summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc2462.txt
blob: 7fe9d63967043479072d9771c127a65f01c5f8d6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
Network Working Group                                         S. Thomson
Request for Comments: 2462                                      Bellcore
Obsoletes: 1971                                                T. Narten
Category: Standards Track                                            IBM
                                                           December 1998


                IPv6 Stateless Address Autoconfiguration

Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (1998).  All Rights Reserved.

Abstract

   This document specifies the steps a host takes in deciding how to
   autoconfigure its interfaces in IP version 6. The autoconfiguration
   process includes creating a link-local address and verifying its
   uniqueness on a link, determining what information should be
   autoconfigured (addresses, other information, or both), and in the
   case of addresses, whether they should be obtained through the
   stateless mechanism, the stateful mechanism, or both.  This document
   defines the process for generating a link-local address, the process
   for generating site-local and global addresses via stateless address
   autoconfiguration, and the Duplicate Address Detection procedure. The
   details of autoconfiguration using the stateful protocol are
   specified elsewhere.

Table of Contents

   1.  INTRODUCTION.............................................    2
   2.  TERMINOLOGY..............................................    4
      2.1.  Requirements........................................    6
   3.  DESIGN GOALS.............................................    7
   4.  PROTOCOL OVERVIEW........................................    8
      4.1.  Site Renumbering....................................   10
   5.  PROTOCOL SPECIFICATION...................................   10
      5.1.  Node Configuration Variables........................   11
      5.2.  Autoconfiguration-Related Variables.................   11
      5.3.  Creation of Link-Local Addresses....................   12



Thomson & Narten            Standards Track                     [Page 1]
^L
RFC 2462        IPv6 Stateless Address Autoconfiguration   December 1998


      5.4.  Duplicate Address Detection.........................   13
         5.4.1.  Message Validation.............................   14
         5.4.2.  Sending Neighbor Solicitation Messages.........   14
         5.4.3.  Receiving Neighbor Solicitation Messages.......   15
         5.4.4.  Receiving Neighbor Advertisement Messages......   16
         5.4.5.  When Duplicate Address Detection Fails.........   16
      5.5.  Creation of Global and Site-Local Addresses.........   16
         5.5.1.  Soliciting Router Advertisements...............   16
         5.5.2.  Absence of Router Advertisements...............   17
         5.5.3.  Router Advertisement Processing................   17
         5.5.4.  Address Lifetime Expiry........................   19
      5.6.  Configuration Consistency...........................   19
   6.  SECURITY CONSIDERATIONS..................................   20
   7.  References...............................................   20
   8.  Acknowledgements and Authors' Addresses..................   21
   9.  APPENDIX A: LOOPBACK SUPPRESSION & DUPLICATE ADDRESS
         DETECTION..............................................   22
   10. APPENDIX B: CHANGES SINCE RFC 1971.......................   24
   11. Full Copyright Statement.................................   25

1.  INTRODUCTION

   This document specifies the steps a host takes in deciding how to
   autoconfigure its interfaces in IP version 6. The autoconfiguration
   process includes creating a link-local address and verifying its
   uniqueness on a link, determining what information should be
   autoconfigured (addresses, other information, or both), and in the
   case of addresses, whether they should be obtained through the
   stateless mechanism, the stateful mechanism, or both.  This document
   defines the process for generating a link-local address, the process
   for generating site-local and global addresses via stateless address
   autoconfiguration, and the Duplicate Address Detection procedure. The
   details of autoconfiguration using the stateful protocol are
   specified elsewhere.

   IPv6 defines both a stateful and stateless address autoconfiguration
   mechanism. Stateless autoconfiguration requires no manual
   configuration of hosts, minimal (if any) configuration of routers,
   and no additional servers.  The stateless mechanism allows a host to
   generate its own addresses using a combination of locally available
   information and information advertised by routers. Routers advertise
   prefixes that identify the subnet(s) associated with a link, while
   hosts generate an "interface identifier" that uniquely identifies an
   interface on a subnet. An address is formed by combining the two. In
   the absence of routers, a host can only generate link-local
   addresses. However, link-local addresses are sufficient for allowing
   communication among nodes attached to the same link.




Thomson & Narten            Standards Track                     [Page 2]
^L
RFC 2462        IPv6 Stateless Address Autoconfiguration   December 1998


   In the stateful autoconfiguration model, hosts obtain interface
   addresses and/or configuration information and parameters from a
   server.  Servers maintain a database that keeps track of which
   addresses have been assigned to which hosts. The stateful
   autoconfiguration protocol allows hosts to obtain addresses, other
   configuration information or both from a server.  Stateless and
   stateful autoconfiguration complement each other. For example, a host
   can use stateless autoconfiguration to configure its own addresses,
   but use stateful autoconfiguration to obtain other information.
   Stateful autoconfiguration for IPv6 is the subject of future work
   [DHCPv6].

   The stateless approach is used when a site is not particularly
   concerned with the exact addresses hosts use, so long as they are
   unique and properly routable. The stateful approach is used when a
   site requires tighter control over exact address assignments.  Both
   stateful and stateless address autoconfiguration may be used
   simultaneously.  The site administrator specifies which type of
   autoconfiguration to use through the setting of appropriate fields in
   Router Advertisement messages [DISCOVERY].

   IPv6 addresses are leased to an interface for a fixed (possibly
   infinite) length of time. Each address has an associated lifetime
   that indicates how long the address is bound to an interface. When a
   lifetime expires, the binding (and address) become invalid and the
   address may be reassigned to another interface elsewhere in the
   Internet. To handle the expiration of address bindings gracefully, an
   address goes through two distinct phases while assigned to an
   interface. Initially, an address is "preferred", meaning that its use
   in arbitrary communication is unrestricted. Later, an address becomes
   "deprecated" in anticipation that its current interface binding will
   become invalid. While in a deprecated state, the use of an address is
   discouraged, but not strictly forbidden.  New communication (e.g.,
   the opening of a new TCP connection) should use a preferred address
   when possible.  A deprecated address should be used only by
   applications that have been using it and would have difficulty
   switching to another address without a service disruption.

