1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
|
Network Working Group T. Berners-Lee
Request for Comments: 2396 MIT/LCS
Updates: 1808, 1738 R. Fielding
Category: Standards Track U.C. Irvine
L. Masinter
Xerox Corporation
August 1998
Uniform Resource Identifiers (URI): Generic Syntax
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (1998). All Rights Reserved.
IESG Note
This paper describes a "superset" of operations that can be applied
to URI. It consists of both a grammar and a description of basic
functionality for URI. To understand what is a valid URI, both the
grammar and the associated description have to be studied. Some of
the functionality described is not applicable to all URI schemes, and
some operations are only possible when certain media types are
retrieved using the URI, regardless of the scheme used.
Abstract
A Uniform Resource Identifier (URI) is a compact string of characters
for identifying an abstract or physical resource. This document
defines the generic syntax of URI, including both absolute and
relative forms, and guidelines for their use; it revises and replaces
the generic definitions in RFC 1738 and RFC 1808.
This document defines a grammar that is a superset of all valid URI,
such that an implementation can parse the common components of a URI
reference without knowing the scheme-specific requirements of every
possible identifier type. This document does not define a generative
grammar for URI; that task will be performed by the individual
specifications of each URI scheme.
Berners-Lee, et. al. Standards Track [Page 1]
^L
RFC 2396 URI Generic Syntax August 1998
1. Introduction
Uniform Resource Identifiers (URI) provide a simple and extensible
means for identifying a resource. This specification of URI syntax
and semantics is derived from concepts introduced by the World Wide
Web global information initiative, whose use of such objects dates
from 1990 and is described in "Universal Resource Identifiers in WWW"
[RFC1630]. The specification of URI is designed to meet the
recommendations laid out in "Functional Recommendations for Internet
Resource Locators" [RFC1736] and "Functional Requirements for Uniform
Resource Names" [RFC1737].
This document updates and merges "Uniform Resource Locators"
[RFC1738] and "Relative Uniform Resource Locators" [RFC1808] in order
to define a single, generic syntax for all URI. It excludes those
portions of RFC 1738 that defined the specific syntax of individual
URL schemes; those portions will be updated as separate documents, as
will the process for registration of new URI schemes. This document
does not discuss the issues and recommendation for dealing with
characters outside of the US-ASCII character set [ASCII]; those
recommendations are discussed in a separate document.
All significant changes from the prior RFCs are noted in Appendix G.
1.1 Overview of URI
URI are characterized by the following definitions:
Uniform
Uniformity provides several benefits: it allows different types
of resource identifiers to be used in the same context, even
when the mechanisms used to access those resources may differ;
it allows uniform semantic interpretation of common syntactic
conventions across different types of resource identifiers; it
allows introduction of new types of resource identifiers
without interfering with the way that existing identifiers are
used; and, it allows the identifiers to be reused in many
different contexts, thus permitting new applications or
protocols to leverage a pre-existing, large, and widely-used
set of resource identifiers.
Resource
A resource can be anything that has identity. Familiar
examples include an electronic document, an image, a service
(e.g., "today's weather report for Los Angeles"), and a
collection of other resources. Not all resources are network
"retrievable"; e.g., human beings, corporations, and bound
books in a library can also be considered resources.
Berners-Lee, et. al. Standards Track [Page 2]
^L
RFC 2396 URI Generic Syntax August 1998
The resource is the conceptual mapping to an entity or set of
entities, not necessarily the entity which corresponds to that
mapping at any particular instance in time. Thus, a resource
can remain constant even when its content---the entities to
which it currently corresponds---changes over time, provided
that the conceptual mapping is not changed in the process.
Identifier
An identifier is an object that can act as a reference to
something that has identity. In the case of URI, the object is
a sequence of characters with a restricted syntax.
Having identified a resource, a system may perform a variety of
operations on the resource, as might be characterized by such words
as `access', `update', `replace', or `find attributes'.
1.2. URI, URL, and URN
A URI can be further classified as a locator, a name, or both. The
term "Uniform Resource Locator" (URL) refers to the subset of URI
that identify resources via a representation of their primary access
mechanism (e.g., their network "location"), rather than identifying
the resource by name or by some other attribute(s) of that resource.
The term "Uniform Resource Name" (URN) refers to the subset of URI
that are required to remain globally unique and persistent even when
the resource ceases to exist or becomes unavailable.
The URI scheme (Section 3.1) defines the namespace of the URI, and
thus may further restrict the syntax and semantics of identifiers
using that scheme. This specification defines those elements of the
URI syntax that are either required of all URI schemes or are common
to many URI schemes. It thus defines the syntax and semantics that
are needed to implement a scheme-independent parsing mechanism for
URI references, such that the scheme-dependent handling of a URI can
be postponed until the scheme-dependent semantics are needed. We use
the term URL below when describing syntax or semantics that only
apply to locators.
Although many URL schemes are named after protocols, this does not
imply that the only way to access the URL's resource is via the named
protocol. Gateways, proxies, caches, and name resolution services
might be used to access some resources, independent of the protocol
of their origin, and the resolution of some URL may require the use
of more than one protocol (e.g., both DNS and HTTP are typically used
to access an "http" URL's resource when it can't be found in a local
cache).
Berners-Lee, et. al. Standards Track [Page 3]
^L
RFC 2396 URI Generic Syntax August 1998
A URN differs from a URL in that it's primary purpose is persistent
labeling of a resource with an identifier. That identifier is drawn
from one of a set of defined namespaces, each of which has its own
set name structure and assignment procedures. The "urn" scheme has
been reserved to establish the requirements for a standardized URN
namespace, as defined in "URN Syntax" [RFC2141] and its related
specifications.
Most of the examples in this specification demonstrate URL, since
they allow the most varied use of the syntax and often have a
hierarchical namespace. A parser of the URI syntax is capable of
parsing both URL and URN references as a generic URI; once the scheme
is determined, the scheme-specific parsing can be performed on the
generic URI components. In other words, the URI syntax is a superset
of the syntax of all URI schemes.
1.3. Example URI
The following examples illustrate URI that are in common use.
ftp://ftp.is.co.za/rfc/rfc1808.txt
-- ftp scheme for File Transfer Protocol services
gopher://spinaltap.micro.umn.edu/00/Weather/California/Los%20Angeles
-- gopher scheme for Gopher and Gopher+ Protocol services
http://www.math.uio.no/faq/compression-faq/part1.html
-- http scheme for Hypertext Transfer Protocol services
mailto:mduerst@ifi.unizh.ch
-- mailto scheme for electronic mail addresses
news:comp.infosystems.www.servers.unix
-- news scheme for USENET news groups and articles
telnet://melvyl.ucop.edu/
-- telnet scheme for interactive services via the TELNET Protocol
1.4. Hierarchical URI and Relative Forms
An absolute identifier refers to a resource independent of the
context in which the identifier is used. In contrast, a relative
identifier refers to a resource by describing the difference within a
hierarchical namespace between the current context and an absolute
identifier of the resource.
Berners-Lee, et. al. Standards Track [Page 4]
^L
RFC 2396 URI Generic Syntax August 1998
Some URI schemes support a hierarchical naming system, where the
hierarchy of the name is denoted by a "/" delimiter separating the
components in the scheme. This document defines a scheme-independent
`relative' form of URI reference that can be used in conjunction with
a `base' URI (of a hierarchical scheme) to produce another URI. The
syntax of hierarchical URI is described in Section 3; the relative
URI calculation is described in Section 5.
1.5. URI Transcribability
The URI syntax was designed with global transcribability as one of
its main concerns. A URI is a sequence of characters from a very
limited set, i.e. the letters of the basic Latin alphabet, digits,
and a few special characters. A URI may be represented in a variety
of ways: e.g., ink on paper, pixels on a screen, or a sequence of
octets in a coded character set. The interpretation of a URI depends
only on the characters used and not how those characters are
represented in a network protocol.
