/2400/
CONNECT 4800/4800/CONNECT 9600/9600/CONNECT 14400/14400/
CONNECT 19200/19200/CONNECT 38400/38400/'."
::= { serialConfigEntry 6 }
serialModemNoConnectResp OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"An ASCII string containing response codes that may be
generated by a modem to report the reason why a connection
attempt has failed. The response codes are delimited by
the first character in the string, for example:
/NO CARRIER/BUSY/NO DIALTONE/NO ANSWER/ERROR/
If one of these response codes is received via this serial
interface while attempting to make a modem connection,
the agent will issue the hang up command as specified by
serialModemHangUpString.
A value that is appropriate for a wide variety of modems is:
'/NO CARRIER/BUSY/NO DIALTONE/NO ANSWER/ERROR/'."
::= { serialConfigEntry 7 }
serialDialoutTimeout OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This timeout value is used when the probe initiates the
serial connection with the intention of contacting a
management station. This variable represents the number
of seconds of inactivity allowed before terminating the
connection on this serial interface."
DEFVAL { 20 }
::= { serialConfigEntry 8 }
serialStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
Waldbusser Standards Track [Page 96]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
STATUS current
DESCRIPTION
"The status of this serialConfigEntry.
An entry may not exist in the active state unless all
objects in the entry have an appropriate value."
::= { serialConfigEntry 9 }
netConfigTable OBJECT-TYPE
SYNTAX SEQUENCE OF NetConfigEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table of netConfigEntries."
::= { probeConfig 11 }
netConfigEntry OBJECT-TYPE
SYNTAX NetConfigEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A set of configuration parameters for a particular
network interface on this device. If the device has no network
interface, this table is empty.
The index is composed of the ifIndex assigned to the
corresponding interface."
INDEX { ifIndex }
::= { netConfigTable 1 }
NetConfigEntry ::= SEQUENCE {
netConfigIPAddress IpAddress,
netConfigSubnetMask IpAddress,
netConfigStatus RowStatus
}
netConfigIPAddress OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The IP address of this Net interface. The default value
for this object is 0.0.0.0. If either the netConfigIPAddress
or netConfigSubnetMask are 0.0.0.0, then when the device
boots, it may use BOOTP to try to figure out what these
values should be. If BOOTP fails, before the device
can talk on the network, this value must be configured
(e.g., through a terminal attached to the device). If BOOTP is
Waldbusser Standards Track [Page 97]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
used, care should be taken to not send BOOTP broadcasts too
frequently and to eventually send very infrequently if no
replies are received."
::= { netConfigEntry 1 }
netConfigSubnetMask OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The subnet mask of this Net interface. The default value
for this object is 0.0.0.0. If either the netConfigIPAddress
or netConfigSubnetMask are 0.0.0.0, then when the device
boots, it may use BOOTP to try to figure out what these
values should be. If BOOTP fails, before the device
can talk on the network, this value must be configured
(e.g., through a terminal attached to the device). If BOOTP is
used, care should be taken to not send BOOTP broadcasts too
frequently and to eventually send very infrequently if no
replies are received."
::= { netConfigEntry 2 }
netConfigStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The status of this netConfigEntry.
An entry may not exist in the active state unless all
objects in the entry have an appropriate value."
::= { netConfigEntry 3 }
netDefaultGateway OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The IP Address of the default gateway. If this value is
undefined or unknown, it shall have the value 0.0.0.0."
::= { probeConfig 12 }
-- Trap Destination Table
--
-- This table defines the destination addresses for traps generated
-- from the device. This table maps a community to one or more trap
-- destination entries.
--
Waldbusser Standards Track [Page 98]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
-- The same trap will be sent to all destinations specified in the
-- entries that have the same trapDestCommunity as the eventCommunity
-- (as defined by RMON MIB). Information in this table will be stored
-- in non-volatile memory. If the device has gone through a hard
-- restart, this information will be reset to its default state.
trapDestTable OBJECT-TYPE
SYNTAX SEQUENCE OF TrapDestEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A list of trap destination entries."
::= { probeConfig 13 }
trapDestEntry OBJECT-TYPE
SYNTAX TrapDestEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This entry includes a destination IP address to which to send
traps for this community."
INDEX { trapDestIndex }
::= { trapDestTable 1 }
TrapDestEntry ::= SEQUENCE {
trapDestIndex Integer32,
trapDestCommunity OCTET STRING,
trapDestProtocol INTEGER,
trapDestAddress OCTET STRING,
trapDestOwner OwnerString,
trapDestStatus RowStatus
}
trapDestIndex OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A value that uniquely identifies this trapDestEntry."
::= { trapDestEntry 1 }
trapDestCommunity OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..127))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"A community to which this destination address belongs.
This entry is associated with any eventEntries in the RMON
Waldbusser Standards Track [Page 99]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
MIB whose value of eventCommunity is equal to the value of
this object. Every time an associated event entry sends a
trap due to an event, that trap will be sent to each
address in the trapDestTable with a trapDestCommunity equal to
eventCommunity.
This object may not be modified if the associated
trapDestStatus object is equal to active(1)."
::= { trapDestEntry 2 }
trapDestProtocol OBJECT-TYPE
SYNTAX INTEGER {
ip(1),
ipx(2)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The protocol with which to send this trap."
::= { trapDestEntry 3 }
trapDestAddress OBJECT-TYPE
SYNTAX OCTET STRING
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The address to send traps on behalf of this entry.
If the associated trapDestProtocol object is equal to ip(1),
the encoding of this object is the same as the snmpUDPAddress
textual convention in [RFC1906]:
-- for a SnmpUDPAddress of length 6:
--
-- octets contents encoding
-- 1-4 IP-address network-byte order
-- 5-6 UDP-port network-byte order
If the associated trapDestProtocol object is equal to ipx(2),
the encoding of this object is the same as the snmpIPXAddress
textual convention in [RFC1906]:
-- for a SnmpIPXAddress of length 12:
--
-- octets contents encoding
-- 1-4 network-number network-byte order
-- 5-10 physical-address network-byte order
-- 11-12 socket-number network-byte order
This object may not be modified if the associated
Waldbusser Standards Track [Page 100]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
trapDestStatus object is equal to active(1)."
