summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc2643.txt
blob: 058abbe938b99d783431d53a2fe03cd6eb7e74b3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
Network Working Group                                          D. Ruffen
Request for Comments: 2643                                        T. Len
Category: Informational                                       J. Yanacek
                                          Cabletron Systems Incorporated
                                                             August 1999


             Cabletron's SecureFast VLAN Operational Model
                              Version 1.8

Status of this Memo

   This memo provides information for the Internet community.  It does
   not specify an Internet standard of any kind.  Distribution of this
   memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (1999).  All Rights Reserved.

Abstract

   Cabletron's SecureFast VLAN (SFVLAN) product implements a distributed
   connection-oriented switching protocol that provides fast forwarding
   of data packets at the MAC layer.  The product uses the concept of
   virtual LANs (VLANs) to determine the validity of call connection
   requests and to scope the broadcast of certain flooded messages.

Table of Contents

   1. Introduction.............................................  3
      1.1 Data Conventions.....................................  3
      1.2 Definitions of Commonly Used Terms...................  4
   2. SFVLAN Overview..........................................  6
      2.1 Features.............................................  7
      2.2 VLAN Principles......................................  8
          2.2.1 Default, Base and Inherited VLANs..............  8
          2.2.2 VLAN Configuration Modes.......................  8
                2.2.2.1 Endstations............................  8
                2.2.2.2 Ports..................................  9
                2.2.2.3 Order of Precedence....................  9
          2.2.3 Ports with Multiple VLAN Membership............ 10
      2.3 Tag/Length/Value Method of Addressing................ 10
      2.4 Architectural Overview............................... 11
   3. Base Services............................................ 13
   4. Call Processing.......................................... 14
      4.1 Directory Service Center............................. 14
          4.1.1 Local Add Server............................... 15



Ruffen, et al.               Informational                      [Page 1]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


          4.1.2 Inverse Resolve Server......................... 15
          4.1.3 Local Delete Server............................ 18
      4.2 Topology Service Center.............................. 18
          4.2.1 Neighbor Discovery Server...................... 18
          4.2.2 Spanning Tree Server........................... 18
                4.2.2.1 Creating and Maintaining
                                   the Spanning Tree........... 19
                4.2.2.2 Remote Blocking........................ 19
          4.2.3 Link State Server.............................. 20
      4.3 Resolve Service Center............................... 21
          4.3.1 Table Server................................... 22
          4.3.2 Local Server................................... 22
          4.3.3 Subnet Server.................................. 22
          4.3.4 Interswitch Resolve Server..................... 22
          4.3.5 Unresolvable Server............................ 23
          4.3.6 Block Server................................... 23
      4.4 Policy Service Center................................ 24
          4.4.1 Unicast Rules Server........................... 24
      4.5 Connect Service Center............................... 25
          4.5.1 Local Server................................... 25
          4.5.2 Link State Server.............................. 25
          4.5.3 Directory Server............................... 26
      4.6 Filter Service Center................................ 26
      4.7 Path Service Center.................................. 26
          4.7.1 Link State Server.............................. 26
          4.7.2 Spanning Tree Server........................... 27
      4.8 Flood Service Center................................. 27
          4.8.1 Tag-Based Flood Server......................... 27
   5. Monitoring Call Connections.............................. 27
      5.1 Definitions.......................................... 27
      5.2 Tapping a Connection................................. 28
          5.2.1 Types of Tap Connections....................... 28
          5.2.2 Locating the Probe and Establishing
                                   the Tap Connection.......... 29
          5.2.3 Status Field................................... 30
      5.3 Untapping a Connection............................... 31
   6. Interswitch Message Protocol (ISMP)...................... 32
      6.1 General Packet Structure............................. 32
          6.1.1 Frame Header................................... 32
          6.1.2 ISMP Packet Header............................. 33
                6.1.2.1 Version 2.............................. 33
                6.1.2.2 Version 3.............................. 34
          6.1.3 ISMP Message Body.............................. 35
      6.2 Interswitch BPDU Message............................. 35
      6.3 Interswitch Remote Blocking Message.................. 36
      6.4 Interswitch Resolve Message.......................... 37
          6.4.1 Prior to Version 1.8........................... 37
          6.4.2 Version 1.8.................................... 41



Ruffen, et al.               Informational                      [Page 2]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


      6.5 Interswitch New User Message......................... 46
      6.6 Interswitch Tag-Based Flood Message.................. 49
          6.6.1 Prior to Version 1.8........................... 49
          6.6.2 Version 1.8.................................... 52
      6.7 Interswitch Tap/Untap Message........................ 55
   7. Security Considerations.................................. 58
   8. References............................................... 58
   9. Authors' Addresses....................................... 59
   10. Full Copyright Statement................................ 60

1. Introduction

   This memo is being distributed to members of the Internet community
   in order to solicit reactions to the proposals contained herein.
   While the specification discussed here may not be directly relevant
   to the research problems of the Internet, it may be of interest to
   researchers and implementers.

1.1 Data Conventions

   The methods used in this memo to describe and picture data adhere to
   the standards of Internet Protocol documentation [RFC1700].  In
   particular:

      The convention in the documentation of Internet Protocols is to
      express numbers in decimal and to picture data in "big-endian"
      order.  That is, fields are described left to right, with the most
      significant octet on the left and the least significant octet on
      the right.

      The order of transmission of the header and data described in this
      document is resolved to the octet level.  Whenever a diagram shows
      a group of octets, the order of transmission of those octets is
      the normal order in which they are read in English.

      Whenever an octet represents a numeric quantity the left most bit
      in the diagram is the high order or most significant bit.  That
      is, the bit labeled 0 is the most significant bit.













Ruffen, et al.               Informational                      [Page 3]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


      Similarly, whenever a multi-octet field represents a numeric
      quantity the left most bit of the whole field is the most
      significant bit.  When a multi-octet quantity is transmitted the
      most significant octet is transmitted first.

1.2 Definitions of Commonly Used Terms

   This section contains a collection of definitions for terms that have
   a specific meaning for the SFVLAN product and that are used
   throughout the text.

   Switch ID

      A 10-octet value that uniquely identifies an SFVLAN switch within
      the switch fabric.  The value consists of the 6-octet base MAC
      address of the switch, followed by 4 octets of zeroes.

   Network link

      The physical connection between two switches.  A network link is
      associated with a network interface (or port) of a switch.

   Network port

      An interface on a switch that attaches to another switch.

   Access port

      An interface on a switch that attaches to a user endstation.

   Port ID

      A 10-octet value that uniquely identifies an interface of a
      switch.  The value consists of the 6-octet base MAC address of the
      switch, followed by the 4-octet local port number of the
      interface.

   Neighboring switches

      Two switches attached to a common (network) link.

   Call connection

      A mapping of user traffic through a switch that correlates the
      source and destination address pair specified within the packet to
      an inport and outport pair on the switch.





Ruffen, et al.               Informational                      [Page 4]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


   Call connection path

      A set of 0 to 7 network links over which user traffic travels
      between the source and destination endstations.  Call connection
      paths are selected from a list of alternate equal cost paths
      calculated by the VLS protocol [IDvlsp], and are chosen to load
      balance traffic across the fabric.

   Ingress switch

      The owner switch of the source endstation of a call connection.
      That is, the source endstation is attached to one of the local
      access ports of the switch.

   Egress switch

      The owner switch of the destination endstation of a call
      connection.  That is, the destination endstation is attached to
      one of the local access ports of the switch.

   Intermediate switches

      Any switch along the call connection path on which user traffic
      enters and leaves over network links.  Note that the following
      types of connections have no intermediate switches:

      -  Call connections between source and destination endstations
         that are attached to the same switch -- that is, the ingress
         switch is the same as the egress switch.  Note also that the
         path for this type of connection consists of 0 network links.

      -  Call connections where the ingress and egress switches are
         physical neighbors connected by a single network link.  The
         path for this type of connection consists of a single network
         link.

   InterSwitch Message protocol (ISMP)

      The protocol used for interswitch communication between SFVLAN
      switches.

   Undirected messages

      Messages that are (potentially) sent to all SFVLAN switches in the
      switch fabric -- that is, they are not directed to any particular
      switch.  ISMP messages with a message type of 5, 7 or 8 are
      undirected messages.




Ruffen, et al.               Informational                      [Page 5]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


   Switch flood path

      The path used to send undirected messages throughout the switch
      fabric.  The switch flood path is formed using a spanning tree
      algorithm that provides a single path through the switch fabric
      that guarantees loop-free delivery to every other SFVLAN switch in
      the fabric.

   Upstream Neighbor

      That switch attached to the inport of the switch flood path --
      that is, the switch from which undirected messages are received.
      Note that each switch receiving an undirected message has, at
      most, one upstream neighbor, and the originator of any undirected
      ISMP message has no upstream neighbors.

   Downstream Neighbors

      Those switches attached to all outports of the switch flood path
      except the port on which the undirected message was received.
      Note that for each undirected message some number of switches have
      no downstream neighbors.

   Virtual LAN (VLAN) identifier

      A VLAN is a logical grouping of ports and endstations such that
      all ports and endstations in the VLAN appear to be on the same
      physical (or extended) LAN segment even though they may be
      geographically separated.

      A VLAN identifier consists of a variable-length string of octets.
      The first octet in the string contains the number of octets in the
      remainder of the string -- the actual VLAN identifier value.  A
      VLAN identifier can be from 1 to 16 octets long.

   VLAN policy

      Each VLAN has an assigned policy value used to determine whether a
      particular call connection can be established. SFVLAN recognizes
      two policy values:  Open and Secure.

2. SFVLAN Overview

   Cabletron's SecureFast VLAN (SFVLAN) product implements a distributed
   connection-oriented switching protocol that provides fast forwarding
   of data packets at the MAC layer.





