1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
|
Network Working Group D. Thaler
Request for Comments: 2667 Microsoft
Category: Standards Track August 1999
IP Tunnel MIB
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (1999). All Rights Reserved.
1. Abstract
This memo defines a Management Information Base (MIB) for use with
network management protocols in the Internet community. In
particular, it describes managed objects used for managing tunnels of
any type over IPv4 networks. Extension MIBs may be designed for
managing protocol-specific objects. Likewise, extension MIBs may be
designed for managing security-specific objects. This MIB does not
support tunnels over non-IPv4 networks (including IPv6 networks).
Management of such tunnels may be supported by other MIBs.
Table of Contents
1 Abstract ...................................................... 1
2 Introduction .................................................. 2
3 The SNMP Network Management Framework ......................... 2
4 Overview ...................................................... 3
4.1 Relationship to the Interfaces MIB .......................... 3
4.1.1 Layering Model ............................................ 3
4.1.2 ifRcvAddressTable ......................................... 4
4.1.3 ifEntry ................................................... 4
5 Definitions ................................................... 4
6 Security Considerations ...................................... 12
7 Acknowledgements ............................................. 12
8 Author's Address ............................................. 12
9 References ................................................... 13
10 Intellectual Property Notice ................................. 15
11 Full Copyright Statement ..................................... 16
Thaler Standards Track [Page 1]
^L
RFC 2667 IP Tunnel MIB August 1999
2. Introduction
Over the past several years, there have been a number of "tunneling"
protocols specified by the IETF (see [28] for an early discussion of
the model and examples). This document describes a Management
Information Base (MIB) used for managing tunnels of any type over
IPv4 networks, including GRE [16,17], IP-in-IP [18], Minimal
Encapsulation [19], L2TP [20], PPTP [21], L2F [25], UDP (e.g., [26]),
ATMP [22], and IPv6-in-IPv4 [27] tunnels.
Extension MIBs may be designed for managing protocol-specific
objects. Likewise, extension MIBs may be designed for managing
security-specific objects (e.g., IPSEC [24]), and traffic conditioner
[29] objects. Finally, this MIB does not support tunnels over non-
IPv4 networks (including IPv6 networks). Management of such tunnels
may be supported by other MIBs.
3. The SNMP Network Management Framework
The SNMP Management Framework presently consists of five major
components:
o An overall architecture, described in RFC 2571 [1].
o Mechanisms for describing and naming objects and events for the
purpose of management. The first version of this Structure of
Management Information (SMI) is called SMIv1 and described in
STD 16, RFC 1155 [2], STD 16, RFC 1212 [3] and RFC 1215 [4]. The
second version, called SMIv2, is described in STD 58, RFC 2578
[5], STD 58, RFC 2579 [6] and STD 58, RFC 2580 [7].
o Message protocols for transferring management information. The
first version of the SNMP message protocol is called SNMPv1 and
described in STD 15, RFC 1157 [8]. A second version of the SNMP
message protocol, which is not an Internet standards track
protocol, is called SNMPv2c and described in RFC 1901 [9] and
RFC 1906 [10]. The third version of the message protocol is
called SNMPv3 and described in RFC 1906 [10], RFC 2572 [11] and
RFC 2574 [12].
o Protocol operations for accessing management information. The
first set of protocol operations and associated PDU formats is
described in STD 15, RFC 1157 [8]. A second set of protocol
operations and associated PDU formats is described in RFC 1905
[13].
Thaler Standards Track [Page 2]
^L
RFC 2667 IP Tunnel MIB August 1999
o A set of fundamental applications described in RFC 2573 [14] and
the view-based access control mechanism described in RFC 2575
[15].
Managed objects are accessed via a virtual information store, termed
the Management Information Base or MIB. Objects in the MIB are
defined using the mechanisms defined in the SMI.
This memo specifies a MIB module that is compliant to the SMIv2. A
MIB conforming to the SMIv1 can be produced through the appropriate
translations. The resulting translated MIB must be semantically
equivalent, except where objects or events are omitted because no
translation is possible (use of Counter64). Some machine readable
information in SMIv2 will be converted into textual descriptions in
SMIv1 during the translation process. However, this loss of machine
readable information is not considered to change the semantics of the
MIB.