The goal of transcribability can be described by a simple scenario.
Imagine two colleagues, Sam and Kim, sitting in a pub at an
international conference and exchanging research ideas. Sam asks Kim
for a location to get more information, so Kim writes the URI for the
research site on a napkin. Upon returning home, Sam takes out the
napkin and types the URI into a computer, which then retrieves the
information to which Kim referred.
There are several design concerns revealed by the scenario:
o A URI is a sequence of characters, which is not always
represented as a sequence of octets.
o A URI may be transcribed from a non-network source, and thus
should consist of characters that are most likely to be able to
be typed into a computer, within the constraints imposed by
keyboards (and related input devices) across languages and
locales.
o A URI often needs to be remembered by people, and it is easier
for people to remember a URI when it consists of meaningful
components.
These design concerns are not always in alignment. For example, it
is often the case that the most meaningful name for a URI component
would require characters that cannot be typed into some systems. The
ability to transcribe the resource identifier from one medium to
another was considered more important than having its URI consist of
the most meaningful of components. In local and regional contexts
Berners-Lee, et. al. Standards Track [Page 5]
^L
RFC 2396 URI Generic Syntax August 1998
and with improving technology, users might benefit from being able to
use a wider range of characters; such use is not defined in this
document.
1.6. Syntax Notation and Common Elements
This document uses two conventions to describe and define the syntax
for URI. The first, called the layout form, is a general description
of the order of components and component separators, as in
<first>/<second>;<third>?<fourth>
The component names are enclosed in angle-brackets and any characters
outside angle-brackets are literal separators. Whitespace should be
ignored. These descriptions are used informally and do not define
the syntax requirements.
The second convention is a BNF-like grammar, used to define the
formal URI syntax. The grammar is that of [RFC822], except that "|"
is used to designate alternatives. Briefly, rules are separated from
definitions by an equal "=", indentation is used to continue a rule
definition over more than one line, literals are quoted with "",
parentheses "(" and ")" are used to group elements, optional elements
are enclosed in "[" and "]" brackets, and elements may be preceded
with <n>* to designate n or more repetitions of the following
element; n defaults to 0.
Unlike many specifications that use a BNF-like grammar to define the
bytes (octets) allowed by a protocol, the URI grammar is defined in
terms of characters. Each literal in the grammar corresponds to the
character it represents, rather than to the octet encoding of that
character in any particular coded character set. How a URI is
represented in terms of bits and bytes on the wire is dependent upon
the character encoding of the protocol used to transport it, or the
charset of the document which contains it.
The following definitions are common to many elements:
alpha = lowalpha | upalpha
lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" |
"j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" |
"s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"
upalpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" |
"J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" |
"S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"
Berners-Lee, et. al. Standards Track [Page 6]
^L
RFC 2396 URI Generic Syntax August 1998
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |
"8" | "9"
alphanum = alpha | digit
The complete URI syntax is collected in Appendix A.
2. URI Characters and Escape Sequences
URI consist of a restricted set of characters, primarily chosen to
aid transcribability and usability both in computer systems and in
non-computer communications. Characters used conventionally as
delimiters around URI were excluded. The restricted set of
characters consists of digits, letters, and a few graphic symbols
were chosen from those common to most of the character encodings and
input facilities available to Internet users.
uric = reserved | unreserved | escaped
Within a URI, characters are either used as delimiters, or to
represent strings of data (octets) within the delimited portions.
Octets are either represented directly by a character (using the US-
ASCII character for that octet [ASCII]) or by an escape encoding.
This representation is elaborated below.
2.1 URI and non-ASCII characters
The relationship between URI and characters has been a source of
confusion for characters that are not part of US-ASCII. To describe
the relationship, it is useful to distinguish between a "character"
(as a distinguishable semantic entity) and an "octet" (an 8-bit
byte). There are two mappings, one from URI characters to octets, and
a second from octets to original characters:
URI character sequence->octet sequence->original character sequence
A URI is represented as a sequence of characters, not as a sequence
of octets. That is because URI might be "transported" by means that
are not through a computer network, e.g., printed on paper, read over
the radio, etc.
A URI scheme may define a mapping from URI characters to octets;
whether this is done depends on the scheme. Commonly, within a
delimited component of a URI, a sequence of characters may be used to
represent a sequence of octets. For example, the character "a"
represents the octet 97 (decimal), while the character sequence "%",
"0", "a" represents the octet 10 (decimal).
Berners-Lee, et. al. Standards Track [Page 7]
^L
RFC 2396 URI Generic Syntax August 1998
There is a second translation for some resources: the sequence of
octets defined by a component of the URI is subsequently used to
represent a sequence of characters. A 'charset' defines this mapping.
There are many charsets in use in Internet protocols. For example,
UTF-8 [UTF-8] defines a mapping from sequences of octets to sequences
of characters in the repertoire of ISO 10646.
In the simplest case, the original character sequence contains only
characters that are defined in US-ASCII, and the two levels of
mapping are simple and easily invertible: each 'original character'
is represented as the octet for the US-ASCII code for it, which is,
in turn, represented as either the US-ASCII character, or else the
"%" escape sequence for that octet.
For original character sequences that contain non-ASCII characters,
however, the situation is more difficult. Internet protocols that
transmit octet sequences intended to represent character sequences
are expected to provide some way of identifying the charset used, if
there might be more than one [RFC2277]. However, there is currently
no provision within the generic URI syntax to accomplish this
identification. An individual URI scheme may require a single
charset, define a default charset, or provide a way to indicate the
charset used.
It is expected that a systematic treatment of character encoding
within URI will be developed as a future modification of this
specification.
2.2. Reserved Characters
Many URI include components consisting of or delimited by, certain
special characters. These characters are called "reserved", since
their usage within the URI component is limited to their reserved
purpose. If the data for a URI component would conflict with the
reserved purpose, then the conflicting data must be escaped before
forming the URI.
reserved = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" |
"$" | ","
The "reserved" syntax class above refers to those characters that are
allowed within a URI, but which may not be allowed within a
particular component of the generic URI syntax; they are used as
delimiters of the components described in Section 3.
Berners-Lee, et. al. Standards Track [Page 8]
^L
RFC 2396 URI Generic Syntax August 1998
Characters in the "reserved" set are not reserved in all contexts.
The set of characters actually reserved within any given URI
component is defined by that component. In general, a character is
reserved if the semantics of the URI changes if the character is
replaced with its escaped US-ASCII encoding.
2.3. Unreserved Characters
Data characters that are allowed in a URI but do not have a reserved
purpose are called unreserved. These include upper and lower case
letters, decimal digits, and a limited set of punctuation marks and
symbols.
unreserved = alphanum | mark
mark = "-" | "_" | "." | "!" | "~" | "*" | "'" | "(" | ")"
Unreserved characters can be escaped without changing the semantics
of the URI, but this should not be done unless the URI is being used
in a context that does not allow the unescaped character to appear.
2.4. Escape Sequences
Data must be escaped if it does not have a representation using an
unreserved character; this includes data that does not correspond to
a printable character of the US-ASCII coded character set, or that
corresponds to any US-ASCII character that is disallowed, as
explained below.
2.4.1. Escaped Encoding
An escaped octet is encoded as a character triplet, consisting of the
percent character "%" followed by the two hexadecimal digits
representing the octet code. For example, "%20" is the escaped
encoding for the US-ASCII space character.
escaped = "%" hex hex
hex = digit | "A" | "B" | "C" | "D" | "E" | "F" |
"a" | "b" | "c" | "d" | "e" | "f"
2.4.2. When to Escape and Unescape
A URI is always in an "escaped" form, since escaping or unescaping a
completed URI might change its semantics. Normally, the only time
escape encodings can safely be made is when the URI is being created
from its component parts; each component may have its own set of
characters that are reserved, so only the mechanism responsible for
generating or interpreting that component can determine whether or
Berners-Lee, et. al. Standards Track [Page 9]
^L
RFC 2396 URI Generic Syntax August 1998
not escaping a character will change its semantics. Likewise, a URI
must be separated into its components before the escaped characters
within those components can be safely decoded.
