1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
|
Network Working Group N. Brownlee
Request for Comments: 2720 The University of Auckland
Obsoletes: 2064 October 1999
Category: Standards Track
Traffic Flow Measurement: Meter MIB
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (1999). All Rights Reserved.
Abstract
The RTFM Traffic Measurement Architecture provides a general
framework for describing and measuring network traffic flows. Flows
are defined in terms of their Address Attribute values and measured
by a 'Traffic Meter'.
This document defines a Management Information Base (MIB) for use in
controlling an RTFM Traffic Meter, in particular for specifying the
flows to be measured. It also provides an efficient mechanism for
retrieving flow data from the meter using SNMP. Security issues
concerning the operation of traffic meters are summarised.
Table of Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 The SNMP Management Framework . . . . . . . . . . . . . . . . 2
3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.1 Scope of Definitions, Textual Conventions . . . . . . . . . 4
3.2 Usage of the MIB variables . . . . . . . . . . . . . . . . 4
4 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5 Security Considerations . . . . . . . . . . . . . . . . . . . . 46
5.1 SNMP Concerns . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Traffic Meter Concerns . . . . . . . . . . . . . . . . . . 46
6 IANA Considerations . . . . . . . . . . . . . . . . . . . . . . 48
7 Appendix A: Changes Introduced Since RFC 2064 . . . . . . . . . 49
8 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 50
9 Intellectual Property Notice . . . . . . . . . . . . . . . . . 50
Brownlee Standards Track [Page 1]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
10 References . . . . . . . . . . . . . . . . . . . . . . . . . . 50
11 Author's Address . . . . . . . . . . . . . . . . . . . . . . . 53
12 Full Copyright Statement . . . . . . . . . . . . . . . . . . . 54
1 Introduction
This memo defines a portion of the Management Information Base (MIB)
for use with network management protocols in the Internet community.
In particular, it describes objects for managing and collecting data
from network Realtime Traffic Flow Meters, as described in [RTFM-
ARC].
The MIB is 'basic' in the sense that it provides more than enough
information for everyday traffic measurment. Furthermore, it can be
easily extended by adding new attributes as required. The RTFM
Working group is actively pursuing the development of the meter in
this way.
2 The SNMP Management Framework
The SNMP Management Framework presently consists of five major
components:
- An overall architecture, described in RFC 2571 [RFC2571].
- Mechanisms for describing and naming objects and events for the
purpose of management. The first version of this Structure of
Management Information (SMI) is called SMIv1 and described in STD
16, RFC 1155 [RFC1155], STD 16, RFC 1212 [RFC1212] and RFC 1215
[RFC1215]. The second version, called SMIv2, is described in STD
58, RFC 2578 [RFC2578], RFC 2579 [RFC2579] and RFC 2580 [RFC2580].
- Message protocols for transferring management information. The
first version of the SNMP message protocol is called SNMPv1 and
described in STD 15, RFC 1157 [RFC1157]. A second version of the
SNMP message protocol, which is not an Internet standards track
protocol, is called SNMPv2c and described in RFC 1901 [RFC1901] and
RFC 1906 [RFC1906]. The third version of the message protocol is
called SNMPv3 and described in RFC 1906 [RFC1906], RFC 2572
[RFC2572] and RFC 2574 [RFC2574].
- Protocol operations for accessing management information. The
first set of protocol operations and associated PDU formats is
described in STD 15, RFC 1157 [RFC1157]. A second set of protocol
operations and associated PDU formats is described in RFC 1905
[RFC1905].
Brownlee Standards Track [Page 2]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
- A set of fundamental applications described in RFC 2573 [RFC2573]
and the view-based access control mechanism described in RFC 2575
[RFC2575].
A more detailed introduction to the current SNMP Management Framework
can be found in [RFC2570].
Managed objects are accessed via a virtual information store, termed
the Management Information Base or MIB. Objects in the MIB are
defined using the mechanisms defined in the SMI.
This memo specifies a MIB module that is compliant to the SMIv2. A
MIB conforming to the SMIv1 can be produced through the appropriate
translations. The resulting translated MIB must be semantically
equivalent, except where objects or events are omitted because no
translation is possible (use of Counter64). Some machine readable
information in SMIv2 will be converted into textual descriptions in
SMIv1 during the translation process. However, this loss of machine
readable information is not considered to change the semantics of the
MIB.
3 Overview
Traffic Flow Measurement seeks to provide a well-defined method for
gathering traffic flow information from networks and internetworks.
The background for this is given in "Internet Accounting Background"
[ACT-BKG]. The Realtime Traffic Flow Measurement (rtfm) Working Group
has produced a measurement architecture to achieve this goal; this is
documented in "Traffic Flow Measurement: Architecture" [RTFM-ARC].
The architecture defines three entities:
- METERS, which observe network traffic flows and build up a table of
flow data records for them,
- METER READERS, which collect traffic flow data from meters, and
- MANAGERS, which oversee the operation of meters and meter readers.
This memo defines the SNMP management information for a Traffic Flow
Meter (TFM). Work in this field was begun by the Internet Accounting
Working Group. It has been further developed and expanded by the
Realtime Traffic Flow Measurement Working Group.
Brownlee Standards Track [Page 3]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
3.1 Scope of Definitions, Textual Conventions
All objects defined in this memo are registered in a single subtree
within the mib-2 namespace [MIB-II, RFC2578], and are for use in
network devices which may perform a PDU forwarding or monitoring
function. For these devices, this MIB defines a group of objects
with an SMI Network Management MGMT Code [ASG-NBR] of 40, i.e.
flowMIB OBJECT IDENTIFIER ::= mib-2 40
as defined below.
The RTFM Meter MIB was first produced and tested using SNMPv1. It
was converted into SNMPv2 following the guidelines in [RFC1908].
3.2 Usage of the MIB variables
The MIB is organised in four parts - control, data, rules and
conformance statements.
The rules implement the set of packet-matching actions, as described
in the "Traffic Flow Measurment: Architecture" document [RTFM-ARC].
In addition they provide for BASIC-style subroutines, allowing a
network manager to dramatically reduce the number of rules required
to monitor a large network.
Traffic flows are identified by a set of attributes for each of their
end-points. Attributes include network addresses for each layer of
the network protocol stack, and 'subscriber ids', which may be used
to identify an accountable entity for the flow.
The conformance statements are set out as defined in [RFC2580]. They
explain what must be implemented in a meter which claims to conform
to this MIB.
To retrieve flow data one could simply do a linear scan of the flow
table. This would certainly work, but would require a lot of
protocol exchanges. To reduce the overhead in retrieving flow data
the flow table uses a TimeFilter variable, defined as a Textual
Convention in the RMON2 MIB [RMON2-MIB].
As an alternative method of reading flow data, the MIB provides a
view of the flow table called the flowDataPackageTable. This is
(logically) a four-dimensional array, subscripted by package
selector, RuleSet, activity time and starting flow number. The
package selector is a sequence of bytes which specifies a list of
flow attributes.
Brownlee Standards Track [Page 4]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
A data package (as returned by the meter) is a sequence of values for
the attributes specified in its selector, encoded using the Basic
Encoding Rules [ASN-BER]. It allows a meter reader to retrieve all
the attribute values it requires in a single MIB object. This, when
used together with SNMPv2's GetBulk request, allows a meter reader to
scan the flow table and upload a specified set of attribute values
for flows which have changed since the last reading, and which were
created by a specified rule set.