   To insure that all configured addresses are likely to be unique on a
   given link, nodes run a "duplicate address detection" algorithm on
   addresses before assigning them to an interface.  The Duplicate
   Address Detection algorithm is performed on all addresses,
   independent of whether they are obtained via stateless or stateful
   autoconfiguration. This document defines the Duplicate Address
   Detection algorithm.






Thomson & Narten            Standards Track                     [Page 3]
^L
RFC 2462        IPv6 Stateless Address Autoconfiguration   December 1998


   The autoconfiguration process specified in this document applies only
   to hosts and not routers. Since host autoconfiguration uses
   information advertised by routers, routers will need to be configured
   by some other means. However, it is expected that routers will
   generate link-local addresses using the mechanism described in this
   document. In addition, routers are expected to successfully pass the
   Duplicate Address Detection procedure described in this document on
   all addresses prior to assigning them to an interface.

   Section 2 provides definitions for terminology used throughout this
   document. Section 3 describes the design goals that lead to the
   current autoconfiguration procedure. Section 4 provides an overview
   of the protocol, while Section 5 describes the protocol in detail.

2.  TERMINOLOGY

   IP - Internet Protocol Version 6.  The terms IPv4 and are used
        only in contexts where necessary to avoid ambiguity.

   node - a device that implements IP.

   router - a node that forwards IP packets not explicitly addressed to
        itself.

   host - any node that is not a router.

   upper layer - a protocol layer immediately above IP.  Examples are
        transport protocols such as TCP and UDP, control protocols such
        as ICMP, routing protocols such as OSPF, and internet or lower-
        layer protocols being "tunneled" over (i.e., encapsulated in) IP
        such as IPX, AppleTalk, or IP itself.

   link - a communication facility or medium over which nodes can
        communicate at the link layer, i.e., the layer immediately below
        IP.  Examples are Ethernets (simple or bridged); PPP links;
        X.25, Frame Relay, or ATM networks; and internet (or higher)
        layer "tunnels", such as tunnels over IPv4 or IPv6 itself.

   interface - a node's attachment to a link.

   packet - an IP header plus payload.

   address - an IP-layer identifier for an interface or a set of
        interfaces.

   unicast address - an identifier for a single interface. A packet sent
        to a unicast address is delivered to the interface identified by
        that address.



Thomson & Narten            Standards Track                     [Page 4]
^L
RFC 2462        IPv6 Stateless Address Autoconfiguration   December 1998



   multicast address - an identifier for a set of interfaces (typically
        belonging to different nodes). A packet sent to a multicast
        address is delivered to all interfaces identified by that
        address.

   anycast address - an identifier for a set of interfaces (typically
        belonging to different nodes).  A packet sent to an anycast
        address is delivered to one of the interfaces identified by that
        address (the "nearest" one, according to the routing protocol's
        measure of distance).  See [ADDR-ARCH].

   solicited-node multicast address - a multicast address to which
        Neighbor Solicitation messages are sent. The algorithm for
        computing the address is given in [DISCOVERY].

   link-layer address - a link-layer identifier for an interface.
        Examples include IEEE 802 addresses for Ethernet links and E.164
        addresses for ISDN links.

   link-local address - an address having link-only scope that can be
        used to reach neighboring nodes attached to the same link.  All
        interfaces have a link-local unicast address.

   site-local address - an address having scope that is limited to the
        local site.

   global address - an address with unlimited scope.

   communication - any packet exchange among nodes that requires that
        the address of each node used in the exchange remain the same
        for the duration of the packet exchange.  Examples are a TCP
        connection or a UDP request- response.

   tentative address - an address whose uniqueness on a link is being
        verified, prior to its assignment to an interface.  A tentative
        address is not considered assigned to an interface in the usual
        sense. An interface discards received packets addressed to a
        tentative address, but accepts Neighbor Discovery packets
        related to Duplicate Address Detection for the tentative
        address.

   preferred address - an address assigned to an interface whose use by
        upper layer protocols is unrestricted. Preferred addresses may
        be used as the source (or destination) address of packets sent
        from (or to) the interface.





Thomson & Narten            Standards Track                     [Page 5]
^L
RFC 2462        IPv6 Stateless Address Autoconfiguration   December 1998


   deprecated address - An address assigned to an interface whose use is
        discouraged, but not forbidden.  A deprecated address should no
        longer be used as a source address in new communications, but
        packets sent from or to deprecated addresses are delivered as
        expected.  A deprecated address may continue to be used as a
        source address in communications where switching to a preferred
        address causes hardship to a specific upper-layer activity
        (e.g., an existing TCP connection).

   valid address - a preferred or deprecated address. A valid address
        may appear as the source or destination address of a packet, and
        the internet routing system is expected to deliver packets sent
        to a valid address to their intended recipients.

   invalid address - an address that is not assigned to any interface. A
        valid address becomes invalid when its valid lifetime expires.
        Invalid addresses should not appear as the destination or source
        address of a packet. In the former case, the internet routing
        system will be unable to deliver the packet, in the later case
        the recipient of the packet will be unable to respond to it.

   preferred lifetime - the length of time that a valid address is
        preferred (i.e., the time until deprecation). When the preferred
        lifetime expires, the address becomes deprecated.

   valid lifetime - the length of time an address remains in the valid
        state (i.e., the time until invalidation). The valid lifetime
        must be greater then or equal to the preferred lifetime.  When
        the valid lifetime expires, the address becomes invalid.

   interface identifier - a link-dependent identifier for an interface
        that is (at least) unique per link [ADDR-ARCH]. Stateless
        address autoconfiguration combines an interface identifier with
        a prefix to form an address. From address autoconfiguration's
        perspective, an interface identifier is a bit string of known
        length.  The exact length of an interface identifier and the way
        it is created is defined in a separate link-type specific
        document that covers issues related to the transmission of IP
        over a particular link type (e.g., [IPv6-ETHER]).  In many
        cases, the identifier will be the same as the interface's link-
        layer address.