In some cases, data that could be represented by an unreserved
character may appear escaped; for example, some of the unreserved
"mark" characters are automatically escaped by some systems. If the
given URI scheme defines a canonicalization algorithm, then
unreserved characters may be unescaped according to that algorithm.
For example, "%7e" is sometimes used instead of "~" in an http URL
path, but the two are equivalent for an http URL.
Because the percent "%" character always has the reserved purpose of
being the escape indicator, it must be escaped as "%25" in order to
be used as data within a URI. Implementers should be careful not to
escape or unescape the same string more than once, since unescaping
an already unescaped string might lead to misinterpreting a percent
data character as another escaped character, or vice versa in the
case of escaping an already escaped string.
2.4.3. Excluded US-ASCII Characters
Although they are disallowed within the URI syntax, we include here a
description of those US-ASCII characters that have been excluded and
the reasons for their exclusion.
The control characters in the US-ASCII coded character set are not
used within a URI, both because they are non-printable and because
they are likely to be misinterpreted by some control mechanisms.
control = <US-ASCII coded characters 00-1F and 7F hexadecimal>
The space character is excluded because significant spaces may
disappear and insignificant spaces may be introduced when URI are
transcribed or typeset or subjected to the treatment of word-
processing programs. Whitespace is also used to delimit URI in many
contexts.
space = <US-ASCII coded character 20 hexadecimal>
The angle-bracket "<" and ">" and double-quote (") characters are
excluded because they are often used as the delimiters around URI in
text documents and protocol fields. The character "#" is excluded
because it is used to delimit a URI from a fragment identifier in URI
references (Section 4). The percent character "%" is excluded because
it is used for the encoding of escaped characters.
delims = "<" | ">" | "#" | "%" | <">
Berners-Lee, et. al. Standards Track [Page 10]
^L
RFC 2396 URI Generic Syntax August 1998
Other characters are excluded because gateways and other transport
agents are known to sometimes modify such characters, or they are
used as delimiters.
unwise = "{" | "}" | "|" | "\" | "^" | "[" | "]" | "`"
Data corresponding to excluded characters must be escaped in order to
be properly represented within a URI.
3. URI Syntactic Components
The URI syntax is dependent upon the scheme. In general, absolute
URI are written as follows:
<scheme>:<scheme-specific-part>
An absolute URI contains the name of the scheme being used (<scheme>)
followed by a colon (":") and then a string (the <scheme-specific-
part>) whose interpretation depends on the scheme.
The URI syntax does not require that the scheme-specific-part have
any general structure or set of semantics which is common among all
URI. However, a subset of URI do share a common syntax for
representing hierarchical relationships within the namespace. This
"generic URI" syntax consists of a sequence of four main components:
<scheme>://<authority><path>?<query>
each of which, except <scheme>, may be absent from a particular URI.
For example, some URI schemes do not allow an <authority> component,
and others do not use a <query> component.
absoluteURI = scheme ":" ( hier_part | opaque_part )
URI that are hierarchical in nature use the slash "/" character for
separating hierarchical components. For some file systems, a "/"
character (used to denote the hierarchical structure of a URI) is the
delimiter used to construct a file name hierarchy, and thus the URI
path will look similar to a file pathname. This does NOT imply that
the resource is a file or that the URI maps to an actual filesystem
pathname.
hier_part = ( net_path | abs_path ) [ "?" query ]
net_path = "//" authority [ abs_path ]
abs_path = "/" path_segments
Berners-Lee, et. al. Standards Track [Page 11]
^L
RFC 2396 URI Generic Syntax August 1998
URI that do not make use of the slash "/" character for separating
hierarchical components are considered opaque by the generic URI
parser.
opaque_part = uric_no_slash *uric
uric_no_slash = unreserved | escaped | ";" | "?" | ":" | "@" |
"&" | "=" | "+" | "$" | ","
We use the term <path> to refer to both the <abs_path> and
<opaque_part> constructs, since they are mutually exclusive for any
given URI and can be parsed as a single component.
3.1. Scheme Component
Just as there are many different methods of access to resources,
there are a variety of schemes for identifying such resources. The
URI syntax consists of a sequence of components separated by reserved
characters, with the first component defining the semantics for the
remainder of the URI string.
Scheme names consist of a sequence of characters beginning with a
lower case letter and followed by any combination of lower case
letters, digits, plus ("+"), period ("."), or hyphen ("-"). For
resiliency, programs interpreting URI should treat upper case letters
as equivalent to lower case in scheme names (e.g., allow "HTTP" as
well as "http").
scheme = alpha *( alpha | digit | "+" | "-" | "." )
Relative URI references are distinguished from absolute URI in that
they do not begin with a scheme name. Instead, the scheme is
inherited from the base URI, as described in Section 5.2.
3.2. Authority Component
Many URI schemes include a top hierarchical element for a naming
authority, such that the namespace defined by the remainder of the
URI is governed by that authority. This authority component is
typically defined by an Internet-based server or a scheme-specific
registry of naming authorities.
authority = server | reg_name
The authority component is preceded by a double slash "//" and is
terminated by the next slash "/", question-mark "?", or by the end of
the URI. Within the authority component, the characters ";", ":",
"@", "?", and "/" are reserved.
Berners-Lee, et. al. Standards Track [Page 12]
^L
RFC 2396 URI Generic Syntax August 1998
An authority component is not required for a URI scheme to make use
of relative references. A base URI without an authority component
implies that any relative reference will also be without an authority
component.
3.2.1. Registry-based Naming Authority
The structure of a registry-based naming authority is specific to the
URI scheme, but constrained to the allowed characters for an
authority component.
reg_name = 1*( unreserved | escaped | "$" | "," |
";" | ":" | "@" | "&" | "=" | "+" )
3.2.2. Server-based Naming Authority
URL schemes that involve the direct use of an IP-based protocol to a
specified server on the Internet use a common syntax for the server
component of the URI's scheme-specific data:
<userinfo>@<host>:<port>
where <userinfo> may consist of a user name and, optionally, scheme-
specific information about how to gain authorization to access the
server. The parts "<userinfo>@" and ":<port>" may be omitted.
server = [ [ userinfo "@" ] hostport ]
The user information, if present, is followed by a commercial at-sign
"@".
userinfo = *( unreserved | escaped |
";" | ":" | "&" | "=" | "+" | "$" | "," )
Some URL schemes use the format "user:password" in the userinfo
field. This practice is NOT RECOMMENDED, because the passing of
authentication information in clear text (such as URI) has proven to
be a security risk in almost every case where it has been used.
The host is a domain name of a network host, or its IPv4 address as a
set of four decimal digit groups separated by ".". Literal IPv6
addresses are not supported.
hostport = host [ ":" port ]
host = hostname | IPv4address
hostname = *( domainlabel "." ) toplabel [ "." ]
domainlabel = alphanum | alphanum *( alphanum | "-" ) alphanum
toplabel = alpha | alpha *( alphanum | "-" ) alphanum
Berners-Lee, et. al. Standards Track [Page 13]
^L
RFC 2396 URI Generic Syntax August 1998
IPv4address = 1*digit "." 1*digit "." 1*digit "." 1*digit
port = *digit
Hostnames take the form described in Section 3 of [RFC1034] and
Section 2.1 of [RFC1123]: a sequence of domain labels separated by
".", each domain label starting and ending with an alphanumeric
character and possibly also containing "-" characters. The rightmost
domain label of a fully qualified domain name will never start with a
digit, thus syntactically distinguishing domain names from IPv4
addresses, and may be followed by a single "." if it is necessary to
distinguish between the complete domain name and any local domain.