One aspect of data collection which needs emphasis is that all the
MIB variables are set up to allow multiple independent meter readers
to work properly, i.e. the flow table indexes are stateless. An
alternative approach would have been to 'snapshot' the flow table,
which would mean that the meter readers would have to be
synchronized. The stateless approach does mean that two meter
readers will never return exactly the same set of traffic counts, but
over long periods (e.g. 15-minute collections over a day) the
discrepancies are acceptable. If one really needs a snapshot, this
can be achieved by switching to an identical rule set with a
different RuleSet number, hence asynchronous collections may be
regarded as a useful generalisation of synchronised ones.
The control variables are the minimum set required for a meter
reader. Their number has been whittled down as experience has been
gained with the MIB implementation. A few of them are 'general',
i.e. they control the overall behaviour of the meter. These are set
by a single 'master' manager, and no other manager should attempt to
change their values. The decision as to which manager is the '
master' must be made by the network operations personnel responsible;
this MIB does not attempt to define any interaction between managers.
There are three other groups of control variables, arranged into
tables in the same way as in the RMON2 MIB [RMON2-MIB]. They are used
as follows:
- RULE SET INFO: Before attempting to download a RuleSet, a manager
must create a row in the flowRuleSetInfoTable and set its
flowRuleInfoSize to a value large enough to hold the RuleSet. When
the rule set is ready the manager must set flowRuleInfoRulesReady
to 'true', indicating that the rule set is ready for use (but not
yet 'running').
- METER READER INFO: Any meter reader wishing to collect data
reliably for all flows from a RuleSet should first create a row in
the flowReaderInfoTable with flowReaderRuleSet set to that
RuleSet's index in the flowRuleSetInfoTable. It should write that
row's flowReaderLastTime object each time it starts a collection
Brownlee Standards Track [Page 5]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
pass through the flow table. The meter will not recover a flow's
memory until every meter reader holding a row for that flow's
RuleSet has collected the flow's data.
- MANAGER INFO: Any manager wishing to run a RuleSet in the meter
must create a row in the flowManagerInfo table, specifying the
desired RuleSet to run and its corresponding 'standby' RuleSet (if
one is desired). A current RuleSet is 'running' if its
flowManagerRunningStandby value is false(2), similarly a standby
RuleSet is 'running' if flowManagerRunningStandby is true(1).
Times within the meter are in terms of its Uptime, i.e. centiseconds
since the meter started. For meters implemented as self-contained
SNMP agents this will be the same as sysUptime, but this may not be
true for meters implemented as subagents. Managers can read the
meter's Uptime when neccessary (e.g. to set a TimeFilter value) by
setting flowReaderLastTime, then reading its new value.
4 Definitions
FLOW-METER-MIB DEFINITIONS ::= BEGIN
IMPORTS
MODULE-IDENTITY, OBJECT-TYPE,
Counter32, Counter64, Integer32, mib-2
FROM SNMPv2-SMI
TEXTUAL-CONVENTION, RowStatus, TimeStamp, TruthValue
FROM SNMPv2-TC
OBJECT-GROUP, MODULE-COMPLIANCE
FROM SNMPv2-CONF
ifIndex
FROM IF-MIB
TimeFilter
FROM RMON2-MIB;
flowMIB MODULE-IDENTITY
LAST-UPDATED "9910250000Z" -- October 25, 1999
ORGANIZATION "IETF Realtime Traffic Flow Measurement Working Group"
CONTACT-INFO
"Nevil Brownlee, The University of Auckland
Postal: Information Technology Sytems & Services
The University of Auckland
Private Bag 92-019
Auckland, New Zealand
Phone: +64 9 373 7599 x8941
E-mail: n.brownlee@auckland.ac.nz"
Brownlee Standards Track [Page 6]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
DESCRIPTION
"MIB for the RTFM Traffic Flow Meter."
REVISION "9910250000Z"
DESCRIPTION
"Initial Version, published as RFC 2720."
REVISION "9908301250Z"
DESCRIPTION
"UTF8OwnerString Textual Convention added, and used to
replace OwnerString. Conceptually the same as OwnerString,
but facilitating internationalisation by using UTF-8
encoding for its characters rather than US-ASCII."
REVISION "9908191010Z"
DESCRIPTION
"Changes to SIZE specification for two variables:
- flowRuleInfoName SIZE specified as (0..127)
- flowRuleIndex SIZE increased to (1..2147483647)"
REVISION "9712230937Z"
DESCRIPTION
"Two further variables deprecated:
- flowRuleInfoRulesReady (use flowRuleInfoStatus intead)
- flowDataStatus (contains no useful information)"
REVISION "9707071715Z"
DESCRIPTION
"Significant changes since RFC 2064 include:
- flowDataPackageTable added
- flowColumnActivityTable deprecated
- flowManagerCounterWrap deprecated"
REVISION "9603080208Z"
DESCRIPTION
"Initial version of this MIB (RFC 2064)"
::= { mib-2 40 }
flowControl OBJECT IDENTIFIER ::= { flowMIB 1 }
flowData OBJECT IDENTIFIER ::= { flowMIB 2 }
flowRules OBJECT IDENTIFIER ::= { flowMIB 3 }
flowMIBConformance OBJECT IDENTIFIER ::= { flowMIB 4 }
-- Textual Conventions
Brownlee Standards Track [Page 7]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
UTF8OwnerString ::= TEXTUAL-CONVENTION
DISPLAY-HINT "127t"
STATUS current
DESCRIPTION
"An administratively assigned name for the owner of a
resource, conceptually the same as OwnerString in the RMON
MIB [RMON-MIB].
To facilitate internationalisation, this name information
is represented using the ISO/IEC IS 10646-1 character set,
encoded as an octet string using the UTF-8 transformation
format described in the UTF-8 standard [UTF-8]."
SYNTAX OCTET STRING (SIZE (0..127))
PeerType ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Indicates the type of a PeerAddress (see below). The values
used are from the 'Address Family Numbers' section of the
Assigned Numbers RFC [ASG-NBR]. Peer types from other address
families may also be used, provided only that they are
identified by their assigned Address Family numbers."
SYNTAX INTEGER {
ipv4(1),
ipv6(2),
nsap(3),
ipx(11),
appletalk(12),
decnet(13) }
PeerAddress ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Specifies the value of a peer address for various network
protocols. Address format depends on the actual protocol,
as indicated below:
IPv4: ipv4(1)
4-octet IpAddress (defined in the SNMPv2 SMI [RFC2578])
IPv6: ipv6(2)
16-octet IpAddress (defined in the
IPv6 Addressing RFC [V6-ADDR])
CLNS: nsap(3)
NsapAddress (defined in the SNMPv2 SMI [RFC2578])
Novell: ipx(11)
Brownlee Standards Track [Page 8]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
4-octet Network number,
6-octet Host number (MAC address)
AppleTalk: appletalk(12)
2-octet Network number (sixteen bits),
1-octet Host number (eight bits)
DECnet: decnet(13)
1-octet Area number (in low-order six bits),
2-octet Host number (in low-order ten bits)
"
SYNTAX OCTET STRING (SIZE (3..20))
AdjacentType ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Indicates the type of an adjacent address. May be a medium
type or (if metering is taking place inside a tunnel) a
PeerType (see above).
The values used for IEEE 802 medium types are from the 'Network
Management Parameters (ifType definitions)' section of the
Assigned Numbers RFC [ASG-NBR]. Other medium types may also
be used, provided only that they are identified by their
assigned ifType numbers."
