1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
|
Network Working Group D. McDonald
Request for Comments: 2367 C. Metz
Category: Informational B. Phan
July 1998
PF_KEY Key Management API, Version 2
Status of this Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (1998). All Rights Reserved.
Abstract
A generic key management API that can be used not only for IP
Security [Atk95a] [Atk95b] [Atk95c] but also for other network
security services is presented in this document. Version 1 of this
API was implemented inside 4.4-Lite BSD as part of the U. S. Naval
Research Laboratory's freely distributable and usable IPv6 and IPsec
implementation[AMPMC96]. It is documented here for the benefit of
others who might also adopt and use the API, thus providing increased
portability of key management applications (e.g. a manual keying
application, an ISAKMP daemon, a GKMP daemon [HM97a][HM97b], a
Photuris daemon, or a SKIP certificate discovery protocol daemon).
Table of Contents
1 Introduction ............................................. 3
1.1 Terminology .............................................. 3
1.2 Conceptual Model ......................................... 4
1.3 PF_KEY Socket Definition ................................. 8
1.4 Overview of PF_KEY Messaging Behavior .................... 8
1.5 Common PF_KEY Operations ................................. 9
1.6 Differences Between PF_KEY and PF_ROUTE .................. 10
1.7 Name Space ............................................... 11
1.8 On Manual Keying ..........................................11
2 PF_KEY Message Format .................................... 11
2.1 Base Message Header Format ............................... 12
2.2 Alignment of Headers and Extension Headers ............... 14
2.3 Additional Message Fields ................................ 14
2.3.1 Association Extension .................................... 15
2.3.2 Lifetime Extension ....................................... 16
McDonald, et. al. Informational [Page 1]
^L
RFC 2367 PF_KEY Key Management API July 1998
2.3.3 Address Extension ........................................ 18
2.3.4 Key Extension ............................................ 19
2.3.5 Identity Extension ....................................... 21
2.3.6 Sensitivity Extension .................................... 21
2.3.7 Proposal Extension ....................................... 22
2.3.8 Supported Algorithms Extension ........................... 25
2.3.9 SPI Range Extension ...................................... 26
2.4 Illustration of Message Layout ........................... 27
3 Symbolic Names ........................................... 30
3.1 Message Types ............................................ 31
3.1.1 SADB_GETSPI .............................................. 32
3.1.2 SADB_UPDATE .............................................. 33
3.1.3 SADB_ADD ................................................. 34
3.1.4 SADB_DELETE .............................................. 35
3.1.5 SADB_GET ................................................. 36
3.1.6 SADB_ACQUIRE ............................................. 36
3.1.7 SADB_REGISTER ............................................ 38
3.1.8 SADB_EXPIRE .............................................. 39
3.1.9 SADB_FLUSH ............................................... 40
3.1.10 SADB_DUMP ................................................ 40
3.2 Security Association Flags ............................... 41
3.3 Security Association States .............................. 41
3.4 Security Association Types ............................... 41
3.5 Algorithm Types .......................................... 42
3.6 Extension Header Values .................................. 43
3.7 Identity Extension Values ................................ 44
3.8 Sensitivity Extension Values ............................. 45
3.9 Proposal Extension Values ................................ 45
4 Future Directions ........................................ 45
5 Examples ................................................. 45
5.1 Simple IP Security Example ............................... 46
5.2 Proxy IP Security Example ................................ 47
5.3 OSPF Security Example .................................... 50
5.4 Miscellaneous ............................................ 50
6 Security Considerations .................................. 51
Acknowledgments ............,............................. 52
References ............................................... 52
Disclaimer ............................................... 54
Authors' Addresses ....................................... 54
A Promiscuous Send/Receive Extension ....................... 55
B Passive Change Message Extension ......................... 57
C Key Management Private Data Extension .................... 58
D Sample Header File ....................................... 59
E Change Log ............................................... 64
F Full Copyright Statement ................................. 68
McDonald, et. al. Informational [Page 2]
^L
RFC 2367 PF_KEY Key Management API July 1998
1 Introduction
PF_KEY is a new socket protocol family used by trusted privileged key
management applications to communicate with an operating system's key
management internals (referred to here as the "Key Engine" or the
Security Association Database (SADB)). The Key Engine and its
structures incorporate the required security attributes for a session
and are instances of the "Security Association" (SA) concept
described in [Atk95a]. The names PF_KEY and Key Engine thus refer to
more than cryptographic keys and are retained for consistency with
the traditional phrase, "Key Management".
PF_KEY is derived in part from the BSD routing socket, PF_ROUTE.
[Skl91] This document describes Version 2 of PF_KEY. Version 1 was
implemented in the first five alpha test versions of the NRL
IPv6+IPsec Software Distribution for 4.4-Lite BSD UNIX and the Cisco
ISAKMP/Oakley key management daemon. Version 2 extends and refines
this interface. Theoretically, the messages defined in this document
could be used in a non-socket context (e.g. between two directly
communicating user-level processes), but this document will not
discuss in detail such possibilities.
Security policy is deliberately omitted from this interface. PF_KEY
is not a mechanism for tuning systemwide security policy, nor is it
intended to enforce any sort of key management policy. The developers
of PF_KEY believe that it is important to separate security
mechanisms (such as PF_KEY) from security policies. This permits a
single mechanism to more easily support multiple policies.
1.1 Terminology
Even though this document is not intended to be an actual Internet
standard, the words that are used to define the significance of
particular features of this interface are usually capitalized. Some
of these words, including MUST, MAY, and SHOULD, are detailed in
[Bra97].
- CONFORMANCE and COMPLIANCE
Conformance to this specification has the same meaning as compliance
to this specification. In either case, the mandatory-to-implement,
or MUST, items MUST be fully implemented as specified here. If any
mandatory item is not implemented as specified here, that
implementation is not conforming and not compliant with this
specification.
McDonald, et. al. Informational [Page 3]
^L
RFC 2367 PF_KEY Key Management API July 1998
This specification also uses many terms that are commonly used in the
context of network security. Other documents provide more
definitions and background information on these [VK83, HA94, Atk95a].
Two terms deserve special mention:
- (Encryption/Authentication) Algorithm
For PF_KEY purposes, an algorithm, whether encryption or
authentication, is the set of operations performed on a packet to
complete authentication or encryption as indicated by the SA type. A
PF_KEY algorithm MAY consist of more than one cryptographic
algorithm. Another possibility is that the same basic cryptographic
algorithm may be applied with different modes of operation or some
other implementation difference. These differences, henceforth called
_algorithm differentiators_, distinguish between different PF_KEY
algorithms, and options to the same algorithm. Algorithm
differentiators will often cause fundamentally different security
properties.
For example, both DES and 3DES use the same cryptographic algorithm,
but they are used differently and have different security properties.
The triple-application of DES is considered an algorithm
differentiator. There are therefore separate PF_KEY algorithms for
DES and 3DES. Keyed-MD5 and HMAC-MD5 use the same hash function, but
construct their message authentication codes differently. The use of
HMAC is an algorithm differentiator. DES-ECB and DES-CBC are the
same cryptographic algorithm, but use a different mode. Mode (e.g.,
chaining vs. code-book) is an algorithm differentiator. Blowfish with
a 128-bit key, however, is similar to Blowfish with a 384-bit key,
because the algorithm's workings are otherwise the same and therefore
the key length is not an algorithm differentiator.
In terms of IP Security, a general rule of thumb is that whatever
might be labeled the "encryption" part of an ESP transform is
probably a PF_KEY encryption algorithm. Whatever might be labelled
the "authentication" part of an AH or ESP transform is probably a
PF_KEY authentication algorithm.
1.2 Conceptual Model
This section describes the conceptual model of an operating system
that implements the PF_KEY key management application programming
interface. This section is intended to provide background material
useful to understand the rest of this document. Presentation of this
conceptual model does not constrain a PF_KEY implementation to
strictly adhere to the conceptual components discussed in this
subsection.
McDonald, et. al. Informational [Page 4]
^L
RFC 2367 PF_KEY Key Management API July 1998
Key management is most commonly implemented in whole or in part at
the application layer. For example, the ISAKMP/Oakley, GKMP, and
Photuris proposals for IPsec key management are all application-layer
protocols. Manual keying is also done at the application layer.
Even parts of the SKIP IP-layer keying proposal can be implemented at
the application layer. Figure 1 shows the relationship between a Key
Management daemon and PF_KEY. Key management daemons use PF_KEY to
communicate with the Key Engine and use PF_INET (or PF_INET6 in the
case of IPv6) to communicate, via the network, with a remote key
management entity.
The "Key Engine" or "Security Association Database (SADB)" is a
logical entity in the kernel that stores, updates, and deletes
Security Association data for various security protocols. There are
logical interfaces within the kernel (e.g. getassocbyspi(),
getassocbysocket()) that security protocols inside the kernel (e.g.
IP Security, aka IPsec) use to request and obtain Security
Associations.
In the case of IPsec, if by policy a particular outbound packet needs
processing, then the IPsec implementation requests an appropriate
Security Association from the Key Engine via the kernel-internal
interface. If the Key Engine has an appropriate SA, it allocates the
SA to this session (marking it as used) and returns the SA to the
IPsec implementation for use. If the Key Engine has no such SA but a
key management application has previously indicated (via a PF_KEY
SADB_REGISTER message) that it can obtain such SAs, then the Key
Engine requests that such an SA be created (via a PF_KEY SADB_ACQUIRE
message). When the key management daemon creates a new SA, it places
it into the Key Engine for future use.
McDonald, et. al. Informational [Page 5]
^L
RFC 2367 PF_KEY Key Management API July 1998
+---------------+
|Key Mgmt Daemon|
+---------------+
| |
| |
| | Applications
======[PF_KEY]====[PF_INET]==========================
| | OS Kernel
+------------+ +-----------------+
| Key Engine | | TCP/IP, |
| or SADB |---| including IPsec |
+------------+ | |
+-----------------+
|
+-----------+
| Network |
| Interface |
+-----------+
Figure 1: Relationship of Key Mgmt to PF_KEY
For performance reasons, some security protocols (e.g. IP Security)
are usually implemented inside the operating system kernel. Other
security protocols (e.g. OSPFv2 Cryptographic Authentication) are
implemented in trusted privileged applications outside the kernel.
Figure 2 shows a trusted, privileged routing daemon using PF_INET to
communicate routing information with a remote routing daemon and
using PF_KEY to request, obtain, and delete Security Associations
used with a routing protocol.
McDonald, et. al. Informational [Page 6]
^L
RFC 2367 PF_KEY Key Management API July 1998
+---------------+
|Routing Daemon|
+---------------+
| |
| |
| | Applications
======[PF_KEY]====[PF_INET]==========================
| | OS Kernel
+------------+ +---------+
| Key Engine | | TCP/IP |
| or SADB |---| |
+------------+ +---------+
|
+-----------+
| Network |
| Interface |
+-----------+
Figure 2: Relationship of Trusted Application to PF_KEY
When a trusted privileged application is using the Key Engine but
implements the security protocol within itself, then operation varies
slightly. In this case, the application needing an SA sends a PF_KEY
SADB_ACQUIRE message down to the Key Engine, which then either
returns an error or sends a similar SADB_ACQUIRE message up to one or
more key management applications capable of creating such SAs. As
before, the key management daemon stores the SA into the Key Engine.
Then, the trusted privileged application uses an SADB_GET message to
obtain the SA from the Key Engine.
In some implementations, policy may be implemented in user-space,
even though the actual cryptographic processing takes place in the
kernel. Such policy communication between the kernel mechanisms and
the user-space policy MAY be implemented by PF_KEY extensions, or
other such mechanism. This document does not specify such
extensions. A PF_KEY implementation specified by the memo does NOT
have to support configuring systemwide policy using PF_KEY.
Untrusted clients, for example a user's web browser or telnet client,
do not need to use PF_KEY. Mechanisms not specified here are used by
such untrusted client applications to request security services (e.g.
IPsec) from an operating system. For security reasons, only trusted,
privileged applications are permitted to open a PF_KEY socket.
McDonald, et. al. Informational [Page 7]
^L
RFC 2367 PF_KEY Key Management API July 1998
1.3 PF_KEY Socket Definition
The PF_KEY protocol family (PF_KEY) symbol is defined in
<sys/socket.h> in the same manner that other protocol families are
defined. PF_KEY does not use any socket addresses. Applications
using PF_KEY MUST NOT depend on the availability of a symbol named
AF_KEY, but kernel implementations are encouraged to define that
symbol for completeness.
The key management socket is created as follows:
#include <sys/types.h>
#include <sys/socket.h>
#include <net/pfkeyv2.h>
int s;
s = socket(PF_KEY, SOCK_RAW, PF_KEY_V2);
The PF_KEY domain currently supports only the SOCK_RAW socket type.
The protocol field MUST be set to PF_KEY_V2, or else EPROTONOSUPPORT
will be returned. Only a trusted, privileged process can create a
PF_KEY socket. On conventional UNIX systems, a privileged process is
a process with an effective userid of zero. On non-MLS proprietary
operating systems, the notion of a "privileged process" is
implementation-defined. On Compartmented Mode Workstations (CMWs) or
other systems that claim to provide Multi-Level Security (MLS), a
process MUST have the "key management privilege" in order to open a
PF_KEY socket[DIA]. MLS systems that don't currently have such a
specific privilege MUST add that special privilege and enforce it
with PF_KEY in order to comply and conform with this specification.
Some systems, most notably some popular personal computers, do not
have the concept of an unprivileged user. These systems SHOULD take
steps to restrict the programs allowed to access the PF_KEY API.
1.4 Overview of PF_KEY Messaging Behavior
A process interacts with the key engine by sending and receiving
messages using the PF_KEY socket. Security association information
can be inserted into and retrieved from the kernel's security
association table using a set of predefined messages. In the normal
case, all properly-formed messages sent to the kernel are returned to
all open PF_KEY sockets, including the sender. Improperly formed
messages will result in errors, and an implementation MUST check for
a properly formed message before returning it to the appropriate
listeners. Unlike the routing socket, most errors are sent in reply
messages, not the errno field when write() or send() fails. PF_KEY
message delivery is not guaranteed, especially in cases where kernel
or socket buffers are exhausted and messages are dropped.