To actually be "Uniform" as a resource locator, a URL hostname should
be a fully qualified domain name. In practice, however, the host
component may be a local domain literal.
Note: A suitable representation for including a literal IPv6
address as the host part of a URL is desired, but has not yet been
determined or implemented in practice.
The port is the network port number for the server. Most schemes
designate protocols that have a default port number. Another port
number may optionally be supplied, in decimal, separated from the
host by a colon. If the port is omitted, the default port number is
assumed.
3.3. Path Component
The path component contains data, specific to the authority (or the
scheme if there is no authority component), identifying the resource
within the scope of that scheme and authority.
path = [ abs_path | opaque_part ]
path_segments = segment *( "/" segment )
segment = *pchar *( ";" param )
param = *pchar
pchar = unreserved | escaped |
":" | "@" | "&" | "=" | "+" | "$" | ","
The path may consist of a sequence of path segments separated by a
single slash "/" character. Within a path segment, the characters
"/", ";", "=", and "?" are reserved. Each path segment may include a
sequence of parameters, indicated by the semicolon ";" character.
The parameters are not significant to the parsing of relative
references.
Berners-Lee, et. al. Standards Track [Page 14]
^L
RFC 2396 URI Generic Syntax August 1998
3.4. Query Component
The query component is a string of information to be interpreted by
the resource.
query = *uric
Within a query component, the characters ";", "/", "?", ":", "@",
"&", "=", "+", ",", and "$" are reserved.
4. URI References
The term "URI-reference" is used here to denote the common usage of a
resource identifier. A URI reference may be absolute or relative,
and may have additional information attached in the form of a
fragment identifier. However, "the URI" that results from such a
reference includes only the absolute URI after the fragment
identifier (if any) is removed and after any relative URI is resolved
to its absolute form. Although it is possible to limit the
discussion of URI syntax and semantics to that of the absolute
result, most usage of URI is within general URI references, and it is
impossible to obtain the URI from such a reference without also
parsing the fragment and resolving the relative form.
URI-reference = [ absoluteURI | relativeURI ] [ "#" fragment ]
The syntax for relative URI is a shortened form of that for absolute
URI, where some prefix of the URI is missing and certain path
components ("." and "..") have a special meaning when, and only when,
interpreting a relative path. The relative URI syntax is defined in
Section 5.
4.1. Fragment Identifier
When a URI reference is used to perform a retrieval action on the
identified resource, the optional fragment identifier, separated from
the URI by a crosshatch ("#") character, consists of additional
reference information to be interpreted by the user agent after the
retrieval action has been successfully completed. As such, it is not
part of a URI, but is often used in conjunction with a URI.
fragment = *uric
The semantics of a fragment identifier is a property of the data
resulting from a retrieval action, regardless of the type of URI used
in the reference. Therefore, the format and interpretation of
fragment identifiers is dependent on the media type [RFC2046] of the
retrieval result. The character restrictions described in Section 2
Berners-Lee, et. al. Standards Track [Page 15]
^L
RFC 2396 URI Generic Syntax August 1998
for URI also apply to the fragment in a URI-reference. Individual
media types may define additional restrictions or structure within
the fragment for specifying different types of "partial views" that
can be identified within that media type.
A fragment identifier is only meaningful when a URI reference is
intended for retrieval and the result of that retrieval is a document
for which the identified fragment is consistently defined.
4.2. Same-document References
A URI reference that does not contain a URI is a reference to the
current document. In other words, an empty URI reference within a
document is interpreted as a reference to the start of that document,
and a reference containing only a fragment identifier is a reference
to the identified fragment of that document. Traversal of such a
reference should not result in an additional retrieval action.
However, if the URI reference occurs in a context that is always
intended to result in a new request, as in the case of HTML's FORM
element, then an empty URI reference represents the base URI of the
current document and should be replaced by that URI when transformed
into a request.
4.3. Parsing a URI Reference
A URI reference is typically parsed according to the four main
components and fragment identifier in order to determine what
components are present and whether the reference is relative or
absolute. The individual components are then parsed for their
subparts and, if not opaque, to verify their validity.
Although the BNF defines what is allowed in each component, it is
ambiguous in terms of differentiating between an authority component
and a path component that begins with two slash characters. The
greedy algorithm is used for disambiguation: the left-most matching
rule soaks up as much of the URI reference string as it is capable of
matching. In other words, the authority component wins.
Readers familiar with regular expressions should see Appendix B for a
concrete parsing example and test oracle.
5. Relative URI References
It is often the case that a group or "tree" of documents has been
constructed to serve a common purpose; the vast majority of URI in
these documents point to resources within the tree rather than
Berners-Lee, et. al. Standards Track [Page 16]
^L
RFC 2396 URI Generic Syntax August 1998
outside of it. Similarly, documents located at a particular site are
much more likely to refer to other resources at that site than to
resources at remote sites.
Relative addressing of URI allows document trees to be partially
independent of their location and access scheme. For instance, it is
possible for a single set of hypertext documents to be simultaneously
accessible and traversable via each of the "file", "http", and "ftp"
schemes if the documents refer to each other using relative URI.
Furthermore, such document trees can be moved, as a whole, without
changing any of the relative references. Experience within the WWW
has demonstrated that the ability to perform relative referencing is
necessary for the long-term usability of embedded URI.
The syntax for relative URI takes advantage of the <hier_part> syntax
of <absoluteURI> (Section 3) in order to express a reference that is
relative to the namespace of another hierarchical URI.
relativeURI = ( net_path | abs_path | rel_path ) [ "?" query ]
A relative reference beginning with two slash characters is termed a
network-path reference, as defined by <net_path> in Section 3. Such
references are rarely used.
A relative reference beginning with a single slash character is
termed an absolute-path reference, as defined by <abs_path> in
Section 3.
A relative reference that does not begin with a scheme name or a
slash character is termed a relative-path reference.
rel_path = rel_segment [ abs_path ]
rel_segment = 1*( unreserved | escaped |
";" | "@" | "&" | "=" | "+" | "$" | "," )
Within a relative-path reference, the complete path segments "." and
".." have special meanings: "the current hierarchy level" and "the
level above this hierarchy level", respectively. Although this is
very similar to their use within Unix-based filesystems to indicate
directory levels, these path components are only considered special
when resolving a relative-path reference to its absolute form
(Section 5.2).
Authors should be aware that a path segment which contains a colon
character cannot be used as the first segment of a relative URI path
(e.g., "this:that"), because it would be mistaken for a scheme name.
Berners-Lee, et. al. Standards Track [Page 17]
^L
RFC 2396 URI Generic Syntax August 1998
It is therefore necessary to precede such segments with other
segments (e.g., "./this:that") in order for them to be referenced as
a relative path.
It is not necessary for all URI within a given scheme to be
restricted to the <hier_part> syntax, since the hierarchical
properties of that syntax are only necessary when relative URI are
used within a particular document. Documents can only make use of
relative URI when their base URI fits within the <hier_part> syntax.
It is assumed that any document which contains a relative reference
will also have a base URI that obeys the syntax. In other words,
relative URI cannot be used within a document that has an unsuitable
base URI.
Some URI schemes do not allow a hierarchical syntax matching the
<hier_part> syntax, and thus cannot use relative references.
5.1. Establishing a Base URI
The term "relative URI" implies that there exists some absolute "base
URI" against which the relative reference is applied. Indeed, the
base URI is necessary to define the semantics of any relative URI
reference; without it, a relative reference is meaningless. In order
for relative URI to be usable within a document, the base URI of that
document must be known to the parser.