SYNTAX INTEGER {
ip(1),
nsap(3),
ethernet(7), -- ethernet-like [ENET-OBJ],
-- includes ethernet-csmacd(6)
tokenring(9),
ipx(11),
appletalk(12),
decnet(13),
fddi(15) }
AdjacentAddress ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Specifies the value of an adjacent address. May be a Medium
Access Control (MAC) address or (if metering is taking place
inside a tunnel) a PeerAddress (see above).
MAC Address format depends on the actual medium, as follows:
Ethernet: ethernet(7)
6-octet 802.3 MAC address in 'canonical' order
Brownlee Standards Track [Page 9]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
Token Ring: tokenring(9)
6-octet 802.5 MAC address in 'canonical' order
FDDI: fddi(15)
FddiMACLongAddress, i.e. a 6-octet MAC address
in 'canonical' order (defined in [FDDI-MIB])
"
SYNTAX OCTET STRING (SIZE (3..20))
TransportType ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Indicates the type of a TransportAddress (see below). Values
will depend on the actual protocol; for IP they will be those
given in the 'Protocol Numbers' section of the Assigned Numbers
RFC [ASG-NBR], including icmp(1), tcp(6) and udp(17)."
SYNTAX Integer32 (1..255)
TransportAddress ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Specifies the value of a transport address for various
network protocols. Format as follows:
IP:
2-octet UDP or TCP port number
Other protocols:
2-octet port number
"
SYNTAX OCTET STRING (SIZE (2))
RuleAddress ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Specifies the value of an address. Is a superset of
MediumAddress, PeerAddress and TransportAddress."
SYNTAX OCTET STRING (SIZE (2..20))
FlowAttributeNumber ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Uniquely identifies an attribute within a flow data record."
SYNTAX INTEGER {
flowIndex(1),
flowStatus(2),
flowTimeMark(3),
Brownlee Standards Track [Page 10]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
sourceInterface(4),
sourceAdjacentType(5),
sourceAdjacentAddress(6),
sourceAdjacentMask(7),
sourcePeerType(8),
sourcePeerAddress(9),
sourcePeerMask(10),
sourceTransType(11),
sourceTransAddress(12),
sourceTransMask(13),
destInterface(14),
destAdjacentType(15),
destAdjacentAddress(16),
destAdjacentMask(17),
destPeerType(18),
destPeerAddress(19),
destPeerMask(20),
destTransType(21),
destTransAddress(22),
destTransMask(23),
pduScale(24),
octetScale(25),
ruleSet(26),
toOctets(27), -- Source-to-Dest
toPDUs(28),
fromOctets(29), -- Dest-to-Source
fromPDUs(30),
firstTime(31), -- Activity times
lastActiveTime(32),
sourceSubscriberID(33), -- Subscriber ID
destSubscriberID(34),
sessionID(35),
sourceClass(36), -- Computed attributes
destClass(37),
flowClass(38),
sourceKind(39),
destKind(40),
flowKind(41) }
RuleAttributeNumber ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Uniquely identifies an attribute which may be tested in
Brownlee Standards Track [Page 11]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
a rule. These include attributes whose values come directly
from (or are computed from) the flow's packets, and the five
'meter' variables used to hold an Attribute Number."
SYNTAX INTEGER {
null(0),
sourceInterface(4), -- Source Address
sourceAdjacentType(5),
sourceAdjacentAddress(6),
sourcePeerType(8),
sourcePeerAddress(9),
sourceTransType(11),
sourceTransAddress(12),
destInterface(14), -- Dest Address
destAdjacentType(15),
destAdjacentAddress(16),
destPeerType(18),
destPeerAddress(19),
destTransType(21),
destTransAddress(22),
sourceSubscriberID(33), -- Subscriber ID
destSubscriberID(34),
sessionID(35),
sourceClass(36), -- Computed attributes
destClass(37),
flowClass(38),
sourceKind(39),
destKind(40),
flowKind(41),
matchingStoD(50), -- Packet matching
v1(51), -- Meter variables
v2(52),
v3(53),
v4(54),
v5(55) }
ActionNumber ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Uniquely identifies the action of a rule, i.e. the Pattern
Matching Engine's opcode number. Details of the opcodes
are given in the 'Traffic Flow Measurement: Architecture'
document [RTFM-ARC]."
SYNTAX INTEGER {
Brownlee Standards Track [Page 12]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
ignore(1),
noMatch(2),
count(3),
countPkt(4),
return(5),
gosub(6),
gosubAct(7),
assign(8),
assignAct(9),
goto(10),
gotoAct(11),
pushRuleTo(12),
pushRuleToAct(13),
pushPktTo(14),
pushPktToAct(15),
popTo(16),
popToAct(17) }
--
-- Control Group: RuleSet Info Table
--
flowRuleSetInfoTable OBJECT-TYPE
SYNTAX SEQUENCE OF FlowRuleSetInfoEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An array of information about the RuleSets held in the
meter.
Any manager may configure a new RuleSet for the meter by
creating a row in this table with status active(1), and setting
values for all the objects in its rules. At this stage the new
RuleSet is available but not 'running', i.e. it is not being
used by the meter to produce entries in the flow table.
To actually 'run' a RuleSet a manager must create a row in
the flowManagerInfoTable, set it's flowManagerStatus to
active(1), and set either its CurrentRuleSet or StandbyRuleSet
to point to the RuleSet to be run.
Once a RuleSet is running a manager may not change any of the
objects within the RuleSet itself. Any attempt to do so should
result in a notWritable(17) SNMP error-status for such objects.
A manager may stop a RuleSet running by removing all
references to it in the flowManagerInfoTable (i.e. by setting
CurrentRuleSet and StandbyRuleSet values to 0). This provides
Brownlee Standards Track [Page 13]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
a way to stop RuleSets left running if a manager fails.
For example, when a manager is started, it could search the
meter's flowManager table and stop all RuleSets having a
specified value of flowRuleInfoOwner.
To prevent a manager from interfering with variables belonging
to another manager, the meter should use MIB views [RFC2575] so
as to limit each manager's access to the meter's variables,
effectively dividing the single meter into several virtual
meters, one for each independent manager."
::= { flowControl 1 }
flowRuleSetInfoEntry OBJECT-TYPE
SYNTAX FlowRuleSetInfoEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Information about a particular RuleSet."
INDEX { flowRuleInfoIndex }
::= { flowRuleSetInfoTable 1 }
FlowRuleSetInfoEntry ::= SEQUENCE {
flowRuleInfoIndex Integer32,
flowRuleInfoSize Integer32,
flowRuleInfoOwner UTF8OwnerString,
flowRuleInfoTimeStamp TimeStamp,
flowRuleInfoStatus RowStatus,
flowRuleInfoName OCTET STRING,
flowRuleInfoRulesReady TruthValue,
flowRuleInfoFlowRecords Integer32
}
flowRuleInfoIndex OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An index which selects an entry in the flowRuleSetInfoTable.
Each such entry contains control information for a particular
RuleSet which the meter may run."
::= { flowRuleSetInfoEntry 1 }
flowRuleInfoSize OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Number of rules in this RuleSet. Setting this variable will
Brownlee Standards Track [Page 14]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
cause the meter to allocate space for these rules."
::= { flowRuleSetInfoEntry 2 }
flowRuleInfoOwner OBJECT-TYPE
SYNTAX UTF8OwnerString
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Identifies the manager which 'owns' this RuleSet. A manager
must set this variable when creating a row in this table."
::= { flowRuleSetInfoEntry 3 }
flowRuleInfoTimeStamp OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Time this row's associated RuleSet was last changed."