2.1.  Requirements

   The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
   SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
   document, are to be interpreted as described in [KEYWORDS].




Thomson & Narten            Standards Track                     [Page 6]
^L
RFC 2462        IPv6 Stateless Address Autoconfiguration   December 1998


3.  DESIGN GOALS

   Stateless autoconfiguration is designed with the following goals in
   mind:

      o Manual configuration of individual machines before connecting
        them to the network should not be required. Consequently, a
        mechanism is needed that allows a host to obtain or create
        unique addresses for each of its interfaces. Address
        autoconfiguration assumes that each interface can provide a
        unique identifier for that interface (i.e., an "interface
        identifier").  In the simplest case, an interface identifier
        consists of the interface's link-layer address. An interface
        identifier can be combined with a prefix to form an address.

      o Small sites consisting of a set of machines attached to a single
        link should not require the presence of a stateful server or
        router as a prerequisite for communicating.  Plug-and-play
        communication is achieved through the use of link-local
        addresses.  Link-local addresses have a well-known prefix that
        identifies the (single) shared link to which a set of nodes
        attach. A host forms a link-local address by appending its
        interface identifier to the link-local prefix.

      o A large site with multiple networks and routers should not
        require the presence of a stateful address configuration server.
        In order to generate site-local or global addresses, hosts must
        determine the prefixes that identify the subnets to which they
        attach.  Routers generate periodic Router Advertisements that
        include options listing the set of active prefixes on a link.

      o Address configuration should facilitate the graceful renumbering
        of a site's machines. For example, a site may wish to renumber
        all of its nodes when it switches to a new network service
        provider.  Renumbering is achieved through the leasing of
        addresses to interfaces and the assignment of multiple addresses
        to the same interface.  Lease lifetimes provide the mechanism
        through which a site phases out old prefixes.  The assignment of
        multiple addresses to an interface provides for a transition
        period during which both a new address and the one being phased
        out work simultaneously.

      o System administrators need the ability to specify whether
        stateless autoconfiguration, stateful autoconfiguration, or both
        should be used.  Router Advertisements include flags specifying
        which mechanisms a host should use.





Thomson & Narten            Standards Track                     [Page 7]
^L
RFC 2462        IPv6 Stateless Address Autoconfiguration   December 1998


4.  PROTOCOL OVERVIEW

   This section provides an overview of the typical steps that take
   place when an interface autoconfigures itself.  Autoconfiguration is
   performed only on multicast-capable links and begins when a
   multicast-capable interface is enabled, e.g., during system startup.
   Nodes (both hosts and routers) begin the autoconfiguration process by
   generating a link-local address for the interface. A link-local
   address is formed by appending the interface's identifier to the
   well-known link-local prefix.

   Before the link-local address can be assigned to an interface and
   used, however, a node must attempt to verify that this "tentative"
   address is not already in use by another node on the link.
   Specifically, it sends a Neighbor Solicitation message containing the
   tentative address as the target. If another node is already using
   that address, it will return a Neighbor Advertisement saying so. If
   another node is also attempting to use the same address, it will send
   a Neighbor Solicitation for the target as well. The exact number of
   times the Neighbor Solicitation is (re)transmitted and the delay time
   between consecutive solicitations is link-specific and may be set by
   system management.

   If a node determines that its tentative link-local address is not
   unique, autoconfiguration stops and manual configuration of the
   interface is required.  To simplify recovery in this case, it should
   be possible for an administrator to supply an alternate interface
   identifier that overrides the default identifier in such a way that
   the autoconfiguration mechanism can then be applied using the new
   (presumably unique) interface identifier.  Alternatively, link-local
   and other addresses will need to be configured manually.

   Once a node ascertains that its tentative link-local address is
   unique, it assigns it to the interface. At this point, the node has
   IP-level connectivity with neighboring nodes.  The remaining
   autoconfiguration steps are performed only by hosts; the
   (auto)configuration of routers is beyond the scope of this document.

   The next phase of autoconfiguration involves obtaining a Router
   Advertisement or determining that no routers are present. If routers
   are present, they will send Router Advertisements that specify what
   sort of autoconfiguration a host should do.  If no routers are
   present, stateful autoconfiguration should be invoked.

   Routers send Router Advertisements periodically, but the delay
   between successive advertisements will generally be longer than a
   host performing autoconfiguration will want to wait [DISCOVERY].  To
   obtain an advertisement quickly, a host sends one or more Router



Thomson & Narten            Standards Track                     [Page 8]
^L
RFC 2462        IPv6 Stateless Address Autoconfiguration   December 1998


   Solicitations to the all-routers multicast group.  Router
   Advertisements contain two flags indicating what type of stateful
   autoconfiguration (if any) should be performed. A "managed address
   configuration" flag indicates whether hosts should use stateful
   autoconfiguration to obtain addresses. An "other stateful
   configuration" flag indicates whether hosts should use stateful
   autoconfiguration to obtain additional information (excluding
   addresses).

   Router Advertisements also contain zero or more Prefix Information
   options that contain information used by stateless address
   autoconfiguration to generate site-local and global addresses.  It
   should be noted that the stateless and stateful address
   autoconfiguration fields in Router Advertisements are processed
   independently of one another, and a host may use both stateful and
   stateless address autoconfiguration simultaneously.  One Prefix
   Information option field, the "autonomous address-configuration
   flag", indicates whether or not the option even applies to stateless
   autoconfiguration.  If it does, additional option fields contain a
   subnet prefix together with lifetime values indicating how long
   addresses created from the prefix remain preferred and valid.