::= { trapDestEntry 4 }
trapDestOwner OBJECT-TYPE
SYNTAX OwnerString
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The entity that configured this entry and is
therefore using the resources assigned to it."
::= { trapDestEntry 5 }
trapDestStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The status of this trap destination entry.
An entry may not exist in the active state unless all
objects in the entry have an appropriate value."
::= { trapDestEntry 6 }
-- Serial Connection Table
--
-- The device may communicate with a management station using
-- SLIP. In order for the device to send traps via SLIP, it must
-- be able to initiate a connection over the serial interface. The
-- serialConnectionTable stores the parameters for such connection
-- initiation.
serialConnectionTable OBJECT-TYPE
SYNTAX SEQUENCE OF SerialConnectionEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A list of serialConnectionEntries."
::= { probeConfig 14 }
serialConnectionEntry OBJECT-TYPE
SYNTAX SerialConnectionEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Configuration for a SLIP link over a serial line."
INDEX { serialConnectIndex }
::= { serialConnectionTable 1 }
Waldbusser Standards Track [Page 101]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
SerialConnectionEntry ::= SEQUENCE {
serialConnectIndex Integer32,
serialConnectDestIpAddress IpAddress,
serialConnectType INTEGER,
serialConnectDialString ControlString,
serialConnectSwitchConnectSeq ControlString,
serialConnectSwitchDisconnectSeq ControlString,
serialConnectSwitchResetSeq ControlString,
serialConnectOwner OwnerString,
serialConnectStatus RowStatus
}
serialConnectIndex OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A value that uniquely identifies this serialConnection
entry."
::= { serialConnectionEntry 1 }
serialConnectDestIpAddress OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The IP Address that can be reached at the other end of this
serial connection.
This object may not be modified if the associated
serialConnectStatus object is equal to active(1)."
::= { serialConnectionEntry 2 }
serialConnectType OBJECT-TYPE
SYNTAX INTEGER {
direct(1),
modem(2),
switch(3),
modemSwitch(4)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The type of outgoing connection to make. If this object
has the value direct(1), then a direct serial connection
is assumed. If this object has the value modem(2),
then serialConnectDialString will be used to make a modem
connection. If this object has the value switch(3),
Waldbusser Standards Track [Page 102]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
then serialConnectSwitchConnectSeq will be used to establish
the connection over a serial data switch, and
serialConnectSwitchDisconnectSeq will be used to terminate
the connection. If this object has the value
modem-switch(4), then a modem connection will be made first
followed by the switch connection.
This object may not be modified if the associated
serialConnectStatus object is equal to active(1)."
DEFVAL { direct }
::= { serialConnectionEntry 3 }
serialConnectDialString OBJECT-TYPE
SYNTAX ControlString (SIZE(0..255))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"A control string which specifies how to dial the phone
number in order to establish a modem connection. The
string should include dialing prefix and suffix. For
example: ``^s^MATD9,888-1234^M'' will instruct the Probe
to send a carriage return followed by the dialing prefix
``ATD'', the phone number ``9,888-1234'', and a carriage
return as the dialing suffix.
This object may not be modified if the associated
serialConnectStatus object is equal to active(1)."
::= { serialConnectionEntry 4 }
serialConnectSwitchConnectSeq OBJECT-TYPE
SYNTAX ControlString (SIZE(0..255))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"A control string which specifies how to establish a
data switch connection.
This object may not be modified if the associated
serialConnectStatus object is equal to active(1)."
::= { serialConnectionEntry 5 }
serialConnectSwitchDisconnectSeq OBJECT-TYPE
SYNTAX ControlString (SIZE(0..255))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"A control string which specifies how to terminate a
data switch connection.
This object may not be modified if the associated
Waldbusser Standards Track [Page 103]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
serialConnectStatus object is equal to active(1)."
::= { serialConnectionEntry 6 }
serialConnectSwitchResetSeq OBJECT-TYPE
SYNTAX ControlString (SIZE(0..255))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"A control string which specifies how to reset a data
switch in the event of a timeout.
This object may not be modified if the associated
serialConnectStatus object is equal to active(1)."
::= { serialConnectionEntry 7 }
serialConnectOwner OBJECT-TYPE
SYNTAX OwnerString
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The entity that configured this entry and is
therefore using the resources assigned to it."
::= { serialConnectionEntry 8 }
serialConnectStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The status of this serialConnectionEntry.
If the manager attempts to set this object to active(1) when
the serialConnectType is set to modem(2) or modem-switch(4)
and the serialConnectDialString is a zero-length string or
cannot be correctly parsed as a ConnectString, the set
request will be rejected with badValue(3).
If the manager attempts to set this object to active(1) when
the serialConnectType is set to switch(3) or modem-switch(4)
and the serialConnectSwitchConnectSeq,
the serialConnectSwitchDisconnectSeq, or
the serialConnectSwitchResetSeq are zero-length strings
or cannot be correctly parsed as ConnectStrings, the set
request will be rejected with badValue(3).
An entry may not exist in the active state unless all
objects in the entry have an appropriate value."
::= { serialConnectionEntry 9 }
Waldbusser Standards Track [Page 104]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
--
-- Extensions to the RMON 1 MIB for RMON 2 devices
--
-- These extensions include the standard LastCreateTime Textual
-- Convention for all control tables, as well as an augmentation of
-- the filter entry that provides variable-length offsets into
-- packets.
-- Each of the following, except for filterDroppedFrames, is a
-- read-only object which, if implemented, automatically appears when
-- the RMON1 row it is associated with is created.
etherStats2Table OBJECT-TYPE
SYNTAX SEQUENCE OF EtherStats2Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Contains the RMON-2 augmentations to RMON-1."
