1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
|
Network Working Group D. Levi
Request for Comments: 2592 Nortel Networks
Category: Standards Track J. Schoenwaelder
TU Braunschweig
May 1999
Definitions of Managed Objects for the
Delegation of Management Scripts
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (1999). All Rights Reserved.
Abstract
This memo defines a portion of the Management Information Base (MIB)
for use with network management protocols in the Internet community.
In particular, it describes a set of managed objects that allow the
delegation of management scripts to distributed managers.
Table of Contents
1. Introduction ................................................. 2
2. The SNMP Management Framework ................................ 2
3. Overview ..................................................... 3
3.1 Terms ...................................................... 4
4. Requirements and Design Issues .............................. 5
4.1 Script Languages ........................................... 5
4.2 Script Transfer ............................................ 6
4.3 Script Execution ........................................... 7
5. The Structure of the MIB ..................................... 8
5.1 The smLanguageGroup ........................................ 9
5.2 The smScriptGroup .......................................... 9
5.3 The smCodeGroup ............................................ 10
5.4 The smLaunchGroup .......................................... 10
5.5 The smRunGroup ............................................. 11
6 Definitions .................................................. 11
7. Usage Examples ............................................... 41
7.1 Pushing a script via SNMP .................................. 41
Levi & Schoenwaelder Standards Track [Page 1]
^L
RFC 2592 Script MIB May 1999
7.2 Pulling a script from a URL ................................ 42
7.3 Modifying an existing script ............................... 42
7.4 Removing an existing script ................................ 43
7.5 Creating a launch button ................................... 43
7.6 Launching a script ......................................... 44
7.7 Terminating a script ....................................... 44
7.8 Removing a launch button ................................... 45
8. VACM Configuration Examples .................................. 45
8.1 Sandbox for guests ......................................... 45
8.2 Sharing scripts ............................................ 46
8.3 Emergency scripts .......................................... 47
9. IANA Considerations .......................................... 48
10. Security Considerations ..................................... 48
11. Intellectual Property ....................................... 49
12. Acknowledgments ............................................. 49
13. References .................................................. 50
14. Editors' Addresses .......................................... 52
16. Full Copyright Statement .................................... 53
1. Introduction
This memo defines a portion of the Management Information Base (MIB)
for use with network management protocols in the Internet community.
In particular, it describes a set of managed objects that allow the
delegation of management scripts to distributed managers.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [21].
2. The SNMP Management Framework
The SNMP Management Framework presently consists of five major
components:
o An overall architecture, described in RFC 2271 [1].
o Mechanisms for describing and naming objects and events for
the purpose of management. The first version of this Structure
of Management Information (SMI) is called SMIv1 and described
in STD 16, RFC 1155 [2], STD 16, RFC 1212 [3] and RFC 1215
[4]. The second version, called SMIv2, is described in STD 58,
RFC 2578 [5], RFC 2579 [6] and RFC 2580 [7].
Levi & Schoenwaelder Standards Track [Page 2]
^L
RFC 2592 Script MIB May 1999
o Message protocols for transferring management information. The
first version of the SNMP message protocol is called SNMPv1
and described in STD 15, RFC 1157 [8]. A second version of the
SNMP message protocol, which is not an Internet standards
track protocol, is called SNMPv2c and described in RFC 1901
[9] and RFC 1906 [10]. The third version of the message
protocol is called SNMPv3 and described in RFC 1906 [10], RFC
2272 [11] and RFC 2274 [12].
o Protocol operations for accessing management information. The
first set of protocol operations and associated PDU formats is
described in STD 15, RFC 1157 [8]. A second set of protocol
operations and associated PDU formats is described in RFC 1905
[13].
o A set of fundamental applications described in RFC 2273 [14]
and the view-based access control mechanism described in RFC
2275 [15].
Managed objects are accessed via a virtual information store, termed
the Management Information Base or MIB. Objects in the MIB are
defined using the mechanisms defined in the SMI.
MIB conforming to the SMIv1 can be produced through the appropriate
translations. The resulting translated MIB must be semantically
equivalent, except where objects or events are omitted because no
translation is possible (use of Counter64). Some machine readable
information in SMIv2 will be converted into textual descriptions in
SMIv1 during the translation process. However, this loss of machine
readable information is not considered to change the semantics of the
MIB.
3. Overview
The Script MIB module defined in this memo can be used to delegate
management functions to distributed managers. Management functions
are defined as management scripts written in a management scripting
language. This MIB makes no assumptions about the language itself and
even allows distribution of compiled native code, if an
implementation is able to execute native code under the control of
this MIB.
The Script MIB defines a standard interface for the delegation of
management functions based on the Internet management framework. In
particular, it provides the following capabilities:
1. Capabilities to transfer management scripts to a distributed
manager.
Levi & Schoenwaelder Standards Track [Page 3]
^L
RFC 2592 Script MIB May 1999
2. Capabilities for initiating, suspending, resuming and
terminating management scripts.
3. Capabilities to transfer arguments for management scripts.
4. Capabilities to monitor and control running management scripts.
5. Capabilities to transfer the results produced by running
management scripts.
This memo does not address any additional topics like the generation
of notifications or how to address remote agents from a Script MIB
implementation.
3.1. Terms
This section defines the terms used throughout this memo.
o A `distributed manager' is a processing entity which is capable
of performing network management functions. For the scope of
this memo, a distributed manager is assumed to implement the
Script MIB.
o A `higher-level manager', or just `manager', is a processing
entity or human who initiates and controls the operations
performed by one or more distributed managers.
o A `management script' is a set of instructions written in an
executable language which implements a management function.
o A `management scripting language' is a language used to write
management scripts. Note, the term scripting language does not
imply that the language must have the characteristics of
scripting languages (e.g. string orientation, interpretation,
weak typing). The MIB defined in this memo also allows to
control management scripts written in arbitrary compiled system
programming languages.
o A `distributed manager' can be decomposed into an `SNMP entity'
which implements the Script MIB defined in this memo and the
`runtime system' that executes scripts. The Script MIB sees the
runtime system as the managed resource which is controlled by
the MIB.
The runtime system can act as an SNMP application, according to
the SNMP architecture defined in RFC 2271 [1]. For example, a
runtime system which sends SNMP requests to other SNMP entities
will act as a command generator application. The SNMP
Levi & Schoenwaelder Standards Track [Page 4]
^L
RFC 2592 Script MIB May 1999
applications in the runtime system may use the same SNMP engine
which also serves the command responder application used to
implement the Script MIB, but they are not required to do so.
o A `launch button' is the conceptual button used to start the
execution of a management script. It assignes control parameters
to a management script. In particular, it defines the ownership
of the scripts started from a launch button. The ownership can
be used by the language runtime system to enforce security
profiles on a running management script.
4. Requirements and Design Issues
This section discusses some general requirements that have influenced
the design of the Script MIB.
o The Script MIB must not make any assumptions about specific
languages or runtime systems.
o The Script MIB must provide mechanisms that help to avoid new
management problems (e.g. script version problems).
o The Script MIB must provide SNMP interfaces to all functions
required to delegate management scripts. However, other
protocols might be used in addition if they provide a
significant improvement in terms of convenience for
implementation or performance.
o The Script MIB must be organized so that access can be
controlled effectively by using view-based access control [15].
The following sections discuss some design issues in more detail.
4.1. Script Languages
The Script MIB defined in this memo makes no assumption about the
script language. This MIB can therefore be used in combination with
different languages (such as Tcl or Java) and/or different versions
of the same language. No assumptions are made about the format in
which management scripts are transferred.
The Script MIB provides access to information about the language
versions supported by a Script MIB implementation so that a manager
can learn about the capabilities provided by an implementation.
Languages and language versions are identified as follows:
Levi & Schoenwaelder Standards Track [Page 5]
^L
RFC 2592 Script MIB May 1999
1. The language is identified by an object identifier. Object
identifier for well-known languages will be registered by the
Internet Assigned Numbers Authority (IANA). Enterprise specific
languages can also be registered in the enterprise specific OID
subtree.
2. A particular version of a language is identified by a language
version number. The combination of a language object identifier
and a language version is in most cases sufficient to decide
whether a script can be executed or not.
3. Different implementations of the same language version might
have differences due to ambiguities in the language definition
or additional language features provided by an implementor. An
additional object identifier value is provided which identifies
the organization which provides the implementation of a
language. This might be used by scripts that require a
particular implementation of a language.
4. Finally, there might be different versions of a language
implementation. A version number for the language implementation
is provided so that the manager can also distinguish between
different implementations from the same organization of a
particular language version.
The version numbers can either be used by a manager to select the
language version required to execute a particular script or to select
a script that fits the language versions supported by a particular
Script MIB implementation.
An additional table lists language extensions that provide features
not provided by the core language. Language extensions are usually
required to turn a general purpose language into a management
language. In many cases, language extensions will come in the form of
libraries that provide capabilities like sending SNMP requests to
remote SNMP agents or accessing the local MIB instrumentation. Every
extension is associated with a language and carries its own version
numbers.
4.2. Script Transfer
There are two different ways to transfer management scripts to a
distributed manager. The first approach requires that the manager
pushes the script to the distributed manager. This is therefore
called the `push model'. The second approach is the `pull model'
where the manager tells the distributed manager the location of the
script and the distributed manager retrieves the script itself.