   Because routers generate Router Advertisements periodically, hosts
   will continually receive new advertisements. Hosts process the
   information contained in each advertisement as described above,
   adding to and refreshing information received in previous
   advertisements.

   For safety, all addresses must be tested for uniqueness prior to
   their assignment to an interface.  In the case of addresses created
   through stateless autoconfig, however, the uniqueness of an address
   is determined primarily by the portion of the address formed from an
   interface identifier.  Thus, if a node has already verified the
   uniqueness of a link-local address, additional addresses created from
   the same interface identifier need not be tested individually. In
   contrast, all addresses obtained manually or via stateful address
   autoconfiguration should be tested for uniqueness individually. To
   accommodate sites that believe the overhead of performing Duplicate
   Address Detection outweighs its benefits, the use of Duplicate
   Address Detection can be disabled through the administrative setting
   of a per-interface configuration flag.

   To speed the autoconfiguration process, a host may generate its
   link-local address (and verify its uniqueness) in parallel with
   waiting for a Router Advertisement. Because a router may delay
   responding to a Router Solicitation for a few seconds, the total time
   needed to complete autoconfiguration can be significantly longer if
   the two steps are done serially.



Thomson & Narten            Standards Track                     [Page 9]
^L
RFC 2462        IPv6 Stateless Address Autoconfiguration   December 1998



4.1.  Site Renumbering

   Address leasing facilitates site renumbering by providing a mechanism
   to time-out addresses assigned to interfaces in hosts.  At present,
   upper layer protocols such as TCP provide no support for changing
   end-point addresses while a connection is open. If an end-point
   address becomes invalid, existing connections break and all
   communication to the invalid address fails.  Even when applications
   use UDP as a transport protocol, addresses must generally remain the
   same during a packet exchange.

   Dividing valid addresses into preferred and deprecated categories
   provides a way of indicating to upper layers that a valid address may
   become invalid shortly and that future communication using the
   address will fail, should the address's valid lifetime expire before
   communication ends.  To avoid this scenario, higher layers should use
   a preferred address (assuming one of sufficient scope exists) to
   increase the likelihood that an address will remain valid for the
   duration of the communication.  It is up to system administrators to
   set appropriate prefix lifetimes in order to minimize the impact of
   failed communication when renumbering takes place.  The deprecation
   period should be long enough that most, if not all, communications
   are using the new address at the time an address becomes invalid.

   The IP layer is expected to provide a means for upper layers
   (including applications) to select the most appropriate source
   address given a particular destination and possibly other
   constraints.  An application may choose to select the source address
   itself before starting a new communication or may leave the address
   unspecified, in which case the upper networking layers will use the
   mechanism provided by the IP layer to choose a suitable address on
   the application's behalf.

   Detailed address selection rules are beyond the scope of this
   document.

5.  PROTOCOL SPECIFICATION

   Autoconfiguration is performed on a per-interface basis on
   multicast-capable interfaces.  For multihomed hosts,
   autoconfiguration is performed independently on each interface.
   Autoconfiguration applies primarily to hosts, with two exceptions.
   Routers are expected to generate a link-local address using the
   procedure outlined below. In addition, routers perform Duplicate
   Address Detection on all addresses prior to assigning them to an
   interface.




Thomson & Narten            Standards Track                    [Page 10]
^L
RFC 2462        IPv6 Stateless Address Autoconfiguration   December 1998


5.1.  Node Configuration Variables

   A node MUST allow the following autoconfiguration-related variable to
   be configured by system management for each multicast interface:

      DupAddrDetectTransmits

                     The number of consecutive Neighbor Solicitation
                     messages sent while performing Duplicate Address
                     Detection on a tentative address. A value of zero
                     indicates that Duplicate Address Detection is not
                     performed on tentative addresses. A value of one
                     indicates a single transmission with no follow up
                     retransmissions.

                     Default: 1, but may be overridden by a link-type
                     specific value in the document that covers issues
                     related to the transmission of IP over a particular
                     link type (e.g., [IPv6-ETHER]).

                     Autoconfiguration also assumes the presence of the
                     variable RetransTimer as defined in [DISCOVERY].
                     For autoconfiguration purposes, RetransTimer
                     specifies the delay between consecutive Neighbor
                     Solicitation transmissions performed during
                     Duplicate Address Detection (if
                     DupAddrDetectTransmits is greater than 1), as well
                     as the time a node waits after sending the last
                     Neighbor Solicitation before ending the Duplicate
                     Address Detection process.

5.2.  Autoconfiguration-Related Variables

   A host maintains a number of data structures and flags related to
   autoconfiguration. In the following, we present conceptual variables
   and show how they are used to perform autoconfiguration. The specific
   variables are used for demonstration purposes only, and an
   implementation is not required to have them, so long as its external
   behavior is consistent with that described in this document.

   Beyond the formation of a link-local address and using Duplicate
   Address Detection, how routers (auto)configure their interfaces is
   beyond the scope of this document.

   Hosts maintain the following variables on a per-interface basis:






Thomson & Narten            Standards Track                    [Page 11]
^L
RFC 2462        IPv6 Stateless Address Autoconfiguration   December 1998


      ManagedFlag      Copied from the M flag field (i.e., the
                       "managed address configuration" flag) of the most
                       recently received Router Advertisement message.
                       The flag indicates whether or not addresses are
                       to be configured using the stateful
                       autoconfiguration mechanism. It starts out in a
                       FALSE state.

      OtherConfigFlag  Copied from the O flag field (i.e., the "other
                       stateful configuration" flag) of the most
                       recently received Router Advertisement message.
                       The flag indicates whether or not information
                       other than addresses is to be obtained using the
                       stateful autoconfiguration mechanism. It starts
                       out in a FALSE state.

                       In addition, when the value of the ManagedFlag is
                       TRUE, the value of OtherConfigFlag is implicitely
                       TRUE as well. It is not a valid configuration for
                       a host to use stateful address autoconfiguration
                       to request addresses only, without also accepting
                       other configuration
                       information.