The base URI of a document can be established in one of four ways,
listed below in order of precedence. The order of precedence can be
thought of in terms of layers, where the innermost defined base URI
has the highest precedence. This can be visualized graphically as:
.----------------------------------------------------------.
| .----------------------------------------------------. |
| | .----------------------------------------------. | |
| | | .----------------------------------------. | | |
| | | | .----------------------------------. | | | |
| | | | | <relative_reference> | | | | |
| | | | `----------------------------------' | | | |
| | | | (5.1.1) Base URI embedded in the | | | |
| | | | document's content | | | |
| | | `----------------------------------------' | | |
| | | (5.1.2) Base URI of the encapsulating entity | | |
| | | (message, document, or none). | | |
| | `----------------------------------------------' | |
| | (5.1.3) URI used to retrieve the entity | |
| `----------------------------------------------------' |
| (5.1.4) Default Base URI is application-dependent |
`----------------------------------------------------------'
Berners-Lee, et. al. Standards Track [Page 18]
^L
RFC 2396 URI Generic Syntax August 1998
5.1.1. Base URI within Document Content
Within certain document media types, the base URI of the document can
be embedded within the content itself such that it can be readily
obtained by a parser. This can be useful for descriptive documents,
such as tables of content, which may be transmitted to others through
protocols other than their usual retrieval context (e.g., E-Mail or
USENET news).
It is beyond the scope of this document to specify how, for each
media type, the base URI can be embedded. It is assumed that user
agents manipulating such media types will be able to obtain the
appropriate syntax from that media type's specification. An example
of how the base URI can be embedded in the Hypertext Markup Language
(HTML) [RFC1866] is provided in Appendix D.
A mechanism for embedding the base URI within MIME container types
(e.g., the message and multipart types) is defined by MHTML
[RFC2110]. Protocols that do not use the MIME message header syntax,
but which do allow some form of tagged metainformation to be included
within messages, may define their own syntax for defining the base
URI as part of a message.
5.1.2. Base URI from the Encapsulating Entity
If no base URI is embedded, the base URI of a document is defined by
the document's retrieval context. For a document that is enclosed
within another entity (such as a message or another document), the
retrieval context is that entity; thus, the default base URI of the
document is the base URI of the entity in which the document is
encapsulated.
5.1.3. Base URI from the Retrieval URI
If no base URI is embedded and the document is not encapsulated
within some other entity (e.g., the top level of a composite entity),
then, if a URI was used to retrieve the base document, that URI shall
be considered the base URI. Note that if the retrieval was the
result of a redirected request, the last URI used (i.e., that which
resulted in the actual retrieval of the document) is the base URI.
5.1.4. Default Base URI
If none of the conditions described in Sections 5.1.1--5.1.3 apply,
then the base URI is defined by the context of the application.
Since this definition is necessarily application-dependent, failing
Berners-Lee, et. al. Standards Track [Page 19]
^L
RFC 2396 URI Generic Syntax August 1998
to define the base URI using one of the other methods may result in
the same content being interpreted differently by different types of
application.
It is the responsibility of the distributor(s) of a document
containing relative URI to ensure that the base URI for that document
can be established. It must be emphasized that relative URI cannot
be used reliably in situations where the document's base URI is not
well-defined.
5.2. Resolving Relative References to Absolute Form
This section describes an example algorithm for resolving URI
references that might be relative to a given base URI.
The base URI is established according to the rules of Section 5.1 and
parsed into the four main components as described in Section 3. Note
that only the scheme component is required to be present in the base
URI; the other components may be empty or undefined. A component is
undefined if its preceding separator does not appear in the URI
reference; the path component is never undefined, though it may be
empty. The base URI's query component is not used by the resolution
algorithm and may be discarded.
For each URI reference, the following steps are performed in order:
1) The URI reference is parsed into the potential four components and
fragment identifier, as described in Section 4.3.
2) If the path component is empty and the scheme, authority, and
query components are undefined, then it is a reference to the
current document and we are done. Otherwise, the reference URI's
query and fragment components are defined as found (or not found)
within the URI reference and not inherited from the base URI.
3) If the scheme component is defined, indicating that the reference
starts with a scheme name, then the reference is interpreted as an
absolute URI and we are done. Otherwise, the reference URI's
scheme is inherited from the base URI's scheme component.
Due to a loophole in prior specifications [RFC1630], some parsers
allow the scheme name to be present in a relative URI if it is the
same as the base URI scheme. Unfortunately, this can conflict
with the correct parsing of non-hierarchical URI. For backwards
compatibility, an implementation may work around such references
by removing the scheme if it matches that of the base URI and the
scheme is known to always use the <hier_part> syntax. The parser
Berners-Lee, et. al. Standards Track [Page 20]
^L
RFC 2396 URI Generic Syntax August 1998
can then continue with the steps below for the remainder of the
reference components. Validating parsers should mark such a
misformed relative reference as an error.
4) If the authority component is defined, then the reference is a
network-path and we skip to step 7. Otherwise, the reference
URI's authority is inherited from the base URI's authority
component, which will also be undefined if the URI scheme does not
use an authority component.
5) If the path component begins with a slash character ("/"), then
the reference is an absolute-path and we skip to step 7.
6) If this step is reached, then we are resolving a relative-path
reference. The relative path needs to be merged with the base
URI's path. Although there are many ways to do this, we will
describe a simple method using a separate string buffer.
a) All but the last segment of the base URI's path component is
copied to the buffer. In other words, any characters after the
last (right-most) slash character, if any, are excluded.
b) The reference's path component is appended to the buffer
string.
c) All occurrences of "./", where "." is a complete path segment,
are removed from the buffer string.
d) If the buffer string ends with "." as a complete path segment,
that "." is removed.
e) All occurrences of "<segment>/../", where <segment> is a
complete path segment not equal to "..", are removed from the
buffer string. Removal of these path segments is performed
iteratively, removing the leftmost matching pattern on each
iteration, until no matching pattern remains.
f) If the buffer string ends with "<segment>/..", where <segment>
is a complete path segment not equal to "..", that
"<segment>/.." is removed.
g) If the resulting buffer string still begins with one or more
complete path segments of "..", then the reference is
considered to be in error. Implementations may handle this
error by retaining these components in the resolved path (i.e.,
treating them as part of the final URI), by removing them from
the resolved path (i.e., discarding relative levels above the
root), or by avoiding traversal of the reference.
Berners-Lee, et. al. Standards Track [Page 21]
^L
RFC 2396 URI Generic Syntax August 1998
h) The remaining buffer string is the reference URI's new path
component.
7) The resulting URI components, including any inherited from the
base URI, are recombined to give the absolute form of the URI
reference. Using pseudocode, this would be
result = ""
if scheme is defined then
append scheme to result
append ":" to result
if authority is defined then
append "//" to result
append authority to result
append path to result
if query is defined then
append "?" to result
append query to result
if fragment is defined then
append "#" to result
append fragment to result
return result
Note that we must be careful to preserve the distinction between a
component that is undefined, meaning that its separator was not
present in the reference, and a component that is empty, meaning
that the separator was present and was immediately followed by the
next component separator or the end of the reference.
The above algorithm is intended to provide an example by which the
output of implementations can be tested -- implementation of the
algorithm itself is not required. For example, some systems may find
it more efficient to implement step 6 as a pair of segment stacks
being merged, rather than as a series of string pattern replacements.
Note: Some WWW client applications will fail to separate the
reference's query component from its path component before merging
the base and reference paths in step 6 above. This may result in
a loss of information if the query component contains the strings
"/../" or "/./".
Resolution examples are provided in Appendix C.
Berners-Lee, et. al. Standards Track [Page 22]
^L
RFC 2396 URI Generic Syntax August 1998
6. URI Normalization and Equivalence
In many cases, different URI strings may actually identify the
identical resource. For example, the host names used in URL are
actually case insensitive, and the URL <http://www.XEROX.com> is
equivalent to <http://www.xerox.com>. In general, the rules for
equivalence and definition of a normal form, if any, are scheme
dependent. When a scheme uses elements of the common syntax, it will
also use the common syntax equivalence rules, namely that the scheme
and hostname are case insensitive and a URL with an explicit ":port",
where the port is the default for the scheme, is equivalent to one
where the port is elided.