::= { statistics 4 }
etherStats2Entry OBJECT-TYPE
SYNTAX EtherStats2Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Contains the RMON-2 augmentations to RMON-1."
AUGMENTS { etherStatsEntry }
::= { etherStats2Table 1 }
EtherStats2Entry ::= SEQUENCE {
etherStatsDroppedFrames Counter32,
etherStatsCreateTime LastCreateTime
}
etherStatsDroppedFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of frames which were received by the probe
and therefore not accounted for in the *StatsDropEvents, but
for which the probe chose not to count for this entry for
whatever reason. Most often, this event occurs when the probe
is out of some resources and decides to shed load from this
collection.
This count does not include packets that were not counted
Waldbusser Standards Track [Page 105]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
because they had MAC-layer errors.
Note that, unlike the dropEvents counter, this number is the
exact number of frames dropped."
::= { etherStats2Entry 1 }
etherStatsCreateTime OBJECT-TYPE
SYNTAX LastCreateTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime when this control entry was last
activated. This can be used by the management station to
ensure that the table has not been deleted and recreated
between polls."
::= { etherStats2Entry 2 }
historyControl2Table OBJECT-TYPE
SYNTAX SEQUENCE OF HistoryControl2Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Contains the RMON-2 augmentations to RMON-1."
::= { history 5 }
historyControl2Entry OBJECT-TYPE
SYNTAX HistoryControl2Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Contains the RMON-2 augmentations to RMON-1."
AUGMENTS { historyControlEntry }
::= { historyControl2Table 1 }
HistoryControl2Entry ::= SEQUENCE {
historyControlDroppedFrames Counter32
}
historyControlDroppedFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of frames which were received by the probe
and therefore not accounted for in the *StatsDropEvents, but
for which the probe chose not to count for this entry for
whatever reason. Most often, this event occurs when the probe
is out of some resources and decides to shed load from this
Waldbusser Standards Track [Page 106]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
collection.
This count does not include packets that were not counted
because they had MAC-layer errors.
Note that, unlike the dropEvents counter, this number is the
exact number of frames dropped."
::= { historyControl2Entry 1 }
hostControl2Table OBJECT-TYPE
SYNTAX SEQUENCE OF HostControl2Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Contains the RMON-2 augmentations to RMON-1."
::= { hosts 4 }
hostControl2Entry OBJECT-TYPE
SYNTAX HostControl2Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Contains the RMON-2 augmentations to RMON-1."
AUGMENTS { hostControlEntry }
::= { hostControl2Table 1 }
HostControl2Entry ::= SEQUENCE {
hostControlDroppedFrames Counter32,
hostControlCreateTime LastCreateTime
}
hostControlDroppedFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of frames which were received by the probe
and therefore not accounted for in the *StatsDropEvents, but
for which the probe chose not to count for this entry for
whatever reason. Most often, this event occurs when the probe
is out of some resources and decides to shed load from this
collection.
This count does not include packets that were not counted
because they had MAC-layer errors.
Note that, unlike the dropEvents counter, this number is the
exact number of frames dropped."
Waldbusser Standards Track [Page 107]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
::= { hostControl2Entry 1 }
hostControlCreateTime OBJECT-TYPE
SYNTAX LastCreateTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime when this control entry was last
activated. This can be used by the management station to
ensure that the table has not been deleted and recreated
between polls."
::= { hostControl2Entry 2 }
matrixControl2Table OBJECT-TYPE
SYNTAX SEQUENCE OF MatrixControl2Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Contains the RMON-2 augmentations to RMON-1."
::= { matrix 4 }
matrixControl2Entry OBJECT-TYPE
SYNTAX MatrixControl2Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Contains the RMON-2 augmentations to RMON-1."
AUGMENTS { matrixControlEntry }
::= { matrixControl2Table 1 }
MatrixControl2Entry ::= SEQUENCE {
matrixControlDroppedFrames Counter32,
matrixControlCreateTime LastCreateTime
}
matrixControlDroppedFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of frames which were received by the probe
and therefore not accounted for in the *StatsDropEvents, but
for which the probe chose not to count for this entry for
whatever reason. Most often, this event occurs when the probe
is out of some resources and decides to shed load from this
collection.
This count does not include packets that were not counted
Waldbusser Standards Track [Page 108]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
because they had MAC-layer errors.
Note that, unlike the dropEvents counter, this number is the
exact number of frames dropped."
::= { matrixControl2Entry 1 }
matrixControlCreateTime OBJECT-TYPE
SYNTAX LastCreateTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime when this control entry was last
activated. This can be used by the management station to
ensure that the table has not been deleted and recreated
between polls."
::= { matrixControl2Entry 2 }
channel2Table OBJECT-TYPE
SYNTAX SEQUENCE OF Channel2Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Contains the RMON-2 augmentations to RMON-1."
::= { filter 3 }
channel2Entry OBJECT-TYPE
SYNTAX Channel2Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Contains the RMON-2 augmentations to RMON-1."
AUGMENTS { channelEntry }
::= { channel2Table 1 }
Channel2Entry ::= SEQUENCE {
channelDroppedFrames Counter32,
channelCreateTime LastCreateTime
}
channelDroppedFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of frames which were received by the probe
and therefore not accounted for in the *StatsDropEvents, but
for which the probe chose not to count for this entry for
whatever reason. Most often, this event occurs when the probe
Waldbusser Standards Track [Page 109]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
is out of some resources and decides to shed load from this
collection.
This count does not include packets that were not counted
because they had MAC-layer errors.
Note that, unlike the dropEvents counter, this number is the
exact number of frames dropped."
::= { channel2Entry 1 }
channelCreateTime OBJECT-TYPE
SYNTAX LastCreateTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime when this control entry was last
activated. This can be used by the management station to
ensure that the table has not been deleted and recreated
between polls."
::= { channel2Entry 2 }
tokenRingMLStats2Table OBJECT-TYPE
SYNTAX SEQUENCE OF TokenRingMLStats2Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Contains the RMON-2 augmentations to RMON-1."