Levi & Schoenwaelder Standards Track [Page 6]
^L
RFC 2592 Script MIB May 1999
The MIB defined in this memo supports both models. The `push model'
is realized by a table which allows a manager to write scripts by
sending a sequence of SNMP set requests. The script can be split into
several fragments in order to deal with SNMP message size
limitations.
The `pull model' is realized by the use of Uniform Resource Locators
(URLs) [17] that point to the script source. The manager writes the
URL which points to the script source to the distributed manager by
sending an SNMP set request. The distributed manager is then
responsible for retrieving the document using the protocol specified
in the URL. This allows the use of protocols like FTP [18] or HTTP
[19] to transfer large management scripts efficiently.
The Script MIB also allows management scripts that are hard-wired
into the Script MIB implementation. Built-in scripts can either be
implemented in a language runtime system, or they can be built
natively into the Script MIB implementation. The implementation of
the `push model' or the `pull model' is not required.
Scripts can be stored in non-volatile storage. This allows a
distributed manager to restart scripts if it is restarted (off-line
restart). A manager is not required to push scripts back into the
distributed manager after a restart if the script is backed up in
non-volatile storage.
Every script is identified by an administratively assigned name. This
name may be used to derive the name which is used to access the
script in non-volatile storage. This mapping is implementation
specific. However, the mapping must ensure that the Script MIB
implementation can handle scripts with the same administrative name
owned by different managers. One way to achieve this is to use the
script owner in addition to the script name in order to derive the
internal name used to refer to a particular script in non-volatile
storage.
4.3. Script Execution
The Script MIB permits execution of several instances of the same or
different management scripts. Script arguments are passed as OCTET
STRING values. Scripts return a single result value which is also an
OCTET STRING value. The semantic interpretation of result values is
left to the invoking manager or other management scripts. A script
invoker must understand the format and semantics of both the
arguments and the results of the scripts that it invokes.
Levi & Schoenwaelder Standards Track [Page 7]
^L
RFC 2592 Script MIB May 1999
Scripts can also export complex results through a MIB interface. This
allows a management application to access and use script results in
the same manner as it processes any other MIB data. However, the
Script MIB does not provide any special support for the
implementation of MIBs through scripts.
Runtime errors terminate active scripts. An exit code and a human
readable error message is left in the MIB. A notification containing
the exit code, the error message and a timestamp is generated when a
script terminates with an error exit code.
Script arguments and results do not have any size limitations other
than the limits imposed by the SMI and the SNMP protocol. However,
implementations of this MIB might have further restrictions. A script
designer might therefore choose to return the results via other
mechanisms if the script results can be very large. One possibility
is to return a URL as a script result which points to the file
containing the script output.
Executing scripts have a status object attached which allows script
execution to be suspended, resumed, or aborted. The precise
semantics of the suspend and resume operations are language and
runtime system dependent. Some runtime systems may choose to not
implement the suspend/resume operations.
A history of finished scripts is kept in the MIB. A script invoker
can collect results at a later point in time (offline operation).
Control objects can be used to control how entries in the history are
aged out if the table fills up.
5. The Structure of the MIB
This section presents the structure of the MIB. The objects are
arranged into the following groups:
o language group (smLanguageGroup)
o script group (smScriptGroup)
o script code group (smCodeGroup)
o script launch group (smLaunchGroup)
o running script group (smRunGroup)
Levi & Schoenwaelder Standards Track [Page 8]
^L
RFC 2592 Script MIB May 1999
5.1. The smLanguageGroup
The smLanguageGroup is used to provide information about the
languages and the language extensions supported by a Script MIB
implementation. This group includes two tables. The smLangTable
lists all languages supported by a Script MIB implementation and the
smExtsnTable lists the extensions that are available for a given
language.
5.2. The smScriptGroup
The smScriptGroup consists of a single table, called the
smScriptTable. The smScriptTable lists all scripts known to a Script
MIB implementation. The smScriptTable contains objects that allow the
following operations:
o download scripts from a URL (pull model)
o read scripts from local non-volatile storage
o store scripts in local non-volatile storage
o delete scripts from local non-volatile storage
o list permanent scripts (that can not be changed or removed)
o read and modify the script status (enabled, disabled, editing)
A status object called smScriptOperStatus allows a manager to obtain
the current status of a script. It is also used to provide an error
indication if an attempt to invoke one of the operations listed above
fails. The status change of a script can be requested by modifying
the associated smScriptAdminStatus object.
The source of a script is defined by the smScriptSource object. This
object may contain a URL pointing to a remote location which provides
access to the management script. The script source is read from the
smCodeTable (described below) or from non-volatile storage if the
smScriptSource object contains an empty URL. The smScriptStorageType
object is used to distinguish between scripts read from non-volatile
storage and scripts read from the smCodeTable.
Scripts are automatically loaded once the smScriptAdminStatus object
is set to `enabled'. Loading a script includes retrieving the script
(probably from a remote location), compiling the script for languages
that require a compilation step, and making the code available to the
runtime system. The smScriptOperStatus object is used to indicate
the status of the loading process. This object will start in the
Levi & Schoenwaelder Standards Track [Page 9]
^L
RFC 2592 Script MIB May 1999
state `retrieving', switch to the state `compiling' and finally reach
the state `enabled'. Errors during the retrieval or compilation phase
will result in an error state such as `compilationFailed'.
5.3. The smCodeGroup
The smCodeGroup consists of a single table, called the smCodeTable,
which provides the ability to transfer and modify scripts via SNMP
set requests. In particular, the smCodeTable allows the following
operations:
o download scripts via SNMP (push model)
o modify scripts via SNMP (editing)
The smCodeTable lists the code of a script. A script can be
fragmented over multiple rows of the smCodeTable in order to handle
SNMP message size limitations. Modifications of the smCodeTable are
only possible if the associated smScriptOperStatus object has the
value `editing'. The Script MIB implementation reloads the modified
script code once the smScriptOperStatus changes to `enabled' again.
The implementation of the smCodeGroup is optional.
5.4. The smLaunchGroup
The smLaunchGroup contains a single table, the smLaunchTable. An
entry in the smLaunchTable represents a launch button which can be
used to start a script. The smLaunchTable allows the following
operations:
o associate a script with an owner used during script execution
o provide arguments and parameters for script invocation
o invoke scripts with a single set operation
The smLaunchTable describes scripts and their parameters that are
ready to be launched. An entry in the smLaunchTable attaches an
argument to a script and control values which, for example, define
the maximum number of times that a script invoked from a particular
row in the smLaunchTable may be running concurrently.
An entry in the smLaunchTable also defines the owner which will be
used to associate permissions with the script execution.
Levi & Schoenwaelder Standards Track [Page 10]
^L
RFC 2592 Script MIB May 1999
5.5. The smRunGroup
The smRunGroup contains a single table, called the smRunTable, which
lists all scripts that are currently running or have terminated
recently. The smRunTable contains objects that allow the following
operations:
o retrieve status information from running scripts
o control running scripts (suspend, resume, abort)
o retrieve results from recently terminated scripts
o control the remaining maximum lifetime of a running script
o control how long script results are accessible
Every row in the smRunTable contains the argument passed during
script invocation, the result produced by the script and the script
exit code. The smRunTable also provides information about the
current run state as well as start and end time-stamps. There are
three writable objects in the smRunTable. The smRunLifeTime object
defines the maximum time a running script may run before it is
terminated by the Script MIB implementation. The smRunExpireTime
object defines the time that a completed script can stay in the
smRunTable before it is aged out. The smRunControl object allows
running scripts to be suspended, resumed, or aborted.
6. Definitions
DISMAN-SCRIPT-MIB DEFINITIONS ::= BEGIN
IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
Integer32, Unsigned32, mib-2
FROM SNMPv2-SMI
RowStatus, TimeInterval, DateAndTime, StorageType, DisplayString
FROM SNMPv2-TC
MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP
FROM SNMPv2-CONF
SnmpAdminString
FROM SNMP-FRAMEWORK-MIB;
scriptMIB MODULE-IDENTITY
LAST-UPDATED "9902221800Z"
Levi & Schoenwaelder Standards Track [Page 11]
^L
RFC 2592 Script MIB May 1999
ORGANIZATION "IETF Distributed Management Working Group"
CONTACT-INFO
"David B. Levi
Nortel Networks
4401 Great America Parkway
Santa Clara, CA 95052-8185
U.S.A.
Tel: +1 423 686 0432
E-mail: dlevi@nortelnetworks.com
Juergen Schoenwaelder
TU Braunschweig
Bueltenweg 74/75
38106 Braunschweig
Germany
Tel: +49 531 391-3283
E-mail: schoenw@ibr.cs.tu-bs.de"
DESCRIPTION
"This MIB module defines a set of objects that allow to
delegate management scripts to distributed managers."
::= { mib-2 64 }
--
-- The groups defined within this MIB module:
--
smObjects OBJECT IDENTIFIER ::= { scriptMIB 1 }
smNotifications OBJECT IDENTIFIER ::= { scriptMIB 2 }
smConformance OBJECT IDENTIFIER ::= { scriptMIB 3 }
--
-- Script language and language extensions.
--
-- This group defines tables which list the languages and the
-- language extensions supported by a script MIB implementation.
-- Languages are uniquely identified by object identifier values.
--
smLangTable OBJECT-TYPE
SYNTAX SEQUENCE OF SmLangEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table lists supported script languages."