   A host also maintains a list of addresses together with their
   corresponding lifetimes. The address list contains both
   autoconfigured addresses and those configured manually.

5.3.  Creation of Link-Local Addresses

   A node forms a link-local address whenever an interface becomes
   enabled.  An interface may become enabled after any of the
   following
   events:

      - The interface is initialized at system startup time.

      - The interface is reinitialized after a temporary interface
        failure or after being temporarily disabled by system
        management.

      - The interface attaches to a link for the first time.

      - The interface becomes enabled by system management after
        having been administratively
        disabled.





Thomson & Narten            Standards Track                    [Page 12]
^L
RFC 2462        IPv6 Stateless Address Autoconfiguration   December 1998


   A link-local address is formed by prepending the well-known link-
   local prefix FE80::0 [ADDR-ARCH] (of appropriate length) to the
   interface identifier. If the interface identifier has a length of N
   bits, the interface identifier replaces the right-most N zero bits of
   the link-local prefix.  If the interface identifier is more than 118
   bits in length, autoconfiguration fails and manual configuration is
   required. Note that interface identifiers will typically be 64-bits
   long and based on EUI-64 identifiers as described in [ADDR-ARCH].

   A link-local address has an infinite preferred and valid lifetime; it
   is never timed
   out.

5.4.  Duplicate Address Detection

   Duplicate Address Detection is performed on unicast addresses prior
   to assigning them to an interface whose DupAddrDetectTransmits
   variable is greater than zero. Duplicate Address Detection MUST take
   place on all unicast addresses, regardless of whether they are
   obtained through stateful, stateless or manual configuration, with
   the exception of the following cases:

      - Duplicate Address Detection MUST NOT be performed on anycast
        addresses.

      - Each individual unicast address SHOULD be tested for uniqueness.
        However, when stateless address autoconfiguration is used,
        address uniqueness is determined solely by the interface
        identifier, assuming that subnet prefixes are assigned correctly
        (i.e., if all of an interface's addresses are generated from the
        same identifier, either all addresses or none of them will be
        duplicates). Thus, for a set of addresses formed from the same
        interface identifier, it is sufficient to check that the link-
        local address generated from the identifier is unique on the
        link. In such cases, the link-local address MUST be tested for
        uniqueness, and if no duplicate address is detected, an
        implementation MAY choose to skip Duplicate Address Detection
        for additional addresses derived from the same interface
        identifier.

   The procedure for detecting duplicate addresses uses Neighbor
   Solicitation and Advertisement messages as described below. If a
   duplicate address is discovered during the procedure, the address
   cannot be assigned to the interface. If the address is derived from
   an interface identifier, a new identifier will need to be assigned to
   the interface, or all IP addresses for the interface will need to be
   manually configured.  Note that the method for detecting duplicates
   is not completely reliable, and it is possible that duplicate



Thomson & Narten            Standards Track                    [Page 13]
^L
RFC 2462        IPv6 Stateless Address Autoconfiguration   December 1998


   addresses will still exist (e.g., if the link was partitioned while
   Duplicate Address Detection was performed).

   An address on which the duplicate Address Detection Procedure is
   applied is said to be tentative until the procedure has completed
   successfully.  A tentative address is not considered "assigned to an
   interface" in the traditional sense. That is, the interface must
   accept Neighbor Solicitation and Advertisement messages containing
   the tentative address in the Target Address field, but processes such
   packets differently from those whose Target Address matches an
   address assigned to the interface. Other packets addressed to the
   tentative address should be silently discarded.

   It should also be noted that Duplicate Address Detection must be
   performed prior to assigning an address to an interface in order to
   prevent multiple nodes from using the same address simultaneously.
   If a node begins using an address in parallel with Duplicate Address
   Detection, and another node is already using the address, the node
   performing Duplicate Address Detection will erroneously process
   traffic intended for the other node, resulting in such possible
   negative consequences as the resetting of open TCP connections.

   The following subsections describe specific tests a node performs to
   verify an address's uniqueness.  An address is considered unique if
   none of the tests indicate the presence of a duplicate address within
   RetransTimer milliseconds after having sent DupAddrDetectTransmits
   Neighbor Solicitations. Once an address is determined to be unique,
   it may be assigned to an interface.

5.4.1.  Message Validation

   A node MUST silently discard any Neighbor Solicitation or
   Advertisement message that does not pass the validity checks
   specified in [DISCOVERY]. A solicitation that passes these validity
   checks is called a valid solicitation or valid advertisement.

5.4.2.  Sending Neighbor Solicitation Messages

   Before sending a Neighbor Solicitation, an interface MUST join the
   all-nodes multicast address and the solicited-node multicast address
   of the tentative address.  The former insures that the node receives
   Neighbor Advertisements from other nodes already using the address;
   the latter insures that two nodes attempting to use the same address
   simultaneously detect each other's presence.

   To check an address, a node sends DupAddrDetectTransmits Neighbor
   Solicitations, each separated by RetransTimer milliseconds. The
   solicitation's Target Address is set to the address being checked,



Thomson & Narten            Standards Track                    [Page 14]
^L
RFC 2462        IPv6 Stateless Address Autoconfiguration   December 1998


   the IP source is set to the unspecified address and the IP
   destination is set to the solicited-node multicast address of the
   target address.

   If the Neighbor Solicitation is the first message to be sent from an
   interface after interface (re)initialization, the node should delay
   sending the message by a random delay between 0 and
   MAX_RTR_SOLICITATION_DELAY as specified in [DISCOVERY].  This serves
   to alleviate congestion when many nodes start up on the link at the
   same time, such as after a power failure, and may help to avoid race
   conditions when more than one node is trying to solicit for the same
   address at the same time. In order to improve the robustness of the
   Duplicate Address Detection algorithm, an interface MUST receive and
   process datagrams sent to the all-nodes multicast address or
   solicited-node multicast address of the tentative address while
   delaying transmission of the initial Neighbor Solicitation.