::= { statistics 5 }
tokenRingMLStats2Entry OBJECT-TYPE
SYNTAX TokenRingMLStats2Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Contains the RMON-2 augmentations to RMON-1."
AUGMENTS { tokenRingMLStatsEntry }
::= { tokenRingMLStats2Table 1 }
TokenRingMLStats2Entry ::= SEQUENCE {
tokenRingMLStatsDroppedFrames Counter32,
tokenRingMLStatsCreateTime LastCreateTime
}
tokenRingMLStatsDroppedFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
Waldbusser Standards Track [Page 110]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
"The total number of frames which were received by the probe
and therefore not accounted for in the *StatsDropEvents, but
for which the probe chose not to count for this entry for
whatever reason. Most often, this event occurs when the probe
is out of some resources and decides to shed load from this
collection.
This count does not include packets that were not counted
because they had MAC-layer errors.
Note that, unlike the dropEvents counter, this number is the
exact number of frames dropped."
::= { tokenRingMLStats2Entry 1 }
tokenRingMLStatsCreateTime OBJECT-TYPE
SYNTAX LastCreateTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime when this control entry was last activated.
This can be used by the management station to ensure that the
table has not been deleted and recreated between polls."
::= { tokenRingMLStats2Entry 2 }
tokenRingPStats2Table OBJECT-TYPE
SYNTAX SEQUENCE OF TokenRingPStats2Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Contains the RMON-2 augmentations to RMON-1."
::= { statistics 6 }
tokenRingPStats2Entry OBJECT-TYPE
SYNTAX TokenRingPStats2Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Contains the RMON-2 augmentations to RMON-1."
AUGMENTS { tokenRingPStatsEntry }
::= { tokenRingPStats2Table 1 }
TokenRingPStats2Entry ::= SEQUENCE {
tokenRingPStatsDroppedFrames Counter32,
tokenRingPStatsCreateTime LastCreateTime
}
tokenRingPStatsDroppedFrames OBJECT-TYPE
SYNTAX Counter32
Waldbusser Standards Track [Page 111]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of frames which were received by the probe
and therefore not accounted for in the *StatsDropEvents, but
for which the probe chose not to count for this entry for
whatever reason. Most often, this event occurs when the probe
is out of some resources and decides to shed load from this
collection.
This count does not include packets that were not counted
because they had MAC-layer errors.
Note that, unlike the dropEvents counter, this number is the
exact number of frames dropped."
::= { tokenRingPStats2Entry 1 }
tokenRingPStatsCreateTime OBJECT-TYPE
SYNTAX LastCreateTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime when this control entry was last activated.
This can be used by the management station to ensure that the
table has not been deleted and recreated between polls."
::= { tokenRingPStats2Entry 2 }
ringStationControl2Table OBJECT-TYPE
SYNTAX SEQUENCE OF RingStationControl2Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Contains the RMON-2 augmentations to RMON-1."
::= { tokenRing 7 }
ringStationControl2Entry OBJECT-TYPE
SYNTAX RingStationControl2Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Contains the RMON-2 augmentations to RMON-1."
AUGMENTS { ringStationControlEntry }
::= { ringStationControl2Table 1 }
RingStationControl2Entry ::= SEQUENCE {
ringStationControlDroppedFrames Counter32,
ringStationControlCreateTime LastCreateTime
}
Waldbusser Standards Track [Page 112]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
ringStationControlDroppedFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of frames which were received by the probe
and therefore not accounted for in the *StatsDropEvents, but
for which the probe chose not to count for this entry for
whatever reason. Most often, this event occurs when the probe
is out of some resources and decides to shed load from this
collection.
This count does not include packets that were not counted
because they had MAC-layer errors.
Note that, unlike the dropEvents counter, this number is the
exact number of frames dropped."
::= { ringStationControl2Entry 1 }
ringStationControlCreateTime OBJECT-TYPE
SYNTAX LastCreateTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime when this control entry was last activated.
This can be used by the management station to ensure that the
table has not been deleted and recreated between polls."
::= { ringStationControl2Entry 2 }
sourceRoutingStats2Table OBJECT-TYPE
SYNTAX SEQUENCE OF SourceRoutingStats2Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Contains the RMON-2 augmentations to RMON-1."
::= { tokenRing 8 }
sourceRoutingStats2Entry OBJECT-TYPE
SYNTAX SourceRoutingStats2Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Contains the RMON-2 augmentations to RMON-1."
AUGMENTS { sourceRoutingStatsEntry }
::= { sourceRoutingStats2Table 1 }
SourceRoutingStats2Entry ::= SEQUENCE {
sourceRoutingStatsDroppedFrames Counter32,
Waldbusser Standards Track [Page 113]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
sourceRoutingStatsCreateTime LastCreateTime
}
sourceRoutingStatsDroppedFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of frames which were received by the probe
and therefore not accounted for in the *StatsDropEvents, but
for which the probe chose not to count for this entry for
whatever reason. Most often, this event occurs when the probe
is out of some resources and decides to shed load from this
collection.
This count does not include packets that were not counted
because they had MAC-layer errors.
Note that, unlike the dropEvents counter, this number is the
exact number of frames dropped."
::= { sourceRoutingStats2Entry 1 }
sourceRoutingStatsCreateTime OBJECT-TYPE
SYNTAX LastCreateTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime when this control entry was last activated.
This can be used by the management station to ensure that the
table has not been deleted and recreated between polls."
::= { sourceRoutingStats2Entry 2 }
filter2Table OBJECT-TYPE
SYNTAX SEQUENCE OF Filter2Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Provides a variable-length packet filter feature to the
RMON-1 filter table."
::= { filter 4 }
filter2Entry OBJECT-TYPE
SYNTAX Filter2Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Provides a variable-length packet filter feature to the
RMON-1 filter table."