::= { smObjects 1 }
smLangEntry OBJECT-TYPE
SYNTAX SmLangEntry
Levi & Schoenwaelder Standards Track [Page 12]
^L
RFC 2592 Script MIB May 1999
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry describing a particular language."
INDEX { smLangIndex }
::= { smLangTable 1 }
SmLangEntry ::= SEQUENCE {
smLangIndex Integer32,
smLangLanguage OBJECT IDENTIFIER,
smLangVersion SnmpAdminString,
smLangVendor OBJECT IDENTIFIER,
smLangRevision SnmpAdminString,
smLangDescr SnmpAdminString
}
smLangIndex OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The locally arbitrary, but unique identifier associated
with this language entry.
The value is expected to remain constant at least from one
re-initialization of the entity's network management system
to the next re-initialization.
Note, the data type and the range of this object must be
consistent with the definition of smScriptLanguage."
::= { smLangEntry 1 }
smLangLanguage OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The globally unique identification of the language."
::= { smLangEntry 2 }
smLangVersion OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE (0..32))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The version number of the language. The zero-length string
shall be used if the language does not have a version
number.
Levi & Schoenwaelder Standards Track [Page 13]
^L
RFC 2592 Script MIB May 1999
It is suggested that the version number consist of one or
more decimal numbers separated by dots, where the first
number is called the major version number."
::= { smLangEntry 3 }
smLangVendor OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"An object identifer which identifies the vendor who
provides the implementation of the language. This object
identifer SHALL point to the object identifier directly
below the enterprise object identifier {1 3 6 1 4 1}
allocated for the vendor. The value must be the object
identifier {0 0} if the vendor is not known."
::= { smLangEntry 4 }
smLangRevision OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE (0..32))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The version number of the language implementation.
The value of this object must be an empty string if
version number of the implementation is unknown.
It is suggested that the value consist of one or more
decimal numbers separated by dots, where the first
number is called the major version number."
::= { smLangEntry 5 }
smLangDescr OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A textual description of the language."
::= { smLangEntry 6 }
smExtsnTable OBJECT-TYPE
SYNTAX SEQUENCE OF SmExtsnEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table lists supported language extensions."
::= { smObjects 2 }
Levi & Schoenwaelder Standards Track [Page 14]
^L
RFC 2592 Script MIB May 1999
smExtsnEntry OBJECT-TYPE
SYNTAX SmExtsnEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry describing a particular language extension."
INDEX { smLangIndex, smExtsnIndex }
::= { smExtsnTable 1 }
SmExtsnEntry ::= SEQUENCE {
smExtsnIndex Integer32,
smExtsnExtension OBJECT IDENTIFIER,
smExtsnVersion SnmpAdminString,
smExtsnVendor OBJECT IDENTIFIER,
smExtsnRevision SnmpAdminString,
smExtsnDescr SnmpAdminString
}
smExtsnIndex OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The locally arbitrary, but unique identifier associated
with this language extension entry.
The value is expected to remain constant at least from one
re-initialization of the entity's network management system
to the next re-initialization."
::= { smExtsnEntry 1}
smExtsnExtension OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The globally unique identification of the language
extension."
::= { smExtsnEntry 2 }
smExtsnVersion OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE (0..32))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The version number of the language extension.
Levi & Schoenwaelder Standards Track [Page 15]
^L
RFC 2592 Script MIB May 1999
It is suggested that the version number consist of one or
more decimal numbers separated by dots, where the first
number is called the major version number."
::= { smExtsnEntry 3 }
smExtsnVendor OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"An object identifer which identifies the vendor who
provides the implementation of the extension. The
object identifer value should point to the OID node
directly below the enterprise OID {1 3 6 1 4 1}
allocated for the vendor. The value must by the object
identifier {0 0} if the vendor is not known."
::= { smExtsnEntry 4 }
smExtsnRevision OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE (0..32))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The version number of the extension implementation.
The value of this object must be an empty string if
version number of the implementation is unknown.
It is suggested that the value consist of one or more
decimal numbers separated by dots, where the first
number is called the major version number."
::= { smExtsnEntry 5 }
smExtsnDescr OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A textual description of the language extension."
::= { smExtsnEntry 6 }
--
-- Scripts known by the Script MIB implementation.
--
-- This group defines a table which lists all known scripts.
-- Scripts can be added and removed through manipulation of the
-- smScriptTable.
--
Levi & Schoenwaelder Standards Track [Page 16]
^L
RFC 2592 Script MIB May 1999
smScriptObjects OBJECT IDENTIFIER ::= { smObjects 3 }
smScriptTable OBJECT-TYPE
SYNTAX SEQUENCE OF SmScriptEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table lists and describes locally known scripts."
::= { smScriptObjects 1 }
smScriptEntry OBJECT-TYPE
SYNTAX SmScriptEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry describing a particular script. Every script that
is stored in non-volatile memory is required to appear in
this script table."
INDEX { smScriptOwner, smScriptName }
::= { smScriptTable 1 }
SmScriptEntry ::= SEQUENCE {
smScriptOwner SnmpAdminString,
smScriptName SnmpAdminString,
smScriptDescr SnmpAdminString,
smScriptLanguage Integer32,
smScriptSource DisplayString,
smScriptAdminStatus INTEGER,
smScriptOperStatus INTEGER,
smScriptStorageType StorageType,
smScriptRowStatus RowStatus
}
smScriptOwner OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE (0..32))
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The manager who owns this row in the smScriptTable."
::= { smScriptEntry 1 }
smScriptName OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The locally-unique, administratively assigned name for this
script. This object allows an smScriptOwner to have multiple
entries in the smScriptTable.
Levi & Schoenwaelder Standards Track [Page 17]
^L
RFC 2592 Script MIB May 1999
This value of this object may be used to derive the name
(e.g. a file name) which is used by the Script MIB
implementation to access the script in non-volatile
storage. The details of this mapping are implementation
specific. However, the mapping needs to ensure that scripts
created by different owners with the same script name do not
map to the same name in non-volatile storage."
::= { smScriptEntry 2 }
smScriptDescr OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"A description of the purpose of the script."
::= { smScriptEntry 3 }
smScriptLanguage OBJECT-TYPE
SYNTAX Integer32 (0..2147483647)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of this object type identifies an entry in the
smLangTable which is used to execute this script.
The special value 0 may be used by hard-wired scripts
that can not be modified and that are executed by
internal functions.
Note, the data type and the range of this object must be
consistent with the definition of smLangIndex."
::= { smScriptEntry 4 }
smScriptSource OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object either contains a reference to the script
source or an empty string. A reference must be given
in the form of a Uniform Resource Locator (URL) as
defined in RFC 2396. The allowed character sets and the
encoding rules defined in RFC 2396 section 2 apply.
When the smScriptAdminStatus object is set to `enabled',
the Script MIB implementation will `pull' the script
source from the URL contained in this object if the URL
is not empty.
Levi & Schoenwaelder Standards Track [Page 18]
^L
RFC 2592 Script MIB May 1999
An empty URL indicates that the script source is loaded
from local storage. The script is read from the smCodeTable
if the value of smScriptStorageType is volatile. Otherwise,
the script is read from non-volatile storage.
Note: This document does not mandate implementation of any
specific URL scheme. A attempt to load a script from a
nonsupported URL scheme will cause the smScriptOperStatus
to report an `unknownProtocol' error.
Set requests to change this object are invalid if the
value of smScriptOperStatus is `enabled', `editing',
`retrieving' or `compiling' and will result in an
inconsistentValue error."
DEFVAL { ''H }
::= { smScriptEntry 5 }
smScriptAdminStatus OBJECT-TYPE
SYNTAX INTEGER {
enabled(1),
disabled(2),
editing(3)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of this object indicates the desired status of
the script. See the definition of smScriptOperStatus for
a description of the values.
When the smScriptAdminStatus object is set to `enabled' and
the smScriptOperStatus is `disabled' or one of the error
states, the Script MIB implementation will `pull' the script
source from the URL contained in the smScriptSource object
if the URL is not empty."
DEFVAL { disabled }
::= { smScriptEntry 6 }
smScriptOperStatus OBJECT-TYPE
SYNTAX INTEGER {
enabled(1),
disabled(2),
editing(3),
retrieving(4),
compiling(5),
noSuchScript(6),
accessDenied(7),
wrongLanguage(8),
wrongVersion(9),
Levi & Schoenwaelder Standards Track [Page 19]
^L
RFC 2592 Script MIB May 1999
compilationFailed(10),
noResourcesLeft(11),
unknownProtocol(12),
protocolFailure(13),
genericError(14)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The actual status of the script in the runtime system. The
value of this object is only meaningful when the value of the
smScriptRowStatus object is `active'.
The smScriptOperStatus object may have the following values:
- `enabled' indicates that the script is available and can
be started by a launch table entry.
- `disabled' indicates that the script can not be used.
- `editing' indicates that the script can be modified in the
smCodeTable.
- `retrieving' indicates that the script is currently being
loaded from non-volatile storage or a remote system.
- `compiling' indicates that the script is currently being
compiled by the runtime system.
- `noSuchScript' indicates that the script does not exist
at the smScriptSource.
- `accessDenied' indicates that the script can not be loaded
from the smScriptSource due to a lack of permissions.
- `wrongLanguage' indicates that the script can not be loaded
from the smScriptSource because of a language mismatch.