Ruffen, et al.               Informational                      [Page 6]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


2.1 Features

   Within a connection-oriented switching network, user traffic is
   routed through the switch fabric based on the source and destination
   address (SA/DA) pair found in the arriving packet. For each SA/DA
   pair encountered by a switch, a "connection" is programmed into the
   switch hardware.  This connection maps the SA/DA pair and the port on
   which the packet was received to a specific outport over which the
   packet is to be forwarded.  Thus, once a connection has been
   established, all packets with a particular SA/DA pair arriving on a
   particular inport are automatically forwarded by the switch hardware
   out the specified outport.

   A distributed switching environment requires that each switch be
   capable of processing all aspects of the call processing and
   switching functionality.  Thus, each switch must synchronize its
   various databases with all other switches in the fabric or be capable
   of querying other switches for information it does not have locally.

   SFVLAN accomplishes the above objectives by providing the following
   features:

   -  A virtual directory of the entire switch fabric.

   -  Call processing for IP, IPX and MAC protocols.

   -  Automatic call connection, based on VLAN policy.

   -  Automatic call rerouting around failed switches and links.

   In addition, SFVLAN optimizes traffic flow across the switch fabric
   by providing the following features:

   -  Broadcast interception and address resolution at the ingress port.

   -  Broadcast scoping, restricting the flooding of broadcast packets
      to only those ports that belong to the same VLAN as the packet
      source.

   -  A single loop-free path (spanning tree) used for the flooding of
      undirected interswitch control messages.  Only switches running
      the SFVLAN switching protocol are included in this spanning tree
      calculation -- that is, traditional bridges or routers configured
      for bridging are not included.

   -  Interception of both service and route advertisements with
      readvertisement sourced from the MAC address of the original
      advertiser.



Ruffen, et al.               Informational                      [Page 7]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


2.2 VLAN Principles

   Each SFVLAN switch port, along with its attached endstations, belongs
   to one or more virtual LANs (VLANs).  A VLAN is a logical grouping of
   ports and endstations such that all ports and endstations in the VLAN
   appear to be on the same physical (or extended) LAN segment even
   though they may be geographically separated.

   VLAN assignments are used to determine the validity of call
   connection requests and to scope the broadcast of certain flooded
   messages.

2.2.1 Default, Base and Inherited VLANs

   Each port is explicitly assigned to a default VLAN.  At start-up, the
   default VLAN to which all ports are assigned is the base VLAN -- a
   permanent, non-deletable VLAN to which all ports belong at all times.

   The network administrator can change the default VLAN of a port from
   the base VLAN to any other unique VLAN by using a management
   application known here as the VLAN Manager.  A port's default VLAN is
   persistent -- that is, it is preserved across a switch reset.

   When an endstation attaches to a port for the first time, it inherits
   the default VLAN of the port.  Using the VLAN Manager, the network
   administrator can reassign an endstation to another VLAN.

      Note:

         When all ports and all endstations belong to the base VLAN, the
         switch fabric behaves like an 802.1D bridging system.

2.2.2 VLAN Configuration Modes

   For both ports and endstations, there are a variety of VLAN
   configuration types, or modes.

2.2.2.1 Endstations

   For endstations, there are two VLAN configuration modes: inherited
   and static.

   -  Inherited

      An inherited endstation becomes a member of its port's default
      VLAN.





Ruffen, et al.               Informational                      [Page 8]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


   -  Static

      A static port becomes a member of the VLAN to which it has been
      assigned by the VLAN Manager.

   The default configuration mode for an endstation is inherited.

2.2.2.2 Ports

   For ports, there are two VLAN configuration modes:  normal and
   locked.

   -  Normal

      All inherited endstations on a normal port become members of the
      port's default VLAN.  All static endstations are members of the
      VLAN to which they were mapped by the VLAN Manager.

      If the VLAN Manager reassigns the default VLAN of a normal port,
      the VLAN(s) for the attached endstations may or may not change,
      depending on the VLAN configuration mode of each endstation.  All
      inherited endstations will become members of the new default VLAN.
      All others will retain membership in their previously mapped
      VLANs.

   -  Locked

      All endstations attached to a locked port can be members only of
      the port's default VLAN.

      If the VLAN Manager reconfigures a normal port to be a locked
      port, all endstations attached to the port become members of the
      port's default VLAN, regardless of any previous VLAN membership.

   The default configuration mode for ports is normal.

2.2.2.3 Order of Precedence

   On a normal port, static VLAN membership prevails over inherited
   membership.

   On a locked port, default VLAN membership prevails over any static
   VLAN membership.

   If a statically assigned endstation moves from a locked port back to
   a normal port, the endstation's static VLAN membership must be
   preserved.




Ruffen, et al.               Informational                      [Page 9]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


2.2.3 Ports with Multiple VLAN Membership

   A port can belong to multiple VLANs, based on the VLAN membership of
   its attached endstations.

   For example, consider a port with three endstations, a default VLAN
   of "blue" and the following endstation VLAN assignments:

   -  One of the endstations is statically assigned to VLAN "red."
   -  Another endstation is statically assigned to VLAN "green."
   -  The third endstation inherits the default VLAN of "blue."

   In this instance, the port is explicitly a member of VLAN "blue." But
   note that it is also implicitly a member of VLAN "red" and VLAN
   "green."  Any tag-based flooding (Section 4.8) directed to any one of
   the three VLANs ("red," "green," or "blue") will be forwarded out the
   port.

2.3 Tag/Length/Value Method of Addressing

   Within most computer networks, the concept of "address" is somewhat
   elusive because different protocols can (and do) use different
   addressing schemes and formats.  For example, Ethernet (physical
   layer) addresses are six octets long, while IP (network layer)
   addresses are only four octets long.

   To distinguish between the various protocol-specific forms of
   addressing, many software modules within the SFVLAN product specify
   addresses in a format known as Tag/Length/Value (TLV). This format
   uses a variable-length construct as shown below:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                              Tag                              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Value length  |                                               |
   +-+-+-+-+-+-+-+-+                                               +
   |                          Address value                        |
   :                                                               :
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Tag

      This 4-octet field specifies the type of address contained in the
      structure.  The following address types are currently supported:




Ruffen, et al.               Informational                     [Page 10]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


         Tag name        Value    Address type

         aoMacDx         1        DX ethernet dst/src/type
         aoIpxSap        2        Sap
         aoIpxRIP        3        RIP
         aoInstYP        4        YP (YP name and version)
         aoInstUDP       5        UDP (Port #)
         aoIpxIpx        6        Ipx
         aoInetIP        7        IP (Net address)
         aoInetRPC       8        RPC (Program #)
         aoInetRIP       9        INET RIP
         aoMacDXMcast    10       Multicast unknown type
         aoAtDDP         11       AppleTalk DDP
         aoEmpty         12       (no address type specified)
         aoVlan          13       VLAN identifier
         aoHostName      14       Host name
         aoNetBiosName   15       NetBIOS name
         aoNBT           16       NetBIOS on TCP name
         aoInetIPMask    17       IP Subnet Mask
         aoIpxSap8022    18       Sap 8022 type service
         aoIpxSapSnap    19       Sap Snap type service
         aoIpxSapEnet    20       Sap Enet type service
         aoDHCPXID       21       DHCP Transaction ID
         aoIpMcastRx     22       IP class D receiver
         aoIpMcastTx     23       IP class D sender
         aoIpxRip8022    24       Ipx Rip 8022 type service
         aoIpxRipSnap    25       Ipx Rip type service
         aoIpxRipEnet    26       Ipx Rip Enet service
         aoATM           27       ATM
         aoATMELAN       28       ATM LAN Emulation Name

   Value length

      This 1-octet field contains the length of the value of the
      address.  The value here depends on the address type and actual
      value.

   Address value

      This variable-length field contains the value of the address. The
      length of this field is stored in the Value length field.

2.4 Architectural Overview

   The SFVLAN software executes in the switch CPU and consists of the
   following elements as shown in Figure 1:





Ruffen, et al.               Informational                     [Page 11]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


   -  The SFVLAN base services that handles traffic intercepted by the
      switch hardware.  The base services are described in Section 3.

   +------------------------------------------------------+
   |                                              +-----+ |
   |                         +------------+       |  I  | |
   |                         |  CALL TAP  <--(8)-->  N  | |
   |                         +------------+       |  T  | |
   |                                              |  E  | |
   |      +-----------+      +------------+       |  R  | |
   |      |   PATH    |      |  TOPOLOGY  |       |  S  | |
   |      |           |      |            |       |  W  | |
   |      | Lnk state <------>  Lnk state <--(3)-->  I  | | Flood path
   |      |           |      |            |       |  T  <----(5,7,8)-->
   |      | Span tree <------>  Span tree <--(4)-->  C  | |
   |      +--^--------+      |            |       |  H  | |
   |         |               |  Discovery <--(2)-->     | |
   |         |               +------------+       |  M  | |
   |         |                                    |  E  | |
   |  +------^--+            +--------+           |  S  | |
   |  | CONNECT >---------+--> FILTER |           |  S  | |
   |  +--^------+         |  +--------+           |  A  | |  specific
   |     |                |                       |  G  | | netwrk lnks
   |     |       +--------^-+     +-------+       |  E  <----(2,3,4)-->
   |     +-------<  POLICY  |     | FLOOD >--(7)-->     | |
   |             +------^---+     +-^-----+       |  P  | |
   |                    |           |             |  R  | |
   | +-----------+    +-^-----------V-+           |  O  | |
   | | DIRECTORY <---->    RESOLVE    <------(5)-->  T  | |
   | +-----^-----+    +---^-----------+           |  O  | |
   |       |              |                       |  C  | |
   |       |    +---------^-----------+           |  O  | |
   |       +----<    Base Services    |           |  L  | |
   |            +-----^---------------+           +-----+ |
   +------------------|-----------------------------------+
    Switch CPU        |
                      | Host control port
                +-----O----------------+
                |     ^ no cnx         |
      Layer 2   |     |                |
     ---------->O-----+--------------->O----------->
      SA/DA pr  |          known cnx   |
                +----------------------+
                 Switch hardware


                   Figure 1:  SFVLAN Architectural Overview




Ruffen, et al.               Informational                     [Page 12]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


   -  Eight call processing service centers that provide the essential
      services required to process call connections.  The call
      processing service centers are described in Section 4.