Waldbusser Standards Track [Page 114]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
AUGMENTS { filterEntry }
::= { filter2Table 1 }
Filter2Entry ::= SEQUENCE {
filterProtocolDirDataLocalIndex Integer32,
filterProtocolDirLocalIndex Integer32
}
filterProtocolDirDataLocalIndex OBJECT-TYPE
SYNTAX Integer32 (0..2147483647)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"When this object is set to a non-zero value, the filter that
it is associated with performs the following operations on
every packet:
1) - If the packet doesn't match the protocol directory entry
identified by this object, discard the packet and exit
(i.e., discard the packet if it is not of the identified
protocol).
2) - If the associated filterProtocolDirLocalIndex is non-zero
and the packet doesn't match the protocol directory
entry identified by that object, discard the packet and
exit
3) - If the packet matches, perform the regular filter
algorithm as if the beginning of this named protocol is
the beginning of the packet, potentially applying the
filterOffset value to move further into the packet."
DEFVAL { 0 }
::= { filter2Entry 1 }
filterProtocolDirLocalIndex OBJECT-TYPE
SYNTAX Integer32 (0..2147483647)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"When this object is set to a non-zero value, the filter that
it is associated with will discard the packet if the packet
doesn't match this protocol directory entry."
DEFVAL { 0 }
::= { filter2Entry 2 }
-- Conformance Macros
rmon2MIBCompliances OBJECT IDENTIFIER ::= { rmonConformance 1 }
rmon2MIBGroups OBJECT IDENTIFIER ::= { rmonConformance 2 }
Waldbusser Standards Track [Page 115]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
rmon2MIBCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"Describes the requirements for conformance to
the RMON2 MIB"
MODULE -- this module
MANDATORY-GROUPS { protocolDirectoryGroup,
protocolDistributionGroup,
addressMapGroup,
nlHostGroup,
nlMatrixGroup,
usrHistoryGroup,
probeInformationGroup }
GROUP rmon1EnhancementGroup
DESCRIPTION
"The rmon1EnhancementGroup is mandatory for systems which
implement RMON [RFC1757]"
::= { rmon2MIBCompliances 1 }
rmon2MIBApplicationLayerCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"Describes the requirements for conformance to
the RMON2 MIB with Application Layer Enhancements."
MODULE -- this module
MANDATORY-GROUPS { protocolDirectoryGroup,
protocolDistributionGroup,
addressMapGroup,
nlHostGroup,
nlMatrixGroup,
alHostGroup,
alMatrixGroup,
usrHistoryGroup,
probeInformationGroup }
GROUP rmon1EnhancementGroup
DESCRIPTION
"The rmon1EnhancementGroup is mandatory for systems which
implement RMON [RFC1757]"
::= { rmon2MIBCompliances 2 }
protocolDirectoryGroup OBJECT-GROUP
OBJECTS { protocolDirLastChange,
protocolDirLocalIndex, protocolDirDescr,
protocolDirType, protocolDirAddressMapConfig,
protocolDirHostConfig, protocolDirMatrixConfig,
Waldbusser Standards Track [Page 116]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
protocolDirOwner, protocolDirStatus }
STATUS current
DESCRIPTION
"Lists the inventory of protocols the probe has the capability
of monitoring and allows the addition, deletion, and
configuration of entries in this list."
::= { rmon2MIBGroups 1 }
protocolDistributionGroup OBJECT-GROUP
OBJECTS { protocolDistControlDataSource,
protocolDistControlDroppedFrames,
protocolDistControlCreateTime,
protocolDistControlOwner, protocolDistControlStatus,
protocolDistStatsPkts, protocolDistStatsOctets }
STATUS current
DESCRIPTION
"Collects the relative amounts of octets and packets for the
different protocols detected on a network segment."
::= { rmon2MIBGroups 2 }
addressMapGroup OBJECT-GROUP
OBJECTS { addressMapInserts, addressMapDeletes,
addressMapMaxDesiredEntries,
addressMapControlDataSource,
addressMapControlDroppedFrames,
addressMapControlOwner, addressMapControlStatus,
addressMapPhysicalAddress,
addressMapLastChange }
STATUS current
DESCRIPTION
"Lists MAC address to network address bindings discovered by
the probe and what interface they were last seen on."
::= { rmon2MIBGroups 3 }
nlHostGroup OBJECT-GROUP
OBJECTS { hlHostControlDataSource,
hlHostControlNlDroppedFrames, hlHostControlNlInserts,
hlHostControlNlDeletes,
hlHostControlNlMaxDesiredEntries,
hlHostControlAlDroppedFrames, hlHostControlAlInserts,
hlHostControlAlDeletes,
hlHostControlAlMaxDesiredEntries, hlHostControlOwner,
hlHostControlStatus, nlHostInPkts, nlHostOutPkts,
nlHostInOctets, nlHostOutOctets,
nlHostOutMacNonUnicastPkts, nlHostCreateTime }
STATUS current
DESCRIPTION
"Counts the amount of traffic sent from and to each network
Waldbusser Standards Track [Page 117]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
address discovered by the probe. Note that while the
hlHostControlTable also has objects that control an optional
alHostTable, implementation of the alHostTable is not required
to fully implement this group."
::= { rmon2MIBGroups 4 }
nlMatrixGroup OBJECT-GROUP
OBJECTS { hlMatrixControlDataSource,
hlMatrixControlNlDroppedFrames,
hlMatrixControlNlInserts, hlMatrixControlNlDeletes,
hlMatrixControlNlMaxDesiredEntries,
hlMatrixControlAlDroppedFrames,
hlMatrixControlAlInserts, hlMatrixControlAlDeletes,
hlMatrixControlAlMaxDesiredEntries,
hlMatrixControlOwner, hlMatrixControlStatus,
nlMatrixSDPkts, nlMatrixSDOctets, nlMatrixSDCreateTime,
nlMatrixDSPkts, nlMatrixDSOctets, nlMatrixDSCreateTime,
nlMatrixTopNControlMatrixIndex,
nlMatrixTopNControlRateBase,
nlMatrixTopNControlTimeRemaining,
nlMatrixTopNControlGeneratedReports,
nlMatrixTopNControlDuration,
nlMatrixTopNControlRequestedSize,
nlMatrixTopNControlGrantedSize,
nlMatrixTopNControlStartTime,
nlMatrixTopNControlOwner, nlMatrixTopNControlStatus,
nlMatrixTopNProtocolDirLocalIndex,
nlMatrixTopNSourceAddress, nlMatrixTopNDestAddress,
nlMatrixTopNPktRate, nlMatrixTopNReversePktRate,
nlMatrixTopNOctetRate, nlMatrixTopNReverseOctetRate }
STATUS current
DESCRIPTION
"Counts the amount of traffic sent between each pair of
network addresses discovered by the probe. Note that while the
hlMatrixControlTable also has objects that control optional
alMatrixTables, implementation of the alMatrixTables is not
required to fully implement this group."