- `wrongVersion' indicates that the script can not be loaded
from the smScriptSource because of a language version
mismatch.
- `compilationFailed' indicates that the compilation failed.
- `noResourcesLeft' indicates that the runtime system does
not have enough resources to load the script.
- `unknownProtocol' indicates that the script could not be
loaded from the smScriptSource because the requested
Levi & Schoenwaelder Standards Track [Page 20]
^L
RFC 2592 Script MIB May 1999
protocol is not supported.
- `protocolFailure' indicates that the script could not be
loaded from the smScriptSource because of a protocol
failure.
- `genericError' indicates that the script could not be
loaded due to an error condition not listed above.
The `retrieving' and `compiling' states are transient states
which will either lead to one of the error states or the
`enabled' state. The `disabled' and `editing' states are
administrative states which are only reached by explicit
management operations.
All launch table entries that refer to this script table
entry shall have an smLaunchOperStatus value of `disabled'
when the value of this object is not `enabled'."
DEFVAL { disabled }
::= { smScriptEntry 7 }
smScriptStorageType OBJECT-TYPE
SYNTAX StorageType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object defines whether this row and the script
controlled by this row are kept in volatile storage and
lost upon reboot or if this row is backed up by
non-volatile or permanent storage.
The script controlled by this row is written into local
non-volatile storage if the following condition becomes
true:
(a) the URL contained in the smScriptSource object is empty
and
(b) the smScriptStorageType is `nonVolatile'
and
(c) the smScriptOperStatus is `enabled'
Setting this object to `volatile' removes a script from
non-volatile storage if the script controlled by this row
has been in non-volatile storage before. Attempts to set
this object to permanent will always fail with an
inconsistentValue error.
The value of smScriptStorageType is only meaningful if the
Levi & Schoenwaelder Standards Track [Page 21]
^L
RFC 2592 Script MIB May 1999
value of the corresponding RowStatus object is `active'.
If smScriptStorageType has the value permanent(4), then all
objects whose MAX-ACCESS value is read-create must be
writable, with the exception of the smScriptStorageType and
smScriptRowStatus objects, which shall be read-only."
DEFVAL { volatile }
::= { smScriptEntry 8 }
smScriptRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"A control that allows entries to be added and removed from
this table.
Changing the smScriptRowStatus from `active' to `notInService'
will remove the associated script from the runtime system.
The value of smScriptOperStatus will be reset to `disabled'.
Deleting conceptual rows from this table includes the
deletion of all resources associated with this row. This
implies that a script stored in non-volatile storage is
removed from non-volatile storage.
An entry may not exist in the `active' state unless all
required objects in the entry have appropriate values. Rows
that are not complete or not in service are not known by the
script runtime system.
Attempts to `destroy' a row or to set a row `notInService'
while the script is executing will result in an
inconsistentValue error.
Attempts to `destroy' a row or to set a row `notInService'
where the value of the smScriptStorageType object is
`permanent' or `readOnly' will result in an
inconsistentValue error."
::= { smScriptEntry 9 }
--
-- Access to script code via SNMP
--
-- The smCodeTable allows script code to be read and modified
-- via SNMP.
--
Levi & Schoenwaelder Standards Track [Page 22]
^L
RFC 2592 Script MIB May 1999
smCodeTable OBJECT-TYPE
SYNTAX SEQUENCE OF SmCodeEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table contains the script code for scripts that are
written via SNMP write operations."
::= { smScriptObjects 2 }
smCodeEntry OBJECT-TYPE
SYNTAX SmCodeEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry describing a particular fragment of a script."
INDEX { smScriptOwner, smScriptName, smCodeIndex }
::= { smCodeTable 1 }
SmCodeEntry ::= SEQUENCE {
smCodeIndex Unsigned32,
smCodeText OCTET STRING,
smCodeRowStatus RowStatus
}
smCodeIndex OBJECT-TYPE
SYNTAX Unsigned32 (1..4294967295)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The index value identifying this code fragment."
::= { smCodeEntry 1 }
smCodeText OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (1..1024))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The code that makes up a fragment of a script. The format
of this code fragment depends on the script language which
is identified by the associated smScriptLanguage object."
::= { smCodeEntry 2 }
smCodeRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"A control that allows entries to be added and removed from
Levi & Schoenwaelder Standards Track [Page 23]
^L
RFC 2592 Script MIB May 1999
this table."
::= { smCodeEntry 3 }
--
-- Script execution.
--
-- This group defines tables which allow script execution to be
-- initiated, suspended, resumed, and terminated. It also provides
-- a mechanism for keeping a history of recent script executions
-- and their results.
--
smRunObjects OBJECT IDENTIFIER ::= { smObjects 4 }
smLaunchTable OBJECT-TYPE
SYNTAX SEQUENCE OF SmLaunchEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table lists and describes scripts that are ready
to be executed together with their parameters."
::= { smRunObjects 1 }
smLaunchEntry OBJECT-TYPE
SYNTAX SmLaunchEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry describing a particular executable script."
INDEX { smLaunchOwner, smLaunchName }
::= { smLaunchTable 1 }
SmLaunchEntry ::= SEQUENCE {
smLaunchOwner SnmpAdminString,
smLaunchName SnmpAdminString,
smLaunchScriptOwner SnmpAdminString,
smLaunchScriptName SnmpAdminString,
smLaunchArgument OCTET STRING,
smLaunchMaxRunning Unsigned32,
smLaunchMaxCompleted Unsigned32,
smLaunchLifeTime TimeInterval,
smLaunchExpireTime TimeInterval,
smLaunchStart Integer32,
smLaunchControl INTEGER,
smLaunchAdminStatus INTEGER,
smLaunchOperStatus INTEGER,
smLaunchRunIndexNext Integer32,
smLaunchStorageType StorageType,
Levi & Schoenwaelder Standards Track [Page 24]
^L
RFC 2592 Script MIB May 1999
smLaunchRowStatus RowStatus
}
smLaunchOwner OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE (0..32))
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The manager who owns this row in the smLaunchTable. Every
instance of a running script started from a particular entry
in the smLaunchTable (i.e. entries in the smRunTable) will be
owned by the same smLaunchOwner used to index the entry in
the smLaunchTable. This owner is not necessarily the same as
the owner of the script itself (smLaunchScriptOwner)."
::= { smLaunchEntry 1 }
smLaunchName OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE (1..32))
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The locally-unique, administratively assigned name for this
launch table entry. This object allows an smLaunchOwner to
have multiple entries in the smLaunchTable. The smLaunchName
is an arbitrary name that must be different from any other
smLaunchTable entries with the same smLaunchOwner but can be
the same as other entries in the smLaunchTable with different
smLaunchOwner values. Note that the value of smLaunchName
is not related in any way to the name of the script being
launched."
::= { smLaunchEntry 2 }
smLaunchScriptOwner OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE (0..32))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of this object in combination with the value of
smLaunchScriptName identifies the script that can be
launched from this smLaunchTable entry. Attempts to write
this object will fail with an inconsistentValue error if
the value of smLaunchOperStatus is `enabled'."
::= { smLaunchEntry 3 }
smLaunchScriptName OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE (0..32))
MAX-ACCESS read-create
Levi & Schoenwaelder Standards Track [Page 25]
^L
RFC 2592 Script MIB May 1999
STATUS current
DESCRIPTION
"The value of this object in combination with the value of
the smLaunchScriptOwner identifies the script that can be
launched from this smLaunchTable entry. Attempts to write
this objects will fail with an inconsistentValue error if
the value of smLaunchOperStatus is `enabled'."
::= { smLaunchEntry 4 }
smLaunchArgument OBJECT-TYPE
SYNTAX OCTET STRING
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The argument supplied to the script. When a script is
invoked, the value of this object is used to initialize
the smRunArgument object."
DEFVAL { ''H }
::= { smLaunchEntry 5 }
smLaunchMaxRunning OBJECT-TYPE
SYNTAX Unsigned32 (1..4294967295)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The maximum number of concurrently running scripts that may
be invoked from this entry in the smLaunchTable. Lowering the
current value of this object does not affect any scripts that
are already executing."
DEFVAL { 1 }
::= { smLaunchEntry 6 }
smLaunchMaxCompleted OBJECT-TYPE
SYNTAX Unsigned32 (1..4294967295)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The maximum number of finished scripts invoked from this
entry in the smLaunchTable allowed to be retained in the
smRunTable. Whenever the value of this object is changed
and whenever a script terminates, entries in the smRunTable
are deleted if necessary until the number of completed
scripts is smaller than the value of this object. Scripts
whose smRunEndTime value indicates the oldest completion
time are deleted first."
DEFVAL { 1 }
::= { smLaunchEntry 7 }
Levi & Schoenwaelder Standards Track [Page 26]
^L
RFC 2592 Script MIB May 1999
smLaunchLifeTime OBJECT-TYPE
SYNTAX TimeInterval
UNITS "centi-seconds"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The default maximum amount of time a script launched
from this entry may run. The value of this object is used
to initialize the smRunLifeTime object when a script is
launched. Changing the value of an smLaunchLifeTime
instance does not affect scripts previously launched from
this entry."