::= { flowRuleSetInfoEntry 4 }
flowRuleInfoStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The status of this flowRuleSetInfoEntry. If this value is
not active(1) the meter must not attempt to use the row's
associated RuleSet. Once its value has been set to active(1)
a manager may not change any of the other variables in the
row, nor the contents of the associated RuleSet. Any attempt
to do so should result in a notWritable(17) SNMP error-status
for such variables or objects.
To download a RuleSet, a manger could:
- Locate an open slot in the RuleSetInfoTable.
- Create a RuleSetInfoEntry by setting the status for this
open slot to createAndWait(5).
- Set flowRuleInfoSize and flowRuleInfoName as required.
- Download the rules into the row's rule table.
- Set flowRuleInfoStatus to active(1).
The RuleSet would then be ready to run. The manager is not
allowed to change the value of flowRuleInfoStatus from
active(1) if the associated RuleSet is being referenced by any
of the entries in the flowManagerInfoTable.
Setting RuleInfoStatus to destroy(6) destroys the associated
RuleSet together with any flow data collected by it."
Brownlee Standards Track [Page 15]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
::= { flowRuleSetInfoEntry 5 }
flowRuleInfoName OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (0..127))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"An alphanumeric identifier used by managers and readers to
identify a RuleSet. For example, a manager wishing to run a
RuleSet named WWW-FLOWS could search the flowRuleSetInfoTable
to see whether the WWW-FLOWS RuleSet is already available on
the meter.
Note that references to RuleSets in the flowManagerInfoTable
use indexes for their flowRuleSetInfoTable entries. These may
be different each time the RuleSet is loaded into a meter."
::= { flowRuleSetInfoEntry 6 }
flowRuleInfoRulesReady OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-create
STATUS deprecated
DESCRIPTION
"Indicates whether the rules for this row's associated RuleSet
are ready for use. The meter will refuse to 'run' the RuleSet
unless this variable has been set to true(1).
While RulesReady is false(2), the manager may modify the
RuleSet, for example by downloading rules into it."
::= { flowRuleSetInfoEntry 7 }
flowRuleInfoFlowRecords OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of entries in the flow table for this RuleSet.
These may be current (waiting for collection by one or more
meter readers) or idle (waiting for the meter to recover
their memory)."
::= { flowRuleSetInfoEntry 8 }
--
-- Control Group: Interface Info Table
--
flowInterfaceTable OBJECT-TYPE
SYNTAX SEQUENCE OF FlowInterfaceEntry
MAX-ACCESS not-accessible
Brownlee Standards Track [Page 16]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
STATUS current
DESCRIPTION
"An array of information specific to each meter interface."
::= { flowControl 2 }
flowInterfaceEntry OBJECT-TYPE
SYNTAX FlowInterfaceEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Information about a particular interface."
INDEX { ifIndex }
::= { flowInterfaceTable 1 }
FlowInterfaceEntry ::= SEQUENCE {
flowInterfaceSampleRate Integer32,
flowInterfaceLostPackets Counter32
}
flowInterfaceSampleRate OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The parameter N for statistical counting on this interface.
Set to N to count 1/Nth of the packets appearing at this
interface. A sampling rate of 1 counts all packets.
A sampling rate of 0 results in the interface being ignored
by the meter.
A meter should choose its own algorithm to introduce variance
into the sampling so that exactly every Nth packet is counted.
The IPPM Working Group's RFC 'Framework for IP Performance
Metrics' [IPPM-FRM] explains why this should be done, and sets
out an algorithm for doing it."
DEFVAL { 1 }
::= { flowInterfaceEntry 1 }
flowInterfaceLostPackets OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of packets the meter has lost for this interface.
Such losses may occur because the meter has been unable to
keep up with the traffic volume."
::= { flowInterfaceEntry 2 }
Brownlee Standards Track [Page 17]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
--
-- Control Group: Meter Reader Info Table
--
-- Any meter reader wishing to collect data reliably for flows
-- should first create a row in this table. It should write that
-- row's flowReaderLastTime object each time it starts a collection
-- pass through the flow table.
-- If a meter reader (MR) does not create a row in this table, e.g.
-- because its MIB view [RFC2575] did not allow MR create access to
-- flowReaderStatus, collection can still proceed but the meter will
-- not be aware of meter reader MR. This could lead the meter to
-- recover flows before they have been collected by MR.
flowReaderInfoTable OBJECT-TYPE
SYNTAX SEQUENCE OF FlowReaderInfoEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An array of information about meter readers which have
registered their intent to collect flow data from this meter."
::= { flowControl 3 }
flowReaderInfoEntry OBJECT-TYPE
SYNTAX FlowReaderInfoEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Information about a particular meter reader."
INDEX { flowReaderIndex }
::= { flowReaderInfoTable 1 }
FlowReaderInfoEntry ::= SEQUENCE {
flowReaderIndex Integer32,
flowReaderTimeout Integer32,
flowReaderOwner UTF8OwnerString,
flowReaderLastTime TimeStamp,
flowReaderPreviousTime TimeStamp,
flowReaderStatus RowStatus,
flowReaderRuleSet Integer32
}
flowReaderIndex OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
Brownlee Standards Track [Page 18]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
"An index which selects an entry in the flowReaderInfoTable."
::= { flowReaderInfoEntry 1 }
flowReaderTimeout OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Specifies the maximum time (in seconds) between flow data
collections for this meter reader. If this time elapses
without a collection, the meter should assume that this meter
reader has stopped collecting, and delete this row from the
table. A value of zero indicates that this row should not be
timed out."
::= { flowReaderInfoEntry 2 }
flowReaderOwner OBJECT-TYPE
SYNTAX UTF8OwnerString
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Identifies the meter reader which created this row."
::= { flowReaderInfoEntry 3 }
flowReaderLastTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Time this meter reader began its most recent data collection.
This variable should be written by a meter reader as its first
step in reading flow data. The meter will set this LastTime
value to its current Uptime, and set its PreviousTime value
(below) to the old LastTime. This allows the meter to
recover flows which have been inactive since PreviousTime,
for these have been collected at least once.
If the meter reader fails to write flowLastReadTime, collection
may still proceed but the meter may not be able to recover
inactive flows until the flowReaderTimeout has been reached
for this entry."
::= { flowReaderInfoEntry 4 }
flowReaderPreviousTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
Brownlee Standards Track [Page 19]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
DESCRIPTION
"Time this meter reader began the collection before last."
::= { flowReaderInfoEntry 5 }
flowReaderStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The status of this FlowReaderInfoEntry. A value of active(1)
implies that the associated reader should be collecting data
from the meter. Once this variable has been set to active(1)
a manager may only change this row's flowReaderLastTime and
flowReaderTimeout variables."
::= { flowReaderInfoEntry 6 }
flowReaderRuleSet OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"An index to the array of RuleSets. Specifies a set of rules
of interest to this meter reader. The reader will attempt to
collect any data generated by the meter for this RuleSet, and
the meter will not recover the memory of any of the RuleSet's
flows until this collection has taken place. Note that a
reader may have entries in this table for several RuleSets."
::= { flowReaderInfoEntry 7 }
--
-- Control Group: Manager Info Table
--
-- Any manager wishing to run a RuleSet must create a row in this
-- table. Once it has a table row, the manager may set the control
-- variables in its row so as to cause the meter to run any valid
-- RuleSet held by the meter.