McDonald, et. al. Informational [Page 8]
^L
RFC 2367 PF_KEY Key Management API July 1998
Some messages are generated by the operating system to indicate that
actions need to be taken, and are not necessarily in response to any
message sent down by the user. Such messages are not received by all
PF_KEY sockets, but by sockets which have indicated that kernel-
originated messages are to be received. These messages are special
because of the expected frequency at which they will occur. Also, an
implementation may further wish to restrict return messages from the
kernel, in cases where not all PF_KEY sockets are in the same trust
domain.
Many of the normal BSD socket calls have undefined behavior on PF_KEY
sockets. These include: bind(), connect(), socketpair(), accept(),
getpeername(), getsockname(), ioctl(), and listen().
1.5 Common PF_KEY Operations
There are two basic ways to add a new Security Association into the
kernel. The simplest is to send a single SADB_ADD message,
containing all of the SA information, from the application into the
kernel's Key Engine. This approach works particularly well with
manual key management, which is required for IPsec, and other
security protocols.
The second approach to add a new Security Association into the kernel
is for the application to first request a Security Parameters Index
(SPI) value from the kernel using the SADB_GETSPI message and then
send an SADB_UPDATE message with the complete Security Association
data. This second approach works well with key management daemons
when the SPI values need to be known before the entire Security
Association data is known (e.g. so the SPI value can be indicated to
the remote end of the key management session).
An individual Security Association can be deleted using the
SADB_DELETE message. Categories of SAs or the entire kernel SA table
can be deleted using the SADB_FLUSH message.
The SADB_GET message is used by a trusted application-layer process
(e.g. routed(8) or gated(8)) to retrieve an SA (e.g. RIP SA or OSPF
SA) from the kernel's Key Engine.
The kernel or an application-layer can use the SADB_ACQUIRE message
to request that a Security Association be created by some
application-layer key management process that has registered with the
kernel via an SADB_REGISTER message. This ACQUIRE message will have
a sequence number associated with it. This sequence number MUST be
used by followup SADB_GETSPI, SADB_UPDATE, and SADB_ADD messages, in
order to keep track of which request gets its keying material. The
sequence number (described below) is similar to a transaction ID in a
McDonald, et. al. Informational [Page 9]
^L
RFC 2367 PF_KEY Key Management API July 1998
remote procedure call.
The SADB_EXPIRE message is sent from the kernel to key management
applications when the "soft lifetime" or "hard lifetime" of a
Security Association has expired. Key management applications should
use receipt of a soft lifetime SADB_EXPIRE message as a hint to
negotiate a replacement SA so the replacement SA will be ready and in
the kernel before it is needed.
A SADB_DUMP message is also defined, but this is primarily intended
for PF_KEY implementor debugging and is not used in ordinary
operation of PF_KEY.
1.6 Differences Between PF_KEY and PF_ROUTE
The following bullets are points of difference between the routing
socket and PF_KEY. Programmers who are used to the routing socket
semantics will find some differences in PF_KEY.
* PF_KEY message errors are usually returned in PF_KEY messages
instead of causing write() operations to fail and returning the
error number in errno. This means that other listeners on a PF_KEY
socket can be aware that requests from another process failed,
which can be useful for auditing purposes. This also means that
applications that fail to read PF_KEY messages cannot do error
checking.
An implementation MAY return the errors EINVAL, ENOMEM, and ENOBUFS
by causing write() operations to fail and returning the error
number in errno. This is an optimization for common error cases in
which it does not make sense for any other process to receive the
error. An application MUST NOT depend on such errors being set by
the write() call, but it SHOULD check for such errors, and handle
them in an appropriate manner.
* The entire message isn't always reflected in the reply. A SADB_ADD
message is an example of this.
* The PID is not set by the kernel. The process that originates the
message MUST set the sadb_msg_pid to its own PID. If the kernel
ORIGINATES a message, it MUST set the sadb_msg_pid to 0. A reply
to an original message SHOULD have the pid of the original message.
(E.g. the kernel's response to an SADB_ADD SHOULD have its pid set
to the pid value of the original SADB_ADD message.)
McDonald, et. al. Informational [Page 10]
^L
RFC 2367 PF_KEY Key Management API July 1998
1.7 Name Space
All PF_KEYv2 preprocessor symbols and structure definitions are
defined as a result of including the header file <net/pfkeyv2.h>.
There is exactly one exception to this rule: the symbol "PF_KEY" (two
exceptions if "AF_KEY" is also counted), which is defined as a result
of including the header file <sys/socket.h>. All PF_KEYv2
preprocessor symbols start with the prefix "SADB_" and all structure
names start with "sadb_". There are exactly two exceptions to this
rule: the symbol "PF_KEY_V2" and the symbol "PFKEYV2_REVISION".
The symbol "PFKEYV2_REVISION" is a date-encoded value not unlike
certain values defined by POSIX and X/Open. The current value for
PFKEYV2_REVISION is 199806L, where 1998 is the year and 06 is the
month.
Inclusion of the file <net/pfkeyv2.h> MUST NOT define symbols or
structures in the PF_KEYv2 name space that are not described in this
document without the explicit prior permission of the authors. Any
symbols or structures in the PF_KEYv2 name space that are not
described in this document MUST start with "SADB_X_" or "sadb_x_". An
implementation that fails to obey these rules IS NOT COMPLIANT WITH
THIS SPECIFICATION and MUST NOT make any claim to be. These rules
also apply to any files that might be included as a result of
including the file <net/pfkeyv2.h>. This rule provides implementors
with some assurance that they will not encounter namespace-related
surprises.
1.8 On Manual Keying
Not unlike the 4.4-Lite BSD PF_ROUTE socket, this interface allows an
application full-reign over the security associations in a kernel
that implements PF_KEY. A PF_KEY implementation MUST have some sort
of manual interface to PF_KEY, which SHOULD allow all of the
functionality of the programmatic interface described here.
2. PF_KEY Message Format
PF_KEY messages consist of a base header followed by additional data
fields, some of which may be optional. The format of the additional
data is dependent on the type of message.
PF_KEY messages currently do not mandate any specific ordering for
non-network multi-octet fields. Unless otherwise specified (e.g. SPI
values), fields MUST be in host-specific byte order.
McDonald, et. al. Informational [Page 11]
^L
RFC 2367 PF_KEY Key Management API July 1998
2.1 Base Message Header Format
PF_KEY messages consist of the base message header followed by
security association specific data whose types and lengths are
specified by a generic type-length encoding.
This base header is shown below, using POSIX types. The fields are
arranged primarily for alignment, and where possible, for reasons of
clarity.
struct sadb_msg {
uint8_t sadb_msg_version;
uint8_t sadb_msg_type;
uint8_t sadb_msg_errno;
uint8_t sadb_msg_satype;
uint16_t sadb_msg_len;
uint16_t sadb_msg_reserved;
uint32_t sadb_msg_seq;
uint32_t sadb_msg_pid;
};
/* sizeof(struct sadb_msg) == 16 */
sadb_msg_version
The version field of this PF_KEY message. This MUST
be set to PF_KEY_V2. If this is not set to PF_KEY_V2,
the write() call MAY fail and return EINVAL.
Otherwise, the behavior is undetermined, given that
the application might not understand the formatting
of the messages arriving from the kernel.
sadb_msg_type Identifies the type of message. The valid message
types are described later in this document.
sadb_msg_errno Should be set to zero by the sender. The responder
stores the error code in this field if an error has
occurred. This includes the case where the responder
is in user space. (e.g. user-space negotiation
fails, an errno can be returned.)
sadb_msg_satype Indicates the type of security association(s). Valid
Security Association types are declared in the file
<net/pfkeyv2.h>. The current set of Security
Association types is enumerated later in this
document.
McDonald, et. al. Informational [Page 12]
^L
RFC 2367 PF_KEY Key Management API July 1998
sadb_msg_len Contains the total length, in 64-bit words, of all
data in the PF_KEY message including the base header
length and additional data after the base header, if
any. This length includes any padding or extra space
that might exist. Unless otherwise stated, all other
length fields are also measured in 64-bit words.
On user to kernel messages, this field MUST be
verified against the length of the inbound message.
EMSGSIZE MUST be returned if the verification fails.
On kernel to user messages, a size mismatch is most
likely the result of the user not providing a large
enough buffer for the message. In these cases, the
user application SHOULD drop the message, but it MAY
try and extract what information it can out of the
message.
sadb_msg_reserved
Reserved value. It MUST be zeroed by the sender. All
fields labeled reserved later in the document have
the same semantics as this field.
sadb_msg_seq Contains the sequence number of this message. This
field, along with sadb_msg_pid, MUST be used to
uniquely identify requests to a process. The sender
is responsible for filling in this field. This
responsibility also includes matching the
sadb_msg_seq of a request (e.g. SADB_ACQUIRE).
This field is similar to a transaction ID in a
remote procedure call implementation.
sadb_msg_pid Identifies the process which originated this message,
or which process a message is bound for. For
example, if process id 2112 sends an SADB_UPDATE
message to the kernel, the process MUST set this
field to 2112 and the kernel will set this field
to 2112 in its reply to that SADB_UPDATE
message. This field, along with sadb_msg_seq, can
be used to uniquely identify requests to a
process.
It is currently assumed that a 32-bit quantity will
hold an operating system's process ID space.
McDonald, et. al. Informational [Page 13]
^L
RFC 2367 PF_KEY Key Management API July 1998
2.2 Alignment of Headers and Extension Headers
The base message header is a multiple of 64 bits and fields after it
in memory will be 64 bit aligned if the base itself is 64 bit
aligned. Some of the subsequent extension headers have 64 bit fields
in them, and as a consequence need to be 64 bit aligned in an
environment where 64 bit quantities need to be 64 bit aligned.
The basic unit of alignment and length in PF_KEY Version 2 is 64
bits. Therefore:
* All extension headers, inclusive of the sadb_ext overlay fields,
MUST be a multiple of 64 bits long.
* All variable length data MUST be padded appropriately such that
its length in a message is a multiple of 64 bits.
* All length fields are, unless otherwise specified, in units of
64 bits.
* Implementations may safely access quantities of between 8 and 64
bits directly within a message without risk of alignment faults.
All PF_KEYv2 structures are packed and already have all intended
padding. Implementations MUST NOT insert any extra fields, including
hidden padding, into any structure in this document. This forbids
implementations from "extending" or "enhancing" existing headers
without changing the extension header type. As a guard against such
insertion of silent padding, each structure in this document is
labeled with its size in bytes. The size of these structures in an
implementation MUST match the size listed.
2.3 Additional Message Fields
The additional data following the base header consists of various
length-type-values fields. The first 32-bits are of a constant form:
struct sadb_ext {
uint16_t sadb_ext_len;
uint16_t sadb_ext_type;
};
/* sizeof(struct sadb_ext) == 4 */
sadb_ext_len Length of the extension header in 64 bit words,
inclusive.
McDonald, et. al. Informational [Page 14]
^L
RFC 2367 PF_KEY Key Management API July 1998
sadb_ext_type The type of extension header that follows. Values for
this field are detailed later. The value zero is
reserved.
Types of extension headers include: Association, Lifetime(s),
Address(s), Key(s), Identity(ies), Sensitivity, Proposal, and
Supported. There MUST be only one instance of a extension type in a
message. (e.g. Base, Key, Lifetime, Key is forbidden). An EINVAL
will be returned if there are duplicate extensions within a message.
Implementations MAY enforce ordering of extensions in the order
presented in the EXTENSION HEADER VALUES section.
If an unknown extension type is encountered, it MUST be ignored.
Applications using extension headers not specified in this document
MUST be prepared to work around other system components not
processing those headers. Likewise, if an application encounters an
unknown extension from the kernel, it must be prepared to work around
it. Also, a kernel that generates extra extension header types MUST
NOT _depend_ on applications also understanding extra extension
header types.
All extension definitions include these two fields (len and exttype)
because they are instances of a generic extension (not unlike
sockaddr_in and sockaddr_in6 are instances of a generic sockaddr).
The sadb_ext header MUST NOT ever be present in a message without at
least four bytes of extension header data following it, and,
therefore, there is no problem with it being only four bytes long.
All extensions documented in this section MUST be implemented by a
PF_KEY implementation.
2.3.1 Association Extension
The Association extension specifies data specific to a single
security association. The only times this extension is not present is
when control messages (e.g. SADB_FLUSH or SADB_REGISTER) are being
passed and on the SADB_ACQUIRE message.
struct sadb_sa {
uint16_t sadb_sa_len;
uint16_t sadb_sa_exttype;
uint32_t sadb_sa_spi;
uint8_t sadb_sa_replay;
uint8_t sadb_sa_state;
uint8_t sadb_sa_auth;
uint8_t sadb_sa_encrypt;
uint32_t sadb_sa_flags;
};
McDonald, et. al. Informational [Page 15]
^L
RFC 2367 PF_KEY Key Management API July 1998
/* sizeof(struct sadb_sa) == 16 */
sadb_sa_spi The Security Parameters Index value for the security
association. Although this is a 32-bit field, some
types of security associations might have an SPI or
key identifier that is less than 32-bits long. In
this case, the smaller value shall be stored in the
least significant bits of this field and the unneeded
bits shall be zero. This field MUST be in network
byte order.
sadb_sa_replay The size of the replay window, if not zero. If zero,
then no replay window is in use.
sadb_sa_state The state of the security association. The currently
defined states are described later in this document.
sadb_sa_auth The authentication algorithm to be used with this
security association. The valid authentication
algorithms are described later in this document. A
value of zero means that no authentication is used
for this security association.
sadb_sa_encrypt The encryption algorithm to be used with this
security association. The valid encryption algorithms
are described later in this document. A value of zero
means that no encryption is used for this security
association.
sadb_sa_flags A bitmap of options defined for the security
association. The currently defined flags are
described later in this document.
The kernel MUST check these values where appropriate. For example,
IPsec AH with no authentication algorithm is probably an error.
When used with some messages, the values in some fields in this
header should be ignored.