5.4.3.  Receiving Neighbor Solicitation Messages

   On receipt of a valid Neighbor Solicitation message on an interface,
   node behavior depends on whether the target address is tentative or
   not.  If the target address is not tentative (i.e., it is assigned to
   the receiving interface), the solicitation is processed as described
   in [DISCOVERY].  If the target address is tentative, and the source
   address is a unicast address, the solicitation's sender is performing
   address resolution on the target; the solicitation should be silently
   ignored.  Otherwise, processing takes place as described below. In
   all cases, a node MUST NOT respond to a Neighbor Solicitation for a
   tentative address.

   If the source address of the Neighbor Solicitation is the unspecified
   address, the solicitation is from a node performing Duplicate Address
   Detection. If the solicitation is from another node, the tentative
   address is a duplicate and should not be used (by either node). If
   the solicitation is from the node itself (because the node loops back
   multicast packets), the solicitation does not indicate the presence
   of a duplicate address.

   Implementor's Note: many interfaces provide a way for upper layers to
   selectively enable and disable the looping back of multicast packets.
   The details of how such a facility is implemented may prevent
   Duplicate Address Detection from working correctly.  See the Appendix
   for further discussion.

   The following tests identify conditions under which a tentative
   address is not unique:





Thomson & Narten            Standards Track                    [Page 15]
^L
RFC 2462        IPv6 Stateless Address Autoconfiguration   December 1998


      - If a Neighbor Solicitation for a tentative address is
        received prior to having sent one, the tentative address is a
        duplicate.  This condition occurs when two nodes run Duplicate
        Address Detection simultaneously, but transmit initial
        solicitations at different times (e.g., by selecting different
        random delay values before transmitting an initial
        solicitation).

      - If the actual number of Neighbor Solicitations received exceeds
        the number expected based on the loopback semantics (e.g., the
        interface does not loopback packet, yet one or more
        solicitations was received), the tentative address is a
        duplicate. This condition occurs when two nodes run Duplicate
        Address Detection simultaneously and transmit solicitations at
        roughly the same time.

5.4.4.  Receiving Neighbor Advertisement Messages

   On receipt of a valid Neighbor Advertisement message on an interface,
   node behavior depends on whether the target address is tentative or
   matches a unicast or anycast address assigned to the interface.  If
   the target address is assigned to the receiving interface, the
   solicitation is processed as described in [DISCOVERY]. If the target
   address is tentative, the tentative address is not unique.

5.4.5.  When Duplicate Address Detection Fails

   A tentative address that is determined to be a duplicate as described
   above, MUST NOT be assigned to an interface and the node SHOULD log a
   system management error.  If the address is a link-local address
   formed from an interface identifier, the interface SHOULD be
   disabled.

5.5.  Creation of Global and Site-Local Addresses

   Global and site-local addresses are formed by appending an interface
   identifier to a prefix of appropriate length. Prefixes are obtained
   from Prefix Information options contained in Router Advertisements.
   Creation of global and site-local addresses and configuration of
   other parameters as described in this section SHOULD be locally
   configurable. However, the processing described below MUST be enabled
   by default.

5.5.1.  Soliciting Router Advertisements

   Router Advertisements are sent periodically to the all-nodes
   multicast address. To obtain an advertisement quickly, a host sends
   out Router Solicitations as described in [DISCOVERY].



Thomson & Narten            Standards Track                    [Page 16]
^L
RFC 2462        IPv6 Stateless Address Autoconfiguration   December 1998



5.5.2.  Absence of Router Advertisements

   If a link has no routers, a host MUST attempt to use stateful
   autoconfiguration to obtain addresses and other configuration
   information. An implementation MAY provide a way to disable the
   invocation of stateful autoconfiguration in this case, but the
   default SHOULD be enabled.  From the perspective of
   autoconfiguration, a link has no routers if no Router Advertisements
   are received after having sent a small number of Router Solicitations
   as described in [DISCOVERY].

5.5.3.  Router Advertisement Processing

   On receipt of a valid Router Advertisement (as defined in
   [DISCOVERY]), a host copies the value of the advertisement's M bit
   into ManagedFlag. If the value of ManagedFlag changes from FALSE to
   TRUE, and the host is not already running the stateful address
   autoconfiguration protocol, the host should invoke the stateful
   address autoconfiguration protocol, requesting both address
   information and other information.  If the value of the ManagedFlag
   changes from TRUE to FALSE, the host should continue running the
   stateful address autoconfiguration, i.e., the change in the value of
   the ManagedFlag has no effect.  If the value of the flag stays
   unchanged, no special action takes place. In particular, a host MUST
   NOT reinvoke stateful address configuration if it is already
   participating in the stateful protocol as a result of an earlier
   advertisement.

   An advertisement's O flag field is processed in an analogous manner.
   A host copies the value of the O flag into OtherConfigFlag. If the
   value of OtherConfigFlag changes from FALSE to TRUE, the host should
   invoke the stateful autoconfiguration protocol, requesting
   information (excluding addresses if ManagedFlag is set to FALSE).  If
   the value of the OtherConfigFlag changes from TRUE to FALSE, the host
   should continue running the stateful address autoconfiguration
   protocol, i.e., the change in the value of OtherConfigFlag has no
   effect. If the value of the flag stays unchanged, no special action
   takes place. In particular, a host MUST NOT reinvoke stateful
   configuration if it is already participating in the stateful protocol
   as a result of an earlier advertisement.

   For each Prefix-Information option in the Router Advertisement:

    a) If the Autonomous flag is not set, silently ignore the
       Prefix Information
       option.