DEFVAL { 360000 }
::= { smLaunchEntry 8 }
smLaunchExpireTime OBJECT-TYPE
SYNTAX TimeInterval
UNITS "centi-seconds"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The default maximum amount of time information about a
script launched from this entry is kept in the smRunTable
after the script has completed execution. The value of
this object is used to initialize the smRunExpireTime
object when a script is launched. Changing the value of an
smLaunchExpireTime instance does not affect scripts
previously launched from this entry."
DEFVAL { 360000 }
::= { smLaunchEntry 9 }
smLaunchStart OBJECT-TYPE
SYNTAX Integer32 (0..2147483647)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object is used to start the execution of scripts.
When retrieved, the value will be the value of smRunIndex
for the last script that started execution by manipulating
this object. The value will be zero if no script started
execution yet.
A script is started by setting this object to an unused
smRunIndex value. A new row in the smRunTable will be
created which is indexed by the value supplied by the
set-request in addition to the value of smLaunchOwner and
smLaunchName. An unused value can be obtained by reading
the smLaunchRunIndexNext object.
Levi & Schoenwaelder Standards Track [Page 27]
^L
RFC 2592 Script MIB May 1999
Setting this object to the special value 0 will start
the script with a self-generated smRunIndex value. The
consequence is that the script invoker has no reliable
way to determine the smRunIndex value for this script
invocation and that the invoker has therefore no way
to obtain the results from this script invocation. The
special value 0 is however useful for scheduled script
invocations.
If this object is set, the following checks must be
performed:
1) The value of the smLaunchOperStatus object in this
entry of the smLaunchTable must be `enabled'.
2) The values of smLaunchScriptOwner and
smLaunchScriptName of this row must identify an
existing entry in the smScriptTable.
3) The value of smScriptOperStatus of this entry must
be `enabled'.
4) The principal performing the set operation must have
read access to the script. This must be checked by
calling the isAccessAllowed abstract service interface
defined in RFC 2271 on the row in the smScriptTable
identified by smLaunchScriptOwner and smLaunchScriptName.
The isAccessAllowed abstract service interface must be
called on all columnar objects in the smScriptTable with
a MAX-ACCESS value different than `not-accessible'. The
test fails as soon as a call indicates that access is
not allowed.
5) If the value provided by the set operation is not 0,
a check must be made that the value is currently not
in use. Otherwise, if the value provided by the set
operation is 0, a suitable unused value must be
generated.
6) The number of currently executing scripts invoked
from this smLaunchTable entry must be less than
smLaunchMaxRunning.
Attempts to start a script will fail with an
inconsistentValue error if one of the checks described
above fails.
Otherwise, if all checks have been passed, a new entry
in the smRunTable will be created indexed by smLaunchOwner,
smLaunchName and the new value for smRunIndex. The value
of smLaunchArgument will be copied into smRunArgument,
the value of smLaunchLifeTime will be copied to
smRunLifeTime, and the value of smLaunchExpireTime
Levi & Schoenwaelder Standards Track [Page 28]
^L
RFC 2592 Script MIB May 1999
will be copied to smRunExpireTime.
The smRunStartTime will be set to the current time and
the smRunState will be set to `initializing' before the
script execution is initiated in the appropriate runtime
system.
Note, the data type and the range of this object must
be consistent with the smRunIndex object. Since this
object might be written from the scheduling MIB, the
data type Integer32 rather than Unsigned32 is used."
DEFVAL { 0 }
::= { smLaunchEntry 10 }
smLaunchControl OBJECT-TYPE
SYNTAX INTEGER {
abort(1),
suspend(2),
resume(3),
nop(4)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object is used to request a state change for all
running scripts in the smRunTable that were started from
this row in the smLaunchTable.
Setting this object to abort(1), suspend(2) or resume(3)
will set the smRunControl object of all applicable rows
in the smRunTable to abort(1), suspend(2) or resume(3)
respectively. The phrase `applicable rows' means the set of
rows which were created from this entry in the smLaunchTable
and whose value of smRunState allows the corresponding
state change as described in the definition of the
smRunControl object. Setting this object to nop(4) has no
effect."
DEFVAL { nop }
::= { smLaunchEntry 11 }
smLaunchAdminStatus OBJECT-TYPE
SYNTAX INTEGER {
enabled(1),
disabled(2)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
Levi & Schoenwaelder Standards Track [Page 29]
^L
RFC 2592 Script MIB May 1999
"The value of this object indicates the desired status of
this launch table entry."
DEFVAL { disabled }
::= { smLaunchEntry 12 }
smLaunchOperStatus OBJECT-TYPE
SYNTAX INTEGER {
enabled(1),
disabled(2)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object indicates the actual status of
this launch table entry. An `enabled' launch table
entry can be used to start scripts while a `disabled'
launch table entry will refuse any attempts to start
scripts. The value `enabled' requires that the
smLaunchRowStatus object is active. The value
`disabled' requires that there are no entries in the
smRunTable associated with this smLaunchTable entry."
DEFVAL { disabled }
::= { smLaunchEntry 13 }
smLaunchRunIndexNext OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This variable is used for creating rows in the smRunTable.
The value of this variable is a currently unused value
for smRunIndex, which can be written into the smLaunchStart
object associated with this row to launch a script.
The value returned when reading this variable must be unique
for the smLaunchOwner and smLauchName associated with this
row. Subsequent attempts to read this variable must return
different values.
This variable will return the special value 0 if no new rows
can be created.
Note, the data type and the range of this object must be
consistent with the definition of smRunIndex."
::= { smLaunchEntry 14 }
smLaunchStorageType OBJECT-TYPE
SYNTAX StorageType
Levi & Schoenwaelder Standards Track [Page 30]
^L
RFC 2592 Script MIB May 1999
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object defines if this row is kept in volatile storage
and lost upon reboot or if this row is backed up by stable
storage.
The value of smLaunchStorageType is only meaningful if the
value of the corresponding RowStatus object is active.
If smLaunchStorageType has the value permanent(4), then all
objects whose MAX-ACCESS value is read-create must be
writable, with the exception of the smLaunchStorageType and
smLaunchRowStatus objects, which shall be read-only."
DEFVAL { volatile }
::= { smLaunchEntry 15 }
smLaunchRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"A control that allows entries to be added and removed from
this table.
Attempts to `destroy' a row or to set a row `notInService'
while scripts started from this launch table entry are
running will result in an inconsistentValue error.
Attempts to `destroy' a row or to set a row `notInService'
where the value of the smLaunchStorageType object is
`permanent' or `readOnly' will result in an
inconsistentValue error."
::= { smLaunchEntry 16 }
smRunTable OBJECT-TYPE
SYNTAX SEQUENCE OF SmRunEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table lists and describes scripts that are currently
running or have been running in the past."
::= { smRunObjects 2 }
smRunEntry OBJECT-TYPE
SYNTAX SmRunEntry
MAX-ACCESS not-accessible
Levi & Schoenwaelder Standards Track [Page 31]
^L
RFC 2592 Script MIB May 1999
STATUS current
DESCRIPTION
"An entry describing a particular running or finished
script."
INDEX { smLaunchOwner, smLaunchName, smRunIndex }
::= { smRunTable 1 }
SmRunEntry ::= SEQUENCE {
smRunIndex Integer32,
smRunArgument OCTET STRING,
smRunStartTime DateAndTime,
smRunEndTime DateAndTime,
smRunLifeTime TimeInterval,
smRunExpireTime TimeInterval,
smRunExitCode INTEGER,
smRunResult OCTET STRING,
smRunControl INTEGER,
smRunState INTEGER,
smRunError SnmpAdminString
}
smRunIndex OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The locally arbitrary, but unique identifier associated
with this running or finished script. This value must be
unique for all rows in the smRunTable with the same
smLaunchOwner and smLaunchName.
Note, the data type and the range of this object must be
consistent with the definition of smLaunchRunIndexNext
and smLaunchStart."
::= { smRunEntry 1 }
smRunArgument OBJECT-TYPE
SYNTAX OCTET STRING
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The argument supplied to the script when it started."
DEFVAL { ''H }
::= { smRunEntry 2 }
smRunStartTime OBJECT-TYPE
SYNTAX DateAndTime
MAX-ACCESS read-only
Levi & Schoenwaelder Standards Track [Page 32]
^L
RFC 2592 Script MIB May 1999
STATUS current
DESCRIPTION
"The date and time when the execution started. The value
'0000000000000000'H is returned if the script has not
started yet."
DEFVAL { '0000000000000000'H }
::= { smRunEntry 3 }
smRunEndTime OBJECT-TYPE
SYNTAX DateAndTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The date and time when the execution terminated. The value
'0000000000000000'H is returned if the script has not
terminated yet."
DEFVAL { '0000000000000000'H }
::= { smRunEntry 4 }
smRunLifeTime OBJECT-TYPE
SYNTAX TimeInterval
UNITS "centi-seconds"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This object specifies how long the script can execute.
This object returns the remaining time that the script
may run. The object is initialized with the value of the
associated smLaunchLifeTime object and ticks backwards.
The script is aborted immediately when the value reaches 0.
The value of this object may be set in order to increase or
reduce the remaining time that the script may run. Setting
this value to 0 will abort script execution immediately,
and, if the value of smRunExpireTime is also 0, will remove
this entry from the smRunTable once it has terminated.
The value of smRunLifeTime reflects the real-time execution
time as seen by the outside world. The value of this object
will always be 0 for a script that finished execution, that
is smRunState has the value `terminated'.