2.3.2 Lifetime Extension
The Lifetime extension specifies one or more lifetime variants for
this security association. If no Lifetime extension is present the
association has an infinite lifetime. An association SHOULD have a
lifetime of some sort associated with it. Lifetime variants come in
three varieties, HARD - indicating the hard-limit expiration, SOFT -
indicating the soft-limit expiration, and CURRENT - indicating the
current state of a given security association. The Lifetime
McDonald, et. al. Informational [Page 16]
^L
RFC 2367 PF_KEY Key Management API July 1998
extension looks like:
struct sadb_lifetime {
uint16_t sadb_lifetime_len;
uint16_t sadb_lifetime_exttype;
uint32_t sadb_lifetime_allocations;
uint64_t sadb_lifetime_bytes;
uint64_t sadb_lifetime_addtime;
uint64_t sadb_lifetime_usetime;
};
/* sizeof(struct sadb_lifetime) == 32 */
sadb_lifetime_allocations
For CURRENT, the number of different connections,
endpoints, or flows that the association has been
allocated towards. For HARD and SOFT, the number of
these the association may be allocated towards
before it expires. The concept of a connection,
flow, or endpoint is system specific.
sadb_lifetime_bytes
For CURRENT, how many bytes have been processed
using this security association. For HARD and SOFT,
the number of bytes that may be processed using
this security association before it expires.
sadb_lifetime_addtime
For CURRENT, the time, in seconds, when the
association was created. For HARD and SOFT, the
number of seconds after the creation of the
association until it expires.
For such time fields, it is assumed that 64-bits is
sufficiently large to hold the POSIX time_t value.
If this assumption is wrong, this field will have to
be revisited.
sadb_lifetime_usetime
For CURRENT, the time, in seconds, when association
was first used. For HARD and SOFT, the number of
seconds after the first use of the association until
it expires.
The semantics of lifetimes are inclusive-OR, first-to-expire. This
means that if values for bytes and time, or multiple times, are
passed in, the first of these values to be reached will cause a
lifetime expiration.
McDonald, et. al. Informational [Page 17]
^L
RFC 2367 PF_KEY Key Management API July 1998
2.3.3 Address Extension
The Address extension specifies one or more addresses that are
associated with a security association. Address extensions for both
source and destination MUST be present when an Association extension
is present. The format of an Address extension is:
struct sadb_address {
uint16_t sadb_address_len;
uint16_t sadb_address_exttype;
uint8_t sadb_address_proto;
uint8_t sadb_address_prefixlen;
uint16_t sadb_address_reserved;
};
/* sizeof(struct sadb_address) == 8 */
/* followed by some form of struct sockaddr */
The sockaddr structure SHOULD conform to the sockaddr structure of
the system implementing PF_KEY. If the system has an sa_len field, so
SHOULD the sockaddrs in the message. If the system has NO sa_len
field, the sockaddrs SHOULD NOT have an sa_len field. All non-address
information in the sockaddrs, such as sin_zero for AF_INET sockaddrs,
and sin6_flowinfo for AF_INET6 sockaddrs, MUST be zeroed out. The
zeroing of ports (e.g. sin_port and sin6_port) MUST be done for all
messages except for originating SADB_ACQUIRE messages, which SHOULD
fill them in with ports from the relevant TCP or UDP session which
generates the ACQUIRE message. If the ports are non-zero, then the
sadb_address_proto field, normally zero, MUST be filled in with the
transport protocol's number. If the sadb_address_prefixlen is non-
zero, then the address has a prefix (often used in KM access control
decisions), with length specified in sadb_address_prefixlen. These
additional fields may be useful to KM applications.
The SRC and DST addresses for a security association MUST be in the
same protocol family and MUST always be present or absent together in
a message. The PROXY address MAY be in a different protocol family,
and for most security protocols, represents an actual originator of a
packet. (For example, the inner-packets's source address in a
tunnel.)
The SRC address MUST be a unicast or unspecified (e.g., INADDR_ANY)
address. The DST address can be any valid destination address
(unicast, multicast, or even broadcast). The PROXY address SHOULD be
a unicast address (there are experimental security protocols where
PROXY semantics may be different than described above).
McDonald, et. al. Informational [Page 18]
^L
RFC 2367 PF_KEY Key Management API July 1998
2.3.4 Key Extension
The Key extension specifies one or more keys that are associated with
a security association. A Key extension will not always be present
with messages, because of security risks. The format of a Key
extension is:
struct sadb_key {
uint16_t sadb_key_len;
uint16_t sadb_key_exttype;
uint16_t sadb_key_bits;
uint16_t sadb_key_reserved;
};
/* sizeof(struct sadb_key) == 8 */
/* followed by the key data */
sadb_key_bits The length of the valid key data, in bits. A value of
zero in sadb_key_bits MUST cause an error.
The key extension comes in two varieties. The AUTH version is used
with authentication keys (e.g. IPsec AH, OSPF MD5) and the ENCRYPT
version is used with encryption keys (e.g. IPsec ESP). PF_KEY deals
only with fully formed cryptographic keys, not with "raw key
material". For example, when ISAKMP/Oakley is in use, the key
management daemon is always responsible for transforming the result
of the Diffie-Hellman computation into distinct fully formed keys
PRIOR to sending those keys into the kernel via PF_KEY. This rule is
made because PF_KEY is designed to support multiple security
protocols (not just IP Security) and also multiple key management
schemes including manual keying, which does not have the concept of
"raw key material". A clean, protocol-independent interface is
important for portability to different operating systems as well as
for portability to different security protocols.
If an algorithm defines its key to include parity bits (e.g. DES)
then the key used with PF_KEY MUST also include those parity bits.
For example, this means that a single DES key is always a 64-bit
quantity.
When a particular security protocol only requires one authentication
and/or one encryption key, the fully formed key is transmitted using
the appropriate key extension. When a particular security protocol
requires more than one key for the same function (e.g. Triple-DES
using 2 or 3 keys, and asymmetric algorithms), then those two fully
formed keys MUST be concatenated together in the order used for
outbound packet processing. In the case of multiple keys, the
algorithm MUST be able to determine the lengths of the individual
McDonald, et. al. Informational [Page 19]
^L
RFC 2367 PF_KEY Key Management API July 1998
keys based on the information provided. The total key length (when
combined with knowledge of the algorithm in use) usually provides
sufficient information to make this determination.
Keys are always passed through the PF_KEY interface in the order that
they are used for outbound packet processing. For inbound processing,
the correct order that keys are used might be different from this
canonical concatenation order used with the PF_KEY interface. It is
the responsibility of the implementation to use the keys in the
correct order for both inbound and outbound processing.
For example, consider a pair of nodes communicating unicast using an
ESP three-key Triple-DES Security Association. Both the outbound SA
on the sender node, and the inbound SA on the receiver node will
contain key-A, followed by key-B, followed by key-C in their
respective ENCRYPT key extensions. The outbound SA will use key-A
first, followed by key-B, then key-C when encrypting. The inbound SA
will use key-C, followed by key-B, then key-A when decrypting.
(NOTE: We are aware that 3DES is actually encrypt-decrypt-encrypt.)
The canonical ordering of key-A, key-B, key-C is used for 3DES, and
should be documented. The order of "encryption" is the canonical
order for this example. [Sch96]
The key data bits are arranged most-significant to least significant.
For example, a 22-bit key would take up three octets, with the least
significant two bits not containing key material. Five additional
octets would then be used for padding to the next 64-bit boundary.
While not directly related to PF_KEY, there is a user interface issue
regarding odd-digit hexadecimal representation of keys. Consider the
example of the 16-bit number:
0x123
That will require two octets of storage. In the absence of other
information, however, unclear whether the value shown is stored as:
01 23 OR 12 30
It is the opinion of the authors that the former (0x123 == 0x0123) is
the better way to interpret this ambiguity. Extra information (for
example, specifying 0x0123 or 0x1230, or specifying that this is only
a twelve-bit number) would solve this problem.
McDonald, et. al. Informational [Page 20]
^L
RFC 2367 PF_KEY Key Management API July 1998
2.3.5 Identity Extension
The Identity extension contains endpoint identities. This
information is used by key management to select the identity
certificate that is used in negotiations. This information may also
be provided by a kernel to network security aware applications to
identify the remote entity, possibly for access control purposes. If
this extension is not present, key management MUST assume that the
addresses in the Address extension are the only identities for this
Security Association. The Identity extension looks like:
struct sadb_ident {
uint16_t sadb_ident_len;
uint16_t sadb_ident_exttype;
uint16_t sadb_ident_type;
uint16_t sadb_ident_reserved;
uint64_t sadb_ident_id;
};
/* sizeof(struct sadb_ident) == 16 */
/* followed by the identity string, if present */
sadb_ident_type The type of identity information that follows.
Currently defined identity types are described later
in this document.
sadb_ident_id An identifier used to aid in the construction of an
identity string if none is present. A POSIX user id
value is one such identifier that will be used in this
field. Use of this field is described later in this
document.
A C string containing a textual representation of the identity
information optionally follows the sadb_ident extension. The format
of this string is determined by the value in sadb_ident_type, and is
described later in this document.
2.3.6 Sensitivity Extension
The Sensitivity extension contains security labeling information for
a security association. If this extension is not present, no
sensitivity-related data can be obtained from this security
association. If this extension is present, then the need for
explicit security labeling on the packet is obviated.
struct sadb_sens {
uint16_t sadb_sens_len;
uint16_t sadb_sens_exttype;
McDonald, et. al. Informational [Page 21]
^L
RFC 2367 PF_KEY Key Management API July 1998
uint32_t sadb_sens_dpd;
uint8_t sadb_sens_sens_level;
uint8_t sadb_sens_sens_len;
uint8_t sadb_sens_integ_level;
uint8_t sadb_sens_integ_len;
uint32_t sadb_sens_reserved;
};
/* sizeof(struct sadb_sens) == 16 */
/* followed by:
uint64_t sadb_sens_bitmap[sens_len];
uint64_t sadb_integ_bitmap[integ_len]; */
sadb_sens_dpd Describes the protection domain, which allows
interpretation of the levels and compartment
bitmaps.
sadb_sens_sens_level
The sensitivity level.
sadb_sens_sens_len
The length, in 64 bit words, of the sensitivity
bitmap.
sadb_sens_integ_level
The integrity level.
sadb_sens_integ_len
The length, in 64 bit words, of the integrity
bitmap.
This sensitivity extension is designed to support the Bell-LaPadula
[BL74] security model used in compartmented-mode or multi-level
secure systems, the Clark-Wilson [CW87] commercial security model,
and/or the Biba integrity model [Biba77]. These formal models can be
used to implement a wide variety of security policies. The definition
of a particular security policy is outside the scope of this
document. Each of the bitmaps MUST be padded to a 64-bit boundary if
they are not implicitly 64-bit aligned.
2.3.7 Proposal Extension
The Proposal extension contains a "proposed situation" of algorithm
preferences. It looks like:
struct sadb_prop {
uint16_t sadb_prop_len;
uint16_t sadb_prop_exttype;
uint8_t sadb_prop_replay;
uint8_t sadb_prop_reserved[3];
};
/* sizeof(struct sadb_prop) == 8 */
McDonald, et. al. Informational [Page 22]
^L
RFC 2367 PF_KEY Key Management API July 1998
/* followed by:
struct sadb_comb sadb_combs[(sadb_prop_len *
sizeof(uint64_t) - sizeof(struct sadb_prop)) /
sizeof(struct sadb_comb)]; */
Following the header is a list of proposed parameter combinations in
preferential order. The values in these fields have the same
definition as the fields those values will move into if the
combination is chosen.
NOTE: Some algorithms in some security protocols will have
variable IV lengths per algorithm. Variable length IVs
are not supported by PF_KEY v2. If they were, however,
proposed IV lengths would go in the Proposal Extension.
These combinations look like:
struct sadb_comb {
uint8_t sadb_comb_auth;
uint8_t sadb_comb_encrypt;
uint16_t sadb_comb_flags;
uint16_t sadb_comb_auth_minbits;
uint16_t sadb_comb_auth_maxbits;
uint16_t sadb_comb_encrypt_minbits;
uint16_t sadb_comb_encrypt_maxbits;
uint32_t sadb_comb_reserved;
uint32_t sadb_comb_soft_allocations;
uint32_t sadb_comb_hard_allocations;
uint64_t sadb_comb_soft_bytes;
uint64_t sadb_comb_hard_bytes;
uint64_t sadb_comb_soft_addtime;
uint64_t sadb_comb_hard_addtime;
uint64_t sadb_comb_soft_usetime;
uint64_t sadb_comb_hard_usetime;
};
/* sizeof(struct sadb_comb) == 72 */
sadb_comb_auth If this combination is accepted, this will be the
value of sadb_sa_auth.
sadb_comb_encrypt
If this combination is accepted, this will be the
value of sadb_sa_encrypt.
McDonald, et. al. Informational [Page 23]
^L
RFC 2367 PF_KEY Key Management API July 1998
sadb_comb_auth_minbits;
sadb_comb_auth_maxbits;
The minimum and maximum acceptable authentication
key lengths, respectably, in bits. If sadb_comb_auth
is zero, both of these values MUST be zero. If
sadb_comb_auth is nonzero, both of these values MUST
be nonzero. If this combination is accepted, a value
between these (inclusive) will be stored in the
sadb_key_bits field of KEY_AUTH. The minimum MUST
NOT be greater than the maximum.
sadb_comb_encrypt_minbits;
sadb_comb_encrypt_maxbits;
The minimum and maximum acceptable encryption key
lengths, respectably, in bits. If sadb_comb_encrypt
is zero, both of these values MUST be zero. If
sadb_comb_encrypt is nonzero, both of these values
MUST be nonzero. If this combination is accepted, a
value between these (inclusive) will be stored in
the sadb_key_bits field of KEY_ENCRYPT. The minimum
MUST NOT be greater than the maximum.
sadb_comb_soft_allocations
sadb_comb_hard_allocations
If this combination is accepted, these are proposed
values of sadb_lifetime_allocations in the SOFT and
HARD lifetimes, respectively.
sadb_comb_soft_bytes
sadb_comb_hard_bytes
If this combination is accepted, these are proposed
values of sadb_lifetime_bytes in the SOFT and HARD
lifetimes, respectively.
sadb_comb_soft_addtime
sadb_comb_hard_addtime
If this combination is accepted, these are proposed
values of sadb_lifetime_addtime in the SOFT and HARD
lifetimes, respectively.
sadb_comb_soft_usetime
sadb_comb_hard_usetime
If this combination is accepted, these are proposed
values of sadb_lifetime_usetime in the SOFT and HARD
lifetimes, respectively.