7. Security Considerations
A URI does not in itself pose a security threat. Users should beware
that there is no general guarantee that a URL, which at one time
located a given resource, will continue to do so. Nor is there any
guarantee that a URL will not locate a different resource at some
later point in time, due to the lack of any constraint on how a given
authority apportions its namespace. Such a guarantee can only be
obtained from the person(s) controlling that namespace and the
resource in question. A specific URI scheme may include additional
semantics, such as name persistence, if those semantics are required
of all naming authorities for that scheme.
It is sometimes possible to construct a URL such that an attempt to
perform a seemingly harmless, idempotent operation, such as the
retrieval of an entity associated with the resource, will in fact
cause a possibly damaging remote operation to occur. The unsafe URL
is typically constructed by specifying a port number other than that
reserved for the network protocol in question. The client
unwittingly contacts a site that is in fact running a different
protocol. The content of the URL contains instructions that, when
interpreted according to this other protocol, cause an unexpected
operation. An example has been the use of a gopher URL to cause an
unintended or impersonating message to be sent via a SMTP server.
Caution should be used when using any URL that specifies a port
number other than the default for the protocol, especially when it is
a number within the reserved space.
Care should be taken when a URL contains escaped delimiters for a
given protocol (for example, CR and LF characters for telnet
protocols) that these are not unescaped before transmission. This
might violate the protocol, but avoids the potential for such
Berners-Lee, et. al. Standards Track [Page 23]
^L
RFC 2396 URI Generic Syntax August 1998
characters to be used to simulate an extra operation or parameter in
that protocol, which might lead to an unexpected and possibly harmful
remote operation to be performed.
It is clearly unwise to use a URL that contains a password which is
intended to be secret. In particular, the use of a password within
the 'userinfo' component of a URL is strongly disrecommended except
in those rare cases where the 'password' parameter is intended to be
public.
8. Acknowledgements
This document was derived from RFC 1738 [RFC1738] and RFC 1808
[RFC1808]; the acknowledgements in those specifications still apply.
In addition, contributions by Gisle Aas, Martin Beet, Martin Duerst,
Jim Gettys, Martijn Koster, Dave Kristol, Daniel LaLiberte, Foteos
Macrides, James Marshall, Ryan Moats, Keith Moore, and Lauren Wood
are gratefully acknowledged.
9. References
[RFC2277] Alvestrand, H., "IETF Policy on Character Sets and
Languages", BCP 18, RFC 2277, January 1998.
[RFC1630] Berners-Lee, T., "Universal Resource Identifiers in WWW: A
Unifying Syntax for the Expression of Names and Addresses
of Objects on the Network as used in the World-Wide Web",
RFC 1630, June 1994.
[RFC1738] Berners-Lee, T., Masinter, L., and M. McCahill, Editors,
"Uniform Resource Locators (URL)", RFC 1738, December 1994.
[RFC1866] Berners-Lee T., and D. Connolly, "HyperText Markup Language
Specification -- 2.0", RFC 1866, November 1995.
[RFC1123] Braden, R., Editor, "Requirements for Internet Hosts --
Application and Support", STD 3, RFC 1123, October 1989.
[RFC822] Crocker, D., "Standard for the Format of ARPA Internet Text
Messages", STD 11, RFC 822, August 1982.
[RFC1808] Fielding, R., "Relative Uniform Resource Locators", RFC
1808, June 1995.
[RFC2046] Freed, N., and N. Borenstein, "Multipurpose Internet Mail
Extensions (MIME) Part Two: Media Types", RFC 2046,
November 1996.
Berners-Lee, et. al. Standards Track [Page 24]
^L
RFC 2396 URI Generic Syntax August 1998
[RFC1736] Kunze, J., "Functional Recommendations for Internet
Resource Locators", RFC 1736, February 1995.
[RFC2141] Moats, R., "URN Syntax", RFC 2141, May 1997.
[RFC1034] Mockapetris, P., "Domain Names - Concepts and Facilities",
STD 13, RFC 1034, November 1987.
[RFC2110] Palme, J., and A. Hopmann, "MIME E-mail Encapsulation of
Aggregate Documents, such as HTML (MHTML)", RFC 2110, March
1997.
[RFC1737] Sollins, K., and L. Masinter, "Functional Requirements for
Uniform Resource Names", RFC 1737, December 1994.
[ASCII] US-ASCII. "Coded Character Set -- 7-bit American Standard
Code for Information Interchange", ANSI X3.4-1986.
[UTF-8] Yergeau, F., "UTF-8, a transformation format of ISO 10646",
RFC 2279, January 1998.
Berners-Lee, et. al. Standards Track [Page 25]
^L
RFC 2396 URI Generic Syntax August 1998
10. Authors' Addresses
Tim Berners-Lee
World Wide Web Consortium
MIT Laboratory for Computer Science, NE43-356
545 Technology Square
Cambridge, MA 02139
Fax: +1(617)258-8682
EMail: timbl@w3.org
Roy T. Fielding
Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425
Fax: +1(949)824-1715
EMail: fielding@ics.uci.edu
Larry Masinter
Xerox PARC
3333 Coyote Hill Road
Palo Alto, CA 94034
Fax: +1(415)812-4333
EMail: masinter@parc.xerox.com
Berners-Lee, et. al. Standards Track [Page 26]
^L
RFC 2396 URI Generic Syntax August 1998
A. Collected BNF for URI
URI-reference = [ absoluteURI | relativeURI ] [ "#" fragment ]
absoluteURI = scheme ":" ( hier_part | opaque_part )
relativeURI = ( net_path | abs_path | rel_path ) [ "?" query ]
hier_part = ( net_path | abs_path ) [ "?" query ]
opaque_part = uric_no_slash *uric
uric_no_slash = unreserved | escaped | ";" | "?" | ":" | "@" |
"&" | "=" | "+" | "$" | ","
net_path = "//" authority [ abs_path ]
abs_path = "/" path_segments
rel_path = rel_segment [ abs_path ]
rel_segment = 1*( unreserved | escaped |
";" | "@" | "&" | "=" | "+" | "$" | "," )
scheme = alpha *( alpha | digit | "+" | "-" | "." )
authority = server | reg_name
reg_name = 1*( unreserved | escaped | "$" | "," |
";" | ":" | "@" | "&" | "=" | "+" )
server = [ [ userinfo "@" ] hostport ]
userinfo = *( unreserved | escaped |
";" | ":" | "&" | "=" | "+" | "$" | "," )
hostport = host [ ":" port ]
host = hostname | IPv4address
hostname = *( domainlabel "." ) toplabel [ "." ]
domainlabel = alphanum | alphanum *( alphanum | "-" ) alphanum
toplabel = alpha | alpha *( alphanum | "-" ) alphanum
IPv4address = 1*digit "." 1*digit "." 1*digit "." 1*digit
port = *digit
path = [ abs_path | opaque_part ]
path_segments = segment *( "/" segment )
segment = *pchar *( ";" param )
param = *pchar
pchar = unreserved | escaped |
":" | "@" | "&" | "=" | "+" | "$" | ","
query = *uric
fragment = *uric
Berners-Lee, et. al. Standards Track [Page 27]
^L
RFC 2396 URI Generic Syntax August 1998
uric = reserved | unreserved | escaped
reserved = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" |
"$" | ","
unreserved = alphanum | mark
mark = "-" | "_" | "." | "!" | "~" | "*" | "'" |
"(" | ")"
escaped = "%" hex hex
hex = digit | "A" | "B" | "C" | "D" | "E" | "F" |
"a" | "b" | "c" | "d" | "e" | "f"
alphanum = alpha | digit
alpha = lowalpha | upalpha
lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" |
"j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" |
"s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"
upalpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" |
"J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" |
"S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |
"8" | "9"
Berners-Lee, et. al. Standards Track [Page 28]
^L
RFC 2396 URI Generic Syntax August 1998
B. Parsing a URI Reference with a Regular Expression
As described in Section 4.3, the generic URI syntax is not sufficient
to disambiguate the components of some forms of URI. Since the
"greedy algorithm" described in that section is identical to the
disambiguation method used by POSIX regular expressions, it is
natural and commonplace to use a regular expression for parsing the
potential four components and fragment identifier of a URI reference.