-- A single manager may run several RuleSets; it must create a row
-- in this table for each of them. In short, each row of this table
-- describes (and controls) a 'task' which the meter is executing.
flowManagerInfoTable OBJECT-TYPE
SYNTAX SEQUENCE OF FlowManagerInfoEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An array of information about managers which have
Brownlee Standards Track [Page 20]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
registered their intent to run RuleSets on this meter."
::= { flowControl 4 }
flowManagerInfoEntry OBJECT-TYPE
SYNTAX FlowManagerInfoEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Information about a particular meter 'task.' By creating
an entry in this table and activating it, a manager requests
that the meter 'run' the indicated RuleSet.
The entry also specifies a HighWaterMark and a StandbyRuleSet.
If the meter's flow table usage exceeds this task's
HighWaterMark the meter will stop running the task's
CurrentRuleSet and switch to its StandbyRuleSet.
If the value of the task's StandbyRuleSet is 0 when its
HighWaterMark is exceeded, the meter simply stops running the
task's CurrentRuleSet. By careful selection of HighWaterMarks
for the various tasks a manager can ensure that the most
critical RuleSets are the last to stop running as the number
of flows increases.
When a manager has determined that the demand for flow table
space has abated, it may cause the task to switch back to its
CurrentRuleSet by setting its flowManagerRunningStandby
variable to false(2)."
INDEX { flowManagerIndex }
::= { flowManagerInfoTable 1 }
FlowManagerInfoEntry ::= SEQUENCE {
flowManagerIndex Integer32,
flowManagerCurrentRuleSet Integer32,
flowManagerStandbyRuleSet Integer32,
flowManagerHighWaterMark Integer32,
flowManagerCounterWrap INTEGER,
flowManagerOwner UTF8OwnerString,
flowManagerTimeStamp TimeStamp,
flowManagerStatus RowStatus,
flowManagerRunningStandby TruthValue
}
flowManagerIndex OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
Brownlee Standards Track [Page 21]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
"An index which selects an entry in the flowManagerInfoTable."
::= { flowManagerInfoEntry 1 }
flowManagerCurrentRuleSet OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Index to the array of RuleSets. Specifies which set of
rules is the 'current' one for this task. The meter will
be 'running' the current RuleSet if this row's
flowManagerRunningStandby value is false(2).
When the manager sets this variable the meter will stop using
the task's old current RuleSet and start using the new one.
Specifying RuleSet 0 (the empty set) stops flow measurement
for this task."
::= { flowManagerInfoEntry 2 }
flowManagerStandbyRuleSet OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Index to the array of RuleSets. After reaching HighWaterMark
(see below) the manager will switch to using the task's
StandbyRuleSet in place of its CurrentRuleSet. For this to be
effective the designated StandbyRuleSet should have a coarser
reporting granularity then the CurrentRuleSet. The manager may
also need to decrease the meter reading interval so that the
meter can recover flows measured by this task's CurrentRuleSet."
DEFVAL { 0 } -- No standby
::= { flowManagerInfoEntry 3 }
flowManagerHighWaterMark OBJECT-TYPE
SYNTAX Integer32 (0..100)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"A value expressed as a percentage, interpreted by the meter
as an indication of how full the flow table should be before
it should switch to the standby RuleSet (if one has been
specified) for this task. Values of 0% or 100% disable the
checking represented by this variable."
::= { flowManagerInfoEntry 4 }
flowManagerCounterWrap OBJECT-TYPE
SYNTAX INTEGER { wrap(1), scale(2) }
Brownlee Standards Track [Page 22]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
MAX-ACCESS read-create
STATUS deprecated
DESCRIPTION
"Specifies whether PDU and octet counters should wrap when
they reach the top of their range (normal behaviour for
Counter64 objects), or whether their scale factors should
be used instead. The combination of counter and scale
factor allows counts to be returned as non-negative binary
floating point numbers, with 64-bit mantissas and 8-bit
exponents."
DEFVAL { wrap }
::= { flowManagerInfoEntry 5 }
flowManagerOwner OBJECT-TYPE
SYNTAX UTF8OwnerString
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Identifies the manager which created this row."
::= { flowManagerInfoEntry 6 }
flowManagerTimeStamp OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Time this row was last changed by its manager."
::= { flowManagerInfoEntry 7 }
flowManagerStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The status of this row in the flowManagerInfoTable. A value
of active(1) implies that this task may be activated, by
setting its CurrentRuleSet and StandbyRuleSet variables.
Its HighWaterMark and RunningStandby variables may also be
changed."
::= { flowManagerInfoEntry 8 }
flowManagerRunningStandby OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Set to true(1) by the meter to indicate that it has switched
to runnning this task's StandbyRuleSet in place of its
Brownlee Standards Track [Page 23]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
CurrentRuleSet. To switch back to the CurrentRuleSet, the
manager may simply set this variable to false(2)."
DEFVAL { false }
::= { flowManagerInfoEntry 9 }
--
-- Control Group: General Meter Control Variables
--
flowFloodMark OBJECT-TYPE
SYNTAX Integer32 (0..100)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"A value expressed as a percentage, interpreted by the meter
as an indication of how full the flow table should be before
it should take some action to avoid running out of resources
to handle new flows, as discussed in section 4.6 (Handling
Increasing Traffic Levels) of the RTFM Architecture RFC
[RTFM-ARC].
Values of 0% or 100% disable the checking represented by
this variable."
DEFVAL { 95 } -- Enabled by default.
::= { flowControl 5 }
flowInactivityTimeout OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The time in seconds since the last packet seen, after which
a flow becomes 'idle.' Note that although a flow may be
idle, it will not be discarded (and its memory recovered)
until after its data has been collected by all the meter
readers registered for its RuleSet."
DEFVAL { 600 } -- 10 minutes
::= { flowControl 6 }
flowActiveFlows OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of flows which are currently in use."
::= { flowControl 7 }
flowMaxFlows OBJECT-TYPE
Brownlee Standards Track [Page 24]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The maximum number of flows allowed in the meter's
flow table. At present this is determined when the meter
is first started up."
::= { flowControl 8 }
flowFloodMode OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"Indicates that the meter has passed its FloodMark and is
not running in its normal mode.
When the manager notices this it should take action to remedy
the problem which caused the flooding. It should then monitor
flowActiveFlows so as to determine when the flood has receded.
At that point the manager may set flowFloodMode to false(2) to
resume normal operation."
::= { flowControl 9 }
--
-- The Flow Table
--
-- This is a table kept by a meter, with one flow data entry for every
-- flow being measured. Each flow data entry stores the attribute
-- values for a traffic flow. Details of flows and their attributes
-- are given in the 'Traffic Flow Measurement: Architecture'
-- document [RTFM-ARC].
-- From time to time a meter reader may sweep the flow table so as
-- to read counts. This is most effectively achieved by using the
-- TimeMark variable together with successive GetBulk requests to
-- retrieve the values of the desired flow attribute variables.
-- This scheme allows multiple meter readers to independently use the
-- same meter; the meter readers do not have to be synchronised and
-- they may use different collection intervals.
-- If identical sets of counts are required from a meter, a manager
-- could achieve this using two identical copies of a RuleSet in that
-- meter and switching back and forth between them. This is discussed
-- further in the RTFM Architecture document [RTFM-ARC].
Brownlee Standards Track [Page 25]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
flowDataTable OBJECT-TYPE
SYNTAX SEQUENCE OF FlowDataEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The list of all flows being measured."
::= { flowData 1 }
flowDataEntry OBJECT-TYPE
SYNTAX FlowDataEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The flow data record for a particular flow."