The value of smRunLifeTime does not change while a script
is suspended, that is smRunState has the value `suspended'.
Note, this does not affect set operations. It is legal to
modify smRunLifeTime via set operations while a script is
suspended."
::= { smRunEntry 5 }
Levi & Schoenwaelder Standards Track [Page 33]
^L
RFC 2592 Script MIB May 1999
smRunExpireTime OBJECT-TYPE
SYNTAX TimeInterval
UNITS "centi-seconds"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This value specifies how long this row can exist in the
smRunTable after the script has terminated. This object
returns the remaining time that the row may exist before it
is aged out. The object is initialized with the value of the
associated smLaunchExpireTime object and ticks backwards. The
entry in the smRunTable is destroyed when the value reaches 0
and the smRunState has the value `terminated'.
The value of this object may be set in order to increase or
reduce the remaining time that the row may exist. Setting
the value to 0 will destroy this entry as soon as the
smRunState has the value `terminated'."
::= { smRunEntry 6 }
smRunExitCode OBJECT-TYPE
SYNTAX INTEGER {
noError(1),
halted(2),
lifeTimeExceeded(3),
noResourcesLeft(4),
languageError(5),
runtimeError(6),
invalidArgument(7),
securityViolation(8),
genericError(9)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object indicates the reason why a
script finished execution. The smRunExitCode code may have
one of the following values:
- `noError', which indicates that the script completed
successfully without errors;
- `halted', which indicates that the script was halted
by a request from an authorized manager;
- `lifeTimeExceeded', which indicates that the script
exited because a time limit was exceeded;
Levi & Schoenwaelder Standards Track [Page 34]
^L
RFC 2592 Script MIB May 1999
- `noResourcesLeft', which indicates that the script
exited because it ran out of resources (e.g. memory);
- `languageError', which indicates that the script exited
because of a language error (e.g. a syntax error in an
interpreted language);
- `runtimeError', which indicates that the script exited
due to a runtime error (e.g. a division by zero);
- `invalidArgument', which indicates that the script could
not be run because of invalid script arguments;
- `securityViolation', which indicates that the script
exited due to a security violation;
- `genericError', which indicates that the script exited
for an unspecified reason.
If the script has not yet begun running, or is currently
running, the value will be `noError'."
DEFVAL { noError }
::= { smRunEntry 7 }
smRunResult OBJECT-TYPE
SYNTAX OCTET STRING
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The result value produced by the running script. Note that
the result may change while the script is executing."
DEFVAL { ''H }
::= { smRunEntry 8 }
smRunControl OBJECT-TYPE
SYNTAX INTEGER {
abort(1),
suspend(2),
resume(3),
nop(4)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The value of this object indicates the desired status of the
script execution defined by this row.
Setting this object to `abort' will abort execution if the
Levi & Schoenwaelder Standards Track [Page 35]
^L
RFC 2592 Script MIB May 1999
value of smRunState is `initializing', `executing',
`suspending', `suspended' or `resuming'. Setting this object
to `abort' when the value of smRunState is `aborting' or
`terminated' will result in an inconsistentValue error.
Setting this object to `suspend' will suspend execution
if the value of smRunState is `executing'. Setting this
object to `suspend' will cause an inconsistentValue error
if the value of smRunState is not `executing'.
Setting this object to `resume' will resume execution
if the value of smRunState is `suspending' or
`suspended'. Setting this object to `resume' will cause an
inconsistentValue error if the value of smRunState is
not `suspending' or `suspended'.
Setting this object to nop(4) has no effect."
DEFVAL { nop }
::= { smRunEntry 9 }
smRunState OBJECT-TYPE
SYNTAX INTEGER {
initializing(1),
executing(2),
suspending(3),
suspended(4),
resuming(5),
aborting(6),
terminated(7)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object indicates the script's execution
status. If the script has been invoked but has not yet
begun execution, the value will be `initializing'. If the
script is running, the value will be `executing'. A script
which received a request to suspend execution but which
did not actually suspend execution will be `suspending'.
A script which has suspended execution will be `suspended'.
A script which received a request to resume execution but
which is not yet running is `resuming'. The resuming state
will finally lead to the `executing' state. A script which
received a request to abort execution but which is still
running is `aborting'. A script which stopped execution
is `terminated'."
::= { smRunEntry 10 }
Levi & Schoenwaelder Standards Track [Page 36]
^L
RFC 2592 Script MIB May 1999
smRunError OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This contains a descriptive error message if the script
terminates in an abnormally. An implementation must store a
descriptive error message in this object if the script exits
with the smRunExitCode `genericError'.
The value of this object is the zero-length string as long
as the smRunExitCode has the value `noError'"
DEFVAL { ''H }
::= { smRunEntry 11 }
--
-- Notifications. The definition of smTraps makes notification
-- registrations reversible (see STD 58, RFC 2578).
--
smTraps OBJECT IDENTIFIER ::= { smNotifications 0 }
smScriptAbort NOTIFICATION-TYPE
OBJECTS { smRunExitCode, smRunEndTime, smRunError }
STATUS current
DESCRIPTION
"This notification is generated whenever a running script
terminates with an smRunExitCode unequal to `noError'."
::= { smTraps 1 }
smScriptResult NOTIFICATION-TYPE
OBJECTS { smRunResult }
STATUS current
DESCRIPTION
"This notification can be used by scripts to notify other
management applications about script results. It can be
used to notify managers about a script result.
This notification is not automatically generated by the
script MIB implementation. It is the responsibility of
the executing script to emit this notification where it
is appropriate to do so."
::= { smTraps 2 }
-- conformance information
smCompliances OBJECT IDENTIFIER ::= { smConformance 1 }
smGroups OBJECT IDENTIFIER ::= { smConformance 2 }
Levi & Schoenwaelder Standards Track [Page 37]
^L
RFC 2592 Script MIB May 1999
-- compliance statements
smCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The compliance statement for SNMP entities which implement
the script MIB."
MODULE -- this module
MANDATORY-GROUPS {
smLanguageGroup, smScriptGroup, smLaunchGroup, smRunGroup
}
GROUP smCodeGroup
DESCRIPTION
"The smCodeGroup is mandatory only for those implementations
that support the downloading of scripts via SNMP."
OBJECT smScriptSource
MIN-ACCESS read-only
DESCRIPTION
"The smScriptSource object is read-only for implementations
that are not able to download script code from a URL."
OBJECT smLaunchArgument
DESCRIPTION
"A compliant implementation has to support a minimum size
for smLaunchArgument of 255 octets."
OBJECT smRunArgument
DESCRIPTION
"A compliant implementation has to support a minimum size
for smRunArgument of 255 octets."
OBJECT smRunResult
DESCRIPTION
"A compliant implementation has to support a minimum size
for smRunResult of 255 octets."
OBJECT smRunState
DESCRIPTION
"A compliant implementation does not have to support script
suspension and the smRunState `suspended'. Such an
implementation will change into the `suspending' state
when the smRunControl is set to `suspend' and remain in this
state until smRunControl is set to `resume' or the script
terminates."
::= { smCompliances 1 }
smLanguageGroup OBJECT-GROUP
OBJECTS {
smLangLanguage,
smLangVersion,
smLangVendor,
smLangRevision,
Levi & Schoenwaelder Standards Track [Page 38]
^L
RFC 2592 Script MIB May 1999
smLangDescr,
smExtsnExtension,
smExtsnVersion,
smExtsnVendor,
smExtsnRevision,
smExtsnDescr
}
STATUS current
DESCRIPTION
"A collection of objects providing information about the
capabilities of the scripting engine."
::= { smGroups 1 }
smScriptGroup OBJECT-GROUP
OBJECTS {
smScriptDescr,
smScriptLanguage,
smScriptSource,
smScriptAdminStatus,
smScriptOperStatus,
smScriptStorageType,
smScriptRowStatus
}
STATUS current
DESCRIPTION
"A collection of objects providing information about
installed scripts."
::= { smGroups 2 }
smCodeGroup OBJECT-GROUP
OBJECTS {
smCodeText,
smCodeRowStatus
}
STATUS current
DESCRIPTION
"A collection of objects used to download or modify scripts
by using SNMP set requests."
::= { smGroups 3 }
smLaunchGroup OBJECT-GROUP
OBJECTS {
smLaunchScriptOwner,
smLaunchScriptName,
smLaunchArgument,
smLaunchMaxRunning,
smLaunchMaxCompleted,
smLaunchLifeTime,
Levi & Schoenwaelder Standards Track [Page 39]
^L
RFC 2592 Script MIB May 1999
smLaunchExpireTime,
smLaunchStart,
smLaunchControl,
smLaunchAdminStatus,
smLaunchOperStatus,
smLaunchRunIndexNext,
smLaunchStorageType,
smLaunchRowStatus
}
STATUS current
DESCRIPTION
"A collection of objects providing information about scripts
that can be launched."
::= { smGroups 4 }
smRunGroup OBJECT-GROUP
OBJECTS {
smRunArgument,
smRunStartTime,
smRunEndTime,
smRunLifeTime,
smRunExpireTime,
smRunExitCode,
smRunResult,
smRunState,
smRunControl,
smRunError
}
STATUS current
DESCRIPTION
"A collection of objects providing information about running
scripts."
::= { smGroups 5 }
smNotificationsGroup NOTIFICATION-GROUP
NOTIFICATIONS {
smScriptAbort,
smScriptResult
}
STATUS current
DESCRIPTION
"The notifications emitted by the script MIB."