4. Overview
This MIB module contains two tables:
o the Tunnel Interface Table, containing information on the
tunnels known to a router; and
o the Tunnel Config Table, which can be used for dynamic creation
of tunnels, and also provides a mapping from endpoint addresses
to the current interface index value.
4.1. Relationship to the Interfaces MIB
This section clarifies the relationship of this MIB to the Interfaces
MIB [23]. Several areas of correlation are addressed in the
following subsections. The implementor is referred to the Interfaces
MIB document in order to understand the general intent of these
areas.
4.1.1. Layering Model
Each logical interface (physical or virtual) has an ifEntry in the
Interfaces MIB [23]. Tunnels are handled by creating a logical
interface (ifEntry) for each tunnel. These are then correlated, using
the ifStack table of the Interfaces MIB, to those interfaces on which
the local IPv4 addresses of the tunnels are configured. The basic
model, therefore, looks something like this (for example):
Thaler Standards Track [Page 3]
^L
RFC 2667 IP Tunnel MIB August 1999
| | | | | |
+--+ +---+ +--+ +---+ | |
|IP-in-IP| | GRE | | |
| tunnel | | tunnel | | |
+--+ +---+ +--+ +---+ | |
| | | | | | <== attachment to underlying
+--+ +---------+ +----------+ +--+ interfaces, to be provided
| Physical interface | by ifStack table
+--------------------------------+
4.1.2. ifRcvAddressTable
The ifRcvAddressTable usage is defined in the MIBs defining the
encapsulation below the network layer. For example, if IP-in-IP
encapsulation is being used, the ifRcvAddressTable is defined by IP-
in-IP.
4.1.3. ifEntry
IfEntries are defined in the MIBs defining the encapsulation below
the network layer. For example, if IP-in-IP encapsulation [20] is
being used, the ifEntry is defined by IP-in-IP.
The ifType of a tunnel should be set to "tunnel" (131). An entry in
the IP Tunnel MIB will exist for every ifEntry with this ifType. An
implementation of the IP Tunnel MIB may allow ifEntries to be created
via the tunnelConfigTable. Creating a tunnel will also add an entry
in the ifTable and in the tunnelIfTable, and deleting a tunnel will
likewise delete the entry in the ifTable and the tunnelIfTable.
The use of two different tables in this MIB was an important design
decision. Traditionally, ifIndex values are chosen by agents, and
are permitted to change across restarts. Allowing row creation
directly in the Tunnel Interface Table, indexed by ifIndex, would
complicate row creation and/or cause interoperability problems (if
each agent had special restrictions on ifIndex). Instead, a separate
table is used which is indexed only by objects over which the manager
has control. Namely, these are the addresses of the tunnel endpoints
and the encapsulation protocol. Finally, an additional manager-
chosen ID is used in the index to support protocols such as L2F which
allow multiple tunnels between the same endpoints.
Thaler Standards Track [Page 4]
^L
RFC 2667 IP Tunnel MIB August 1999
5. Definitions
TUNNEL-MIB DEFINITIONS ::= BEGIN
IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, transmission,
Integer32, IpAddress FROM SNMPv2-SMI
RowStatus FROM SNMPv2-TC
MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF
ifIndex, InterfaceIndexOrZero FROM IF-MIB;
tunnelMIB MODULE-IDENTITY
LAST-UPDATED "9908241200Z" -- August 24, 1999
ORGANIZATION "IETF Interfaces MIB Working Group"
CONTACT-INFO
" Dave Thaler
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399
EMail: dthaler@dthaler.microsoft.com"
DESCRIPTION
"The MIB module for management of IP Tunnels, independent of
the specific encapsulation scheme in use."
REVISION "9908241200Z" -- August 24, 1999
DESCRIPTION
"Initial version, published as RFC 2667."