   -  A Call Tap module that supports the monitoring of call
      connections.  The Call Tap module is described in Section 5.

   -  The InterSwitch Message Protocol (ISMP) that provides a consistent
      method of encapsulating and transmitting control messages
      exchanged between SFVLAN switches.  (Note that ISMP is not a
      discrete software module.  Instead, its functionality is
      distributed among those service centers and software modules that
      need to communicate with other switches in the fabric.) The
      Interswitch Message Protocol and the formats of the individual
      interswitch messages are described in Section 6.

3. Base Services

   The SFVLAN base services act as the interface between the switch
   hardware and the SFVLAN service centers running on the switch CPU.
   This relationship is shown in Figure 2.  This figure is a replication
   of the bottom portion of Figure 1.


            |    Directory       Resolve                   |
            |        ^              ^                      |
            |        |              |                      |
            |        |    +---------^-----------+          |
            |        +----<    Base Services    |          |
            |             +-----^---------------+          |
            +-------------------|--------------------------+
             Switch CPU         |
                                | Host control port
                          +-----O----------------+
                          |     ^ no cnx         |
                Layer 2   |     |                |
               ---------->O-----+--------------->O----------->
                SA/DA pr  |          known cnx   |
                          +----------------------+
                           Switch hardware


                        Figure 2:  Base Services








Ruffen, et al.               Informational                     [Page 13]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


   During normal operation of the switch, data packets arriving at
   any one of the local switch ports are examined in the switch
   hardware.  If the packet's source and destination address (SA/DA)
   pair match a known connection, the hardware simply forwards the
   packet out the outport specified by the connection.

   If the SA/DA pair do not match any known connection, the hardware
   diverts the packet to the host control port where it is picked up
   by the SFVLAN base services.  The base services generate a
   structure known as a state box that tracks the progress of the
   call connection request as the request moves through the call
   processing service centers.

   After creating the call's state box, the base services check to
   determine if the call is a duplicate of a call already being
   processed.  If not, a request is issued to the Directory Service
   Center (Section 4.1) to add the call's source address to the local
   Node and Alias Tables.  The base services then hand the call off to
   the Resolve Service Center (Section 4.3) for further processing.

4. Call Processing

   Call connection processing is handled by a set of eight service
   centers, each with one or more servers.  The servers within a
   service center are called in a particular sequence.  Each server
   records the results of its processing in the call connection
   request state box and passes the state box to the next server in
   the sequence.

   In the sections that follow, servers are listed in the order in
   which they are called.

4.1 Directory Service Center

   The Directory Service Center is responsible for cataloging the MAC
   addresses and alias information for both local and remote
   endstations.  The information is stored in two tables -- the Node
   Table and the Alias Table.

   -  The Node Table contains the MAC addresses of endstations
      attached to the local switch.  It also contains a cache of
      remote endstations detected by the Resolve Service Center
      (Section 4.3).   Every entry in the Node Table has one or more
      corresponding entries in the Alias Table.







Ruffen, et al.               Informational                     [Page 14]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


   -  The Alias Table contains protocol alias information for each
      endstation.  An endstation alias can be a network address (such
      as an IP or IPX address), a VLAN identifier, or any other
      protocol identifier.  Since every endstation is a member of at
      least one VLAN (the default VLAN for the port), there is always
      at least one entry in the Alias Table for each entry in the
      Node Table.

      Note:

         The Node and Alias Tables must remain synchronized.
         That is, when an endstation's final alias is removed
         from the Alias Table, the endstation entry is removed
         from the Node Table.

   Note that the total collection of all Node Tables and Alias Tables
   across all switches is known as the "virtual" directory of the
   switch fabric.  The virtual directory contains address mappings of
   all known endstations in the fabric.

4.1.1 Local Add Server

   The Directory Local Add server adds entries to the local Node or
   Alias Tables.  It is called by the base services (Section 3) to
   add a local endstation and by the Interswitch Resolve (Section
   4.3.4) server to add an endstation discovered on a remote switch.

4.1.2 Inverse Resolve Server

   The Directory Inverse Resolve server is invoked when a new
   endstation has been discovered on the local switch (that is, when
   the Local Add server was successful in adding the endstation).
   The server provides two functions:

   -  It populates the Node and Alias Tables with local entries
      during switch initialization.

   -  It processes a new endstation discovered after the fabric
      topology has converged to a stable state.

   In both instances, the processing is identical.










Ruffen, et al.               Informational                     [Page 15]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


   When a new endstation is detected on one of the switch's local
   ports, the Inverse Resolve server sends an Interswitch New User
   request message (Section 6.5) over the switch flood path to all
   other switches in the fabric.  The purpose of the Interswitch New
   User request is two-fold:

   -  It informs the other switches of the new endstation address.
      Any entries for that endstation in the local databases of other
      switches should be dealt with appropriately.

   -  It requests information about any static VLAN(s) to which the
      endstation has been assigned.

   When a switch receives an Interswitch New User request message
   from one of its upstream neighbors, it first forwards the message
   to all its downstream neighbors.  No actual processing or VLAN
   resolution is attempted until the message reaches the end of the
   switch flood path and begins its trip back along the return path.
   This ensures that all switches in the fabric receive notification
   of the new user and have synchronized their databases.

   If a switch receives an Interswitch New User request message but
   has no downstream neighbors, it does the following:

   -  If the endstation was previously connected to one of the
      switch's local ports, the switch formulates an Interswitch New
      User Response message by loading the VLAN identifier(s) of the
      static VLAN(s) to which the endstation was assigned, along with
      its own MAC address.  (VLAN identifiers are stored in
      Tag/Length/Value (TLV) format.  See Section 2.3.)  The switch
      then sets the message status field to NewUserAck, and returns
      the message to its upstream (requesting) neighbor.

      Otherwise, the switch sets the status field to NewUserUnknown
      and returns the message to its upstream neighbor.

   -  The switch then deletes the endstation from its local database,
      as well as any entries associated with the endstation in its
      connection table.

   When a switch forwards an Interswitch New User request message to
   its downstream neighbors, it keeps track of the number of requests
   it has sent out and does not respond back to its upstream neighbor
   until all requests have been responded to.







Ruffen, et al.               Informational                     [Page 16]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


   -  As each response is received, the switch checks the status
      field of the message.  If the status is NewUserAck, the switch
      retains the information in that response.  When all requests
      have been responded to, the switch returns the NewUserAck
      response to its upstream neighbor.

   -  If all the Interswitch New User Request messages have been
      responded to with a status of NewUserUnknown, the switch checks
      to see if the endstation was previously connected to one of its
      local ports.  If so, the switch formulates an Interswitch New
      User Response message by loading the VLAN identifier(s) of the
      static VLAN(s) to which the endstation was assigned, along with
      its own MAC address.  The switch then sets the message status
      field to NewUserAck, and returns the message to its upstream
      (requesting) neighbor.

      Otherwise, the switch sets the status field to NewUserUnknown
      and returns the message to its upstream neighbor.

   -  The switch then deletes the endstation from its local database,
      as well as any entries associated with the endstation in its
      connection table.

   When the originating switch has received responses to all the
   Interswitch New User Request messages it has sent, it does the
   following:

   -  If it has received a response message with a status of
      NewUserAck, it loads the new VLAN information into its local
      database.

   -  If all responses have been received with a status of
      NewUserUnknown, the originating switch assumes that the
      endstation was not previously connected anywhere in the network
      and assigns it to a VLAN according to the VLAN membership rules
      and order of precedence.

   If any Interswitch New User Request message has not been responded
   to within a certain predetermined time (currently 5 seconds), the
   originating switch recalculates the switch flood path and resends
   the Interswitch New User Request message.










Ruffen, et al.               Informational                     [Page 17]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


4.1.3 Local Delete Server

   The Directory Local Delete server removes entries (both local and
   remote) from the local Node and Alias Tables.  It is invoked when
   an endstation, previously known to be attached to one switch, has
   been moved and discovered on another switch.

   Note also that remote entries are cached and are purged from the
   tables on a first-in/first-out basis as space is needed in the
   cache.

4.2 Topology Service Center

   The Topology Service Center is responsible for maintaining three
   databases relating to the topology of the switch fabric:

   -  The topology table of SFVLAN switches that are physical
      neighbors to the local switch.

   -  The spanning tree that defines the loop-free switch flood path
      used for transmitting undirected interswitch messages.

   -  The directed graph that is used to calculate the best path(s)
      for call connections.

4.2.1 Neighbor Discovery Server

   The Topology Neighbor Discovery server uses Interswitch Keepalive
   messages to detect the switch's neighbors and establish the
   topology of the switching fabric.  Interswitch Keepalive messages
   are exchanged in accordance with Cabletron's VlanHello protocol,
   described in detail in [IDhello].

4.2.2 Spanning Tree Server

   The Topology Spanning Tree server is invoked by the Topology
   Neighbor Discovery server when a neighboring SFVLAN switch is
   either discovered or lost -- that is, when the operational status
   of a network link changes.

   The Spanning Tree server exchanges interswitch messages with
   neighboring SFVLAN switches to calculate the switch flood path
   over which undirected interswitch messages are sent.  There are
   two parts to this process:

   -  Creating and maintaining the spanning tree
   -  Remote blocking




Ruffen, et al.               Informational                     [Page 18]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


4.2.2.1 Creating and Maintaining the Spanning Tree

   In a network with redundant network links, a packet traveling between
   switches can potentially be caught in an infinite loop -- an
   intolerable situation in a networking environment.  However, it is
   possible to reduce a network topology to a single configuration
   (known as a spanning tree) such that there is, at most, one path
   between any two switches.