::= { smGroups 6 }
END
Levi & Schoenwaelder Standards Track [Page 40]
^L
RFC 2592 Script MIB May 1999
7. Usage Examples
This section presents some examples that explain how a manager can
use the Script MIB defined in this memo. The purpose of these
examples is to explain the steps that are normally used to delegate
management scripts.
7.1. Pushing a script via SNMP
This example explains the steps performed by a manager to push a
script into a distributed manager.
1. The manager first checks the smLanguageTable and the
smExtensionTable in order to select the appropriate script or
language.
2. The manager creates a row in the smScriptTable by issuing an
SNMP set-request. The smScriptRowStatus object is set to
`createAndWait' and the smScriptSource object is set to an empty
string. The smScriptLanguage object is set to the language in
which the script was written. The smScriptStorageType object is
set to `volatile' to indicate that the script will be loaded via
the smCodeTable. The smScriptOwner is set to a string which
identifies the principal who owns the new row. The smScriptName
defines the administratively assigned unique name for the
script.
3. The manager sets the smScriptRowStatus object to `active' and
the smScriptAdminStatus object to `editing'.
4. The manager pushes the script to the distributed manager by
issuing a couple of SNMP set-requests to fill the smCodeTable.
5. Once the whole script has been transferred, the manager sends a
set-request to set the smScriptAdminStatus object to `enabled'.
The Script MIB implementation now makes the script accessible to
the runtime system. This might include the compilation of the
script if the language requires a compilation step.
6. The manager polls the smScriptOperStatus object until the value
is either `enabled' or one of the error status codes. The
script can only be used if the value of smScriptOperStatus is
`enabled'.
7. If the manager wants to store the script in local non-volatile
storage, it should send a set-request which changes the
smScriptStorageType object to `nonVolatile'.
Levi & Schoenwaelder Standards Track [Page 41]
^L
RFC 2592 Script MIB May 1999
7.2. Pulling a script from a URL
This example explains the steps performed by a manager to cause a
distributed manager to pull a script from a URL.
1. The manager first checks the smLanguageTable and the
smExtensionTable in order to select the appropriate script or
language.
2. The manager creates a row in the smScriptTable by issuing an
SNMP set-request. The smScriptRowStatus object is set to
`createAndWait' and the smScriptSource object is set to the URL
which points to the script source. The smScriptLanguage object
is set to the language in which the script was written. The
smScriptOwner is set to a string which identifies the principal
who owns the new row. The smScriptName defines the
administratively assigned unique name for the script.
3. The manager sets the smScriptRowStatus object to `active'.
4. The manager sends a set-request to set the smScriptAdminStatus
object to `enabled'. The Script MIB implementation now makes the
script accessible to the runtime system. This causes a retrieval
operation to pull the script from the URL stored in
smScriptSource. This retrieval operation might be followed by a
compile operation if the language requires a compilation step.
5. The manager polls the smScriptOperStatus object until the value
is either `enabled' or one of the error status codes. The
script can only be used if the value of smScriptOperStatus is
`enabled'.
6. If the manager wants to store the script in local non-volatile
storage, it should send a set-request which changes the
smScriptStorageType object to `nonVolatile'.
7.3. Modifying an existing script
This section explains how a manager can modify a script by sending
SNMP set-requests.
1. First, the script is de-activated by setting the
smScriptAdminStatus to `disabled'.
2. The manager polls the smScriptOperStatus object until the value
is `disabled'.
Levi & Schoenwaelder Standards Track [Page 42]
^L
RFC 2592 Script MIB May 1999
3. The manager sets smScriptSource to an empty string and
smScriptAdminStatus to `editing'. This makes the script source
available in the smCodeTable.
4. The manager polls the smScriptOperStatus object until the value
is `editing'.
5. The manager sends SNMP set-requests to modify the script in the
smCodeTable.
6. The manager sends a set-request to set the smScriptAdminStatus
object to `enabled'. The Script MIB implementation now makes the
script accessible to the runtime system. This might include the
compilation of the script if the language requires a compilation
step.
7. The manager polls the smScriptOperStatus object until the value
is either `enabled' or one of the error status codes. The
script can only be used if the value of smScriptOperStatus is
`enabled'.
7.4. Removing an existing script
This section explains how a manager can remove a script from a
distributed manager.
1. First, the manager sets the smScriptAdminStatus to `disabled'.
This will ensure that no new scripts can be started while
running scripts finish their execution.
2. The manager polls the smScriptOperStatus object until the value
is `disabled'.
3. The manager sends an SNMP set-request to change the
smScriptRowStatus object to `destroy'. This will remove the row
and all associated resources from the Script MIB implementation.
7.5. Creating a launch button
This section explains how a manager can create a launch button for
starting a script.
1. The manager, who is identified by an smLaunchOwner value, first
chooses a name for the new row in the smLaunchTable. The manager
sends an SNMP set-request to set the smLaunchRowStatus object
for this smLaunchOwner and smLaunchName to `createAndWait'.
Levi & Schoenwaelder Standards Track [Page 43]
^L
RFC 2592 Script MIB May 1999
2. The manager fills the new smLaunchTable row with all required
parameters. The smLaunchScriptOwner and smLaunchScriptName
values point to the script that should be started from this
launch button.
3. The manager sends a set-request to change smLaunchAdminStatus to
`enabled' once the new smLaunchTable row is complete.
4. The manager polls the smLaunchOperStatus object until the value
is `enabled'.
7.6. Launching a script
This section explains the suggested way to launch a script from a
given launch button.
1. The manager first retrieves the value of smLaunchRunIndexNext
from the launch button selected to start the script.
2. The manager sends an SNMP set-request to set the smLaunchStart
object to the value obtained in step 1. This will launch the
script if all necessary pre-conditions are satisfied (see the
definition of smLaunchStart for more details). The manager can
also provide the smLaunchArgument in the same set-request that
is used to start the script. Upon successful start, a new row
will be created in the smRunTable indexed by smLaunchOwner,
smLaunchName and the value written to smLaunchStart.
Note, the first step is not required. A manager can also try to guess
an unused value for smRunIndex if he wants to start script in a
single transaction. A manager can also use the special value 0 if he
does not care about the results produced by the script.
7.7. Terminating a script
This section explains two ways to terminate a running script. The
first approach is as follows:
1. The manager sets the smRunControl object of the running script
or the smLaunchControl object of the launch button used to start
the running script to `abort'. Setting smLaunchControl will
abort all running scripts started from the launch button while
smRunControl will only abort the running script associated with
the smRunControl instance.
Levi & Schoenwaelder Standards Track [Page 44]
^L
RFC 2592 Script MIB May 1999
The second way to terminate a script is to set the smRunLifeTime to
zero which causes the runtime system to terminate the script with a
`lifeTimeExceeded' exit code:
1. The manager changes the value of smRunLifeTime to 0. This causes
the Script MIB implementation to abort the script because the
remaining life time has expired.
Note, changing the smRunLifeTime value can also be used to increase
the permitted lifetime of a running script. For example, a manager
can choose to set smRunLifeTime to a small fixed time interval and
increase the value periodically. This strategy has the nice effect
that scripts terminate automatically if the manager loses contact
with the Script MIB engine.
7.8. Removing a launch button
This section explains how a manager can remove a launch button from a
distributed manager.
1. First, the manager sets the smLaunchAdminStatus to
`disabled'. This will ensure that no new scripts can be started
from this launch button while running script will finish their
execution.
2. The manager polls the smLaunchOperStatus object until the value
is `disabled'.
3. The manager sends an SNMP set-request to change the
smLaunchRowStatus object to `destroy'. This will remove the row
and all associated resources from the Script MIB implementation.
8. VACM Configuration Examples
This section shows how the view-based access control model defined in
RFC 2275 [15] can be configured to control access to the script MIB.
8.1. Sandbox for guests
The first example demonstrates how to configure VACM to give the
members of the VACM group "guest" limited access to the script MIB.
The MIB views defined below give the members of the "guest" group a
sandbox where they can install and start their own scripts, but not
access any other scripts maintained by the Script MIB implementation.
vacmAccessReadView."guest"."".usm.authNoPriv = "guestReadView"
vacmAccessWriteView."guest"."".usm.authNoPriv = "guestWriteView"
Levi & Schoenwaelder Standards Track [Page 45]
^L
RFC 2592 Script MIB May 1999
The guestReadView grants read access to the smLangTable, the
smExtsnTable and to all the table entries owned by "guest":
guestReadView:
smLangTable (included)
smExtsnTable (included)
smScriptObjects.*.*.*."guest" (included)
smRunObjects.*.*.*."guest" (included)
The guestWriteView grants write access to all the table entries owned
by "guest":
guestWriteView:
smScriptObjects.*.*.*."guest" (included)
smRunObjects.*.*.*."guest" (included)
8.2. Sharing scripts
This example demonstrates how VACM can be used to share a repository
of scripts between the members of the "senior" and the members of the
"junior" VACM group:
vacmAccessReadView."junior"."".usm.authNoPriv = "juniorReadView"
vacmAccessWriteView."junior"."".usm.authNoPriv = "juniorWriteView"
juniorReadView:
smLangTable (included)
smExtsnTable (included)
smScriptObjects.*.*.*."junior" (included)
smRunObjects.*.*.*."junior" (included)
smScriptObjects.*.*.*."utils" (included)
juniorWriteView:
smScriptObjects.*.*.*."junior" (included)
smRunObjects.*.*.*."junior" (included)
The definitions above allow the members of the "junior" VACM group to
start the scripts owned by "utils" in addition to the script the
members of the "junior" VACM group installed themself. This is
accomplished by giving the members of "junior" read access to scripts
in "utils". This allows members of "junior" to create entries in the
smLauchTable which refer to scripts in "utils", and to launch those
scripts using these entries in the smLaunchTable.