McDonald, et. al. Informational [Page 24]
^L
RFC 2367 PF_KEY Key Management API July 1998
Each combination has an authentication and encryption algorithm,
which may be 0, indicating none. A combination's flags are the same
as the flags in the Association extension. The minimum and maximum
key lengths (which are in bits) are derived from possible a priori
policy decisions, along with basic properties of the algorithm.
Lifetime attributes are also included in a combination, as some
algorithms may know something about their lifetimes and can suggest
lifetime limits.
2.3.8 Supported Algorithms Extension
The Supported Algorithms extension contains a list of all algorithms
supported by the system. This tells key management what algorithms it
can negotiate. Available authentication algorithms are listed in the
SUPPORTED_AUTH extension and available encryption algorithms are
listed in the SUPPORTED_ENCRYPT extension. The format of these
extensions is:
struct sadb_supported {
uint16_t sadb_supported_len;
uint16_t sadb_supported_exttype;
uint32_t sadb_supported_reserved;
};
/* sizeof(struct sadb_supported) == 8 */
/* followed by:
struct sadb_alg sadb_algs[(sadb_supported_len *
sizeof(uint64_t) - sizeof(struct sadb_supported)) /
sizeof(struct sadb_alg)]; */
This header is followed by one or more algorithm descriptions. An
algorithm description looks like:
struct sadb_alg {
uint8_t sadb_alg_id;
uint8_t sadb_alg_ivlen;
uint16_t sadb_alg_minbits;
uint16_t sadb_alg_maxbits;
uint16_t sadb_alg_reserved;
};
/* sizeof(struct sadb_alg) == 8 */
sadb_alg_id The algorithm identification value for this
algorithm. This is the value that is stored in
sadb_sa_auth or sadb_sa_encrypt if this algorithm is
selected.
McDonald, et. al. Informational [Page 25]
^L
RFC 2367 PF_KEY Key Management API July 1998
sadb_alg_ivlen The length of the initialization vector to be used
for the algorithm. If an IV is not needed, this
value MUST be set to zero.
sadb_alg_minbits
The minimum acceptable key length, in bits. A value
of zero is invalid.
sadb_alg_maxbits
The maximum acceptable key length, in bits. A value
of zero is invalid. The minimum MUST NOT be greater
than the maximum.
2.3.9 SPI Range Extension
One PF_KEY message, SADB_GETSPI, might need a range of acceptable SPI
values. This extension performs such a function.
struct sadb_spirange {
uint16_t sadb_spirange_len;
uint16_t sadb_spirange_exttype;
uint32_t sadb_spirange_min;
uint32_t sadb_spirange_max;
uint32_t sadb_spirange_reserved;
};
/* sizeof(struct sadb_spirange) == 16 */
sadb_spirange_min
The minimum acceptable SPI value.
sadb_spirange_max
The maximum acceptable SPI value. The maximum MUST
be greater than or equal to the minimum.
McDonald, et. al. Informational [Page 26]
^L
RFC 2367 PF_KEY Key Management API July 1998
2.4 Illustration of Message Layout
The following shows how the octets are laid out in a PF_KEY message.
Optional fields are indicated as such.
The base header is as follows:
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
+---------------+---------------+---------------+---------------+
| ...version | sadb_msg_type | sadb_msg_errno| ...msg_satype |
+---------------+---------------+---------------+---------------+
| sadb_msg_len | sadb_msg_reserved |
+---------------+---------------+---------------+---------------+
| sadb_msg_seq |
+---------------+---------------+---------------+---------------+
| sadb_msg_pid |
+---------------+---------------+---------------+---------------+
The base header may be followed by one or more of the following
extension fields, depending on the values of various base header
fields. The following fields are ordered such that if they appear,
they SHOULD appear in the order presented below.
An extension field MUST not be repeated. If there is a situation
where an extension MUST be repeated, it should be brought to the
attention of the authors.
The Association extension
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
+---------------+---------------+---------------+---------------+
| sadb_sa_len | sadb_sa_exttype |
+---------------+---------------+---------------+---------------+
| sadb_sa_spi |
+---------------+---------------+---------------+---------------+
| ...replay | sadb_sa_state | sadb_sa_auth |sadb_sa_encrypt|
+---------------+---------------+---------------+---------------+
| sadb_sa_flags |
+---------------+---------------+---------------+---------------+
The Lifetime extension
+---------------+---------------+---------------+---------------+
| sadb_lifetime_len | sadb_lifetime_exttype |
+---------------+---------------+---------------+---------------+
| sadb_lifetime_allocations |
+---------------+---------------+---------------+---------------+
McDonald, et. al. Informational [Page 27]
^L
RFC 2367 PF_KEY Key Management API July 1998
+---------------+---------------+---------------+---------------+
| sadb_lifetime_bytes |
| (64 bits) |
+---------------+---------------+---------------+---------------+
| sadb_lifetime_addtime |
| (64 bits) |
+---------------+---------------+---------------+---------------+
| sadb_lifetime_usetime |
| (64 bits) |
+---------------+---------------+---------------+---------------+
The Address extension
+---------------+---------------+---------------+---------------+
| sadb_address_len | sadb_address_exttype |
+---------------+---------------+---------------+---------------+
| _address_proto| ..._prefixlen | sadb_address_reserved |
+---------------+---------------+---------------+---------------+
> Some form of 64-bit aligned struct sockaddr goes here. <
+---------------+---------------+---------------+---------------+
The Key extension
+---------------+---------------+---------------+---------------+
| sadb_key_len | sadb_key_exttype |
+---------------+---------------+---------------+---------------+
| sadb_key_bits | sadb_key_reserved |
+---------------+---------------+---------------+---------------+
> A key, padded to 64-bits, most significant bits to least. >
+---------------+---------------+---------------+---------------+
The Identity extension
+---------------+---------------+---------------+---------------+
| sadb_ident_len | sadb_ident_exttype |
+---------------+---------------+---------------+---------------+
| sadb_ident_type | sadb_ident_reserved |
+---------------+---------------+---------------+---------------+
| sadb_ident_id |
| (64 bits) |
+---------------+---------------+---------------+---------------+
> A null-terminated C-string which MUST be padded out for >
< 64-bit alignment. <
+---------------+---------------+---------------+---------------+
McDonald, et. al. Informational [Page 28]
^L
RFC 2367 PF_KEY Key Management API July 1998
The Sensitivity extension
+---------------+---------------+---------------+---------------+
| sadb_sens_len | sadb_sens_exttype |
+---------------+---------------+---------------+---------------+
| sadb_sens_dpd |
+---------------+---------------+---------------+---------------+
| ...sens_level | ...sens_len |..._integ_level| ..integ_len |
+---------------+---------------+---------------+---------------+
| sadb_sens_reserved |
+---------------+---------------+---------------+---------------+
> The sensitivity bitmap, followed immediately by the <
< integrity bitmap, each is an array of uint64_t. >
+---------------+---------------+---------------+---------------+
The Proposal extension
+---------------+---------------+---------------+---------------+
| sadb_prop_len | sadb_prop_exttype |
+---------------+---------------+---------------+---------------+
|...prop_replay | sadb_prop_reserved |
+---------------+---------------+---------------+---------------+
> One or more combinations, specified as follows... <
+---------------+---------------+---------------+---------------+
Combination
+---------------+---------------+---------------+---------------+
|sadb_comb_auth |sadb_comb_encr | sadb_comb_flags |
+---------------+---------------+---------------+---------------+
| sadb_comb_auth_minbits | sadb_comb_auth_maxbits |
+---------------+---------------+---------------+---------------+
| sadb_comb_encrypt_minbits | sadb_comb_encrypt_maxbits |
+---------------+---------------+---------------+---------------+
| sadb_comb_reserved |
+---------------+---------------+---------------+---------------+
| sadb_comb_soft_allocations |
+---------------+---------------+---------------+---------------+
| sadb_comb_hard_allocations |
+---------------+---------------+---------------+---------------+
| sadb_comb_soft_bytes |
| (64 bits) |
+---------------+---------------+---------------+---------------+
| sadb_comb_hard_bytes |
| (64 bits) |
+---------------+---------------+---------------+---------------+
| sadb_comb_soft_addtime |
| (64 bits) |
+---------------+---------------+---------------+---------------+
McDonald, et. al. Informational [Page 29]
^L
RFC 2367 PF_KEY Key Management API July 1998
+---------------+---------------+---------------+---------------+
| sadb_comb_hard_addtime |
| (64 bits) |
+---------------+---------------+---------------+---------------+
| sadb_comb_soft_usetime |
| (64 bits) |
+---------------+---------------+---------------+---------------+
| sadb_comb_hard_usetime |
| (64 bits) |
+---------------+---------------+---------------+---------------+
The Supported Algorithms extension
+---------------+---------------+---------------+---------------+
| sadb_supported_len | sadb_supported_exttype |
+---------------+---------------+---------------+---------------+
| sadb_supported_reserved |
+---------------+---------------+---------------+---------------+
Followed by one or more Algorithm Descriptors
+---------------+---------------+---------------+---------------+
| sadb_alg_id | sadb_alg_ivlen| sadb_alg_minbits |
+---------------+---------------+---------------+---------------+
| sadb_alg_maxbits | sadb_alg_reserved |
+---------------+---------------+---------------+---------------+
The SPI Range extension
+---------------+---------------+---------------+---------------+
| sadb_spirange_len | sadb_spirange_exttype |
+---------------+---------------+---------------+---------------+
| sadb_spirange_min |
+---------------+---------------+---------------+---------------+
| sadb_spirange_max |
+---------------+---------------+---------------+---------------+
| sadb_spirange_reserved |
+---------------+---------------+---------------+---------------+
3 Symbolic Names
This section defines various symbols used with PF_KEY and the
semantics associated with each symbol. Applications MUST use the
symbolic names in order to be portable. The numeric definitions
shown are for illustrative purposes, unless explicitly stated
otherwise. The numeric definition MAY vary on other systems. The
symbolic name MUST be kept the same for all conforming
implementations.
McDonald, et. al. Informational [Page 30]
^L
RFC 2367 PF_KEY Key Management API July 1998
3.1 Message Types
The following message types are used with PF_KEY. These are defined
in the file <net/pfkeyv2.h>.
#define SADB_RESERVED 0
#define SADB_GETSPI 1
#define SADB_UPDATE 2
#define SADB_ADD 3
#define SADB_DELETE 4
#define SADB_GET 5
#define SADB_ACQUIRE 6
#define SADB_REGISTER 7
#define SADB_EXPIRE 8
#define SADB_FLUSH 9
#define SADB_DUMP 10 /* not used normally */
#define SADB_MAX 10
Each message has a behavior. A behavior is defined as where the
initial message travels (e.g. user to kernel), and what subsequent
actions are expected to take place. Contents of messages are
illustrated as:
<base, REQUIRED EXTENSION, REQ., (OPTIONAL EXT.,) (OPT)>
The SA extension is sometimes used only for its SPI field. If all
other fields MUST be ignored, this is represented by "SA(*)".
The lifetime extensions are represented with one to three letters
after the word "lifetime," representing (H)ARD, (S)OFT, and
(C)URRENT.
The address extensions are represented with one to three letters
after the word "address," representing (S)RC, (D)ST, (P)ROXY.
NOTE: Some security association types do not use a source
address for SA identification, where others do. This may
cause EEXIST errors for some SA types where others do not
report collisions. It is expected that application
authors know enough about the underlying security
association types to understand these differences.
The key extensions are represented with one or two letters after the
word "key," representing (A)UTH and (E)NCRYPT.
McDonald, et. al. Informational [Page 31]
^L
RFC 2367 PF_KEY Key Management API July 1998
The identity extensions are represented with one or two letters after
the word "identity," representing (S)RC and (D)ST.
In the case of an error, only the base header is returned.
Note that any standard error could be returned for any message.
Typically, they will be either one of the errors specifically listed
in the description for a message or one of the following:
EINVAL Various message improprieties, including SPI ranges
that are malformed.
ENOMEM Needed memory was not available.
ENOBUFS Needed memory was not available.
EMSGSIZ The message exceeds the maximum length allowed.
3.1.1 SADB_GETSPI
The SADB_GETSPI message allows a process to obtain a unique SPI value
for given security association type, source address, and destination
address. This message followed by an SADB_UPDATE is one way to
create a security association (SADB_ADD is the other method). The
process specifies the type in the base header, the source and
destination address in address extension. If the SADB_GETSPI message
is in response to a kernel-generated SADB_ACQUIRE, the sadb_msg_seq
MUST be the same as the SADB_ACQUIRE message. The application may
also specify the SPI. This is done by having the kernel select
within a range of SPI values by using the SPI range extension. To
specify a single SPI value to be verified, the application sets the
high and low values to be equal. Permitting range specification is
important because the kernel can allocate an SPI value based on what
it knows about SPI values already in use. The kernel returns the
same message with the allocated SPI value stored in the spi field of
an association extension. The allocate SPI (and destination address)
refer to a LARVAL security association. An SADB_UPDATE message can
later be used to add an entry with the requested SPI value.
It is recommended that associations that are created with SADB_GETSPI
SHOULD be automatically deleted within a fixed amount of time if they
are not updated by an SADB_UPDATE message. This allows SA storage
not to get cluttered with larval associations.
The message behavior of the SADB_GETSPI message is:
Send an SADB_GETSPI message from a user process to the kernel.
<base, address, SPI range>
McDonald, et. al. Informational [Page 32]
^L
RFC 2367 PF_KEY Key Management API July 1998
The kernel returns the SADB_GETSPI message to all listening
processes.
<base, SA(*), address(SD)>
Errors:
EEXIST Requested SPI or SPI range is not available or already
used.
3.1.2 SADB_UPDATE Message
The SADB_UPDATE message allows a process to update the information in
an existing Security Association. Since SADB_GETSPI does not allow
setting of certain parameters, this message is needed to fully form
the SADB_SASTATE_LARVAL security association created with
SADB_GETSPI. The format of the update message is a base header,
followed by an association header and possibly by several extension
headers. The kernel searches for the security association with the
same type, spi, source address and destination address specified in
the message and updates the Security Association information using
the content of the SADB_UPDATE message.