INDEX { flowDataRuleSet, flowDataTimeMark, flowDataIndex }
::= { flowDataTable 1 }
FlowDataEntry ::= SEQUENCE {
flowDataIndex Integer32,
flowDataTimeMark TimeFilter,
flowDataStatus INTEGER,
flowDataSourceInterface Integer32,
flowDataSourceAdjacentType AdjacentType,
flowDataSourceAdjacentAddress AdjacentAddress,
flowDataSourceAdjacentMask AdjacentAddress,
flowDataSourcePeerType PeerType,
flowDataSourcePeerAddress PeerAddress,
flowDataSourcePeerMask PeerAddress,
flowDataSourceTransType TransportType,
flowDataSourceTransAddress TransportAddress,
flowDataSourceTransMask TransportAddress,
flowDataDestInterface Integer32,
flowDataDestAdjacentType AdjacentType,
flowDataDestAdjacentAddress AdjacentAddress,
flowDataDestAdjacentMask AdjacentAddress,
flowDataDestPeerType PeerType,
flowDataDestPeerAddress PeerAddress,
flowDataDestPeerMask PeerAddress,
flowDataDestTransType TransportType,
flowDataDestTransAddress TransportAddress,
flowDataDestTransMask TransportAddress,
flowDataPDUScale Integer32,
flowDataOctetScale Integer32,
flowDataRuleSet Integer32,
Brownlee Standards Track [Page 26]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
flowDataToOctets Counter64, -- Source->Dest
flowDataToPDUs Counter64,
flowDataFromOctets Counter64, -- Dest->Source
flowDataFromPDUs Counter64,
flowDataFirstTime TimeStamp, -- Activity times
flowDataLastActiveTime TimeStamp,
flowDataSourceSubscriberID OCTET STRING,
flowDataDestSubscriberID OCTET STRING,
flowDataSessionID OCTET STRING,
flowDataSourceClass Integer32,
flowDataDestClass Integer32,
flowDataClass Integer32,
flowDataSourceKind Integer32,
flowDataDestKind Integer32,
flowDataKind Integer32
}
flowDataIndex OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Value of this flow data record's index within the meter's
flow table."
::= { flowDataEntry 1 }
flowDataTimeMark OBJECT-TYPE
SYNTAX TimeFilter
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A TimeFilter for this entry. Allows GetNext and GetBulk
to find flow table rows which have changed since a specified
value of the meter's Uptime."
::= { flowDataEntry 2 }
flowDataStatus OBJECT-TYPE
SYNTAX INTEGER { inactive(1), current(2) }
MAX-ACCESS read-only
STATUS deprecated
DESCRIPTION
"Status of this flow data record."
::= { flowDataEntry 3 }
flowDataSourceInterface OBJECT-TYPE
SYNTAX Integer32
Brownlee Standards Track [Page 27]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Index of the interface associated with the source address
for this flow. It's value is one of those contained in the
ifIndex field of the meter's interfaces table."
::= { flowDataEntry 4 }
flowDataSourceAdjacentType OBJECT-TYPE
SYNTAX AdjacentType
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Adjacent address type of the source for this flow.
If metering is being performed at the network level,
AdjacentType will indicate the medium for the interface on
which the flow was observed and AdjacentAddress will be the
MAC address for that interface. This is the usual case.
If traffic is being metered inside a tunnel, AdjacentType will
be the peer type of the host at the end of the tunnel and
AdjacentAddress will be the peer address for that host."
::= { flowDataEntry 5 }
flowDataSourceAdjacentAddress OBJECT-TYPE
SYNTAX AdjacentAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Address of the adjacent device on the path for the source
for this flow."
::= { flowDataEntry 6 }
flowDataSourceAdjacentMask OBJECT-TYPE
SYNTAX AdjacentAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"1-bits in this mask indicate which bits must match when
comparing the adjacent source address for this flow."
::= { flowDataEntry 7 }
flowDataSourcePeerType OBJECT-TYPE
SYNTAX PeerType
MAX-ACCESS read-only
STATUS current
DESCRIPTION
Brownlee Standards Track [Page 28]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
"Peer address type of the source for this flow."
::= { flowDataEntry 8 }
flowDataSourcePeerAddress OBJECT-TYPE
SYNTAX PeerAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Address of the peer device for the source of this flow."
::= { flowDataEntry 9 }
flowDataSourcePeerMask OBJECT-TYPE
SYNTAX PeerAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"1-bits in this mask indicate which bits must match when
comparing the source peer address for this flow."
::= { flowDataEntry 10 }
flowDataSourceTransType OBJECT-TYPE
SYNTAX TransportType
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Transport address type of the source for this flow. The
value of this attribute will depend on the peer address type."
::= { flowDataEntry 11 }
flowDataSourceTransAddress OBJECT-TYPE
SYNTAX TransportAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Transport address for the source of this flow."
::= { flowDataEntry 12 }
flowDataSourceTransMask OBJECT-TYPE
SYNTAX TransportAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"1-bits in this mask indicate which bits must match when
comparing the transport source address for this flow."
::= { flowDataEntry 13 }
flowDataDestInterface OBJECT-TYPE
SYNTAX Integer32
Brownlee Standards Track [Page 29]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Index of the interface associated with the dest address for
this flow. This value is one of the values contained in the
ifIndex field of the interfaces table."
::= { flowDataEntry 14 }
flowDataDestAdjacentType OBJECT-TYPE
SYNTAX AdjacentType
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Adjacent address type of the destination for this flow."
::= { flowDataEntry 15 }
flowDataDestAdjacentAddress OBJECT-TYPE
SYNTAX AdjacentAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Address of the adjacent device on the path for the
destination for this flow."
::= { flowDataEntry 16 }
flowDataDestAdjacentMask OBJECT-TYPE
SYNTAX AdjacentAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"1-bits in this mask indicate which bits must match when
comparing the adjacent destination address for this flow."
::= { flowDataEntry 17 }
flowDataDestPeerType OBJECT-TYPE
SYNTAX PeerType
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Peer address type of the destination for this flow."
::= { flowDataEntry 18 }
flowDataDestPeerAddress OBJECT-TYPE
SYNTAX PeerAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Address of the peer device for the destination of this flow."
Brownlee Standards Track [Page 30]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
::= { flowDataEntry 19 }
flowDataDestPeerMask OBJECT-TYPE
SYNTAX PeerAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"1-bits in this mask indicate which bits must match when
comparing the destination peer type for this flow."
::= { flowDataEntry 20 }
flowDataDestTransType OBJECT-TYPE
SYNTAX TransportType
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Transport address type of the destination for this flow. The
value of this attribute will depend on the peer address type."
::= { flowDataEntry 21 }
flowDataDestTransAddress OBJECT-TYPE
SYNTAX TransportAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Transport address for the destination of this flow."
::= { flowDataEntry 22 }
flowDataDestTransMask OBJECT-TYPE
SYNTAX TransportAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"1-bits in this mask indicate which bits must match when
comparing the transport destination address for this flow."
::= { flowDataEntry 23 }
flowDataPDUScale OBJECT-TYPE
SYNTAX Integer32 (0..255)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The scale factor applied to this particular flow. Indicates
the number of bits the PDU counter values should be moved left
to obtain the actual values."
::= { flowDataEntry 24 }
flowDataOctetScale OBJECT-TYPE
Brownlee Standards Track [Page 31]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
SYNTAX Integer32 (0..255)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The scale factor applied to this particular flow. Indicates
the number of bits the octet counter values should be moved
left to obtain the actual values."