The following line is the regular expression for breaking-down a URI
reference into its components.
^(([^:/?#]+):)?(//([^/?#]*))?([^?#]*)(\?([^#]*))?(#(.*))?
12 3 4 5 6 7 8 9
The numbers in the second line above are only to assist readability;
they indicate the reference points for each subexpression (i.e., each
paired parenthesis). We refer to the value matched for subexpression
<n> as $<n>. For example, matching the above expression to
http://www.ics.uci.edu/pub/ietf/uri/#Related
results in the following subexpression matches:
$1 = http:
$2 = http
$3 = //www.ics.uci.edu
$4 = www.ics.uci.edu
$5 = /pub/ietf/uri/
$6 = <undefined>
$7 = <undefined>
$8 = #Related
$9 = Related
where <undefined> indicates that the component is not present, as is
the case for the query component in the above example. Therefore, we
can determine the value of the four components and fragment as
scheme = $2
authority = $4
path = $5
query = $7
fragment = $9
and, going in the opposite direction, we can recreate a URI reference
from its components using the algorithm in step 7 of Section 5.2.
Berners-Lee, et. al. Standards Track [Page 29]
^L
RFC 2396 URI Generic Syntax August 1998
C. Examples of Resolving Relative URI References
Within an object with a well-defined base URI of
http://a/b/c/d;p?q
the relative URI would be resolved as follows:
C.1. Normal Examples
g:h = g:h
g = http://a/b/c/g
./g = http://a/b/c/g
g/ = http://a/b/c/g/
/g = http://a/g
//g = http://g
?y = http://a/b/c/?y
g?y = http://a/b/c/g?y
#s = (current document)#s
g#s = http://a/b/c/g#s
g?y#s = http://a/b/c/g?y#s
;x = http://a/b/c/;x
g;x = http://a/b/c/g;x
g;x?y#s = http://a/b/c/g;x?y#s
. = http://a/b/c/
./ = http://a/b/c/
.. = http://a/b/
../ = http://a/b/
../g = http://a/b/g
../.. = http://a/
../../ = http://a/
../../g = http://a/g
C.2. Abnormal Examples
Although the following abnormal examples are unlikely to occur in
normal practice, all URI parsers should be capable of resolving them
consistently. Each example uses the same base as above.
An empty reference refers to the start of the current document.
<> = (current document)
Parsers must be careful in handling the case where there are more
relative path ".." segments than there are hierarchical levels in the
base URI's path. Note that the ".." syntax cannot be used to change
the authority component of a URI.
Berners-Lee, et. al. Standards Track [Page 30]
^L
RFC 2396 URI Generic Syntax August 1998
../../../g = http://a/../g
../../../../g = http://a/../../g
In practice, some implementations strip leading relative symbolic
elements (".", "..") after applying a relative URI calculation, based
on the theory that compensating for obvious author errors is better
than allowing the request to fail. Thus, the above two references
will be interpreted as "http://a/g" by some implementations.
Similarly, parsers must avoid treating "." and ".." as special when
they are not complete components of a relative path.
/./g = http://a/./g
/../g = http://a/../g
g. = http://a/b/c/g.
.g = http://a/b/c/.g
g.. = http://a/b/c/g..
..g = http://a/b/c/..g
Less likely are cases where the relative URI uses unnecessary or
nonsensical forms of the "." and ".." complete path segments.
./../g = http://a/b/g
./g/. = http://a/b/c/g/
g/./h = http://a/b/c/g/h
g/../h = http://a/b/c/h
g;x=1/./y = http://a/b/c/g;x=1/y
g;x=1/../y = http://a/b/c/y
All client applications remove the query component from the base URI
before resolving relative URI. However, some applications fail to
separate the reference's query and/or fragment components from a
relative path before merging it with the base path. This error is
rarely noticed, since typical usage of a fragment never includes the
hierarchy ("/") character, and the query component is not normally
used within relative references.
g?y/./x = http://a/b/c/g?y/./x
g?y/../x = http://a/b/c/g?y/../x
g#s/./x = http://a/b/c/g#s/./x
g#s/../x = http://a/b/c/g#s/../x
Berners-Lee, et. al. Standards Track [Page 31]
^L
RFC 2396 URI Generic Syntax August 1998
Some parsers allow the scheme name to be present in a relative URI if
it is the same as the base URI scheme. This is considered to be a
loophole in prior specifications of partial URI [RFC1630]. Its use
should be avoided.
http:g = http:g ; for validating parsers
| http://a/b/c/g ; for backwards compatibility
Berners-Lee, et. al. Standards Track [Page 32]
^L
RFC 2396 URI Generic Syntax August 1998
D. Embedding the Base URI in HTML documents
It is useful to consider an example of how the base URI of a document
can be embedded within the document's content. In this appendix, we
describe how documents written in the Hypertext Markup Language
(HTML) [RFC1866] can include an embedded base URI. This appendix
does not form a part of the URI specification and should not be
considered as anything more than a descriptive example.
HTML defines a special element "BASE" which, when present in the
"HEAD" portion of a document, signals that the parser should use the
BASE element's "HREF" attribute as the base URI for resolving any
relative URI. The "HREF" attribute must be an absolute URI. Note
that, in HTML, element and attribute names are case-insensitive. For
example:
<!doctype html public "-//IETF//DTD HTML//EN">
<HTML><HEAD>
<TITLE>An example HTML document</TITLE>
<BASE href="http://www.ics.uci.edu/Test/a/b/c">
</HEAD><BODY>
... <A href="../x">a hypertext anchor</A> ...
</BODY></HTML>
A parser reading the example document should interpret the given
relative URI "../x" as representing the absolute URI
<http://www.ics.uci.edu/Test/a/x>
regardless of the context in which the example document was obtained.
Berners-Lee, et. al. Standards Track [Page 33]
^L
RFC 2396 URI Generic Syntax August 1998
E. Recommendations for Delimiting URI in Context
URI are often transmitted through formats that do not provide a clear
context for their interpretation. For example, there are many
occasions when URI are included in plain text; examples include text
sent in electronic mail, USENET news messages, and, most importantly,
printed on paper. In such cases, it is important to be able to
delimit the URI from the rest of the text, and in particular from
punctuation marks that might be mistaken for part of the URI.
In practice, URI are delimited in a variety of ways, but usually
within double-quotes "http://test.com/", angle brackets
<http://test.com/>, or just using whitespace
http://test.com/
These wrappers do not form part of the URI.
In the case where a fragment identifier is associated with a URI
reference, the fragment would be placed within the brackets as well
(separated from the URI with a "#" character).
In some cases, extra whitespace (spaces, linebreaks, tabs, etc.) may
need to be added to break long URI across lines. The whitespace
should be ignored when extracting the URI.
No whitespace should be introduced after a hyphen ("-") character.
Because some typesetters and printers may (erroneously) introduce a
hyphen at the end of line when breaking a line, the interpreter of a
URI containing a line break immediately after a hyphen should ignore
all unescaped whitespace around the line break, and should be aware
that the hyphen may or may not actually be part of the URI.
Using <> angle brackets around each URI is especially recommended as
a delimiting style for URI that contain whitespace.