The kernel MAY disallow SADB_UPDATE to succeed unless the message is
issued from the same socket that created the security association.
Such enforcement significantly reduces the chance of accidental
changes to an in-use security association. Malicious trusted parties
could still issue an SADB_FLUSH or SADB_DELETE message, but deletion
of associations is more easily detected and less likely to occur
accidentally than an erroneous SADB_UPDATE. The counter argument to
supporting this behavior involves the case where a user-space key
management application fails and is restarted. The new instance of
the application will not have the same socket as the creator of the
security association.
The kernel MUST sanity check all significant values submitted in an
SADB_UPDATE message before changing the SA in its database and MUST
return EINVAL if any of the values are invalid. Examples of checks
that should be performed are DES key parity bits, key length
checking, checks for keys known to be weak for the specified
algorithm, and checks for flags or parameters known to be
incompatible with the specified algorithm.
Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_UPDATE
message. If the original SA is an SADB_SASTATE_LARVAL SA, then any
value in the SA may be changed except for the source address,
destination address, and SPI. If the original SA is an
SADB_SASTATE_DEAD SA, any attempt to perform an SADB_UPDATE on the SA
McDonald, et. al. Informational [Page 33]
^L
RFC 2367 PF_KEY Key Management API July 1998
MUST return EINVAL. It is not valid for established keying or
algorithm information to change without the SPI changing, which would
require creation of a new SA rather than a change to an existing SA.
Once keying and algorithm information is negotiated, address and
identity information is fixed for the SA. Therefore, if the original
SA is an SADB_SASTATE_MATURE or DYING SA, only the sadb_sa_state
field in the SA header and lifetimes (hard, soft, and current) may be
changed and any attempt to change other values MUST result in an
error return of EINVAL.
The message behavior of the SADB_UPDATE message is:
Send an SADB_UPDATE message from a user process to the kernel.
<base, SA, (lifetime(HSC),) address(SD), (address(P),)
key(AE), (identity(SD),) (sensitivity)>
The kernel returns the SADB_UPDATE message to all listening
processes.
<base, SA, (lifetime(HSC),) address(SD), (address(P),)
(identity(SD),) (sensitivity)>
The keying material is not returned on the message from the kernel to
listening sockets because listeners might not have the privileges to
see such keying material.
Errors:
ESRCH The security association to be updated was not found.
EINVAL In addition to other possible causes, this error is
returned if sanity checking on the SA values (such
as the keys) fails.
EACCES Insufficient privilege to update entry. The socket
issuing the SADB_UPDATE is not creator of the entry
to be updated.
3.1.3 SADB_ADD
The SADB_ADD message is nearly identical to the SADB_UPDATE message,
except that it does not require a previous call to SADB_GETSPI. The
SADB_ADD message is used in manual keying applications, and in other
cases where the uniqueness of the SPI is known immediately.
An SADB_ADD message is also used when negotiation is finished, and
the second of a pair of associations is added. The SPI for this
association was determined by the peer machine. The sadb_msg_seq
McDonald, et. al. Informational [Page 34]
^L
RFC 2367 PF_KEY Key Management API July 1998
MUST be set to the value set in a kernel-generated SADB_ACQUIRE so
that both associations in a pair are bound to the same ACQUIRE
request.
The kernel MUST sanity check all used fields in the SA submitted in
an SADB_ADD message before adding the SA to its database and MUST
return EINVAL if any of the values are invalid.
Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
Therefore, the sadb_sa_state field of all submitted SAs MUST be
SADB_SASTATE_MATURE and the kernel MUST return an error if this is
not true.
The message behavior of the SADB_ADD message is:
Send an SADB_ADD message from a user process to the kernel.
<base, SA, (lifetime(HS),) address(SD), (address(P),)
key(AE), (identity(SD),) (sensitivity)>
The kernel returns the SADB_ADD message to all listening
processes.
<base, SA, (lifetime(HS),) address(SD), (identity(SD),)
(sensitivity)>
The keying material is not returned on the message from the kernel to
listening sockets because listeners may not have the privileges to
see such keying material.
Errors:
EEXIST The security association that was to be added already
exists.
EINVAL In addition to other possible causes, this error is
returned if sanity checking on the SA values (such
as the keys) fails.
3.1.4 SADB_DELETE
The SADB_DELETE message causes the kernel to delete a Security
Association from the key table. The delete message consists of the
base header followed by the association, and the source and
destination sockaddrs in the address extension. The kernel deletes
the security association matching the type, spi, source address, and
destination address in the message.
McDonald, et. al. Informational [Page 35]
^L
RFC 2367 PF_KEY Key Management API July 1998
The message behavior for SADB_DELETE is as follows:
Send an SADB_DELETE message from a user process to the kernel.
<base, SA(*), address(SD)>
The kernel returns the SADB_DELETE message to all listening
processes.
<base, SA(*), address(SD)>
3.1.5 SADB_GET
The SADB_GET message allows a process to retrieve a copy of a
Security Association from the kernel's key table. The get message
consists of the base header follows by the relevant extension fields.
The Security Association matching the type, spi, source address, and
destination address is returned.
The message behavior of the SADB_GET message is:
Send an SADB_GET message from a user process to the kernel.
<base, SA(*), address(SD)>
The kernel returns the SADB_GET message to the socket that sent
the SADB_GET message.
<base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
(identity(SD),) (sensitivity)>
Errors:
ESRCH The sought security association was not found.
3.1.6 SADB_ACQUIRE
The SADB_ACQUIRE message is typically sent only by the kernel to key
socket listeners who have registered their key socket (see
SADB_REGISTER message). SADB_ACQUIRE messages can be sent by
application-level consumers of security associations (such as an
OSPFv2 implementation that uses OSPF security). The SADB_ACQUIRE
message is a base header along with an address extension, possibly an
identity extension, and a proposal extension. The proposed situation
contains a list of desirable algorithms that can be used if the
algorithms in the base header are not available. The values for the
fields in the base header and in the security association data which
follows the base header indicate the properties of the Security
Association that the listening process should attempt to acquire. If
McDonald, et. al. Informational [Page 36]
^L
RFC 2367 PF_KEY Key Management API July 1998
the message originates from the kernel (i.e. the sadb_msg_pid is 0),
the sadb_msg_seq number MUST be used by a subsequent SADB_GETSPI and
SADB_UPDATE, or subsequent SADB_ADD message to bind a security
association to the request. This avoids the race condition of two
TCP connections between two IP hosts that each require unique
associations, and having one steal another's security association.
The sadb_msg_errno and sadb_msg_state fields should be ignored by the
listening process.
The SADB_ACQUIRE message is typically triggered by an outbound packet
that needs security but for which there is no applicable Security
Association existing in the key table. If the packet can be
sufficiently protected by more than one algorithm or combination of
options, the SADB_ACQUIRE message MUST order the preference of
possibilities in the Proposal extension.
There are three messaging behaviors for SADB_ACQUIRE. The first is
where the kernel needs a security association (e.g. for IPsec).
The kernel sends an SADB_ACQUIRE message to registered sockets.
<base, address(SD), (address(P)), (identity(SD),) (sensitivity,)
proposal>
NOTE: The address(SD) extensions MUST have the port fields
filled in with the port numbers of the session requiring
keys if appropriate.
The second is when, for some reason, key management fails, it can
send an ACQUIRE message with the same sadb_msg_seq as the initial
ACQUIRE with a non-zero errno.
Send an SADB_ACQUIRE to indicate key management failure.
<base>
The third is where an application-layer consumer of security
associations (e.g. an OSPFv2 or RIPv2 daemon) needs a security
association.
Send an SADB_ACQUIRE message from a user process to the kernel.
<base, address(SD), (address(P),) (identity(SD),) (sensitivity,)
proposal>
The kernel returns an SADB_ACQUIRE message to registered
sockets.
McDonald, et. al. Informational [Page 37]
^L
RFC 2367 PF_KEY Key Management API July 1998
<base, address(SD), (address(P),) (identity(SD),) (sensitivity,)
proposal>
The user-level consumer waits for an SADB_UPDATE or SADB_ADD
message for its particular type, and then can use that
association by using SADB_GET messages.
Errors:
EINVAL Invalid acquire request.
EPROTONOSUPPORT No KM application has registered with the Key
Engine as being able to obtain the requested SA type, so
the requested SA cannot be acquired.
3.1.7 SADB_REGISTER
The SADB_REGISTER message allows an application to register its key
socket as able to acquire new security associations for the kernel.
SADB_REGISTER allows a socket to receive SADB_ACQUIRE messages for
the type of security association specified in sadb_msg_satype. The
application specifies the type of security association that it can
acquire for the kernel in the type field of its register message. If
an application can acquire multiple types of security association, it
MUST register each type in a separate message. Only the base header
is needed for the register message. Key management applications MAY
register for a type not known to the kernel, because the consumer may
be in user-space (e.g. OSPFv2 security).
The reply of the SADB_REGISTER message contains a supported algorithm
extension. That field contains an array of supported algorithms, one
per octet. This allows key management applications to know what
algorithm are supported by the kernel.
In an environment where algorithms can be dynamically loaded and
unloaded, an asynchronous SADB_REGISTER reply MAY be generated. The
list of supported algorithms MUST be a complete list, so the
application can make note of omissions or additions.
The messaging behavior of the SADB_REGISTER message is:
Send an SADB_REGISTER message from a user process to the kernel.
<base>
The kernel returns an SADB_REGISTER message to registered
sockets, with algorithm types supported by the kernel being
indicated in the supported algorithms field.
McDonald, et. al. Informational [Page 38]
^L
RFC 2367 PF_KEY Key Management API July 1998
NOTE: This message may arrive asynchronously due to an
algorithm being loaded or unloaded into a dynamically
linked kernel.
<base, supported>
3.1.8 SADB_EXPIRE Message
The operating system kernel is responsible for tracking SA
expirations for security protocols that are implemented inside the
kernel. If the soft limit or hard limit of a Security Association
has expired for a security protocol implemented inside the kernel,
then the kernel MUST issue an SADB_EXPIRE message to all key socket
listeners. If the soft limit or hard limit of a Security Association
for a user-level security protocol has expired, the user-level
protocol SHOULD issue an SADB_EXPIRE message.
The base header will contain the security association information
followed by the source sockaddr, destination sockaddr, (and, if
present, internal sockaddr,) (and, if present, one or both
compartment bitmaps).
The lifetime extension of an SADB_EXPIRE message is important to
indicate which lifetime expired. If a HARD lifetime extension is
included, it indicates that the HARD lifetime expired. This means
the association MAY be deleted already from the SADB. If a SOFT
lifetime extension is included, it indicates that the SOFT lifetime
expired. The CURRENT lifetime extension will indicate the current
status, and comparisons to the HARD or SOFT lifetime will indicate
which limit was reached. HARD lifetimes MUST take precedence over
SOFT lifetimes, meaning if the HARD and SOFT lifetimes are the same,
the HARD lifetime will appear on the EXPIRE message. The
pathological case of HARD lifetimes being shorter than SOFT lifetimes
is handled such that the SOFT lifetime will never expire.
The messaging behavior of the SADB_EXPIRE message is:
The kernel sends an SADB_EXPIRE message to all listeners when
the soft limit of a security association has been expired.
<base, SA, lifetime(C and one of HS), address(SD)>
Note that the SADB_EXPIRE message is ONLY sent by the kernel to the
KMd. It is a one-way informational message that does not have a
reply.
McDonald, et. al. Informational [Page 39]
^L
RFC 2367 PF_KEY Key Management API July 1998
3.1.9 SADB_FLUSH
The SADB_FLUSH message causes the kernel to delete all entries in its
key table for a certain sadb_msg_satype. Only the base header is
required for a flush message. If sadb_msg_satype is filled in with a
specific value, only associations of that type are deleted. If it is
filled in with SADB_SATYPE_UNSPEC, ALL associations are deleted.
The messaging behavior for SADB_FLUSH is:
Send an SADB_FLUSH message from a user process to the kernel.
<base>
The kernel will return an SADB_FLUSH message to all listening
sockets.
<base>
The reply message happens only after the actual flushing
of security associations has been attempted.
3.1.10 SADB_DUMP
The SADB_DUMP message causes the kernel to dump the operating
system's entire Key Table to the requesting key socket. As in
SADB_FLUSH, if a sadb_msg_satype value is in the message, only
associations of that type will be dumped. If SADB_SATYPE_UNSPEC is
specified, all associations will be dumped. Each Security Association
is returned in its own SADB_DUMP message. A SADB_DUMP message with a
sadb_seq field of zero indicates the end of the dump transaction. The
dump message is used for debugging purposes only and is not intended
for production use.
Support for the dump message MAY be discontinued in future versions
of PF_KEY. Key management applications MUST NOT depend on this
message for basic operation.
The messaging behavior for SADB_DUMP is:
Send an SADB_DUMP message from a user process to the kernel.
<base>
Several SADB_DUMP messages will return from the kernel to the
sending socket.
McDonald, et. al. Informational [Page 40]
^L
RFC 2367 PF_KEY Key Management API July 1998
<base, SA, (lifetime (HSC),) address(SD), (address(P),)
key(AE), (identity(SD),) (sensitivity)>
3.2 Security Association Flags
The Security Association's flags are a bitmask field. These flags
also appear in a combination that is part of a PROPOSAL extension.
The related symbolic definitions below should be used in order that
applications will be portable:
#define SADB_SAFLAGS_PFS 1 /* perfect forward secrecy */
The SADB_SAFLAGS_PFS flag indicates to key management that this
association should have perfect forward secrecy in its key. (In
other words, any given session key cannot be determined by
cryptanalysis of previous session keys or some master key.)
3.3 Security Association States
The security association state field is an integer that describes the
states of a security association. They are:
#define SADB_SASTATE_LARVAL 0
#define SADB_SASTATE_MATURE 1
#define SADB_SASTATE_DYING 2
#define SADB_SASTATE_DEAD 3
#define SADB_SASTATE_MAX 3
A SADB_SASTATE_LARVAL security association is one that was created by
the SADB_GETSPI message. A SADB_SASTATE_MATURE association is one
that was updated with the SADB_UPDATE message or added with the
SADB_ADD message. A DYING association is one whose soft lifetime has
expired. A SADB_SASTATE_DEAD association is one whose hard lifetime
has expired, but hasn't been reaped by system garbage collection. If
a consumer of security associations has to extend an association
beyond its normal lifetime (e.g. OSPF Security) it MUST only set the
soft lifetime for an association.