::= { flowDataEntry 25 }
flowDataRuleSet OBJECT-TYPE
SYNTAX Integer32 (1..255)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The RuleSet number of the RuleSet which created this flow.
Allows a manager to use GetNext or GetBulk requests to find
flows belonging to a particular RuleSet."
::= { flowDataEntry 26 }
flowDataToOctets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The count of octets flowing from source to destination
for this flow."
::= { flowDataEntry 27 }
flowDataToPDUs OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The count of packets flowing from source to destination
for this flow."
::= { flowDataEntry 28 }
flowDataFromOctets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The count of octets flowing from destination to source
for this flow."
::= { flowDataEntry 29 }
flowDataFromPDUs OBJECT-TYPE
SYNTAX Counter64
Brownlee Standards Track [Page 32]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The count of packets flowing from destination to source
for this flow."
::= { flowDataEntry 30 }
flowDataFirstTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The time at which this flow was first entered in the table"
::= { flowDataEntry 31 }
flowDataLastActiveTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The last time this flow had activity, i.e. the time of
arrival of the most recent PDU belonging to this flow."
::= { flowDataEntry 32 }
flowDataSourceSubscriberID OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (4..20))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Subscriber ID associated with the source address for this
flow. A Subscriber ID is an unspecified text string, used
to ascribe traffic flows to individual users. At this time
the means by which a Subscriber ID may be associated with a
flow is unspecified."
::= { flowDataEntry 33 }
flowDataDestSubscriberID OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (4..20))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Subscriber ID associated with the destination address for
this flow. A Subscriber ID is an unspecified text string,
used to ascribe traffic flows to individual users. At this
time the means by which a Subscriber ID may be associated
with a flow is unspecified."
::= { flowDataEntry 34 }
Brownlee Standards Track [Page 33]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
flowDataSessionID OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (4..10))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Session ID for this flow. Such an ID might be allocated
by a network access server to distinguish a series of sessions
between the same pair of addresses, which would otherwise
appear to be parts of the same accounting flow."
::= { flowDataEntry 35 }
flowDataSourceClass OBJECT-TYPE
SYNTAX Integer32 (1..255)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Source class for this flow. Determined by the rules, set by
a PushRule action when this flow was entered in the table."
::= { flowDataEntry 36 }
flowDataDestClass OBJECT-TYPE
SYNTAX Integer32 (1..255)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Destination class for this flow. Determined by the rules, set
by a PushRule action when this flow was entered in the table."
::= { flowDataEntry 37 }
flowDataClass OBJECT-TYPE
SYNTAX Integer32 (1..255)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Class for this flow. Determined by the rules, set by a
PushRule action when this flow was entered in the table."
::= { flowDataEntry 38 }
flowDataSourceKind OBJECT-TYPE
SYNTAX Integer32 (1..255)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Source kind for this flow. Determined by the rules, set by
a PushRule action when this flow was entered in the table."
::= { flowDataEntry 39 }
flowDataDestKind OBJECT-TYPE
Brownlee Standards Track [Page 34]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
SYNTAX Integer32 (1..255)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Destination kind for this flow. Determined by the rules, set
by a PushRule action when this flow was entered in the table."
::= { flowDataEntry 40 }
flowDataKind OBJECT-TYPE
SYNTAX Integer32 (1..255)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Class for this flow. Determined by the rules, set by a
PushRule action when this flow was entered in the table."
::= { flowDataEntry 41 }
--
-- The Activity Column Table
--
flowColumnActivityTable OBJECT-TYPE
SYNTAX SEQUENCE OF FlowColumnActivityEntry
MAX-ACCESS not-accessible
STATUS deprecated
DESCRIPTION
"Index into the Flow Table. Allows a meter reader to retrieve
a list containing the flow table indexes of flows which were
last active at or after a given time, together with the values
of a specified attribute for each such flow."
::= { flowData 2 }
flowColumnActivityEntry OBJECT-TYPE
SYNTAX FlowColumnActivityEntry
MAX-ACCESS not-accessible
STATUS deprecated
DESCRIPTION
"The Column Activity Entry for a particular attribute,
activity time and flow."
INDEX { flowColumnActivityAttribute, flowColumnActivityTime,
flowColumnActivityIndex }
::= { flowColumnActivityTable 1 }
FlowColumnActivityEntry ::= SEQUENCE {
flowColumnActivityAttribute FlowAttributeNumber,
flowColumnActivityTime TimeFilter,
flowColumnActivityIndex Integer32,
flowColumnActivityData OCTET STRING
Brownlee Standards Track [Page 35]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
}
flowColumnActivityAttribute OBJECT-TYPE
SYNTAX FlowAttributeNumber
MAX-ACCESS read-only
STATUS deprecated
DESCRIPTION
"Specifies the attribute for which values are required from
active flows."
::= { flowColumnActivityEntry 1 }
flowColumnActivityTime OBJECT-TYPE
SYNTAX TimeFilter
MAX-ACCESS read-only
STATUS deprecated
DESCRIPTION
"This variable is a copy of flowDataLastActiveTime in the
flow data record identified by the flowColumnActivityIndex
value of this flowColumnActivityTable entry."
::= { flowColumnActivityEntry 2 }
flowColumnActivityIndex OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS read-only
STATUS deprecated
DESCRIPTION
"Index of a flow table entry which was active at or after
a specified flowColumnActivityTime."
::= { flowColumnActivityEntry 3 }
flowColumnActivityData OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (3..1000))
MAX-ACCESS read-only
STATUS deprecated
DESCRIPTION
"Collection of attribute data for flows active after
flowColumnActivityTime. Within the OCTET STRING is a
sequence of { flow index, attribute value } pairs, one for
each active flow. The end of the sequence is marked by a
flow index value of 0, indicating that there are no more
rows in this column.
The format of objects inside flowColumnFlowData is as follows.
All numbers are unsigned. Numbers and strings appear with
their high-order bytes leading. Numbers are fixed size, as
specified by their SYNTAX in the flow table (above), i.e. one
octet for flowAddressType and small constants, and four octets
for Counter and TimeStamp. Strings are variable-length, with
Brownlee Standards Track [Page 36]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
the length given in a single leading octet.
The following is an attempt at an ASN.1 definition of
flowColumnActivityData:
flowColumnActivityData ::= SEQUENCE flowRowItemEntry
flowRowItemEntry ::= SEQUENCE {
flowRowNumber Integer32 (1..65535),
-- 0 indicates the end of this column
flowDataValue flowDataType -- Choice depends on attribute
}
flowDataType ::= CHOICE {
flowByteValue Integer32 (1..255),
flowShortValue Integer32 (1..65535),
flowLongValue Integer32,
flowStringValue OCTET STRING -- Length (n) in first byte,
-- n+1 bytes total length, trailing zeroes truncated
}"
::= { flowColumnActivityEntry 4 }
--
-- The Data Package Table
--
flowDataPackageTable OBJECT-TYPE
SYNTAX SEQUENCE OF FlowDataPackageEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Index into the Flow Table. Allows a meter reader to retrieve
a sequence containing the values of a specified set of
attributes for a flow which came from a specified RuleSet and
which was last active at or after a given time."
::= { flowData 3 }
flowDataPackageEntry OBJECT-TYPE
SYNTAX FlowDataPackageEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The data package containing selected variables from
active rows in the flow table."