::= { rmon2MIBGroups 5 }
alHostGroup OBJECT-GROUP
OBJECTS { alHostInPkts, alHostOutPkts,
alHostInOctets, alHostOutOctets, alHostCreateTime }
STATUS current
DESCRIPTION
"Counts the amount of traffic, by protocol, sent from and to
each network address discovered by the probe. Implementation
of this group requires implementation of the Network Layer
Host Group."
Waldbusser Standards Track [Page 118]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
::= { rmon2MIBGroups 6 }
alMatrixGroup OBJECT-GROUP
OBJECTS { alMatrixSDPkts, alMatrixSDOctets, alMatrixSDCreateTime,
alMatrixDSPkts, alMatrixDSOctets, alMatrixDSCreateTime,
alMatrixTopNControlMatrixIndex,
alMatrixTopNControlRateBase,
alMatrixTopNControlTimeRemaining,
alMatrixTopNControlGeneratedReports,
alMatrixTopNControlDuration,
alMatrixTopNControlRequestedSize,
alMatrixTopNControlGrantedSize,
alMatrixTopNControlStartTime,
alMatrixTopNControlOwner, alMatrixTopNControlStatus,
alMatrixTopNProtocolDirLocalIndex,
alMatrixTopNSourceAddress, alMatrixTopNDestAddress,
alMatrixTopNAppProtocolDirLocalIndex,
alMatrixTopNPktRate, alMatrixTopNReversePktRate,
alMatrixTopNOctetRate, alMatrixTopNReverseOctetRate }
STATUS current
DESCRIPTION
"Counts the amount of traffic, by protocol, sent between each
pair of network addresses discovered by the
probe. Implementation of this group requires implementation of
the Network Layer Matrix Group."
::= { rmon2MIBGroups 7 }
usrHistoryGroup OBJECT-GROUP
OBJECTS { usrHistoryControlObjects,
usrHistoryControlBucketsRequested,
usrHistoryControlBucketsGranted,
usrHistoryControlInterval,
usrHistoryControlOwner, usrHistoryControlStatus,
usrHistoryObjectVariable, usrHistoryObjectSampleType,
usrHistoryIntervalStart, usrHistoryIntervalEnd,
usrHistoryAbsValue, usrHistoryValStatus }
STATUS current
DESCRIPTION
"The usrHistoryGroup provides user-defined collection of
historical information from MIB objects on the probe."
::= { rmon2MIBGroups 8 }
probeInformationGroup OBJECT-GROUP
OBJECTS { probeCapabilities,
probeSoftwareRev, probeHardwareRev, probeDateTime }
STATUS current
DESCRIPTION
"This group describes various operating parameters of the
Waldbusser Standards Track [Page 119]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
probe as well as controlling the local time of the probe."
::= { rmon2MIBGroups 9 }
probeConfigurationGroup OBJECT-GROUP
OBJECTS { probeResetControl, probeDownloadFile,
probeDownloadTFTPServer, probeDownloadAction,
probeDownloadStatus,
serialMode, serialProtocol, serialTimeout,
serialModemInitString, serialModemHangUpString,
serialModemConnectResp, serialModemNoConnectResp,
serialDialoutTimeout, serialStatus,
netConfigIPAddress, netConfigSubnetMask,
netConfigStatus, netDefaultGateway,
trapDestCommunity, trapDestProtocol, trapDestAddress,
trapDestOwner, trapDestStatus,
serialConnectDestIpAddress, serialConnectType,
serialConnectDialString, serialConnectSwitchConnectSeq,
serialConnectSwitchDisconnectSeq,
serialConnectSwitchResetSeq,
serialConnectOwner, serialConnectStatus }
STATUS current
DESCRIPTION
"This group controls the configuration of various operating
parameters of the probe."
::= { rmon2MIBGroups 10 }
rmon1EnhancementGroup OBJECT-GROUP
OBJECTS { historyControlDroppedFrames, hostControlDroppedFrames,
hostControlCreateTime, matrixControlDroppedFrames,
matrixControlCreateTime, channelDroppedFrames,
channelCreateTime, filterProtocolDirDataLocalIndex,
filterProtocolDirLocalIndex }
STATUS current
DESCRIPTION
"This group adds some enhancements to RMON-1 that help
management stations."
::= { rmon2MIBGroups 11 }
rmon1EthernetEnhancementGroup OBJECT-GROUP
OBJECTS { etherStatsDroppedFrames, etherStatsCreateTime }
STATUS current
DESCRIPTION
"This group adds some enhancements to RMON-1 that help
management stations."
::= { rmon2MIBGroups 12 }
rmon1TokenRingEnhancementGroup OBJECT-GROUP
OBJECTS { tokenRingMLStatsDroppedFrames,
Waldbusser Standards Track [Page 120]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
tokenRingMLStatsCreateTime,
tokenRingPStatsDroppedFrames, tokenRingPStatsCreateTime,
ringStationControlDroppedFrames,
ringStationControlCreateTime,
sourceRoutingStatsDroppedFrames,
sourceRoutingStatsCreateTime }
STATUS current
DESCRIPTION
"This group adds some enhancements to RMON-1 that help
management stations."