Thomson & Narten            Standards Track                    [Page 17]
^L
RFC 2462        IPv6 Stateless Address Autoconfiguration   December 1998


    b) If the prefix is the link-local prefix, silently ignore the
       Prefix Information option.

    c) If the preferred lifetime is greater than the valid lifetime,
       silently ignore the Prefix Information option. A node MAY wish to
       log a system management error in this case.

    d) If the prefix advertised does not match the prefix of an address
       already in the list, and the Valid Lifetime is not 0, form an
       address (and add it to the list) by combining the advertised
       prefix with the link's interface identifier as follows:

   |            128 - N bits               |       N bits           |
   +---------------------------------------+------------------------+
   |            link prefix                |  interface identifier  |
   +----------------------------------------------------------------+


       If the sum of the prefix length and interface identifier length
       does not equal 128 bits, the Prefix Information option MUST be
       ignored.  An implementation MAY wish to log a system management
       error in this case. It is the responsibility of the system
       administrator to insure that the lengths of prefixes contained in
       Router Advertisements are consistent with the length of interface
       identifiers for that link type. Note that interface identifiers
       will typically be 64-bits long and based on EUI-64 identifiers as
       described in [ADDR-ARCH].

       If an address is formed successfully, the host adds it to the
       list of addresses assigned to the interface, initializing its
       preferred and valid lifetime values from the Prefix Information
       option.

    e) If the advertised prefix matches the prefix of an autoconfigured
       address (i.e., one obtained via stateless or stateful address
       autoconfiguration) in the list of addresses associated with the
       interface, the specific action to perform depends on the Valid
       Lifetime in the received advertisement and the Lifetime
       associated with the previously autoconfigured address (which we
       call StoredLifetime in the discussion that follows):

       1) If the received Lifetime is greater than 2 hours or greater
          than StoredLifetime, update the stored Lifetime of the
          corresponding address.

       2) If the StoredLifetime is less than or equal to 2 hours and the
          received Lifetime is less than or equal to StoredLifetime,
          ignore the prefix, unless the Router Advertisement from which



Thomson & Narten            Standards Track                    [Page 18]
^L
RFC 2462        IPv6 Stateless Address Autoconfiguration   December 1998


          this Prefix Information option was obtained has been
          authenticated (e.g., via IPSec [RFC2402]). If the Router
          Advertisment was authenticated, the StoredLifetime should be
          set to the Lifetime in the received option.

       3) Otherwise, reset the stored Lifetime in the corresponding
          address to two hours.

       The above rules address a specific denial of service attack in
       which a bogus advertisement could contain prefixes with very
       small Valid Lifetimes. Without the above rules, a single
       unauthenticated advertisement containing bogus Prefix Information
       options with short Lifetimes could cause all of a node's
       addresses to expire prematurely. The above rules insure that
       legitimate advertisements (which are sent periodically) will
       "cancel" the short lifetimes before they actually take effect.

5.5.4.  Address Lifetime Expiry

   A preferred address becomes deprecated when its preferred lifetime
   expires.  A deprecated address SHOULD continue to be used as a source
   address in existing communications, but SHOULD NOT be used in new
   communications if an alternate (non-deprecated) address is available
   and has sufficient scope.  IP and higher layers (e.g., TCP, UDP) MUST
   continue to accept datagrams destined to a deprecated address since a
   deprecated address is still a valid address for the interface. An
   implementation MAY prevent any new communication from using a
   deprecated address, but system management MUST have the ability to
   disable such a facility, and the facility MUST be disabled by
   default.

   An address (and its association with an interface) becomes invalid
   when its valid lifetime expires.  An invalid address MUST NOT be used
   as a source address in outgoing communications and MUST NOT be
   recognized as a destination on a receiving interface.

5.6.  Configuration Consistency

   It is possible for hosts to obtain address information using both
   stateless and stateful protocols since both may be enabled at the
   same time.  It is also possible that the values of other
   configuration parameters such as MTU size and hop limit will be
   learned from both Router Advertisements and the stateful
   autoconfiguration protocol.  If the same configuration information is
   provided by multiple sources, the value of this information should be
   consistent. However, it is not considered a fatal error if
   information received from multiple sources is inconsistent. Hosts
   accept the union of all information received via the stateless and



Thomson & Narten            Standards Track                    [Page 19]
^L
RFC 2462        IPv6 Stateless Address Autoconfiguration   December 1998


   stateful protocols. If inconsistent information is learned different
   sources, the most recently obtained values always have precedence
   over information learned earlier.

6.  SECURITY CONSIDERATIONS

   Stateless address autoconfiguration allows a host to connect to a
   network, configure an address and start communicating with other
   nodes without ever registering or authenticating itself with the
   local site.  Although this allows unauthorized users to connect to
   and use a network, the threat is inherently present in the
   Internet        architecture. Any node with a physical attachment to
   a network can generate an address (using a variety of ad hoc
   techniques) that provides connectivity.

   The use of Duplicate Address Detection opens up the possibility of
   denial of service attacks. Any node can respond to Neighbor
   Solicitations for a tentative address, causing the other node to
   reject the address as a duplicate.  This attack is similar to other
   attacks involving the spoofing of Neighbor Discovery messages and can
   be addressed by requiring that Neighbor Discovery packets be
   authenticated [RFC2402].

7.  References

   [RFC2402]    Kent, S. and R. Atkinson, "IP Authentication Header",
                RFC 2402, November 1998.

   [IPv6-ETHER] Crawford, M., "A Method for the Transmission of
                IPv6        Packets over Ethernet Networks", RFC 2464,
                December 1998.

   [KEYWORDS]   Bradner, S., "Key words for use in RFCs to Indicate
                Requirement Levels", BCP 14, RFC 2119, March
                1997.

   [RFC1112]    Deering, S., "Host Extensions for IP Multicasting", STD
                5, RFC 1112, August
                1989.