   Within the SFVLAN product, the spanning tree is created and
   maintained using the Spanning Tree Algorithm defined by the IEEE
   802.1d standard.

      Note:

         A detailed discussion of this algorithm is beyond the scope of
         this document.  See [IEEE] for more information.

   To implement the Spanning Tree Algorithm, SFVLAN switches exchange
   Interswitch BPDU messages (Section 6.2) containing encapsulated
   IEEE-compliant 802.2 Bridge Protocol Data Units (BPDUs).  There are
   two types of BPDUs:

   -  Configuration (CFG) BPDUs are exchanged during the switch
      discovery process, following the receipt of an Interswitch
      Keepalive message.  They are used to create the initial the
      spanning tree.

   -  Topology Change Notification (TCN) BPDUs are exchanged when
      changes in the network topology are detected.  They are used to
      redefine the spanning tree to reflect the current topology.

   See [IEEE] for detailed descriptions of these BPDUs.

4.2.2.2 Remote Blocking

   After the spanning tree has been computed, each network port on an
   SFVLAN switch will be in one of two states:

   -  Forwarding.  A port in the Forwarding state will be used to
      transmit all ISMP messages.










Ruffen, et al.               Informational                     [Page 19]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


   -  Blocking.  A port in the Blocking state will not be used to
      forward undirected ISMP messages.  Blocking the rebroadcast of
      these messages on selected ports prevents message duplication
      arising from multiple paths that exist in the network topology.
      Note that all other types of ISMP message will be transmitted.

      Note:

         The IEEE 802.1d standard specifies other port states used
         during the initial creation of the spanning tree. These states
         are not relevant to the discussion here.

   Note that although a port in the Blocking state will not forward
   undirected ISMP messages, it may still receive them.  Any such
   message received will ultimately be discarded, but at the cost of CPU
   time necessary to process the packet.

   To prevent the transmission of undirected messages to a port, the
   port's owner switch can set remote blocking on the link by sending an
   Interswitch Remote Blocking message (Section 6.3) out over the port.
   This notifies the switch on the other end of the link that undirected
   messages should not be sent over the link, regardless of the state of
   the sending port.

   Each SFVLAN switch sends an Interswitch Remote Blocking message out
   over all its blocked network ports every 5 seconds.  A flag within
   the message indicates whether remote blocking should be turned on or
   off over the link.

4.2.3 Link State Server

   The Topology Link State server is invoked by any process that detects
   a change in the state of the network links of the local switch.
   These changes include (but are not limited to) changes in operational
   or administrative status of the link, path "cost" or bandwidth.

   The Link State server runs Cabletron's Virtual LAN Link State (VLS)
   protocol which exchanges interswitch messages with neighboring SFVLAN
   switches to calculate the set of best paths between the local switch
   and all other switches in the fabric. (The VLS protocol is described
   in detail in [IDvlsp].)

   The Link State server also notifies the Connect Service Center
   (Section 4.5) of any remote links that have failed, thereby
   necessitating potential tear-down of current connections.






Ruffen, et al.               Informational                     [Page 20]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


4.3 Resolve Service Center

   The Resolve Service Center is responsible for resolving the
   destination address of broadcast data packets (such as an IP ARP
   packet) to a unicast MAC address to be used in mapping the call
   connection.  To do this, the Resolve Service Center attempts to
   resolve such broadcast packets directly at the access port of the
   ingress switch.

   Address resolution is accomplished as follows:

   1) First, an attempt is made to resolve the address from the switch's
      local databases by calling the following servers:

      -  The Table server attempts to resolve the address from the
         Resolve Table (Section 4.3.1).

      -  Next, the Local server attempts to resolve the address from the
         Node and Alias Tables (Section 4.3.2).

      -  If the address is not found in these tables but is an IP
         address, the Resolve Subnet server (Section 4.3.3) is also
         called.

   2) If the address cannot be resolved locally, the Interswitch Resolve
      server (Section 4.3.4) is called to access the "virtual directory"
      by sending an Interswitch Resolve request message out over the
      switch flood path.

   3) If the address cannot be resolved either locally or via an
      Interswitch Resolve message -- that is, the destination endstation
      is unknown to any switch, perhaps because it has never transmitted
      a packet to its switch -- the following steps are taken:

      -  The Unresolvable server (Section 4.3.5) is called to record the
         unresolved packet.

      -  The Block server (Section 4.3.6) is called to determine whether
         the address should be added to the Block Table.

      -  The Flood Service Center (Section 4.8) is called to broadcast
         the packet to other SFVLAN switches using a tag-based flooding
         mechanism.








Ruffen, et al.               Informational                     [Page 21]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


4.3.1 Table Server

   The Resolve Table server maintains the Resolve Table which contains a
   collection of addresses that might not be resolvable in the normal
   fashion.  This table typically contains such things as the addresses
   of "quiet" devices that do not send data packets or special mappings
   of IP addresses behind a router.  Entries can be added to or deleted
   from the Resolve Table via an external management application.

4.3.2 Local Server

   The Resolve Local server checks the Node and Alias Tables maintained
   by the Directory Service Center (Section 4.1) to determine if it can
   resolve the address.

4.3.3 Subnet Server

   If the address to be resolved is an IP address but cannot be resolved
   via the standard processing described above, the Resolve Subnet
   server applies the subnet mask to the IP address and then does a
   lookup in the Resolve Table.

4.3.4 Interswitch Resolve Server

   If the address cannot be resolved locally, the Interswitch Resolve
   server accesses the "virtual directory" by sending an Interswitch
   Resolve request message (Section 6.4) out over the switch flood path.
   The Interswitch Resolve request message contains the destination
   address as it was received within the packet, along with a list of
   requested addressing information.

   When a switch receives an Interswitch Resolve request message from
   one of its upstream neighbors, it checks to see if the destination
   endstation is connected to one of its local access ports.  If so, it
   formulates an Interswitch Resolve response message by filling in the
   requested address information, along with its own MAC address.  It
   then sets the message status field to ResolveAck, and returns the
   message to its upstream (requesting) neighbor.

   If the receiving switch cannot resolve the address, it forwards the
   Interswitch Resolve request message to its downstream neighbors.  If
   the switch has no downstream neighbors, it sets the message status
   field to Unknown, and returns the message to its upstream
   (requesting) neighbor.







Ruffen, et al.               Informational                     [Page 22]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


   When a switch forwards an Interswitch Resolve request message to its
   downstream neighbors, it keeps track of the number of requests it has
   sent out and received back.  It will only respond back to its
   upstream (requesting) neighbor when one of the following conditions
   occurs:

   -  It receives any response with a status of ResolveAck

   -  All downstream neighbors have responded with a status of Unknown

   Any Interswitch Resolve request message that is not responded to
   within a certain predetermined time (currently 5 seconds) is assumed
   to have a response status of Unknown.

   When the Interswitch Resolve server receives a successful Interswitch
   Resolve response message, it records the resolved address information
   in the remote cache of its local directory for use in resolving later
   packets for the same endstation.  Note that this process results in
   each switch building its own unique copy of the virtual directory
   containing only the endstation addresses in which it is interested.

4.3.5 Unresolvable Server

   The Unresolvable server is called when a packet destination address
   cannot be resolved.  The server records the packet in a table that
   can then be examined to determine which endstations are generating
   unresolvable traffic.

   Also, if a particular destination is repeatedly seen to be
   unresolvable, the server calls the Block server (Section 4.3.6) to
   determine whether the address should be blocked.

4.3.6 Block Server

   The Resolve Block server is called when a particular destination has
   been repeatedly seen to be unresolvable.  This typically happens
   when, unknown to the packet source, the destination endstation is
   either not currently available or no longer exists.

   If the Block server determines that the unresolved address has
   exceeded a configurable request threshold, the address is added to
   the server's Block Table.  Interswitch Resolve request messages for
   addresses listed in the Block Table are sent less frequently, thereby
   reducing the amount of Interswitch Resolve traffic throughout the
   fabric.






Ruffen, et al.               Informational                     [Page 23]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


   If an address listed in the Block Table is later successfully
   resolved by and Interswitch Resolve request message, the address is
   removed from the table.

4.4 Policy Service Center

   Once the destination address of the call packet has been resolved,
   the Policy Service Center is called to determine the validity of the
   requested call connection based on the VLAN policy of the source and
   destination VLANs.

4.4.1 Unicast Rules Server

   The Policy Unicast Rules server recognizes two VLAN policy values:
   Open or Secure.  The default policy for all VLANs is Open.

   The policy value is used as follows when determining the validity of
   a requested call connection:

   -  If the VLAN policy of either the source or destination cannot be
      determined, the Filter Service Center is called to establish a
      filter (i.e., blocked) for the SA/DA pair.

   -  If the source and destination endstations belong to the same VLAN,
      then the connection is permitted regardless of the VLAN policy.

   -  If the source and destination endstations belong to different
      VLANs, but both VLANs are running with an Open policy, then the
      connection is permitted, providing cut-through switching between
      different VLAN(s).

   -  If the source and destination endstations belong to different
      VLANs and one or both of the VLANs are running with a Secure
      policy, then the Flood Service Center (Section 4.8) is called to
      broadcast the packet to other SFVLAN switches having ports or
      endstations that belong to the same VLAN as the packet source.

      Note that if any of the VLANs to which the source or destination
      belong has a Secure policy, then the policy used in the above
      algorithm is Secure.











Ruffen, et al.               Informational                     [Page 24]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


4.5 Connect Service Center

   Once the Policy Service Center (Section 4.4) has determined that a
   requested call connection is valid, the Connect Service Center is
   called to set up the connection.  Note that connectivity between two
   endstations within the fabric is established on a switch-by-switch
   basis as the call progresses through the fabric toward its
   destination.  No synchronization is needed between switches to
   establish an end-to-end connection.