Levi & Schoenwaelder Standards Track [Page 46]
^L
RFC 2592 Script MIB May 1999
vacmAccessReadView."senior"."".usm.authNoPriv = "seniorReadView"
vacmAccessWriteView."senior"."".usm.authNoPriv = "seniorWriteView"
seniorReadView:
smLangTable (included)
smExtsnTable (included)
smScriptObjects.*.*.*."senior" (included)
smRunObjects.*.*.*."senior" (included)
smScriptObjects.*.*.*."utils" (included)
seniorWriteView:
smScriptObjects.*.*.*."senior" (included)
smRunObjects.*.*.*."senior" (included)
smScriptObjects.*.*.*."utils" (included)
The definitions for the members of the "senior" VACM group allow to
start the scripts owned by "utils" in addition to the script the
members of the "senior" VACM group installed themself. The third
write access rule in the seniorWriteView also grants the permission
to install scripts owned by "utils". The members of the "senior" VACM
group therefore have the permissions to install and modify scripts
that can be called by the members of the "junior" VACM group.
8.3. Emergency scripts
This example demonstrates how VACM can be used to allow the members
of the "junior" VACM group to launch scripts that are executed with
the permissions associated with the "emergency" owner. This works by
adding the following rules to the juniorReadView and the
juniorWriteView:
juniorReadView:
smScriptObjects.*.*.*."emergency" (included)
smRunObjects.*.*.*."emergency" (included)
juniorWriteView
smLaunchStart."emergency" (included)
smLaunchArgument."emergency" (included)
The rules added to the juniorReadView grant read access to the
scripts, the launch buttons and the results owned by "emergency". The
rules added to the juniorWriteView grant write permissions to the
smLaunchStart and smLaunchArgument variables ownded by "emergency".
Members of the "junior" VACM group can therefore start scripts that
will execute under the owner "emergency".
Levi & Schoenwaelder Standards Track [Page 47]
^L
RFC 2592 Script MIB May 1999
seniorReadView:
smScriptObjects.*.*.*."emergency" (included)
smRunObjects.*.*.*."emergency" (included)
seniorWriteView:
smScriptObjects.*.*.*."emergency" (included)
smRunObjects.*.*.*."emergency" (included)
The rules added to the seniorReadView and the seniorWriteView will
give the members of the "senior" VACM group the rights to install
emergency scripts and to configure appropriate launch buttons.
9. IANA Considerations
The Internet Assigned Numbers Authority (IANA) is responsible for
maintaining a MIB module which provides OID registrations for well-
known languages. The IANA language registry is intented to reduce
interoperability problems by providing a single list of well-known
languages. However, it is of course still possible to register
languages in private OID spaces. Registering languages in private
spaces is especially attractive if a language is used for
experimentation or if a language is only used in environments where
the distribution of MIB modules with the language registration does
not cause any maintenance problems.
Any additions or changes to the list of languages registered via IANA
require Designated Expert Review as defined in the IANA guidelines
[20]. The Designated Expert will be selected by the IESG Area
Director for the IETF Operations and Management Area.
10. Security Considerations
This MIB provides the ability to distribute applications written in
an arbitrary language to remote systems in a network. The security
features of the languages available in a particular implementation
should be taken into consideration when deploying an implementation
of this MIB.
To facilitate the provisioning of access control by a security
administrator using the View-Based Access Control Model (VACM)
defined in RFC 2275 [15] for tables in which multiple users may need
to independently create or modify entries, the initial index is used
as an "owner index". Such an initial index has a syntax of
SnmpAdminString, and can thus be trivially mapped to a securityName
or groupName as defined in VACM, in accordance with a security
policy.
Levi & Schoenwaelder Standards Track [Page 48]
^L
RFC 2592 Script MIB May 1999
All entries in related tables belonging to a particular user will
have the same value for this initial index. For a given user's
entries in a particular table, the object identifiers for the
information in these entries will have the same subidentifiers
(except for the "column" subidentifier) up to the end of the encoded
owner index. To configure VACM to permit access to this portion of
the table, one would create vacmViewTreeFamilyTable entries with the
value of vacmViewTreeFamilySubtree including the owner index portion,
and vacmViewTreeFamilyMask "wildcarding" the column subidentifier.
More elaborate configurations are possible.
The VACM access control mechanism described above provides control
over SNMP access to Script MIB objects. There are a number of other
access control issues that are outside of the scope of this MIB. For
example, access control on URLs, especially those that use the file
scheme, must be realized by the underlying operating system. A
mapping of the owner index value to a local operating system security
user identity should be used by an implementation of this MIB to
control access to operating system resources when resolving URLs or
executing scripts.
11. Intellectual Property
The IETF takes no position regarding the validity or scope of any
intellectual property or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; neither does it represent that it
has made any effort to identify any such rights. Information on the
IETF's procedures with respect to rights in standards-track and
standards-related documentation can be found in BCP-11. Copies of
claims of rights made available for publication and any assurances of
licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such
proprietary rights by implementors or users of this specification can
be obtained from the IETF Secretariat.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights which may cover technology that may be required to practice
this standard. Please address the information to the IETF Executive
Director.
12. Acknowledgments
This document was produced by the IETF Distributed Management
(DISMAN) working group.
Levi & Schoenwaelder Standards Track [Page 49]
^L
RFC 2592 Script MIB May 1999
13. References
[1] Harrington, D., Presuhn, R. and B. Wijnen, "An Architecture for
Describing SNMP Management Frameworks", RFC 2271, January 1998.
[2] Rose, M. and K. McCloghrie, "Structure and Identification of
Management Information for TCP/IP-based Internets", STD 16, RFC
1155, May 1990.
[3] Rose, M. and K. McCloghrie, "Concise MIB Definitions", STD 16,
RFC 1212, March 1991.
[4] Rose, M., "A Convention for Defining Traps for use with the
SNMP", RFC 1215, March 1991.
[5] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,
M. and S. Waldbusser, "Structure of Management Information
Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.
[6] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,
M. and S. Waldbusser, "Textual Conventions for SMIv2", STD 58,
RFC 2579, April 1999.
[7] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,
M. and S. Waldbusser, "Conformance Statements for SMIv2", STD
58, RFC 2580, April 1999.
[8] Case, J., Fedor, M., Schoffstall, M. and J. Davin, "Simple
Network Management Protocol", STD 15, RFC 1157, May 1990.
[9] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
"Introduction to Community-based SNMPv2", RFC 1901, January
1996.
[10] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Transport
Mappings for Version 2 of the Simple Network Management Protocol
(SNMPv2)", RFC 1906, January 1996.
[11] Case, J., Harrington D., Presuhn R. and B. Wijnen, "Message
Processing and Dispatching for the Simple Network Management
Protocol (SNMP)", RFC 2272, January 1998.
[12] Blumenthal, U. and B. Wijnen, "User-based Security Model (USM)
for version 3 of the Simple Network Management Protocol
(SNMPv3)", RFC 2274, January 1998.
Levi & Schoenwaelder Standards Track [Page 50]
^L
RFC 2592 Script MIB May 1999
[13] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Protocol
Operations for Version 2 of the Simple Network Management
Protocol (SNMPv2)", RFC 1905, January 1996.
[14] Levi, D., Meyer, P. and B. Stewart, "SNMPv3 Applications", RFC
2273, January 1998.
[15] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based Access
Control Model (VACM) for the Simple Network Management Protocol
(SNMP)", RFC 2275, January 1998.
[16] Hovey, R. and S. Bradner, "The Organizations Involved in the
IETF Standards Process", BCP 11, RFC 2028, October 1996.
[17] Berners-Lee, T., Fielding, R. and L. Masinter, " Uniform
Resource Identifiers (URI): Generic Syntax", RFC 2396, August
1998.
[18] Postel, J. and J. Reynolds, "File Transfer Protocol", STD 9, RFC
959, October 1985.
[19] Fielding, R., Gettys, J., Mogul, J., Frystyk, H. and T.
Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1", RFC
2068, January 1997.
[20] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.
[21] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997.
Levi & Schoenwaelder Standards Track [Page 51]
^L
RFC 2592 Script MIB May 1999
14. Editors' Addresses
David B. Levi
Nortel Networks
4401 Great America Parkway
Santa Clara, CA 95052-8185
U.S.A.
Phone: +1 423 686 0432
EMail: dlevi@nortelnetworks.com
Juergen Schoenwaelder
TU Braunschweig
Bueltenweg 74/75
38106 Braunschweig
Germany
Phone: +49 531 391-3683
EMail: schoenw@ibr.cs.tu-bs.de
Levi & Schoenwaelder Standards Track [Page 52]
^L
RFC 2592 Script MIB May 1999
16. Full Copyright Statement
Copyright (C) The Internet Society (1999). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Levi & Schoenwaelder Standards Track [Page 53]
^L
|