   [ADDR-ARCH]  Hinden, R. and S. Deering, "Internet Protocol Version
                (IPv6) Addressing Architecture", RFC 2373, July 1998

   [DHCPv6]     Bound, J. and C. Perkins, "Dynamic Host Configuration
                Protocol for IPv6 (DHCPv6)", Work in Progress.






Thomson & Narten            Standards Track                    [Page 20]
^L
RFC 2462        IPv6 Stateless Address Autoconfiguration   December 1998


   [DISCOVERY]  Narten, T., Nordmark, E. and W. Simpson, "Neighbor
                Discovery for IP Version 6 (IPv6)", RFC 2461, December
                1998.

8.  Acknowledgements

   The authors would like to thank the members of both the IPNG and
   ADDRCONF working groups for their input. In particular, thanks to Jim
   Bound, Steve Deering, Richard Draves, and Erik Nordmark.  Thanks also
   goes to John Gilmore for alerting the WG of the "0 Lifetime Prefix
   Advertisement" denial of service attack vulnerability; this document
   incorporates changes that address this vulnerability.

AUTHORS' ADDRESSES

   Susan Thomson
   Bellcore
   445 South Street
   Morristown, NJ 07960
   USA

   Phone: +1 201-829-4514
   EMail: set@thumper.bellcore.com


   Thomas Narten
   IBM Corporation
   P.O. Box 12195
   Research Triangle Park, NC 27709-2195
   USA

   Phone: +1 919 254 7798
   EMail: narten@raleigh.ibm.com


















Thomson & Narten            Standards Track                    [Page 21]
^L
RFC 2462        IPv6 Stateless Address Autoconfiguration   December 1998


9.  APPENDIX A: LOOPBACK SUPPRESSION & DUPLICATE ADDRESS DETECTION

   Determining whether a received multicast solicitation was looped back
   to the sender or actually came from another node is implementation-
   dependent.  A problematic case occurs when two interfaces attached to
   the same link happen to have the same identifier and link-layer
   address, and they both send out packets with identical contents at
   roughly the same time (e.g., Neighbor Solicitations for a tentative
   address as part of Duplicate Address Detection messages). Although a
   receiver will receive both packets, it cannot determine which packet
   was looped back and which packet came from the other node by simply
   comparing packet contents (i.e., the contents are identical). In this
   particular case, it is not necessary to know precisely which packet
   was looped back and which was sent by another node; if one receives
   more solicitations than were sent, the tentative address is a
   duplicate. However, the situation may not always be this
   straightforward.

   The IPv4 multicast specification [RFC1112] recommends that the
   service interface provide a way for an upper-layer protocol to
   inhibit local delivery of packets sent to a multicast group that the
   sending host is a member of. Some applications know that there will
   be no other group members on the same host, and suppressing loopback
   prevents them from having to receive (and discard) the packets they
   themselves send out.  A straightforward way to implement this
   facility is to disable loopback at the hardware level (if supported
   by the hardware), with packets looped back (if requested) by
   software.  On interfaces in which the hardware itself suppresses
   loopbacks, a node running Duplicate Address Detection simply counts
   the number of Neighbor Solicitations received for a tentative address
   and compares them with the number expected. If there is a mismatch,
   the tentative address is a duplicate.

   In those cases where the hardware cannot suppress loopbacks, however,
   one possible software heuristic to filter out unwanted loopbacks is
   to discard any received packet whose link-layer source address is the
   same as the receiving interface's.  Unfortunately, use of that
   criteria also results in the discarding of all packets sent by
   another node using the same link-layer address. Duplicate Address
   Detection will fail on interfaces that filter received packets in
   this manner:

      o If a node performing Duplicate Address Detection discards
        received packets having the same source link-layer address as
        the receiving interface, it will also discard packets from other
        nodes also using the same link-layer address, including Neighbor
        Advertisement and Neighbor Solicitation messages required to
        make Duplicate Address Detection work correctly.  This



Thomson & Narten            Standards Track                    [Page 22]
^L
RFC 2462        IPv6 Stateless Address Autoconfiguration   December 1998


        particular problem can be avoided by temporarily disabling the
        software suppression of loopbacks while a node performs
        Duplicate Address Detection.

      o If a node that is already using a particular IP address discards
        received packets having the same link-layer source address as
        the interface, it will also discard Duplicate Address
        Detection-related Neighbor Solicitation messages sent by another
        node also using the same link-layer address.  Consequently,
        Duplicate Address Detection will fail, and the other node will
        configure a non-unique address. Since it is generally impossible
        to know when another node is performing Duplicate Address
        Detection, this scenario can be avoided only if software
        suppression of loopback is permanently disabled.

   Thus, to perform Duplicate Address Detection correctly in the case
   where two interfaces are using the same link-layer address, an
   implementation must have a good understanding of the interface's
   multicast loopback semantics, and the interface cannot discard
   received packets simply because the source link-layer address is the
   same as the interfaces.






























Thomson & Narten            Standards Track                    [Page 23]
^L
RFC 2462        IPv6 Stateless Address Autoconfiguration   December 1998


10.  APPENDIX B: CHANGES SINCE RFC 1971

   o Changed document to use term "interface identifier" rather than
     "interface token" for consistency with other IPv6 documents.

   o Clarified definition of deprecated address to make clear it is OK
     to continue sending to or from deprecated addresses.

   o Reworded section 5.4 for clarity (no substantive change).

   o Added rules to Section 5.5.3 Router Advertisement processing to
     address potential denial-of-service attack when prefixes are
     advertised with very short Lifetimes.

   o Clarified wording in Section 5.5.4 to make clear that all upper
     layer protocols must process (i.e., send and receive) packets sent
     to deprecated addresses.


































Thomson & Narten            Standards Track                    [Page 24]
^L
RFC 2462        IPv6 Stateless Address Autoconfiguration   December 1998


11.  Full Copyright Statement

   Copyright (C) The Internet Society (1998).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
























Thomson & Narten            Standards Track                    [Page 25]
^L