   The Connect Service Center maintains a Connection Table containing
   information for all connections currently active on the switch's
   local ports.

   Connections are removed from the Connection Table when one of the
   endstations is moved to a new switch (Section 4.1.2) or when the
   Topology Link State server (Section 4.2.3) notifies the Connect
   Service Center that a network link has failed.  Otherwise,
   connections are not automatically aged out or removed from the
   Connection Table until a certain percentage threshold (HiMark) of
   table capacity is reached and resources are needed.  At that point,
   some number of connections (typically 100) are aged out and removed
   at one time.

4.5.1 Local Server

   If the destination endstation resides on the local switch, the
   Connect Local server establishes a connection between the source and
   destination ports.  Note that if the source and destination both
   reside on the same physical port, a filter connection is established
   by calling the Filter Service Center (Section 4.6).

4.5.2 Link State Server

   The Connect Link State server is called if the destination endstation
   of the proposed connection does not reside on the local switch.

   The server executes a call to the Path Link State server (Section
   4.7.1) which returns up to three "best" paths of equal cost from the
   local switch to the destination switch.  If more than one path is
   returned, the server chooses a path that provides the best load
   balancing of user traffic across the fabric.









Ruffen, et al.               Informational                     [Page 25]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


4.5.3 Directory Server

   The Connect Directory server is called if the Connect Link State
   server is unable to provide a path for some reason.

   The server examines the local directory to determine on which switch
   the destination endstation resides.  If the port of access to the
   destination switch is known, then a connection is established using
   that port as the outport of the connection.

4.6 Filter Service Center

   The Filter Service Center is responsible for establishing filtered
   connections.  This service center is called by the Connect Local
   server (Section 4.5.1) if the source and destination endstations
   reside on the same physical port, and by the Policy Service Center
   (Section 4.4) if the VLAN of either the source or destination is
   indeterminate.

   A filter connection is programmed in the switch hardware with no
   specified outport.  That is, the connection is programmed to discard
   any traffic for that SA/DA pair.

4.7 Path Service Center

   The Path Service Center is responsible for determining the path from
   a source to a destination.

4.7.1 Link State Server

   The Path Link State server is called by the Connect Link State server
   (Section 4.5.2) to return up to three best paths of equal cost
   between a source and destination pair of endstations.  These best
   paths are calculated by the Topology Link State server (Section
   4.2.3).

   The Path Link State server is also called by the Connect Service
   Center to return a complete source-to-destination path consisting of
   a list of individual switch port names.  A switch port name consists
   of the switch base MAC address and a port instance relative to the
   switch.










Ruffen, et al.               Informational                     [Page 26]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


4.7.2 Spanning Tree Server

   The Path Spanning Tree server is called by any server needing to
   forward an undirected message out over the switch flood path.  The
   server returns a port mask indicating which local ports are currently
   enabled as outports of the switch flood path.  The switch flood path
   is calculated by the Topology Spanning Tree server (Section 4.2.2).

4.8 Flood Service Center

   If the Resolve Service Center (Section 4.3) is unable to resolve the
   destination address of a packet, it invokes the Flood Service Center
   to broadcast the unresolved packet.

4.8.1 Tag-Based Flood Server

   The Tag-Based Flood server encapsulates the unresolved packet into an
   Interswitch Tag-Based Flood message (Section 6.6), along with a list
   of Virtual LAN identifiers specifying those VLANs to which the source
   endstation belongs.  The message is then sent out over the switch
   flood path to all other switches in the fabric.

   When a switch receives an Interswitch Tag-Based Flood message, it
   examines the encapsulated header to determine the VLAN(s) to which
   the packet should be sent.  If any of the switch's local access ports
   belong to one or more of the specified VLANs, the switch strips off
   the tag-based header and forwards the original packet out the
   appropriate access port(s).

   The switch also forwards the entire encapsulated packet along the
   switch flood path to its downstream neighboring switches, if any.

5. Monitoring Call Connections

   The SecureFast VLAN product permits monitoring of user traffic moving
   between two endstations by establishing a call tap on the connection
   between the two stations.  Traffic can be monitored in one or both
   directions along the connection path.

5.1 Definitions

   In addition to the terms defined in Section 1.2, the following terms
   are used in this description of the call tap process.








Ruffen, et al.               Informational                     [Page 27]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


   Originating Switch

      The originating switch is the switch that requests the call tap.
      Any switch along a call connection path may request a tap on that
      call connection.

   Probe

      The tap probe is the device to receive a copy of the call
      connection data.  The probe is attached to a port on the probe
      switch.

   Probe Switch

      The probe switch (also known as the terminating switch) is the
      switch to which the probe is attached.  The probe switch can be
      anywhere in the topology.

5.2 Tapping a Connection

   A request to tap a call connection between two endstations can
   originate on any switch along the call connection path -- the ingress
   switch, the egress switch, or any of the intermediate switches.  The
   call connection must have already been established before a call tap
   request can be issued.  The probe device can be attached to any
   switch in the topology.

5.2.1 Types of Tap Connections

   A call tap is enabled by setting up an auxiliary tap connection
   associated with the call being monitored.  Since the tap must
   originate on a switch somewhere along the call connection path, the
   tap connection path will pass through one or more of the switches
   along the call path.  However, since the probe switch can be anywhere
   in the switch fabric, the tap path and the call path may diverge at
   some point.

   Therefore, on each switch along the tap path, the tap connection is
   established in one of three ways:

   -  The existing call connection is used with no modification.

         When both the call path and tap path pass through the switch,
         and the inport and outports of both connections are identical,
         the switch uses the existing call connection to route the tap.

   -  The existing call connection is modified.




Ruffen, et al.               Informational                     [Page 28]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


         When both the call path and tap path pass through the switch,
         but the call path outport is different from the tap path
         outport, the switch enables an extra outport in either one or
         both directions of the call connection, depending on the
         direction of the tap.  This happens under two conditions.

   -  If the switch is also the probe switch, an extra outport is
         enabled to the probe.

   -  If the switch is the point at which the call path and the tap path
         diverge, an extra outport is enabled to the downstream neighbor
         on that leg of the switch flood path on which the probe switch
         is located.

   -  A new connection is established.

         If the call path does not pass through the switch (because the
         tap path has diverged from the call path), a completely new
         connection is established for the tap.

5.2.2 Locating the Probe and Establishing the Tap Connection

   To establish a call tap, the originating switch formats an
   Interswitch Tap request message (Section 6.7) and sends it out over
   the switch flood path to all other switches in the topology.

      Note:

         If the originating switch is also the probe switch, no
         Interswitch Tap request message is necessary.

   As the Interswitch Tap request message travels out along the switch
   flood path, each switch receiving the message checks to see if it is
   the probe switch and does the following:

   -  If the switch is the probe switch, it establishes the tap
      connection by either setting up a new connection or modifying the
      call connection, as appropriate (see Section 5.2.1).  It then
      reformats the Tap request message to be a Tap response message
      with a status indicating that the probe has been found, and sends
      the message back to its upstream neighbor.

   -  If the switch is not the probe switch, it forwards the Tap request
      message to all its downstream neighbors (if any).

   -  If the switch is not the probe switch and has no downstream
      neighbors, it reformats the Tap request message to be a Tap
      response message with a status indicating that the probe is not



Ruffen, et al.               Informational                     [Page 29]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


      located on that leg of the switch flood path.   It then sends the
      response message back to its upstream neighbor.

      When a switch forwards an Interswitch Tap request message to its
      downstream neighbors, it keeps track of the number of requests it
      has sent out.

   -  If a response is received with a status indicating that the probe
      switch is located somewhere downstream, the switch establishes the
      appropriate type of tap connection (see Section 5.2.1).  It then
      formats a Tap response message with a status indicating that the
      probe has been found and passes the message to its upstream
      neighbor.

   -  If no responses are received with a status indicating that the
      probe switch is located downstream, the switch formats a Tap
      response message with a status indicating that the probe has not
      been found and passes the message to its upstream neighbor.

5.2.3 Status Field

   The status field of the Interswitch Tap request/response message
   contains information about the state of the tap.  Some of these
   status values are transient and are merely used to track the progress
   of the tap request.  Other status values are stored in the tap table
   of each switch along the tap path for use when the tap is torn down.
   The possible status values are as follows:

   -  StatusUnassigned.  This is the initial status of the Interswitch
      Tap request message.

   -  OutportDecisionUnknown.  The tap request is still moving
      downstream along the switch flood path.  The probe switch had not
      yet been found.

   -  ProbeNotFound.  The probe switch is not located on this leg of the
      switch flood path.

   -  DisableOutport.  The probe switch is located on this leg of the
      switch flood path, and the switch has had to either modify the
      call connection or establish a new connection to implement the tap
      (see Section 5.2.1).  When the tap is torn down, the switch will
      have to disable any additional outports that have been enabled for
      the tap.

   -  KeepOutport.  The probe switch is located on this leg of the
      switch flood path, and the switch was able to route the tap over
      the existing call path (see Section 5.2.1).  Any ports used for



Ruffen, et al.               Informational                     [Page 30]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


      the tap will remain enabled when the tap is torn down.

5.3 Untapping a Connection

   A request to untap a call connection must be issued on the tap
   originating switch -- that is, the same switch that issued the tap
   request.

   To untap a call connection, the originating switch sends an
   Interswitch Untap request message (Section 6.7) out over the switch
   flood path to all other switches in the topology.  The message is
   sent over the switch flood path, rather than the tap connection path,
   to ensure that all switches that know of the tap are properly
   notified, even if the switch topology has changed since the tap was
   established.

   When a switch receives an Interswitch Untap request message, it
   checks to see if it is handling a tap for the specified call
   connection.  If so, the switch disables the tap connection, as
   follows:

   -  If a new connection was added for the tap, the connection is
      deleted from the connection table.