::= { rmon2MIBGroups 13 }
END
Waldbusser Standards Track [Page 121]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
7. Security Considerations
In order to implement this MIB, a probe must capture all packets on
the locally-attached network, including packets between third
parties. These packets are analyzed to collect network addresses,
protocol usage information, and conversation statistics. Data of this
nature may be considered sensitive in some environments. In such
environments the administrator may wish to restrict SNMP access to
the probe.
A probe implementing this MIB is likely to also implement RMON
[RFC1757], which includes functions for returning the contents of
captured packets, potentially including sensitive user data or
passwords. It is recommended that SNMP access to these functions be
restricted.
Waldbusser Standards Track [Page 122]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
8. Appendix - TimeFilter Implementation Notes
1) Theory of Operation
The TimeFilter mechanism allows an NMS to reduce the number of SNMP
transactions required for a 'table-update' operation. Polling of
tables that incorporate a 'TimeFilter' INDEX can be reduced to a
theoretical minimum (if used correctly). It can be easily implemented
by an agent in a way independent of the number of NMS applications
using the same time-filtered table.
Although the name 'TimeFilter' may imply that a history of change
events is maintained by the agent, this is not the case. A time-
filtered-value represents the current value of the object instance,
not the 'saved' value at the time indicated by the TimeFilter INDEX
value. Note that TimeFilter objects only appear in INDEX clauses
(always not-accessible), so their value is never retrieved. By
design, the actual value of a TimeFilter instance is not in itself
meaningful (it's not a 'last-change-timestamp').
The TimeFilter is a boolean filtering function applied in internal
Get* PDU processing. If the 'last-change-time' of the specified
instance is less than the particular TimeFilter INDEX value, then the
instance is considered 'not-present' (skipped for GetNext and GetBulk
PDUs; 'noSuchInstance' or returned to the requester.
1.1) Agent Implementation of a Time-Filtered Table
In implementation, the time-filtered rows (one for each tick of
sysUpTime) are only conceptual. The agent simply filters a real table
based on:
* the current value of sysUpTime
* the TimeFilter value passed in the varbind
* the last-update timestamp of each requested counter
(agent implementation requirement)
For example, to implement a time-filtered counter, an agent maintains
a timestamp in a 32-bit storage location, initialized to zero. This
is in addition to whatever instrumentation is needed for the counter.
Each time the counter is updated, the current value of sysUpTime is
recorded in the associated timestamp. If this is not possible or
practical, then a background polling process must 'refresh' the
timestamp by sampling counter values and comparing them to recorded
samples. The timestamp update must occur within 5 seconds of the
actual change event.
Waldbusser Standards Track [Page 123]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
When an agent receives a Get, GetNext, or GetBulk PDU requesting a
time-filtered instance, the following agent has determined that the
instance is within the MIB view indicated by the community string in
the PDU.
/* return TRUE if the object is present */
boolean time_filter_test (
TimeFilter last_modified_timestamp,
TimeFilter index_value_in_pdu )
{
if (last_modified_timestamp < index_value_in_pdu)
return FALSE;
else
return TRUE;
}
The agent applies this function regardless of the lastActivationTime
of the conceptual row in question. In other words, counter
discontinuities are ignored (i.e. conceptual row deleted and then
re-created later). An agent should consider a object instance
'changed' when it is created (either at restart time for scalars and
static objects, or row-creation-time for dynamic tables).
Note that using a timeFilter INDEX value of zero removes the
filtering functionality, as the instance will always be
1.2) NMS Implementation of a Time-Filtered Table
The particular TimeFilter INDEX values used by an NMS reflect the
polling interval of the NMS, relative to the particular agent's
notion of sysUpTime.
An NMS needs to maintain one timestamp variable per agent
(initialized to zero) for an arbitrary group of time-filtered MIB
objects that are gathered together in the same PDU. Each time the
Get* PDU is sent, a request for sysUpTime is included. The retrieved
sysUpTime value is used as the timeFilter value in the next polling
cycle. If a polling sweep of a time-filtered group of objects
requires more than one SNMP transaction, then the sysUpTime value
retrieved in the first GetResponse PDU of the polling sweep is saved
as the next timeFilter value.
The actual last-update time of a given object is not indicated in the
returned GetResponse instance identifier, but rather the timeFilter
value passed in the Get*Request PDU is returned.
Waldbusser Standards Track [Page 124]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
A "time-filtered get-next/bulk-sweep", done once per polling
cycle, is a series of GetNext or GetBulk transactions, and is
over when one of the following events occurs:
1) the TimeFilter index value returned in the GetResponse is
different than the TimeFilter index value passed in the
GetNext or GetBulk request. Counter values will still be
returned beyond this point (until the last-change-time is
reached), but most likely the same values will be
returned.
2) the return PDU includes instances lexigraphically greater
than the objects expected (i.e. same GetNext semantics as
if the TimeFilter wasn't there)
3) a noSuchName or other exception/error is returned.
Note that the use of a time-filtered table in combination with a
GetRequest PDU neutralizes any optimization that otherwise might be
achieved with the TimeFilter, because no PDU transactions are saved.
Either the current time-filtered object-value is returned, or a
'noSuchInstance' exception (SNMPv1c) or 'noSuchName' error (SNMPv1)
is returned.
If GetBulk PDUs are used, then the value selected for response PDUs
generated by the agent, since duplicate entries (one per size. An
appropriate of conceptual rows in the time-filtered table if known, or
equal to the number of instances expected to fit in a GetResponse PDU
without causing a 'tooBig' error from the agent.
2) TimeFilter Example
The following example demonstrates how an NMS and Agent might use a
table with a TimeFilter object in the INDEX. A static table is
assumed to keep the example simple, but dynamic tables can also be
supported.
2.1) General Assumptions
fooEntry INDEX { fooTimeMark, fooIfIndex }
FooEntry = SEQUENCE {
fooTimeMark TimeFilter,
fooIfIndex Integer32,
fooCounts Counter32
}
The NMS polls the fooTable every 15 seconds and the
baseline
poll occurs when the agent has been up for 6 seconds,
and the NMS has been up for 10 seconds.