3.4 Security Association Types
This defines the type of Security Association in this message. The
symbolic names are always the same, even on different
implementations. Applications SHOULD use the symbolic name in order
to have maximum portability across different implementations. These
are defined in the file <net/pfkeyv2.h>.
McDonald, et. al. Informational [Page 41]
^L
RFC 2367 PF_KEY Key Management API July 1998
#define SADB_SATYPE_UNSPEC 0
#define SADB_SATYPE_AH 2 /* RFC-1826 */
#define SADB_SATYPE_ESP 3 /* RFC-1827 */
#define SADB_SATYPE_RSVP 5 /* RSVP Authentication */
#define SADB_SATYPE_OSPFV2 6 /* OSPFv2 Authentication */
#define SADB_SATYPE_RIPV2 7 /* RIPv2 Authentication */
#define SADB_SATYPE_MIP 8 /* Mobile IP Auth. */
#define SADB_SATYPE_MAX 8
SADB_SATYPE_UNSPEC is defined for completeness and means no specific
type of security association. This type is never used with PF_KEY
SAs.
SADB_SATYPE_AH is for the IP Authentication Header [Atk95b].
SADB_SATYPE_ESP is for the IP Encapsulating Security Payload
[Atk95c].
SADB_SATYPE_RSVP is for the RSVP Integrity Object.
SADB_SATYPE_OSPFV2 is for OSPFv2 Cryptographic authentication
[Moy98].
SADB_SATYPE_RIPV2 is for RIPv2 Cryptographic authentication [BA97].
SADB_SATYPE_MIP is for Mobile IP's authentication extensions [Per97].
SADB_SATYPE_MAX is always set to the highest valid numeric value.
3.5 Algorithm Types
The algorithm type is interpreted in the context of the Security
Association type defined above. The numeric value might vary between
implementations, but the symbolic name MUST NOT vary between
implementations. Applications should use the symbolic name in order
to have maximum portability to various implementations.
Some of the algorithm types defined below might not be standardized
or might be deprecated in the future. To obtain an assignment for a
symbolic name, contact the authors.
The symbols below are defined in <net/pfkeyv2.h>.
McDonald, et. al. Informational [Page 42]
^L
RFC 2367 PF_KEY Key Management API July 1998
/* Authentication algorithms */
#define SADB_AALG_NONE 0
#define SADB_AALG_MD5HMAC 2
#define SADB_AALG_SHA1HMAC 3
#define SADB_AALG_MAX 3
/* Encryption algorithms */
#define SADB_EALG_NONE 0
#define SADB_EALG_DESCBC 2
#define SADB_EALG_3DESCBC 3
#define SADB_EALG_NULL 11
#define SADB_EALG_MAX 11
The algorithm for SADB_AALG_MD5_HMAC is defined in [MG98a]. The
algorithm for SADB_AALG_SHA1HMAC is defined in [MG98b]. The
algorithm for SADB_EALG_DESCBC is defined in [MD98]. SADB_EALG_NULL
is the NULL encryption algorithm, defined in [GK98]. The
SADB_EALG_NONE value is not to be used in any security association
except those which have no possible encryption algorithm in them
(e.g. IPsec AH).
3.6 Extension Header Values
To briefly recap the extension header values:
#define SADB_EXT_RESERVED 0
#define SADB_EXT_SA 1
#define SADB_EXT_LIFETIME_CURRENT 2
#define SADB_EXT_LIFETIME_HARD 3
#define SADB_EXT_LIFETIME_SOFT 4
#define SADB_EXT_ADDRESS_SRC 5
#define SADB_EXT_ADDRESS_DST 6
#define SADB_EXT_ADDRESS_PROXY 7
#define SADB_EXT_KEY_AUTH 8
#define SADB_EXT_KEY_ENCRYPT 9
#define SADB_EXT_IDENTITY_SRC 10
#define SADB_EXT_IDENTITY_DST 11
#define SADB_EXT_SENSITIVITY 12
#define SADB_EXT_PROPOSAL 13
#define SADB_EXT_SUPPORTED_AUTH 14
#define SADB_EXT_SUPPORTED_ENCRYPT 15
#define SADB_EXT_SPIRANGE 16
#define SADB_EXT_MAX 16
McDonald, et. al. Informational [Page 43]
^L
RFC 2367 PF_KEY Key Management API July 1998
3.7 Identity Extension Values
Each identity can have a certain type.
#define SADB_IDENTTYPE_RESERVED 0
#define SADB_IDENTTYPE_PREFIX 1
#define SADB_IDENTTYPE_FQDN 2
#define SADB_IDENTTYPE_USERFQDN 3
#define SADB_IDENTTYPE_MAX 3
The PREFIX identity string consists of a network address followed by a
forward slash and a prefix length. The network address is in a
printable numeric form appropriate for the protocol family. The
prefix length is a decimal number greater than or equal to zero and
less than the number of bits in the network address. It indicates the
number of bits in the network address that are significant; all bits
in the network address that are not significant MUST be set to zero.
Note that implementations MUST parse the contents of the printable
address into a binary form for comparison purposes because multiple
printable strings are valid representations of the same address in
many protocol families (for example, some allow leading zeros and some
have letters that are case insensitive). Examples of PREFIX identities
are "199.33.248.64/27" and "3ffe::1/128". If the source or destination
identity is a PREFIX identity, the source or destination address for
the SA (respectively) MUST be within that prefix. The sadb_ident_id
field is zeroed for these identity types.
The FQDN identity string contains a fully qualified domain name. An
example FQDN identity is "ministry-of-truth.inner.net". The
sadb_ident_id field is zeroed for these identity types.
The UserFQDN identity consists of a text string in the format commonly
used for Internet-standard electronic mail. The syntax is the text
username, followed by the "@" character, followed in turn by the
appropriate fully qualified domain name. This identity specifies both
a username and an associated FQDN. There is no requirement that this
string specify a mailbox valid for SMTP or other electronic mail
use. This identity is useful with protocols supporting user-oriented
keying. It is a convenient identity form because the DNS Security
extensions can be used to distribute signed public key values by
associating KEY and SIG records with an appropriate MB DNS record. An
example UserFQDN identity is "julia@ministry-of-love.inner.net". The
sadb_ident_id field is used to contain a POSIX user id in the absence
of an identity string itself so that a user-level application can use
the getpwuid{,_r}() routine to obtain a textual user login id. If a
string is present, it SHOULD match the numeric value in the
sadb_ident_id field. If it does not match, the string SHOULD override
McDonald, et. al. Informational [Page 44]
^L
RFC 2367 PF_KEY Key Management API July 1998
the numeric value.
3.8 Sensitivity Extension Values
The only field currently defined in the sensitivity extension is the
sadb_sens_dpd, which represents the data protection domain. The other
data in the sensitivity extension is based off the sadb_sens_dpd
value.
The DP/DOI is defined to be the same as the "Labeled Domain Identifier
Value" of the IP Security DOI specification [Pip98]. As noted in that
specification, values in the range 0x80000000 to 0xffffffff
(inclusive) are reserved for private use and values in the range
0x00000001 through 0x7fffffff are assigned by IANA. The all-zeros
DP/DOI value is permanently reserved to mean that "no DP/DOI is in
use".
3.9 Proposal Extension Values
These are already mentioned in the Algorithm Types and Security
Association Flags sections.
4 Future Directions
While the current specification for the Sensitivity and Integrity
Labels is believed to be general enough, if a case should arise that
can't work with the current specification then this might cause a
change in a future version of PF_KEY.
Similarly, PF_KEY might need extensions to work with other kinds of
Security Associations in future. It is strongly desirable for such
extensions to be made in a backwards-compatible manner should they be
needed.
When more experience is gained with certificate management, it is
possible that the IDENTITY extension will have to be revisited to
allow a finer grained selection of certificate identities.
5. Examples
The following examples illustrate how PF_KEY is used. The first
example is an IP Security example, where the consumer of the security
associations is inside an operating system kernel. The second example
is an OSPF Security example, which illustrates a user-level consumer
of security associations. The third example covers things not
mentioned by the first two examples. A real system may closely
conform to one of these examples, or take parts of them. These
examples are purely illustrative, and are not intended to mandate a
McDonald, et. al. Informational [Page 45]
^L
RFC 2367 PF_KEY Key Management API July 1998
particular implementation method.
5.1 Simple IP Security Example
+---------------+ +-------------+
|Key Mgmt Daemon| | Application |
+---------------+ +-------------+
| | /
| | /
| | | Applications
======[PF_KEY]====[PF_INET]==========================
| | | OS Kernel
+------------+ +-----------------+
| Key Engine | | TCP/IP, |
| or SADB |---| including IPsec |
+------------+ | |
+-----------------+
When the Key Management daemon (KMd) begins. It must tell PF_KEY
that it is willing to accept message for the two IPsec services, AH
and ESP. It does this by sending down two SADB_REGISTER messages.
KMd->Kernel: SADB_REGISTER for ESP
Kernel->Registered: SADB_REGISTER for ESP, Supported Algorithms
KMd->Kernel: SADB_REGISTER for AH
Kernel->Registered: SADB_REGISTER for AH, Supported Algorithms
Each REGISTER message will cause a reply to go to all PF_KEY sockets
registered for ESP and AH respectively (including the requester).
Assume that no security associations currently exist for IPsec to
use. Consider when a network application begins transmitting data
(e.g. a TCP SYN). Because of policy, or the application's request,
the kernel IPsec module needs an AH security association for this
data. Since there is not one present, the following message is
generated:
Kernel->Registered: SADB_ACQUIRE for AH, addrs, ID, sens,
proposals
The KMd reads the ACQUIRE message, especially the sadb_msg_seq
number. Before it begins the negotiation, it sends down an
SADB_GETSPI message with the sadb_msg_seq number equal to the one
received in the ACQUIRE. The kernel returns the results of the
GETSPI to all listening sockets.
KMd->Kernel: SADB_GETSPI for AH, addr, SPI range
Kernel->All: SADB_GETSPI for AH, assoc, addrs
McDonald, et. al. Informational [Page 46]
^L
RFC 2367 PF_KEY Key Management API July 1998
The KMd may perform a second GETSPI operation if it needs both
directions of IPsec SPI values. Now that the KMd has an SPI for at
least one of the security associations, it begins negotiation. After
deriving keying material, and negotiating other parameters, it sends
down one (or more) SADB_UPDATE messages with the same value in
sadb_msg_seq.
If a KMd has any error at all during its negotiation, it can send
down:
KMd->Kernel: SADB_ACQUIRE for AH, assoc (with an error)
Kernel->All: SADB_ACQUIRE for AH, assoc (same error)
but if it succeeds, it can instead:
KMd->Kernel: SADB_UPDATE for AH, assoc, addrs, keys,
<etc.>
Kernel->All: SADB_UPDATE for AH, assoc, addrs, <etc.>
The results of the UPDATE (minus the actual keys) are sent to all
listening sockets. If only one SPI value was determined locally, the
other SPI (since IPsec SAs are unidirectional) must be added with an
SADB_ADD message.
KMd->Kernel: SADB_ADD for AH, assoc, addrs, keys, <etc.>
Kernel->All: SADB_ADD for AH, assoc, addrs, <etc.>
If one of the extensions passed down was a Lifetime extension, it is
possible at some point an SADB_EXPIRE message will arrive when one of
the lifetimes has expired.
Kernel->All: SADB_EXPIRE for AH, assoc, addrs,
Hard or Soft, Current, <etc.>
The KMd can use this as a clue to begin negotiation, or, if it has
some say in policy, send an SADB_UPDATE down with a lifetime
extension.
5.2 Proxy IP Security Example
Many people are interested in using IP Security in a "proxy" or
"firewall" configuration in which an intermediate system provides
security services for "inside" hosts. In these environments, the
intermediate systems can use PF_KEY to communicate with key
management applications almost exactly as they would if they were the
actual endpoints. The messaging behavior of PF_KEY in these cases is
exactly the same as the previous example, but the address information
is slightly different.
McDonald, et. al. Informational [Page 47]
^L
RFC 2367 PF_KEY Key Management API July 1998
Consider this case:
A ========= B --------- C
Key:
A "outside" host that implements IPsec
B "firewall" that implements IPsec
C "inside" host that does not implement IPsec
=== IP_{A<->B} ESP [ IP_{A<->C} ULP ]
--- IP_{A<->C} ULP
A is a single system that wishes to communicate with the "inside"
system C. B is a "firewall" between C and the outside world that
will do ESP and tunneling on C's behalf. A discovers that it needs
to send traffic to C via B through methods not described here (Use of
the DNS' KX record might be one method for discovering this).
For packets that flow from left to right, A and B need an IPsec
Security Association with:
SA type of ESP tunnel-mode
Source Identity that dominates A (e.g. A's address)
Destination Identity that dominates B (e.g. B's address)
Source Address of A
Destination Address of B
For packets to flow from right to left, A and B need an IPsec
Security Association with:
SA type of ESP tunnel-mode
Source Identity that dominates C
Destination Identity that dominates A
Source Address of B
Destination Address of A
Proxy Address of C
For this second SA (for packets flowing from C towards A), node A
MUST verify that the inner source address is dominated by the Source
Identity for the SA used with those packets. If node A does not do
this, an adversary could forge packets with an arbitrary Source
Identity and defeat the packet origin protections provided by IPsec.
Now consider a slightly more complex case:
A_1 --| |-- D_1
|--- B ====== C ---|
A_2 --| |-- D_2
McDonald, et. al. Informational [Page 48]
^L
RFC 2367 PF_KEY Key Management API July 1998
Key:
A_n "inside" host on net 1 that does not do IPsec.
B "firewall" for net 1 that supports IPsec.
C "firewall" for net 2 that supports IPsec.
D_n "inside" host on net 2 that does not do IPsec.