   -  If additional outports were enabled on the call connection, they
      are disabled.

   The switch then forwards the Interswitch Untap request message to its
   downstream neighbor (if any).  If the switch has no downstream
   neighbors, it formats an untap response and sends the message back to
   its upstream neighbor.

   When a switch forwards an Interswitch Untap request message to its
   downstream neighbors, it keeps track of the number of requests it has
   sent out and does not respond back to its upstream neighbor until all
   untap requests have been responded to.  Once all responses have been
   received, the switch handles any final cleanup for the tap and then
   sends a single Interswitch Untap response message to its upstream
   neighbor.












Ruffen, et al.               Informational                     [Page 31]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


6. Interswitch Message Protocol (ISMP)

   The InterSwitch Message protocol (ISMP) provides a consistent method
   of encapsulating and transmitting messages exchanged between switches
   to create and maintain the databases and provide other control
   services and functionality required by the SFVLAN product.

6.1 General Packet Structure

   ISMP packets are of variable length and have the following general
   structure:

   -  Frame header
   -  ISMP packet header
   -  ISMP message body

   Each of these packet segments is discussed separately in the
   following subsections.

6.1.1 Frame Header

   ISMP packets are encapsulated within an IEEE 802-compliant frame
   using a standard header as shown below:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   00 |                                                               |
      +      Destination address      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   04 |                               |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+        Source address         +
   08 |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   12 |             Type              |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
   16 |                                                               |
      +                                                               +
      :                                                               :


   Destination address

      This 6-octet field contains the Media Access Control (MAC) address
      of the multicast channel over which all switches in the fabric
      receive ISMP packets.  Except where otherwise noted, this field






Ruffen, et al.               Informational                     [Page 32]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


      contains the multicast address of the control channel over which
      all switches in the fabric receive ISMP packets -- a value of 01-
      00-1D-00-00-00.

   Source address

      Except where otherwise noted, this 6-octet field contains the
      physical (MAC) address of the switch originating the ISMP packet.

   Type

      This 2-octet field identifies the type of data carried within the
      frame.  Except where otherwise noted, the type field of ISMP
      packets contains the value 0x81FD.

6.1.2 ISMP Packet Header

   There are two versions of the ISMP packet header in use by the
   SecureFast VLAN product.

6.1.2.1 Version 2

   The version 2 ISMP packet header consists of 6 octets, as shown
   below:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   00 |///////////////////////////////////////////////////////////////|
      ://////// Frame header /////////////////////////////////////////:
      +//////// (14 octets)  /////////+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   12 |///////////////////////////////|            Version            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   16 |       ISMP message type       |        Sequence number        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   20 |                                                               |
      +                                                               +
      :                                                               :

   Frame header

      This 14-octet field contains the frame header (Section 6.1.1).









Ruffen, et al.               Informational                     [Page 33]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


   Version

      This 2-octet field contains the version number of the InterSwitch
      Message Protocol to which this ISMP packet adheres. This document
      describes ISMP Version 2.0.

   ISMP message type

      This 2-octet field contains a value indicating which type of ISMP
      message is contained within the message body.  The following table
      lists each ISMP message, along with its message type and the
      section within this document that describes the message in detail:

         Message Name                       Type    Description

         Interswitch Link State message        3    See note below
         Interswitch BPDU message              4    Section 6.2
         Interswitch Remote Blocking message   4    Section 6.3
         Interswitch Resolve message           5    Section 6.4
         Interswitch New User message          5    Section 6.5
         Interswitch Tag-Based Flood message   7    Section 6.6
         Interswitch Tap/Untap message         8    Section 6.7

      Note:

         The Link State messages used by the VLS Protocol are not
         described in this document.  For a detailed description of
         these messages, see [IDvlsp].

   Sequence number

      This 2-octet field contains an internally generated sequence
      number used by the various protocol handlers for internal
      synchronization of messages.

6.1.2.2 Version 3

   The version 3 ISMP packet header is used only by the Interswitch
   Keepalive message.  That message is not described in this document.
   For a detailed description of the version 3 ISMP packet header, see
   [IDhello].










Ruffen, et al.               Informational                     [Page 34]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


6.1.3 ISMP Message Body

   The ISMP message body is a variable-length field containing the
   actual data of the ISMP message.  The length and content of this
   field are determined by the value found in the message type field.

   See the following sections for the exact format of each message type.

6.2 Interswitch BPDU Message

   The Interswitch BPDU message consists of a variable number of octets,
   as shown below:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   00 |                                                               |
      +                         Frame header /                        +
      :                   ISMP packet header (type 4)                 :
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   20 |            Version            |            Opcode             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   24 |          Message flags        |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
   28 |                                                               |
      :                          BPDU packet                          :
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


   Frame header/ISMP packet header

      This 20-octet field contains the frame header and the ISMP packet
      header.

   Version

      This 2-octet field contains the version number of the message
      type.  This document describes ISMP message type 4, version 1.











Ruffen, et al.               Informational                     [Page 35]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


   Opcode

      This 2-octet field contains the operation type of the message. For
      an Interswitch BPDU message, the value should be 1.

   Message flags

      This 2-octet field is currently unused.  It is reserved for future
      use.

   BPDU packet

      This variable-length field contains an IEEE-compliant 802.2 Bridge
      Protocol Data Unit.  See [IEEE] for a detailed description of the
      contents of this field.

6.3 Interswitch Remote Blocking Message

   The Interswitch Remote Blocking message consists of 30 octets, as
   shown below:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   00 |                                                               |
      +                         Frame header /                        +
      :                   ISMP packet header (type 4)                 :
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   20 |            Version            |           Opcode              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   24 |          Message flags        |        Blocking flag ...      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   28 |       ... Blocking flag       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


   Frame header/ISMP packet header

      This 20-octet field contains the frame header and the ISMP packet
      header.

   Version

      This 2-octet field contains the version number of the message
      type.  This document describes ISMP message type 4, version 1.





Ruffen, et al.               Informational                     [Page 36]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


   Opcode

      This 2-octet field contains the operation type of the message.
      Valid values are as follows:

         2   Enable/disable remote blocking
         3   Acknowledge previously received Remote Blocking message

   Message flags

         This 2-octet field is currently unused.  It is reserved for
         future use.

   Blocking flag

         This 4-octet field contains a flag indicating the state of
         remote blocking on the link over which the message was
         received.  A value of 1 indicates remote blocking is on and no
         undirected ISMP messages should be sent over the link.  A value
         of 0 indicates remote blocking is off.  This flag is irrelevant
         if the operation type (Opcode) of the message has a value of 3.

6.4 Interswitch Resolve Message

   There are two versions of the Interswitch Resolve message used by the
   SecureFast VLAN product.

6.4.1 Prior to Version 1.8

   The Interswitch Resolve message used by SFVLAN prior to version 1.8
   consists of a variable number of octets, as shown below:




















Ruffen, et al.               Informational                     [Page 37]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    00 |                                                               |
       +                         Frame header /                        +
       :                   ISMP packet header (type 5)                 :
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    20 |           Version             |            Opcode             |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    24 |            Status             |           Call Tag            |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    28 |                                                               |
       +     Source MAC of packet      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    32 |                               |                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     Originating switch MAC    +
    36 |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    40 |                                                               |
       +       Owner switch MAC        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    44 |                               |                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
    48 |                                                               |
       :                   Known destination address                   :
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     n |     Count     |                                               |
       +-+-+-+-+-+-+-+-+                                               +
   n+4 |                         Resolve list                          |
       :                                                               :
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

          n = 46 + length of known address TLV

   In the following description of the message fields, the term
   "originating" switch refers to the switch that issued the original
   Interswitch Resolve request.  The term "owner" switch refers to that
   switch to which the destination endstation is attached.  And the term
   "responding" switch refers to either the "owner" switch or to a
   switch at the end of the switch flood path that does not own the
   endstation but issues an Interswitch Resolve response because it has
   no downstream neighbors.








Ruffen, et al.               Informational                     [Page 38]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


   With the exception of the resolve list (which has a different size
   and format in a Resolve response message), all fields of an
   Interswitch Resolve message are allocated by the originating switch,
   and unless otherwise noted below, are written by the originating
   switch.

   Frame header/ISMP packet header

      This 20-octet field contains the frame header and the ISMP packet
      header.

   Version

      This 2-octet field contains the version number of the message
      type.  This document describes ISMP message type 5, version 1.

   Opcode

      This 2-octet field contains the operation code of the message.
      Valid values are as follows:

         1    The message is a Resolve request.
         2    The message is a Resolve response.
         3    (unused in Resolve messages)
         4    (unused in Resolve messages)

      The originating switch writes a value of 1 to this field, while
      the responding switch writes a value of 2.

   Status

      This 2-octet field contains the status of a Resolve response
      message.  Valid values are as follows:

         0    The Resolve request succeeded (ResolveAck).
         1    (unused)
         2    The Resolve request failed (Unknown).

      This field is written by the responding switch.

   Call tag

      This 2-octet field contains the call tag of the endstation packet
      for which this Resolve request is issued.  The call tag is a 16-
      bit value (generated by the originating switch) that uniquely
      identifies the packet.





Ruffen, et al.               Informational                     [Page 39]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


   Source MAC of packet

      This 6-octet field contains the physical (MAC) address of the
      endstation that originated the packet identified by the call tag.

   Originating switch MAC

      This 6-octet field contains the physical (MAC) address of the
      switch that issued the original Resolve request.

   Owner switch MAC

      This 6-octet field contains the physical (MAC) address of the
      switch to which the destination endstation is attached -- that is,
      the switch that was able to resolve the requested addressing
      information.  This field is written by the owner switch.

      If the status of the response is Unknown, this field is
      irrelevant.

   Known destination address

      This variable-length field contains the known attribute of the
      destination endstation address.  This address is stored in
      Tag/Length/Value format.  (See Section 2.3.)