::= { transmission 131 }
tunnelMIBObjects OBJECT IDENTIFIER ::= { tunnelMIB 1 }
tunnel OBJECT IDENTIFIER ::= { tunnelMIBObjects 1 }
-- the IP Tunnel MIB-Group
--
-- a collection of objects providing information about
-- IP Tunnels
tunnelIfTable OBJECT-TYPE
SYNTAX SEQUENCE OF TunnelIfEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The (conceptual) table containing information on configured
tunnels."
::= { tunnel 1 }
tunnelIfEntry OBJECT-TYPE
SYNTAX TunnelIfEntry
Thaler Standards Track [Page 5]
^L
RFC 2667 IP Tunnel MIB August 1999
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry (conceptual row) containing the information on a
particular configured tunnel."
INDEX { ifIndex }
::= { tunnelIfTable 1 }
TunnelIfEntry ::= SEQUENCE {
tunnelIfLocalAddress IpAddress,
tunnelIfRemoteAddress IpAddress,
tunnelIfEncapsMethod INTEGER,
tunnelIfHopLimit Integer32,
tunnelIfSecurity INTEGER,
tunnelIfTOS Integer32
}
tunnelIfLocalAddress OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The address of the local endpoint of the tunnel (i.e., the
source address used in the outer IP header), or 0.0.0.0 if
unknown."
::= { tunnelIfEntry 1 }
tunnelIfRemoteAddress OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The address of the remote endpoint of the tunnel (i.e., the
destination address used in the outer IP header), or 0.0.0.0
if unknown."
::= { tunnelIfEntry 2 }
tunnelIfEncapsMethod OBJECT-TYPE
SYNTAX INTEGER {
other(1), -- none of the following
direct(2), -- no intermediate header
gre(3), -- GRE encapsulation
minimal(4), -- Minimal encapsulation
l2tp(5), -- L2TP encapsulation
pptp(6), -- PPTP encapsulation
l2f(7), -- L2F encapsulation
udp(8), -- UDP encapsulation
atmp(9) -- ATMP encapsulation
Thaler Standards Track [Page 6]
^L
RFC 2667 IP Tunnel MIB August 1999
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The encapsulation method used by the tunnel. The value
direct indicates that the packet is encapsulated directly
within a normal IPv4 header, with no intermediate header,
and unicast to the remote tunnel endpoint (e.g., an RFC 2003
IP-in-IP tunnel, or an RFC 1933 IPv6-in-IPv4 tunnel). The
value minimal indicates that a Minimal Forwarding Header
(RFC 2004) is inserted between the outer header and the
payload packet. The value UDP indicates that the payload
packet is encapsulated within a normal UDP packet (e.g., RFC
1234). The remaining protocol-specific values indicate that
a header of the protocol of that name is inserted between
the outer header and the payload header."
::= { tunnelIfEntry 3 }
tunnelIfHopLimit OBJECT-TYPE
SYNTAX Integer32 (0..255)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The TTL to use in the outer IP header. A value of 0
indicates that the value is copied from the payload's
header."
::= { tunnelIfEntry 4 }
tunnelIfSecurity OBJECT-TYPE
SYNTAX INTEGER {
none(1), -- no security
ipsec(2), -- IPSEC security
other(3)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The method used by the tunnel to secure the outer IP
header. The value ipsec indicates that IPsec is used
between the tunnel endpoints for authentication or
encryption or both. More specific security-related
information may be available in a MIB for the security
protocol in use."
::= { tunnelIfEntry 5 }
tunnelIfTOS OBJECT-TYPE
SYNTAX Integer32 (-2..63)
MAX-ACCESS read-write
Thaler Standards Track [Page 7]
^L
RFC 2667 IP Tunnel MIB August 1999
STATUS current
DESCRIPTION
"The method used to set the high 6 bits of the TOS in the
outer IP header. A value of -1 indicates that the bits are
copied from the payload's header. A value of -2 indicates
that a traffic conditioner is invoked and more information
may be available in a traffic conditioner MIB. A value
between 0 and 63 inclusive indicates that the bit field is
set to the indicated value."
::= { tunnelIfEntry 6 }
tunnelConfigTable OBJECT-TYPE
SYNTAX SEQUENCE OF TunnelConfigEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The (conceptual) table containing information on configured
tunnels. This table can be used to map a set of tunnel
endpoints to the associated ifIndex value. It can also be
used for row creation. Note that every row in the
tunnelIfTable with a fixed destination address should have a
corresponding row in the tunnelConfigTable, regardless of
whether it was created via SNMP."