The prefix "URL:" (with or without a trailing space) was recommended
as a way to used to help distinguish a URL from other bracketed
designators, although this is not common in practice.
For robustness, software that accepts user-typed URI should attempt
to recognize and strip both delimiters and embedded whitespace.
For example, the text:
Berners-Lee, et. al. Standards Track [Page 34]
^L
RFC 2396 URI Generic Syntax August 1998
Yes, Jim, I found it under "http://www.w3.org/Addressing/",
but you can probably pick it up from <ftp://ds.internic.
net/rfc/>. Note the warning in <http://www.ics.uci.edu/pub/
ietf/uri/historical.html#WARNING>.
contains the URI references
http://www.w3.org/Addressing/
ftp://ds.internic.net/rfc/
http://www.ics.uci.edu/pub/ietf/uri/historical.html#WARNING
Berners-Lee, et. al. Standards Track [Page 35]
^L
RFC 2396 URI Generic Syntax August 1998
F. Abbreviated URLs
The URL syntax was designed for unambiguous reference to network
resources and extensibility via the URL scheme. However, as URL
identification and usage have become commonplace, traditional media
(television, radio, newspapers, billboards, etc.) have increasingly
used abbreviated URL references. That is, a reference consisting of
only the authority and path portions of the identified resource, such
as
www.w3.org/Addressing/
or simply the DNS hostname on its own. Such references are primarily
intended for human interpretation rather than machine, with the
assumption that context-based heuristics are sufficient to complete
the URL (e.g., most hostnames beginning with "www" are likely to have
a URL prefix of "http://"). Although there is no standard set of
heuristics for disambiguating abbreviated URL references, many client
implementations allow them to be entered by the user and
heuristically resolved. It should be noted that such heuristics may
change over time, particularly when new URL schemes are introduced.
Since an abbreviated URL has the same syntax as a relative URL path,
abbreviated URL references cannot be used in contexts where relative
URLs are expected. This limits the use of abbreviated URLs to places
where there is no defined base URL, such as dialog boxes and off-line
advertisements.
Berners-Lee, et. al. Standards Track [Page 36]
^L
RFC 2396 URI Generic Syntax August 1998
G. Summary of Non-editorial Changes
G.1. Additions
Section 4 (URI References) was added to stem the confusion regarding
"what is a URI" and how to describe fragment identifiers given that
they are not part of the URI, but are part of the URI syntax and
parsing concerns. In addition, it provides a reference definition
for use by other IETF specifications (HTML, HTTP, etc.) that have
previously attempted to redefine the URI syntax in order to account
for the presence of fragment identifiers in URI references.
Section 2.4 was rewritten to clarify a number of misinterpretations
and to leave room for fully internationalized URI.
Appendix F on abbreviated URLs was added to describe the shortened
references often seen on television and magazine advertisements and
explain why they are not used in other contexts.
G.2. Modifications from both RFC 1738 and RFC 1808
Changed to URI syntax instead of just URL.
Confusion regarding the terms "character encoding", the URI
"character set", and the escaping of characters with %<hex><hex>
equivalents has (hopefully) been reduced. Many of the BNF rule names
regarding the character sets have been changed to more accurately
describe their purpose and to encompass all "characters" rather than
just US-ASCII octets. Unless otherwise noted here, these
modifications do not affect the URI syntax.
Both RFC 1738 and RFC 1808 refer to the "reserved" set of characters
as if URI-interpreting software were limited to a single set of
characters with a reserved purpose (i.e., as meaning something other
than the data to which the characters correspond), and that this set
was fixed by the URI scheme. However, this has not been true in
practice; any character that is interpreted differently when it is
escaped is, in effect, reserved. Furthermore, the interpreting
engine on a HTTP server is often dependent on the resource, not just
the URI scheme. The description of reserved characters has been
changed accordingly.
The plus "+", dollar "$", and comma "," characters have been added to
those in the "reserved" set, since they are treated as reserved
within the query component.
Berners-Lee, et. al. Standards Track [Page 37]
^L
RFC 2396 URI Generic Syntax August 1998
The tilde "~" character was added to those in the "unreserved" set,
since it is extensively used on the Internet in spite of the
difficulty to transcribe it with some keyboards.
The syntax for URI scheme has been changed to require that all
schemes begin with an alpha character.
The "user:password" form in the previous BNF was changed to a
"userinfo" token, and the possibility that it might be
"user:password" made scheme specific. In particular, the use of
passwords in the clear is not even suggested by the syntax.
The question-mark "?" character was removed from the set of allowed
characters for the userinfo in the authority component, since testing
showed that many applications treat it as reserved for separating the
query component from the rest of the URI.
The semicolon ";" character was added to those stated as being
reserved within the authority component, since several new schemes
are using it as a separator within userinfo to indicate the type of
user authentication.
RFC 1738 specified that the path was separated from the authority
portion of a URI by a slash. RFC 1808 followed suit, but with a
fudge of carrying around the separator as a "prefix" in order to
describe the parsing algorithm. RFC 1630 never had this problem,
since it considered the slash to be part of the path. In writing
this specification, it was found to be impossible to accurately
describe and retain the difference between the two URI
<foo:/bar> and <foo:bar>
without either considering the slash to be part of the path (as
corresponds to actual practice) or creating a separate component just
to hold that slash. We chose the former.
G.3. Modifications from RFC 1738
The definition of specific URL schemes and their scheme-specific
syntax and semantics has been moved to separate documents.
The URL host was defined as a fully-qualified domain name. However,
many URLs are used without fully-qualified domain names (in contexts
for which the full qualification is not necessary), without any host
(as in some file URLs), or with a host of "localhost".
The URL port is now *digit instead of 1*digit, since systems are
expected to handle the case where the ":" separator between host and
port is supplied without a port.
Berners-Lee, et. al. Standards Track [Page 38]
^L
RFC 2396 URI Generic Syntax August 1998
The recommendations for delimiting URI in context (Appendix E) have
been adjusted to reflect current practice.
G.4. Modifications from RFC 1808
RFC 1808 (Section 4) defined an empty URL reference (a reference
containing nothing aside from the fragment identifier) as being a
reference to the base URL. Unfortunately, that definition could be
interpreted, upon selection of such a reference, as a new retrieval
action on that resource. Since the normal intent of such references
is for the user agent to change its view of the current document to
the beginning of the specified fragment within that document, not to
make an additional request of the resource, a description of how to
correctly interpret an empty reference has been added in Section 4.
The description of the mythical Base header field has been replaced
with a reference to the Content-Location header field defined by
MHTML [RFC2110].
RFC 1808 described various schemes as either having or not having the
properties of the generic URI syntax. However, the only requirement
is that the particular document containing the relative references
have a base URI that abides by the generic URI syntax, regardless of
the URI scheme, so the associated description has been updated to
reflect that.
The BNF term <net_loc> has been replaced with <authority>, since the
latter more accurately describes its use and purpose. Likewise, the
authority is no longer restricted to the IP server syntax.
Extensive testing of current client applications demonstrated that
the majority of deployed systems do not use the ";" character to
indicate trailing parameter information, and that the presence of a
semicolon in a path segment does not affect the relative parsing of
that segment. Therefore, parameters have been removed as a separate
component and may now appear in any path segment. Their influence
has been removed from the algorithm for resolving a relative URI
reference. The resolution examples in Appendix C have been modified
to reflect this change.
Implementations are now allowed to work around misformed relative
references that are prefixed by the same scheme as the base URI, but
only for schemes known to use the <hier_part> syntax.
Berners-Lee, et. al. Standards Track [Page 39]
^L
RFC 2396 URI Generic Syntax August 1998
H. Full Copyright Statement
Copyright (C) The Internet Society (1998). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Berners-Lee, et. al. Standards Track [Page 40]
^L
|