   Count

      This 1-octet field contains the number of address attributes
      requested or returned.  This is the number of items in the resolve
      list.

   Resolve list

      This variable-length field contains a list of the address
      attributes either requested by the originating switch or returned
      by the owner switch.  Note that in a Resolve request message, this
      list contains only the tags of the requested address attributes
      (see Section 2.3).  On the other hand, a Resolve response message
      with a status of ResolveAck contains the full TLV of each resolved
      address attribute.  The number of entries in the list is specified
      in the count field.

      In an Interswitch Resolve response message, this field is
      irrelevant if the status of the response is Unknown.






Ruffen, et al.               Informational                     [Page 40]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


6.4.2 Version 1.8

   The Interswitch Resolve message used by SFVLAN version 1.8 consists
   of a variable number of octets, as shown below:















































Ruffen, et al.               Informational                     [Page 41]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   00 |                                                               |
      +                         Frame header /                        +
      :                   ISMP packet header (type 5)                 :
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   20 |           Version             |            Opcode             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   24 |            Status             |           Call Tag            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   28 |                                                               |
      +     Source MAC of packet      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   32 |                               |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     Originating switch MAC    +
   36 |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   40 |                                                               |
      +       Owner switch MAC        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   44 |                               |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
   48 |                                                               |
      :                   Known destination address                   :
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    n |     Count     |                                               |
      +-+-+-+-+-+-+-+-+                                               +
  n+4 |                         Resolve list                          |
      :                                                               :
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   n1 |                                                               |
      +    Actual dest switch MAC     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                               |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     Downlink chassis MAC      +
 n1+8 |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
n1+12 |                                                               |
      +      Actual chassis MAC       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                               |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
n1+20 |                                                               |
      +                          Domain name                          +
      :                                                               :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           n = 46 + length of known address TLV
           n1 = n + length of Resolve list



Ruffen, et al.               Informational                     [Page 42]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


   In the following description of the message fields, the term
   "originating" switch refers to the switch that issued the original
   Interswitch Resolve request.  The term "owner" switch refers to that
   switch to which the destination endstation is attached.  And the term
   "responding" switch refers to either the "owner" switch or to a
   switch at the end of the switch flood path that does not own the
   endstation but issues an Interswitch Resolve response because it has
   no downstream neighbors.

   With the exception of the resolve list (which has a different size
   and format in a Resolve response message) and the four fields
   following the resolve list, all fields of an Interswitch Resolve
   message are allocated by the originating switch, and unless otherwise
   noted below, are written by the originating switch.

   Frame header/ISMP packet header

      This 20-octet field contains the frame header and the ISMP packet
      header.

   Version

      This 2-octet field contains the version number of the message
      type.  This section describes version 3 of the Interswitch Resolve
      message.

   Opcode

      This 2-octet field contains the operation code of the message.
      Valid values are as follows:

         1    The message is a Resolve request.
         2    The message is a Resolve response.
         3    (unused in Resolve messages)
         4    (unused in Resolve messages)

      The originating switch writes a value of 1 to this field, while
      the responding switch writes a value of 2.













Ruffen, et al.               Informational                     [Page 43]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


   Status

      This 2-octet field contains the status of a Resolve response
      message.  Valid values are as follows:

         0    The Resolve request succeeded (ResolveAck).
         1    (unused)
         2    The Resolve request failed (Unknown).

      This field is written by the responding switch.

   Call tag

      This 2-octet field contains the call tag of the endstation packet
      for which this Resolve request is issued.  The call tag is a 16-
      bit value (generated by the originating switch) that uniquely
      identifies the packet.

   Source MAC of packet

      This 6-octet field contains the physical (MAC) address of the
      endstation that originated the packet identified by the call tag.

   Originating switch MAC

      This 6-octet field contains the physical (MAC) address of the
      switch that issued the original Resolve request.

   Owner switch MAC

      This 6-octet field contains the physical (MAC) address of the
      switch to which the destination endstation is attached -- that is,
      the switch that was able to resolve the requested addressing
      information.  This field is written by the owner switch.

      If the status of the response is Unknown, this field is
      irrelevant.

   Known destination address

      This variable-length field contains the known attribute of the
      destination endstation address.  This address is stored in
      Tag/Length/Value format.








Ruffen, et al.               Informational                     [Page 44]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


   Count

      This 1-octet field contains the number of address attributes
      requested or returned.  This is the number of items in the resolve
      list.

   Resolve list

      This variable-length field contains a list of the address
      attributes either requested by the originating switch or returned
      by the owner switch.  Note that in a Resolve request message, this
      list contains only the tags of the requested address attributes.
      On the other hand, a Resolve response message with a status of
      ResolveAck contains the full TLV of each resolved address
      attribute.  The number of entries in the list is specified in the
      count field.

      In an Interswitch Resolve response message, this field is
      irrelevant if the status of the response is Unknown.

   Actual destination switch MAC

      This 6-octet field contains the physical (MAC) address of the
      actual switch within the chassis to which the endstation is
      attached.  If the status of the response is Unknown, this field is
      irrelevant.

   Downlink chassis MAC

      This 6-octet field contains the physical (MAC) address of the
      downlink chassis.  If the status of the response is Unknown, this
      field is irrelevant.

   Actual chassis MAC

      This 6-octet field contains the physical (MAC) address of the
      uplink chassis.  If the status of the response is Unknown, this
      field is irrelevant.

   Domain name

      This 16-octet field contains the ASCII name of the domain.  If the
      status of the response is Unknown, this field is irrelevant.








Ruffen, et al.               Informational                     [Page 45]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


6.5 Interswitch New User Message

   The Interswitch New User message consists of a variable number of
   octets, as shown below:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   00 |                                                               |
      +                         Frame header /                        +
      :                   ISMP packet header (type 5)                 :
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   20 |           Version             |            Opcode             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   24 |            Status             |           Call Tag            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   28 |                                                               |
      +     Source MAC of packet      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   32 |                               |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     Originating switch MAC    +
   36 |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   40 |                                                               |
      +   Previous owner switch MAC   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   44 |                               |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
   48 |                                                               :
      :                    MAC address of new user                    +
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   70 |     Count     |                                               |
      +-+-+-+-+-+-+-+-+                                               +
   74 |                          Resolve list                         |
      :                                                               :
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   In the following description of the message fields, the term
   "originating" switch refers to the switch that issued the original
   Interswitch New User request.  The term "previous owner" switch
   refers to that switch to which the endstation was previously
   attached.  And the term "responding" switch refers to either the
   "previous owner" switch or to a switch at the end of the switch flood
   path that did not own the endstation but issues an Interswitch New
   User response because it has no downstream neighbors.





Ruffen, et al.               Informational                     [Page 46]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


   With the exception of the resolve list, all fields of an Interswitch
   New User message are allocated by the originating switch, and unless
   otherwise noted below, are written by the originating switch.

   Frame header/ISMP packet header

      This 20-octet field contains the frame header and the ISMP packet
      header.

   Version

      This 2-octet field contains the version number of the message
      type.  This document describes ISMP message type 5, version 1.

   Opcode

      This 2-octet field contains the operation code of the message.
      Valid values are as follows:

         1    (unused in a New User message)
         2    (unused in a New User message)
         3    The message is a New User request.
         4    The message is a New User response.

      The originating switch writes a value of 3 to this field, while
      the responding switch writes a value of 4.

   Status

      This 2-octet field contains the status of a New User response
      message.  Valid values are as follows:

         0    VLAN resolution successful (NewUserAck)
         1    (unused)
         2    VLAN resolution unsuccessful (NewUserUnknown)

      This field is written by the responding switch.

   Call tag

      This 2-octet field contains the call tag of the endstation packet
      for which this New User request is issued.  The call tag is a 16-
      bit value (generated by the originating switch) that uniquely
      identifies the packet that caused the switch to identify the
      endstation as a new user.






Ruffen, et al.               Informational                     [Page 47]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


   Source MAC of packet

      This 6-octet field contains the physical (MAC) address of the
      endstation that originated the packet identified by the call tag.

   Originating switch MAC

      This 6-octet field contains the physical (MAC) address of the
      switch that issued the original New User request.

   Previous owner switch MAC

      This 6-octet field contains the physical (MAC) address of the
      switch to which the endstation was previously attached -- that is,
      the switch that was able to resolve the VLAN information. This
      field is written by the previous owner switch.

      If the status of the response is Unknown, this field is
      irrelevant.

   MAC address of new user

      This 24-octet field contains the physical (MAC) address of the new
      user endstation, stored in Tag/Length/Value format.

   Count

      This 1-octet field contains the number of VLAN identifiers
      returned.  This is the number of items in the resolve list. This
      field is written by the previous owner switch.

      If the status of the response is Unknown, this field and the
      resolve list are irrelevant.

   Resolve list

      This variable-length field contains a list of the VLAN identifiers
      of all static VLANs to which the endstation belongs, stored in
      Tag/Length/Value format (see Section 2.3). The number of entries
      in the list is specified in the count field.  This list is written
      by the previous owner switch.

      If the status of the response is Unknown, this field is
      irrelevant.







Ruffen, et al.               Informational                     [Page 48]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


6.6 Interswitch Tag-Based Flood Message

   There are two versions of the Interswitch Tag-Based Flood message
   used by the SecureFast VLAN product.

6.6.1 Prior to Version 1.8

   The Interswitch Tag-Based Flood message used by SFVLAN prior to
   version 1.8 consists of a variable number of octets, as shown below:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   00 |                                                               |
      +                         Frame header /                        +
      :                   ISMP packet header (type 7)                 :
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   20 |           Version             |            Opcode             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   24 |            Status             |           Call Tag            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   28 |                                                               |
      +     Source MAC of packet      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   32 |                               |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     Originating switch MAC    +
   36 |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   40 |     Count     |                                               |
      +-+-+-+-+-+-+-+-+                                               +
   44 |                           VLAN list                           |
      :                                                               :
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    n |                                                               |
      +                                                               +
      :                        Original packet                        :
      +                                                               +
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

         n = 41 + length of VLAN list









Ruffen, et al.               Informational                     [Page 49]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


   Frame header/ISMP packet header

      This 20-octet field contains the frame header and the ISMP packet
      header.