::= { tunnel 2 }
tunnelConfigEntry OBJECT-TYPE
SYNTAX TunnelConfigEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry (conceptual row) containing the information on a
particular configured tunnel."
INDEX { tunnelConfigLocalAddress,
tunnelConfigRemoteAddress,
tunnelConfigEncapsMethod,
tunnelConfigID }
::= { tunnelConfigTable 1 }
TunnelConfigEntry ::= SEQUENCE {
tunnelConfigLocalAddress IpAddress,
tunnelConfigRemoteAddress IpAddress,
tunnelConfigEncapsMethod INTEGER,
tunnelConfigID Integer32,
tunnelConfigIfIndex InterfaceIndexOrZero,
tunnelConfigStatus RowStatus
}
tunnelConfigLocalAddress OBJECT-TYPE
Thaler Standards Track [Page 8]
^L
RFC 2667 IP Tunnel MIB August 1999
SYNTAX IpAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The address of the local endpoint of the tunnel, or 0.0.0.0
if the device is free to choose any of its addresses at
tunnel establishment time."
::= { tunnelConfigEntry 1 }
tunnelConfigRemoteAddress OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The address of the remote endpoint of the tunnel."
::= { tunnelConfigEntry 2 }
tunnelConfigEncapsMethod OBJECT-TYPE
SYNTAX INTEGER {
other(1), -- none of the following
direct(2), -- no intermediate header
gre(3), -- GRE encapsulation
minimal(4), -- Minimal encapsulation
l2tp(5), -- L2TP encapsulation
pptp(6), -- PPTP encapsulation
l2f(7), -- L2F encapsulation
udp(8), -- UDP encapsulation
atmp(9)
}
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The encapsulation method used by the tunnel."
::= { tunnelConfigEntry 3 }
tunnelConfigID OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An identifier used to distinguish between multiple tunnels
of the same encapsulation method, with the same endpoints.
If the encapsulation protocol only allows one tunnel per set
of endpoint addresses (such as for GRE or IP-in-IP), the
value of this object is 1. For encapsulation methods (such
as L2F) which allow multiple parallel tunnels, the manager
is responsible for choosing any ID which does not conflict
with an existing row, such as choosing a random number."
Thaler Standards Track [Page 9]
^L
RFC 2667 IP Tunnel MIB August 1999
::= { tunnelConfigEntry 4 }
tunnelConfigIfIndex OBJECT-TYPE
SYNTAX InterfaceIndexOrZero
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"If the value of tunnelConfigStatus for this row is active,
then this object contains the value of ifIndex corresponding
to the tunnel interface. A value of 0 is not legal in the
active state, and means that the interface index has not yet
been assigned."
::= { tunnelConfigEntry 5 }
tunnelConfigStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The status of this row, by which new entries may be
created, or old entries deleted from this table. The agent
need not support setting this object to createAndWait or
notInService since there are no other writable objects in
this table, and writable objects in rows of corresponding
tables such as the tunnelIfTable may be modified while this
row is active.
To create a row in this table for an encapsulation method
which does not support multiple parallel tunnels with the
same endpoints, the management station should simply use a
tunnelConfigID of 1, and set tunnelConfigStatus to
createAndGo. For encapsulation methods such as L2F which
allow multiple parallel tunnels, the management station may
select a pseudo-random number to use as the tunnelConfigID
and set tunnelConfigStatus to createAndGo. In the event
that this ID is already in use and an inconsistentValue is
returned in response to the set operation, the management
station should simply select a new pseudo-random number and
retry the operation.
Creating a row in this table will cause an interface index
to be assigned by the agent in an implementation-dependent
manner, and corresponding rows will be instantiated in the
ifTable and the tunnelIfTable. The status of this row will
become active as soon as the agent assigns the interface
index, regardless of whether the interface is operationally
up.