=== IP_{B<->C} ESP [ IP_{A<->C} ULP ]
--- IP_{A<->C} ULP
For A_1 to send a packet to D_1, B and C need an SA with:
SA Type of ESP
Source Identity that dominates A_1
Destination Identity that dominates C
Source Address of B
Destination Address of C
Proxy Address of A_1
For D_1 to send a packet to A_1, C and B need an SA with:
SA Type of ESP Tunnel-mode
Source Identity that dominates D_1
Destination Identity that dominates B
Source Address of C
Destination Address of B
Proxy Address of D_1
Note that A_2 and D_2 could be substituted for A_1 and D_1
(respectively) here; the association of an SA with a particular pair
of ends or group of those pairs is a policy decision on B and/or C
and not necessarily a function of key management. The same check of
the Source Identity against the inner source IP address MUST also be
performed in this case for the same reason.
For a more detailed discussion of the use of IP Security in complex
cases, please see [Atk97].
NOTE: The notion of identity domination might be unfamiliar. Let H
represent some node. Let Hn represent H's fully qualified domain
name. Let Ha represent the IP address of H. Let Hs represent the IP
subnet containing Ha. Let Hd represent a fully qualified domain
name that is a parent of the fully qualified domain name of H. Let
M be a UserFQDN identity that whose right-hand part is Hn or Ha.
Any of M, Hn, Ha, Hs, and Hd is considered to dominate H in the
example above. Hs dominates any node having an IP address within
the IP address range represented by Hs. Hd dominates any node
having a fully qualified domain name within underneath Hd.
McDonald, et. al. Informational [Page 49]
^L
RFC 2367 PF_KEY Key Management API July 1998
5.3 OSPF Security Example
+---------------+ +-------------+
|Key Mgmt Daemon| | OSPF daemon |
+---------------+ +-------------+
| | / / |
| /------|----+ / |
| / | +---+ | Applications
======[PF_KEY]====[PF_INET]===========[PF_ROUTE]================
| | | | OS Kernel
+------------+ +-----------------+ +---------+
| Key Engine | | TCP/IP, | | Routing |
| or SADB |---| including IPsec |--| Table |
+------------+ | | +---------+
+-----------------+
As in the previous examples, the KMd registers itself with the Key
Engine via PF_KEY. Even though the consumer of the security
associations is in user-space, the PF_KEY and Key Engine
implementation knows enough to store SAs and to relay messages.
When the OSPF daemon needs to communicate securely with its peers, it
would perform an SADB_GET message and retrieve the appropriate
association:
OSPFd->Kernel: SADB_GET of OSPF, assoc, addrs
Kernel->OSPFd: SADB_GET of OSPF, assoc, addrs, keys, <etc.>
If this GET fails, the OSPFd may need to acquire a new security
association. This interaction is as follows:
OSPFd->Kernel: SADB_ACQUIRE of OSPF, addrs, <ID, sens,>
proposal
Kernel->Registered: SADB_ACQUIRE of OSPF, <same as sent message>
The KMd sees this and performs actions similar to the previous
example. One difference, however, is that when the UPDATE message
comes back, the OSPFd will then perform a GET of the updated SA to
retrieve all of its parameters.
5.4 Miscellaneous
Some messages work well only in system maintenance programs, for
debugging, or for auditing. In a system panic situation, such as a
detected compromise, an SADB_FLUSH message should be issued for a
particular SA type, or for ALL SA types.
McDonald, et. al. Informational [Page 50]
^L
RFC 2367 PF_KEY Key Management API July 1998
Program->Kernel: SADB_FLUSH for ALL
<Kernel then flushes all internal SAs>
Kernel->All: SADB_FLUSH for ALL
Some SAs may need to be explicitly deleted, either by a KMd, or by a
system maintenance program.
Program->Kernel: SADB_DELETE for AH, association, addrs
Kernel->All: SADB_DELETE for AH, association, addrs
Common usage of the SADB_DUMP message is discouraged. For debugging
purposes, however, it can be quite useful. The output of a DUMP
message should be read quickly, in order to avoid socket buffer
overflows.
Program->Kernel: SADB_DUMP for ESP
Kernel->Program: SADB_DUMP for ESP, association, <all fields>
Kernel->Program: SADB_DUMP for ESP, association, <all fields>
Kernel->Program: SADB_DUMP for ESP, association, <all fields>
<ad nauseam...>
6 Security Considerations
This memo discusses a method for creating, reading, modifying, and
deleting Security Associations from an operating system. Only
trusted, privileged users and processes should be able to perform any
of these operations. It is unclear whether this mechanism provides
any security when used with operating systems not having the concept
of a trusted, privileged user.
If an unprivileged user is able to perform any of these operations,
then the operating system cannot actually provide the related
security services. If an adversary knows the keys and algorithms in
use, then cryptography cannot provide any form of protection.
This mechanism is not a panacea, but it does provide an important
operating system component that can be useful in creating a secure
internetwork.
Users need to understand that the quality of the security provided by
an implementation of this specification depends completely upon the
overall security of the operating system, the correctness of the
PF_KEY implementation, and upon the security and correctness of the
applications that connect to PF_KEY. It is appropriate to use high
assurance development techniques when implementing PF_KEY and the
related security association components of the operating system.
McDonald, et. al. Informational [Page 51]
^L
RFC 2367 PF_KEY Key Management API July 1998
Acknowledgments
The authors of this document are listed primarily in alphabetical
order. Randall Atkinson and Ron Lee provided useful feedback on
earlier versions of this document.
At one time or other, all of the authors worked at the Center for
High Assurance Computer Systems at the U.S. Naval Research
Laboratory. This work was sponsored by the Information Security
Program Office (PMW-161), U.S. Space and Naval Warfare Systems
Command (SPAWAR) and the Computing Systems Technology Office, Defense
Advanced Research Projects Agency (DARPA/CSTO). We really appreciate
their sponsorship of our efforts and their continued support of
PF_KEY development. Without that support, PF_KEY would not exist.
The "CONFORMANCE and COMPLIANCE" wording was taken from [MSST98].
Finally, the authors would like to thank those who sent in comments
and questions on the various iterations of this document. This
specification and implementations of it are discussed on the PF_KEY
mailing list. If you would like to be added to this list, send a note
to <pf_key-request@inner.net>.
References
[AMPMC96] Randall J. Atkinson, Daniel L. McDonald, Bao G. Phan, Craig
W. Metz, and Kenneth C. Chin, "Implementation of IPv6 in 4.4-Lite
BSD", Proceedings of the 1996 USENIX Conference, San Diego, CA,
January 1996, USENIX Association.
[Atk95a] Atkinson, R., "IP Security Architecture", RFC 1825, August
1995.
[Atk95b] Atkinson, R., "IP Authentication Header", RFC 1826, August
1995.
[Atk95c] Atkinson, R., "IP Encapsulating Security Payload", RFC 1827,
August 1995.
[Atk97] Atkinson, R., "Key Exchange Delegation Record for the Domain
Name System", RFC 2230, October 1997.
[BA97] Baker, F., and R. Atkinson, "RIP-2 MD5 Authentication", RFC
2082, January 1997.
[Biba77] K. J. Biba, "Integrity Considerations for Secure Computer
Systems", MTR-3153, The MITRE Corporation, June 1975; ESD-TR-76-372,
April 1977.
McDonald, et. al. Informational [Page 52]
^L
RFC 2367 PF_KEY Key Management API July 1998
[BL74] D. Elliot Bell and Leonard J. LaPadula, "Secure Computer
Systems: Unified Exposition and Multics Interpretation", MTR 2997,
The MITRE Corporation, April 1974. (AD/A 020 445)
[Bra97] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[CW87] D. D. Clark and D. R. Wilson, "A Comparison of Commercial and
Military Computer Security Policies", Proceedings of the 1987
Symposium on Security and Privacy, pp. 184-195, IEEE Computer
Society, Washington, D.C., 1987.
[DIA] US Defense Intelligence Agency (DIA), "Compartmented Mode
Workstation Specification", Technical Report DDS-2600-6243-87.
[GK98] Glenn, R., and S. Kent, "The NULL Encryption Algorithm and Its
Use with IPsec", Work in Progress.
[HM97a] Harney, H., and C. Muckenhirn, "Group Key Management Protocol
(GKMP) Specification", RFC 2093, July 1997.
[HM97b] Harney, H., and C. Muckenhirn, "Group Key Management Protocol
(GKMP) Architecture", RFC 2094, July 1997.
[MD98] Madsen, C., and N. Doraswamy, "The ESP DES-CBC Cipher
Algorithm With Explicit IV", Work in Progress.
[MG98a] Madsen, C., and R. Glenn, "The Use of HMAC-MD5-96 within ESP
and AH", Work in Progress.
[MG98b] Madsen, C., and R. Glenn, "The Use of HMAC-SHA-1-96 within
ESP and AH", Work in Progress.
[MSST98] Maughan, D., Schertler, M., Schneider, M., and J. Turner,
"Internet Security Association and Key Management Protocol (ISAKMP)",
Work in Progress.
[Moy98] Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.
[Per97] Perkins, C., "IP Mobility Support", RFC 2002, October 1996.
[Pip98] Piper, D., "The Internet IP Security Domain of Interpretation
for ISAKMP", Work in Progress.
[Sch96] Bruce Schneier, Applied Cryptography, p. 360, John Wiley &
Sons, Inc., 1996.
McDonald, et. al. Informational [Page 53]
^L
RFC 2367 PF_KEY Key Management API July 1998
[Skl91] Keith Sklower, "A Tree-based Packet Routing Table for
Berkeley UNIX", Proceedings of the Winter 1991 USENIX Conference,
Dallas, TX, USENIX Association. 1991. pp. 93-103.
Disclaimer
The views and specification here are those of the editors and are not
necessarily those of their employers. The employers have not passed
judgment on the merits, if any, of this work. The editors and their
employers specifically disclaim responsibility for any problems
arising from correct or incorrect implementation or use of this
specification.
Authors' Addresses
Daniel L. McDonald
Sun Microsystems, Inc.
901 San Antonio Road, MS UMPK17-202
Palo Alto, CA 94303
Phone: +1 650 786 6815
EMail: danmcd@eng.sun.com
Craig Metz
(for Code 5544)
U.S. Naval Research Laboratory
4555 Overlook Ave. SW
Washington, DC 20375
Phone: (DSN) 754-8590
EMail: cmetz@inner.net
Bao G. Phan
U. S. Naval Research Laboratory
EMail: phan@itd.nrl.navy.mil
McDonald, et. al. Informational [Page 54]
^L
RFC 2367 PF_KEY Key Management API July 1998
Appendix A: Promiscuous Send/Receive Message Type
A kernel supporting PF_KEY MAY implement the following extension for
development and debugging purposes. If it does, it MUST implement the
extension as specified here. An implementation MAY require an
application to have additional privileges to perform promiscuous send
and/or receive operations.
The SADB_X_PROMISC message allows an application to send and receive
messages in a "promiscuous mode." There are two forms of this
message: control and data. The control form consists of only a
message header. This message is used to toggle the promiscuous-
receive function. A value of one in the sadb_msg_satype field enables
promiscuous message reception for this socket, while a value of zero
in that field disables it.
The second form of this message is the data form. This is used to
send or receive messages in their raw form. Messages in the data form
consist of a message header followed by an entire new message. There
will be two message headers in a row: one for the SADB_X_PROMISC
message, and one for the payload message.
Data messages sent from the application are sent to either the PF_KEY
socket of a single process identified by a nonzero sadb_msg_seq or to
all PF_KEY sockets if sadb_msg_seq is zero. These messages are sent
without any processing of their contents by the PF_KEY interface
(including sanity checking). This promiscuous-send capability allows
an application to send messages as if it were the kernel. This also
allows it to send erroneous messages.
If the promiscuous-receive function has been enabled, a copy of any
message sent via PF_KEY by another application or by the kernel is
sent to the promiscuous application. This is done before any
processing of the message's contents by the PF_KEY interface (again,
including sanity checking). This promiscuous-receive capability
allows an application to receive all messages sent by other parties
using PF_KEY.
The messaging behavior of the SADB_X_PROMISC message is:
Send a control-form SADB_X_PROMISC message from a user process
to the kernel.
<base>
The kernel returns the SADB_X_PROMISC message to all listening
processes.
McDonald, et. al. Informational [Page 55]
^L
RFC 2367 PF_KEY Key Management API July 1998
<base>
Send a data-form SADB_X_PROMISC message from a user process to
the kernel.
<base, base(, others)>
The kernel sends the encapsulated message to the target
process(s).
<base(, others)>
If promiscuous-receive is enabled, the kernel will encapsulate
and send copies of all messages sent via the PF_KEY interface.
<base, base(, others)>
Errors:
EPERM Additional privileges are required to perform the
requested operations.
ESRCH (Data form, sending) The target process in sadb_msg_seq
does not exist or does not have an open PF_KEY Version 2
socket.
McDonald, et. al. Informational [Page 56]
^L
RFC 2367 PF_KEY Key Management API July 1998
Appendix B: Passive Change Message Type
The SADB_X_PCHANGE message is a passive-side (aka. the "listener" or
"receiver") counterpart to the SADB_ACQUIRE message. It is useful
for when key management applications wish to more effectively handle
incoming key management requests for passive-side sessions that
deviate from systemwide default security services. If a passive
session requests that only certain levels of security service be
allowed, the SADB_X_PCHANGE message expresses this change to any
registered PF_KEY sockets. Unlike SADB_ACQUIRE, this message is
purely informational, and demands no other PF_KEY interaction.
The SADB_X_PCHANGE message is typically triggered by either a change
in an endpoint's requested security services, or when an endpoint
that made a special request disappears. In the former case, an
SADB_X_PCHANGE looks like an SADB_ACQUIRE, complete with an
sadb_proposal extension indicating the preferred algorithms,
lifetimes, and other attributes. When a passive session either
disappears, or reverts to a default behavior, an SADB_X_PCHANGE will
be issued with _no_ sadb_proposal extension, indicating that the
exception to systemwide default behavior has disappeared.
There are two messaging behaviors for SADB_X_PCHANGE. The first is
the kernel-originated case:
The kernel sends an SADB_X_PCHANGE message to registered
sockets.
<base, address(SD), (identity(SD),) (sensitivity,) (proposal)>
NOTE: The address(SD) extensions MUST have the port fields
filled in with the port numbers of the session
requiring keys if appropriate.