   Version

      This 2-octet field contains the version number of the message
      type.  This document describes ISMP message type 7, version 1.

   Opcode

      This 2-octet field contains the operation code of the message. The
      value here should be 1, indicating the message is a flood request.

   Status

      This 2-octet field is currently unused.  It is reserved for future
      use.

   Call tag

      This 2-octet field contains the call tag of the endstation packet
      encapsulated within this tag-based flood message.  The call tag is
      a 16-bit value (generated by the originating switch) that uniquely
      identifies the packet.

   Source MAC of packet

      This 6-octet field contains the physical (MAC) address of the
      endstation that originated the packet identified by the call tag.

   Originating switch MAC

      This 6-octet field contains the physical (MAC) address of the
      switch that issued the original tag-based flooded message.

   Count

      This 1-octet field contains the number of VLAN identifiers
      included in the VLAN list.

   VLAN list

      This variable-length field contains a list of the VLAN identifiers
      of all VLANs to which the source endstation belongs.  Each entry
      in this list has the following format:




Ruffen, et al.               Informational                     [Page 50]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Value length  |                                               |
      +-+-+-+-+-+-+-+-+                                               +
      |                        VLAN identifier value                  |
      :                                                               :
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      The 1-octet value length field contains the length of the VLAN
      identifier.  VLAN identifiers can be from 1 to 16 characters long.

   Original packet

      This variable-length field contains the original packet as sent by
      the source endstation.


































Ruffen, et al.               Informational                     [Page 51]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


6.6.2 Version 1.8

   The Interswitch Tag-Based Flood message used by SFVLAN version 1.8
   consists of a variable number of octets, as shown below:

      Note:

         SFVLAN version 1.8 also recognizes the Interswitch Tag-Based
         Flood message as described in Section 6.6.1.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   00 |                                                               |
      +                         Frame header /                        +
      :                   ISMP packet header (type 7)                 :
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   20 |       VLAN identifier         |           Version             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   24 |           Opcode              |            Status             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   28 |          Call tag             |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     Source MAC of packet      +
   32 |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   36 |                                                               |
      +    Originating switch MAC     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   40 |                               |     Count     |               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+               +
   44 |                                                               |
      :                           VLAN list                           :
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    n |                                                               |
      +                                                               +
      :                        Original packet                        :
      +                                                               +
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

            n = 41 + length of VLAN list


   Frame header/ISMP packet header

      This 20-octet field contains the frame header and the ISMP packet
      header.



Ruffen, et al.               Informational                     [Page 52]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


      -  The frame header source address contains a value of 02-00-1D-
         00-xx-yy, where xx-yy is a value set by the VLAN Manager
         application to tag the frame header with the VLAN identifier.
         This value ranges from 2 to 4095.  For example, a value of 100
         would be set as 00-64.

      -  The frame header type field contains a value of 0x81FF.  Note
         that this differs from all other ISMP messages.

   VLAN identifier

      This 2-octet field contains the VLAN identifier of the packet
      source.

   Version

      This 2-octet field contains the version number of the message
      type.  This section describes version 2 of the Interswitch Tag-
      Based Flood message.

   Opcode

      This 2-octet field contains the operation code of the message.
      Valid values here are as follows:

      1  The message is a flood request.  The original packet is
         complete within this message.

      2  The message is a fragmented flood request.  The first portion
         of the original packet is contained in this message.

      3  The message is a fragmented flood request.  The second portion
         of the original packet is contained in this message.

   Status

      This 2-octet field is currently unused.  It is reserved for future
      use.

   Call tag

      This 2-octet field contains the call tag of the endstation packet
      encapsulated within this tag-based flood message.  The call tag is
      a 16-bit value (generated by the originating switch) that uniquely
      identifies the packet.






Ruffen, et al.               Informational                     [Page 53]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


   Source MAC of packet

      This 6-octet field contains the physical (MAC) address of the
      endstation that originated the packet identified by the call tag.

   Originating switch MAC

      This 6-octet field contains the physical (MAC) address of the
      switch that issued the original tag-based flooded message.

   Count

      This 1-octet field contains the number of VLAN identifiers
      included in the VLAN list.

   VLAN list

      This variable-length field contains a list of the VLAN identifiers
      of all VLANs to which the source endstation belongs.  Each entry
      in this list has the following format:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Value length  |                                               |
      +-+-+-+-+-+-+-+-+                                               +
      |                        VLAN identifier value                  |
      :                                                               :
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      The 1-octet value length field contains the length of the VLAN
      identifier.  VLAN identifiers can be from 1 to 16 characters long.

   Original packet

      This variable-length field contains the original packet as sent by
      the source endstation.













Ruffen, et al.               Informational                     [Page 54]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


6.7 Interswitch Tap/Untap Message

   The Interswitch Tap/Untap message consists of a variable number of
   octets, as shown below:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   00 |                                                               |
      +                         Frame header /                        +
      :                   ISMP packet header (type 8)                 :
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   20 |            Version            |            Opcode             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   24 |             Status            |          Error code           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   28 |           Header type         |         Header length         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   32 |            Direction          |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+       Probe switch MAC        +
   36 |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   40 |                           Probe port                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   44 |                                                               |
      +                                                               +
   48 |                           (Reserved)                          |
      +                                                               +
   52 |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   56 |                                                               |
      +                                                               +
      |                             Header                            |
      +                                                               +
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


   Frame header/ISMP packet header

      This 20-octet field contains the frame header and the ISMP packet
      header.

   Version

      This 2-octet field contains the version number of the message
      type.  This document describes ISMP message type 8, version 1.



Ruffen, et al.               Informational                     [Page 55]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


   Opcode

      tet field contains the operation type of the message. ues are as
      follows:

         1  The message is a Tap request.
         2  The message is a Tap response.
         3  The message is an Untap request.
         4  The message is an Untap response.

   Status

      This 2-octet field contains the current status of the tap request.
      Valid values are as follows:

         1  Switch must disable outport on untap. (DisableOutport)
         2  Switch must keep outports on untap. (KeepOutport)
         3  Probe not found this leg of spanning tree. (ProbeNotFound)
         4  Still searching for probe switch. (OutportDecisionUnknown)
         5  Unassigned. (StatusUnassigned)
         6  (reserved)
         7  (reserved)
         8  (reserved)
         9  (reserved)

      See Section 5.2.3 for details on the use of this field.

   Error code

      This 2-octet field contains the response message error code of the
      requested operation.  Valid values are as follows:

         1  Operation successful. (NoError)
         2  No response heard from downstream neighbor. (Timeout)
         3  Port does not exist on probe switch. (BadPort)
         4  Message invalid. (InvalidMessage)
         5  Version number invalid. (IncompatibleVersions)

   Header type

      This 2-octet field contains the type of information contained in
      the header field.  Currently, valid values are as follows:

      1  (reserved) 2  Header contains destination and source endstation
         MAC addresses.






Ruffen, et al.               Informational                     [Page 56]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


   Header length

      This 2-octet field contains the length of the header field.
      Currently, this field always contains a value of 12.

   Direction

      This 2-octet field contains a value indicating the type of tap.
      Valid values are as follows:

      1  (reserved)
      2  Tap is bi-directional and data should be captured flowing in
         either direction over the connection.
      3  Tap is uni-directional and data should be captured only when it
         flows from the source to the destination.

   Probe switch MAC

      This 6-octet field contains the physical (MAC) address of the
      switch to which the probe is attached.

   Probe port

      This 4-octet field contains the logical port number (on the probe
      switch) to which the probe is attached.

   Reserved

      These 12 octets are reserved.

   Header

      This variable-length field contains the header that identifies the
      connection being tapped.  The length of the header is stored in
      the length field.

      Currently, this field is 12 octets long and contains the 6-octet
      physical address of the connection's destination endstation,
      followed by the 6-octet physical address of the connection's
      source endstation, as shown below:











Ruffen, et al.               Informational                     [Page 57]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      +    Destination MAC address    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                               |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      Source MAC address       +
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


7. Security Considerations

   Requested call connections are established or denied based on the
   VLAN policy of the source and destination addresses specified within
   the packet.  Section 4.4.1 discusses this process in detail.


8. References

   [RFC1700]   Reynolds, J. and J. Postel, "Assigned Numbers", STD 2,
               RFC 1700, October 1994.

   [IEEE]      "IEEE Standard 802.1d -- 1990"

   [IDvlsp]    Kane, L., "Cabletron's VLS Protocol Specification", RFC
               2642, August 1999.

   [IDhello]   Hamilton, D. and D. Ruffen, "Cabletron's VlanHello
               Protocol Specification", RFC 2641, August 1999.





















Ruffen, et al.               Informational                     [Page 58]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


9. Authors' Addresses

   Dave Ruffen
   Cabletron Systems, Inc.
   Post Office Box 5005
   Rochester, NH  03866-5005

   Phone: (603) 332-9400
   EMail: ruffen@ctron.com


   Ted Len
   Cabletron Systems, Inc.
   Post Office Box 5005
   Rochester, NH  03866-5005

   Phone: (603) 332-9400
   EMail:  len@ctron.com


   Judy Yanacek
   Cabletron Systems, Inc.
   Post Office Box 5005
   Rochester, NH  03866-5005

   Phone: (603) 332-9400
   EMail:  jyanacek@ctron.com
























Ruffen, et al.               Informational                     [Page 59]
^L
RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999


10.  Full Copyright Statement

   Copyright (C) The Internet Society (1999).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.



















Ruffen, et al.               Informational                     [Page 60]
^L