Thaler Standards Track [Page 10]
^L
RFC 2667 IP Tunnel MIB August 1999
Deleting a row in this table will likewise delete the
corresponding row in the ifTable and in the tunnelIfTable."
::= { tunnelConfigEntry 6 }
-- conformance information
tunnelMIBConformance
OBJECT IDENTIFIER ::= { tunnelMIB 2 }
tunnelMIBCompliances
OBJECT IDENTIFIER ::= { tunnelMIBConformance 1 }
tunnelMIBGroups OBJECT IDENTIFIER ::= { tunnelMIBConformance 2 }
-- compliance statements
tunnelMIBCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The compliance statement for the IP Tunnel MIB."
MODULE -- this module
MANDATORY-GROUPS { tunnelMIBBasicGroup }
OBJECT tunnelIfHopLimit
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
OBJECT tunnelIfTOS
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
OBJECT tunnelConfigStatus
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
::= { tunnelMIBCompliances 1 }
-- units of conformance
tunnelMIBBasicGroup OBJECT-GROUP
OBJECTS { tunnelIfLocalAddress, tunnelIfRemoteAddress,
tunnelIfEncapsMethod, tunnelIfHopLimit, tunnelIfTOS,
tunnelIfSecurity, tunnelConfigIfIndex, tunnelConfigStatus }
STATUS current
DESCRIPTION
"A collection of objects to support basic management of IP
Tunnels."
::= { tunnelMIBGroups 1 }
Thaler Standards Track [Page 11]
^L
RFC 2667 IP Tunnel MIB August 1999
END
6. Security Considerations
This MIB contains readable objects whose values provide information
related to IP tunnel interfaces. There are also a number of objects
that have a MAX-ACCESS clause of read-write and/or read-create, such
as those which allow an administrator to dynamically configure
tunnels.
While unauthorized access to the readable objects is relatively
innocuous, unauthorized access to the write-able objects could cause
a denial of service, or could cause unauthorized creation and/or
manipulation of tunnels. Hence, the support for SET operations in a
non-secure environment without proper protection can have a negative
effect on network operations.
SNMPv1 by itself is such an insecure environment. Even if the
network itself is secure (for example by using IPSec [24]), even
then, there is no control as to who on the secure network is allowed
to access and SET (change/create/delete) the objects in this MIB.
It is recommended that the implementers consider the security
features as provided by the SNMPv3 framework. Specifically, the use
of the User-based Security Model RFC 2574 [12] and the View-based
Access Control Model RFC 2575 [15] is recommended.
It is then a customer/user responsibility to ensure that the SNMP
entity giving access to this MIB, is properly configured to give
access to those objects only to those principals (users) that have
legitimate rights to access them.
7. Acknowledgements
This MIB module was updated based on feedback from the IETF's
Interfaces MIB (IF-MIB) and Point-to-Point Protocol Extensions
(PPPEXT) Working Groups.
8. Author's Address
Dave Thaler
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399
Phone: +1 425 703 8835
EMail: dthaler@microsoft.com
Thaler Standards Track [Page 12]
^L
RFC 2667 IP Tunnel MIB August 1999
9. References
[1] Wijnen, B., Harrington, D. and R. Presuhn, "An Architecture for
Describing SNMP Management Frameworks", RFC 2571, April 1999.
[2] Rose, M. and K. McCloghrie, "Structure and Identification of
Management Information for TCP/IP-based Internets", STD 16, RFC
1155, May 1990.
[3] Rose, M. and K. McCloghrie, "Concise MIB Definitions", STD 16,
RFC 1212, March 1991.
[4] Rose, M., "A Convention for Defining Traps for use with the
SNMP", RFC 1215, March 1991.
[5] McCloghrie, K., Perkins, D. and J. Schoenwaelder, "Structure of
Management Information Version 2 (SMIv2)", STD 58, RFC 2578,
April 1999.
[6] McCloghrie, K., Perkins, D. and J. Schoenwaelder, "Textual
Conventions for SMIv2", STD 58, RFC 2579, April 1999.
[7] McCloghrie, K., Perkins, D. and J. Schoenwaelder, "Conformance
Statements for SMIv2", STD 58, RFC 2580, April 1999.