The second is for a user-level consumer of SAs.
Send an SADB_X_PCHANGE message from a user process to the
kernel.
<base, address(SD), (identity(SD),) (sensitivity,) (proposal)>
The kernel returns an SADB_X_PCHANGE message to registered
sockets.
<base, address(SD), (identity(SD),) (sensitivity,) (proposal)>
McDonald, et. al. Informational [Page 57]
^L
RFC 2367 PF_KEY Key Management API July 1998
Appendix C: Key Management Private Data Extension
The Key Management Private Data extension is attached to either an
SADB_ADD or an SADB_UPDATE message. It attaches a single piece of
arbitrary data to a security association. It may be useful for key
managment applications that could use an SADB_DUMP or SADB_GET
message to obtain additional state if it needs to restart or recover
after a crash. The format of this extension is:
#define SADB_X_EXT_KMPRIVATE 17
struct sadb_x_kmprivate {
uint16_t sadb_x_kmprivate_len;
uint16_t sadb_x_kmprivate_exttype;
uint32_t sadb_x_kmprivate_reserved;
};
/* sizeof(struct sadb_x_kmprivate) == 8 */
/* followed by arbitrary data */
The data following the sadb_x_kmprivate extension can be anything.
It will be stored with the actual security association in the kernel.
Like all data, it must be padded to an eight byte boundary.
McDonald, et. al. Informational [Page 58]
^L
RFC 2367 PF_KEY Key Management API July 1998
Appendix D: Sample Header File
/*
This file defines structures and symbols for the PF_KEY Version 2
key management interface. It was written at the U.S. Naval Research
Laboratory. This file is in the public domain. The authors ask that
you leave this credit intact on any copies of this file.
*/
#ifndef __PFKEY_V2_H
#define __PFKEY_V2_H 1
#define PF_KEY_V2 2
#define PFKEYV2_REVISION 199806L
#define SADB_RESERVED 0
#define SADB_GETSPI 1
#define SADB_UPDATE 2
#define SADB_ADD 3
#define SADB_DELETE 4
#define SADB_GET 5
#define SADB_ACQUIRE 6
#define SADB_REGISTER 7
#define SADB_EXPIRE 8
#define SADB_FLUSH 9
#define SADB_DUMP 10
#define SADB_X_PROMISC 11
#define SADB_X_PCHANGE 12
#define SADB_MAX 12
struct sadb_msg {
uint8_t sadb_msg_version;
uint8_t sadb_msg_type;
uint8_t sadb_msg_errno;
uint8_t sadb_msg_satype;
uint16_t sadb_msg_len;
uint16_t sadb_msg_reserved;
uint32_t sadb_msg_seq;
uint32_t sadb_msg_pid;
};
struct sadb_ext {
uint16_t sadb_ext_len;
uint16_t sadb_ext_type;
};
struct sadb_sa {
uint16_t sadb_sa_len;
uint16_t sadb_sa_exttype;
McDonald, et. al. Informational [Page 59]
^L
RFC 2367 PF_KEY Key Management API July 1998
uint32_t sadb_sa_spi;
uint8_t sadb_sa_replay;
uint8_t sadb_sa_state;
uint8_t sadb_sa_auth;
uint8_t sadb_sa_encrypt;
uint32_t sadb_sa_flags;
};
struct sadb_lifetime {
uint16_t sadb_lifetime_len;
uint16_t sadb_lifetime_exttype;
uint32_t sadb_lifetime_allocations;
uint64_t sadb_lifetime_bytes;
uint64_t sadb_lifetime_addtime;
uint64_t sadb_lifetime_usetime;
};
struct sadb_address {
uint16_t sadb_address_len;
uint16_t sadb_address_exttype;
uint8_t sadb_address_proto;
uint8_t sadb_address_prefixlen;
uint16_t sadb_address_reserved;
};
struct sadb_key {
uint16_t sadb_key_len;
uint16_t sadb_key_exttype;
uint16_t sadb_key_bits;
uint16_t sadb_key_reserved;
};
struct sadb_ident {
uint16_t sadb_ident_len;
uint16_t sadb_ident_exttype;
uint16_t sadb_ident_type;
uint16_t sadb_ident_reserved;
uint64_t sadb_ident_id;
};
struct sadb_sens {
uint16_t sadb_sens_len;
uint16_t sadb_sens_exttype;
uint32_t sadb_sens_dpd;
uint8_t sadb_sens_sens_level;
uint8_t sadb_sens_sens_len;
uint8_t sadb_sens_integ_level;
uint8_t sadb_sens_integ_len;
McDonald, et. al. Informational [Page 60]
^L
RFC 2367 PF_KEY Key Management API July 1998
uint32_t sadb_sens_reserved;
};
struct sadb_prop {
uint16_t sadb_prop_len;
uint16_t sadb_prop_exttype;
uint8_t sadb_prop_replay;
uint8_t sadb_prop_reserved[3];
};
struct sadb_comb {
uint8_t sadb_comb_auth;
uint8_t sadb_comb_encrypt;
uint16_t sadb_comb_flags;
uint16_t sadb_comb_auth_minbits;
uint16_t sadb_comb_auth_maxbits;
uint16_t sadb_comb_encrypt_minbits;
uint16_t sadb_comb_encrypt_maxbits;
uint32_t sadb_comb_reserved;
uint32_t sadb_comb_soft_allocations;
uint32_t sadb_comb_hard_allocations;
uint64_t sadb_comb_soft_bytes;
uint64_t sadb_comb_hard_bytes;
uint64_t sadb_comb_soft_addtime;
uint64_t sadb_comb_hard_addtime;
uint64_t sadb_comb_soft_usetime;
uint64_t sadb_comb_hard_usetime;
};
struct sadb_supported {
uint16_t sadb_supported_len;
uint16_t sadb_supported_exttype;
uint32_t sadb_supported_reserved;
};
struct sadb_alg {
uint8_t sadb_alg_id;
uint8_t sadb_alg_ivlen;
uint16_t sadb_alg_minbits;
uint16_t sadb_alg_maxbits;
uint16_t sadb_alg_reserved;
};
struct sadb_spirange {
uint16_t sadb_spirange_len;
uint16_t sadb_spirange_exttype;
uint32_t sadb_spirange_min;
uint32_t sadb_spirange_max;
McDonald, et. al. Informational [Page 61]
^L
RFC 2367 PF_KEY Key Management API July 1998
uint32_t sadb_spirange_reserved;
};
struct sadb_x_kmprivate {
uint16_t sadb_x_kmprivate_len;
uint16_t sadb_x_kmprivate_exttype;
uint32_t sadb_x_kmprivate_reserved;
};
#define SADB_EXT_RESERVED 0
#define SADB_EXT_SA 1
#define SADB_EXT_LIFETIME_CURRENT 2
#define SADB_EXT_LIFETIME_HARD 3
#define SADB_EXT_LIFETIME_SOFT 4
#define SADB_EXT_ADDRESS_SRC 5
#define SADB_EXT_ADDRESS_DST 6
#define SADB_EXT_ADDRESS_PROXY 7
#define SADB_EXT_KEY_AUTH 8
#define SADB_EXT_KEY_ENCRYPT 9
#define SADB_EXT_IDENTITY_SRC 10
#define SADB_EXT_IDENTITY_DST 11
#define SADB_EXT_SENSITIVITY 12
#define SADB_EXT_PROPOSAL 13
#define SADB_EXT_SUPPORTED_AUTH 14
#define SADB_EXT_SUPPORTED_ENCRYPT 15
#define SADB_EXT_SPIRANGE 16
#define SADB_X_EXT_KMPRIVATE 17
#define SADB_EXT_MAX 17
#define SADB_SATYPE_UNSPEC 0
#define SADB_SATYPE_AH 2
#define SADB_SATYPE_ESP 3
#define SADB_SATYPE_RSVP 5
#define SADB_SATYPE_OSPFV2 6
#define SADB_SATYPE_RIPV2 7
#define SADB_SATYPE_MIP 8
#define SADB_SATYPE_MAX 8
#define SADB_SASTATE_LARVAL 0
#define SADB_SASTATE_MATURE 1
#define SADB_SASTATE_DYING 2
#define SADB_SASTATE_DEAD 3
#define SADB_SASTATE_MAX 3
#define SADB_SAFLAGS_PFS 1
#define SADB_AALG_NONE 0
#define SADB_AALG_MD5HMAC 2
#define SADB_AALG_SHA1HMAC 3
McDonald, et. al. Informational [Page 62]
^L
RFC 2367 PF_KEY Key Management API July 1998
#define SADB_AALG_MAX 3
#define SADB_EALG_NONE 0
#define SADB_EALG_DESCBC 2
#define SADB_EALG_3DESCBC 3
#define SADB_EALG_NULL 11
#define SADB_EALG_MAX 11
#define SADB_IDENTTYPE_RESERVED 0
#define SADB_IDENTTYPE_PREFIX 1
#define SADB_IDENTTYPE_FQDN 2
#define SADB_IDENTTYPE_USERFQDN 3
#define SADB_IDENTTYPE_MAX 3
#define SADB_KEY_FLAGS_MAX 0
#endif /* __PFKEY_V2_H */
McDonald, et. al. Informational [Page 63]
^L
RFC 2367 PF_KEY Key Management API July 1998
Appendix E: Change Log
The following changes were made between 05 and 06:
* Last change before becoming an informational RFC. Removed all
Internet-Draft references. Also standardized citation strings.
Now cite RFC 2119 for MUST, etc.
* New appendix on optional KM private data extension.
* Fixed example to indicate the ACQUIRE messages with errno mean
KM failure.
* Added SADB_EALG_NULL.
* Clarified proxy examples to match definition of PROXY address being
the inner packet's source address. (Basically a sign-flip. The
example still shows how to protect against policy vulnerabilities
in tunnel endpoints.)
* Loosened definition of a destination address to include broadcast.
* Recommended that LARVAL security associations have implicit short
lifetimes.
The following changes were made between 04 and 05:
* New appendix on Passive Change message.
* New sadb_address_prefixlen field.
* Small clarifications on sadb_ident_id usage.
* New PFKEYV2_REVISION value.
* Small clarification on what a PROXY address is.
* Corrected sadb_spirange_{min,max} language.
* In ADD messages that are in response to an ACQUIRE, the
sadb_msg_seq MUST be the same as that of the originating ACQUIRE.
* Corrected ACQUIRE message behavior, ACQUIRE message SHOULD send up
PROXY addresses when it needs them.
* Clarification on SADB_EXPIRE and user-level security protocols.
The following changes were made between 03 and 04:
McDonald, et. al. Informational [Page 64]
^L
RFC 2367 PF_KEY Key Management API July 1998
* Stronger language about manual keying.
* PFKEYV2_REVISION, ala POSIX.
* Put in language about sockaddr ports in ACQUIRE messages.
* Mention of asymmetric algorithms.
* New sadb_ident_id field for easier construction of USER_FQDN
identity strings.
* Caveat about source addresses not always used for collision
detection. (e.g. IPsec)
The following changes were made between 02 and 03:
* Formatting changes.
* Many editorial cleanups, rewordings, clarifications.
* Restrictions that prevent many strange and invalid cases.
* Added definitions section.
* Removed connection identity type (this will reappear when it is
more clear what it should look like).
* Removed 5.2.1 (Why involve the kernel?).
* Removed INBOUND, OUTBOUND, and FORWARD flags; they can be computed
from src, dst, and proxy and you had to anyway for sanity checking.
* Removed REPLAY flag; sadb_sa_replay==0 means the same thing.
* Renamed bit lengths to "bits" to avoid potential confusion.
* Explicitly listed lengths for structures.
* Reworked identities to always use a string format.
* Removed requirements for support of shutdown() and SO_USELOOPBACK.
* 64 bit alignment and 64 bit lengths instead of 32 bit.
* time_t replaced with uint64 in lifetimes.
McDonald, et. al. Informational [Page 65]
^L
RFC 2367 PF_KEY Key Management API July 1998
* Inserted Appendix A (SADB_X_PROMISC) and Appendix B (SAMPLE HEADER
FILE).
* Explicit error if PF_KEY_V2 not set at socket() call.
* More text on SO_USELOOPBACK.
* Made fields names and symbol names more consistent.
* Explicit error if PF_KEY_V2 is not in sadb_msg_version field.
* Bytes lifetime field now a 64-bit quantity.
* Explicit len/exttype wording.
* Flattening out of extensions (LIFETIME_HARD, LIFETIME_SOFT, etc.)
* UI example (0x123 == 0x1230 or 0x0123).
* Cleaned up and fixed some message behavior examples.
The following changes were made between 01 and 02:
* Mentioned that people COULD use these same messages between user
progs. (Also mentioned why you still might want to use the actual
socket.)
* Various wordsmithing changes.
* Took out netkey/ directory, and make net/pfkeyv2.h
* Inserted PF_KEY_V2 proto argument per C. Metz.
* Mentioned other socket calls and how their PF_KEY behavior is
undefined.
* SADB_EXPIRE now communicates both hard and soft lifetime expires.
* New "association" extension, even smaller base header.
* Lifetime extension improvements.
* Length now first in extensions.
* Errors can be sent from kernel to user, also.
* Examples section inserted.
McDonald, et. al. Informational [Page 66]
^L
RFC 2367 PF_KEY Key Management API July 1998
* Some bitfield cleanups, including STATE and SA_OPTIONS cleanup.
* Key splitting now only across auth algorithm and encryption
algorithm. Thanks for B. Sommerfeld for clues here.
The following changes were made between 00 and 01:
* Added this change log.
* Simplified TLV header syntax.
* Splitting of algorithms. This may be controversial, but it allows
PF_KEY to be used for more than just IPsec. It also allows some
kinds of policies to be placed in the KMd easier.
* Added solid definitions and formats for certificate identities,
multiple keys, etc.
* Specified how keys are to be layed out (most-to-least bits).
* Changed sequence number semantics to be like an RPC transaction ID
number.
McDonald, et. al. Informational [Page 67]
^L
RFC 2367 PF_KEY Key Management API July 1998
F. Full Copyright Statement
Copyright (C) The Internet Society (1998). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
McDonald, et. al. Informational [Page 68]
^L
|