Waldbusser Standards Track [Page 125]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
There are 2 static rows in this table at system
initialization
(fooCounts.0.1 and fooCounts.0.2).
Row 1 was updated as follows:
SysUpTime fooCounts.*.1 value 500
1 900 2
2300 3
Row 2 was updated as follows:
SysUpTime fooCounts.*.2 value
1100 1
1400 2
2.2) SNMP Transactions from NMS Perspective
Time nms-1000:
# NMS baseline poll -- get everything since last agent
restart
# TimeFilter == 0
get-bulk(nonRptrs=1, maxReps=2, sysUpTime.0,
fooCounts.0);
returns:
sysUpTime.0 == 600
fooCounts.0.1 == 1 # incremented at time 500
fooCounts.0.2 == 0 # visible since created at time 0
Time nms-2500:
# NMS 1st poll
# TimeFilter index == 600
get-bulk(nonRptrs=1, maxReps=2, sysUpTime.0,
fooCounts.600);
returns:
sysUpTime.0 == 2100
fooCounts.600.1 == 2 # incremented at time 900
fooCounts.600.2 == 2 # incremented at times 1100 and
1400
fooCounts.601.1 == 2 # indicates end of sweep
Waldbusser Standards Track [Page 126]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
Time nms-4000:
# NMS 2nd poll
# TimeFilter == 2100
get-bulk(nonRptrs=1, maxReps=2, sysUpTime.0,
fooCounts.2100);
returns:
sysUpTime.0 == 3600
fooCounts.2100.1 == 3 # incremented at time 2300
fooCounts.2102.1 == 3 # indicates end-of-sweep
# the counter value for row 2 is not returned because
# it hasn't changed since sysUpTime == 2100.
# The next timetick value for row 1 is returned instead
Time nms-5500:
# NMS 3rd poll
# TimeFilter == 3600
get-bulk(nonRptrs=1, maxReps=2, sysUpTime.0,
fooCounts.3600);
returns:
sysUpTime.0 == 5100
some-instance-outside-the-fooTable == <don't care>
some-instance-outside-the-fooTable == <don't care>
# no 'fooTable' counter values at all are returned
because
# neither counter has been updated since sysUpTime ==
3600
2.3) Transactions and TimeFilter Maintenance: Agent
Perspective
Time agt-0:
# initialize fooTable
fooCounts.1 = 0; changed.1 = 0;
fooCounts.2 = 0; changed.2 = 0;
Time agt-500:
# increment fooCounts.1
++fooCounts.1; changed.1 = 500;
Waldbusser Standards Track [Page 127]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
Time agt-600
# answer get-bulk
# get-bulk(nonRptrs=1, maxReps=2, sysUpTime.0,
# fooCounts.0);
# (changed >= 0)
# return both counters
Time agt-900:
# increment fooCounts.1
++fooCounts.1; changed.1 = 900;
Time agt-1100:
# increment fooCounts.2
++fooCounts.2; changed.2 = 1100;
Time agt-1400:
# increment fooCounts.2
++fooCounts.2; changed.2 = 1400;
Time agt-2100
# answer get-bulk
# get-bulk(nonRptrs=1, maxReps=2, sysUpTime.0,
# fooCounts.600);
# (changed >= 600)
# return both counters
Time agt-2300:
# increment fooCounts.1
++fooCounts.1; changed.1 = 2300;
Time agt-3600:
# answer get-bulk
# get-bulk(nonRptrs=1, maxReps=2, sysUpTime.0,
# fooCounts.2100);
# (changed >= 2100)
# return only fooCounts.1 from the fooTable--twice
Time agt-5100:
# answer get-bulk
# get-bulk(nonRptrs=1, maxReps=2, sysUpTime.0,
# fooCounts.3600);
# (changed >= 3600)
# return lexigraphically-next two MIB instances
Waldbusser Standards Track [Page 128]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
9. Acknowledgments
This document was produced by the IETF Remote Network Monitoring
Working Group.
10. References
[1] SNMPv2 Working Group, J. Case, K. McCloghrie, M. Rose, S.
Waldbusser, "Structure and Identification of Management
Information for Version 2 of the Simple Network
Management Protocol (SNMPv2)" RFC 1902, January 1996.
[2] SNMPv2 Working Group, J. Case, K. McCloghrie, M. Rose, S.
Waldbusser, "Textual Conventions for Version 2 of the
Simple Network Management Protocol (SNMPv2)", RFC 1903
January 1996.
[3] McCloghrie, K., and M. Rose, "Management Information Base
for Network Management of TCP/IP-based internets: MIB-II",
STD 17, RFC 1213, March 1991.
[4] SNMPv2 Working Group, J. Case, K. McCloghrie, M. Rose, S.
Waldbusser, "Protocol Operations for version 2 of the
Simple Network Management Protocol (SNMPv2)",
RFC 1905, January 1996.
[5] McCloghrie, K., and F. Kastenholz, "Evolution of the
Interfaces Group of MIB-II", RFC 1573, January 1994.
[6] Information processing systems -- Open Systems
Interconnection -- Specification of Abstract Syntax
Notation One (ASN.1), International Organization for
Standardization. International Standard 8824, (December,
1987).
[7] Information processing systems -- Open Systems
Interconnection -- Specification of Basic Encoding Rules
for Abstract Notation One (ASN.1), International
Organization for Standardization. International Standard
8825, (December, 1987).
[8] Rose, M., Editor, "A Convention for Defining Traps for
use with the SNMP", RFC 1215, March 1991.
[9] Waldbusser, S., "Remote Network Monitoring Management
Information Base", RFC 1757, February 1995.
Waldbusser Standards Track [Page 129]
^L
RFC 2021 Remote Network Monitoring MIB January 1997
[10] Waldbusser, S., "Token Ring Extensions to the Remote Network
Monitoring MIB", RFC 1513, September 1993.
11. Author's Address
Steven Waldbusser
International Network Services
Phone: (415) 254-4251
EMail: waldbusser@ins.com
Waldbusser Standards Track [Page 130]
^L
|