[8] Case, J., Fedor, M., Schoffstall, M. and J. Davin, "Simple
Network Management Protocol", STD 15, RFC 1157, May 1990.
[9] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
"Introduction to Community-based SNMPv2", RFC 1901, January
1996.
[10] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Transport
Mappings for Version 2 of the Simple Network Management Protocol
(SNMPv2)", RFC 1906, January 1996.
[11] Case, J., Harrington D., Presuhn R. and B. Wijnen, "Message
Processing and Dispatching for the Simple Network Management
Protocol (SNMP)", RFC 2572, April 1999.
[12] Blumenthal, U. and B. Wijnen, "User-based Security Model (USM)
for version 3 of the Simple Network Management Protocol
(SNMPv3)", RFC 2574, April 1999.
[13] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Protocol
Operations for Version 2 of the Simple Network Management
Protocol (SNMPv2)", RFC 1905, January 1996.
Thaler Standards Track [Page 13]
^L
RFC 2667 IP Tunnel MIB August 1999
[14] Levi, D., Meyer, P. and B. Stewart, "SNMPv3 Applications", RFC
2573, April 1999.
[15] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based Access
Control Model (VACM) for the Simple Network Management Protocol
(SNMP)", RFC 2575, April 1999.
[16] Hanks, S., Li, T., Farinacci, D. and P. Traina, "Generic Routing
Encapsulation (GRE)", RFC 1701, October 1994.
[17] Hanks, S., Li, T., Farinacci, D. and P. Traina, "Generic Routing
Encapsulation over IPv4 networks", RFC 1702, October 1994.
[18] Perkins, C., "IP Encapsulation within IP", RFC 2003, October
1996.
[19] Perkins, C., "Minimal Encapsulation within IP", RFC 2004,
October 1996.
[20] Townsley, W., Valencia, A., Rubens, A., Pall, G., Zorn, G. and
B. Palter, "Layer Two Tunneling Protocol "L2TP"", RFC 2661,
August 1999.
[21] Hamzeh, K., Pall, G., Verthein, W. Taarud, J., Little, W. and G.
Zorn, "Point-to-Point Tunneling Protocol", RFC 2637, July 1999.
[22] Hamzeh, K., "Ascend Tunnel Management Protocol - ATMP", RFC
2107, February 1997.
[23] McCloghrie, K. and F. Kastenholz. "The Interfaces Group MIB
using SMIv2", RFC 2233, November 1997.
[24] R. Atkinson, "Security architecture for the internet protocol",
RFC 2401, November 1998.
[25] Valencia, A., Littlewood, M. and T. Kolar. "Cisco Layer Two
Forwarding (Protocol) "L2F"", RFC 2341, May 1998.
[26] D. Provan, "Tunneling IPX Traffic through IP Networks", RFC
1234, June 1991.
[27] Gilligan, R. and E. Nordmark. "Transition Mechanisms for IPv6
Hosts and Routers", RFC 1933, April 1996.
[28] Woodburn, R. and D. Mills, "A Scheme for an Internet
Encapsulation Protocol: Version 1", RFC 1241, July 1991.
Thaler Standards Track [Page 14]
^L
RFC 2667 IP Tunnel MIB August 1999
[29] Nichols, K., Blake, S., Baker, F. and D. Black. "Definition of
the Differentiated Services Field (DS Field) in the IPv4 and
IPv6 Headers", RFC 2474, December 1998.
10. Intellectual Property Notice
The IETF takes no position regarding the validity or scope of any
intellectual property or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; neither does it represent that it
has made any effort to identify any such rights. Information on the
IETF's procedures with respect to rights in standards-track and
standards-related documentation can be found in BCP-11. Copies of
claims of rights made available for publication and any assurances of
licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such
proprietary rights by implementers or users of this specification can
be obtained from the IETF Secretariat."
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights which may cover technology that may be required to practice
this standard. Please address the information to the IETF Executive
Director.
Thaler Standards Track [Page 15]
^L
RFC 2667 IP Tunnel MIB August 1999
11. Full Copyright Statement
Copyright (C) The Internet Society (1999). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Thaler Standards Track [Page 16]
^L
|