INDEX { flowPackageSelector,
flowPackageRuleSet, flowPackageTime, flowPackageIndex }
::= { flowDataPackageTable 1 }
FlowDataPackageEntry ::= SEQUENCE {
flowPackageSelector OCTET STRING,
Brownlee Standards Track [Page 37]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
flowPackageRuleSet Integer32,
flowPackageTime TimeFilter,
flowPackageIndex Integer32,
flowPackageData OCTET STRING
}
flowPackageSelector OBJECT-TYPE
SYNTAX OCTET STRING
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Specifies the attributes for which values are required from
an active flow. These are encoded as a sequence of octets
each containing a FlowAttribute number, preceded by an octet
giving the length of the sequence (not including the length
octet). For a flowPackageSelector to be valid, it must
contain at least one attribute."
::= { flowDataPackageEntry 1 }
flowPackageRuleSet OBJECT-TYPE
SYNTAX Integer32 (1..255)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Specifies the index (in the flowRuleSetInfoTable) of the rule
set which produced the required flow."
::= { flowDataPackageEntry 2 }
flowPackageTime OBJECT-TYPE
SYNTAX TimeFilter
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This variable is a copy of flowDataLastActiveTime in the
flow data record identified by the flowPackageIndex
value of this flowPackageTable entry."
::= { flowDataPackageEntry 3 }
flowPackageIndex OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Index of a flow table entry which was active at or after
a specified flowPackageTime."
::= { flowDataPackageEntry 4 }
flowPackageData OBJECT-TYPE
Brownlee Standards Track [Page 38]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
SYNTAX OCTET STRING
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A collection of attribute values for a single flow, as
specified by this row's indexes. The attribute values are
contained within a BER-encoded sequence [ASN-1, ASN-BER],
in the order they appear in their flowPackageSelector.
For example, to retrieve a flowPackage containing values for
attributes 11, 18 and 29, for a flow in RuleSet 7, with flow
index 3447, one would GET the package whose Object Identifier
(OID) is
flowPackageData . 3.11.18.29 . 7. 0 . 3447
To get a package for the next such flow which had been
active since time 12345 one would GETNEXT the package whose
Object Identifier (OID) is
flowPackageData . 3.11.18.29 . 7. 12345 . 3447"
::= { flowDataPackageEntry 5 }
--
-- The Rule Table
--
-- This is an array of RuleSets; the 'running' ones are indicated
-- by the entries in the meter's flowManagerInfoTable. Several
-- RuleSets can be held in a meter so that the manager can change the
-- running RuleSets easily, for example with time of day. Note that
-- a manager may not change the rules in any RuleSet currently
-- referenced within the flowManagerInfoTable (either as 'current' or
-- 'standby')! See the 'Traffic Flow Measurement: Architecture'
-- document [RTFM-ARC] for details of rules and how they are used.
-- Space for a RuleSet is allocated by setting the value of
-- flowRuleInfoSize in the rule table's flowRuleSetInfoTable row.
-- Values for each row in the RuleSet (Selector, Mask, MatchedValue,
-- Action and Parameter) can then be set by the meter.
-- Although an individual rule within a RuleSet could be modified,
-- it is much safer to simply download a complete new RuleSet.
flowRuleTable OBJECT-TYPE
SYNTAX SEQUENCE OF FlowRuleEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Contains all the RuleSets which may be used by the meter."
Brownlee Standards Track [Page 39]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
::= { flowRules 1 }
flowRuleEntry OBJECT-TYPE
SYNTAX FlowRuleEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The rule record itself."
INDEX { flowRuleSet, flowRuleIndex }
::= { flowRuleTable 1 }
FlowRuleEntry ::= SEQUENCE {
flowRuleSet Integer32,
flowRuleIndex Integer32,
flowRuleSelector RuleAttributeNumber,
flowRuleMask RuleAddress,
flowRuleMatchedValue RuleAddress,
flowRuleAction ActionNumber,
flowRuleParameter Integer32
}
flowRuleSet OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Selects a RuleSet from the array of RuleSets."
::= { flowRuleEntry 1 }
flowRuleIndex OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The index into the Rule table. N.B: These values will
normally be consecutive, given the fall-through semantics
of processing the table."
::= { flowRuleEntry 2 }
flowRuleSelector OBJECT-TYPE
SYNTAX RuleAttributeNumber
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"Indicates the attribute to be matched.
null(0) is a special case; null rules always succeed.
Brownlee Standards Track [Page 40]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
matchingStoD(50) is set by the meter's Packet Matching Engine.
Its value is true(1) if the PME is attempting to match the
packet with its addresses in Source-to-Destination order (i.e.
as they appear in the packet), and false(2) otherwise.
Details of how packets are matched are given in the 'Traffic
Flow Measurement: Architecture' document [RTFM-ARC].
v1(51), v2(52), v3(53), v4(54) and v5(55) select meter
variables, each of which can hold the name (i.e. selector
value) of an address attribute. When one of these is used
as a selector, its value specifies the attribute to be
tested. Variable values are set by an Assign action."
::= { flowRuleEntry 3 }
flowRuleMask OBJECT-TYPE
SYNTAX RuleAddress
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The initial mask used to compute the desired value. If the
mask is zero the rule's test will always succeed."
::= { flowRuleEntry 4 }
flowRuleMatchedValue OBJECT-TYPE
SYNTAX RuleAddress
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The resulting value to be matched for equality.
Specifically, if the attribute chosen by the flowRuleSelector
logically ANDed with the mask specified by the flowRuleMask
equals the value specified in the flowRuleMatchedValue, then
continue processing the table entry based on the action
specified by the flowRuleAction entry. Otherwise, proceed to
the next entry in the rule table."
::= { flowRuleEntry 5 }
flowRuleAction OBJECT-TYPE
SYNTAX ActionNumber
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The action to be taken if this rule's test succeeds, or if
the meter's 'test' flag is off. Actions are opcodes for the
meter's Packet Matching Engine; details are given in the
'Traffic Flow Measurement: Architecture' document [RTFM-ARC]."
::= { flowRuleEntry 6 }
flowRuleParameter OBJECT-TYPE
Brownlee Standards Track [Page 41]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
SYNTAX Integer32 (1..65535)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"A parameter value providing extra information for this rule's
action. Most of the actions use the parameter value to specify
which rule to execute after this rule's test has failed; details
are given in the 'Traffic Flow Measurement: Architecture'
document [RTFM-ARC]."
::= { flowRuleEntry 7 }
--
-- Traffic Flow Meter conformance statement
--
flowMIBCompliances
OBJECT IDENTIFIER ::= { flowMIBConformance 1 }
flowMIBGroups
OBJECT IDENTIFIER ::= { flowMIBConformance 2 }
flowControlGroup OBJECT-GROUP
OBJECTS {
flowRuleInfoSize, flowRuleInfoOwner,
flowRuleInfoTimeStamp, flowRuleInfoStatus,
flowRuleInfoName,
flowRuleInfoRulesReady,
flowRuleInfoFlowRecords,
flowInterfaceSampleRate,
flowInterfaceLostPackets,
flowReaderTimeout, flowReaderOwner,
flowReaderLastTime, flowReaderPreviousTime,
flowReaderStatus, flowReaderRuleSet,
flowManagerCurrentRuleSet, flowManagerStandbyRuleSet,
flowManagerHighWaterMark,
flowManagerCounterWrap,
flowManagerOwner, flowManagerTimeStamp,
flowManagerStatus, flowManagerRunningStandby,
flowFloodMark,
flowInactivityTimeout, flowActiveFlows,
flowMaxFlows, flowFloodMode }
STATUS deprecated
DESCRIPTION
"The control group defines objects which are used to control
an accounting meter."
::= {flowMIBGroups 1 }
flowDataTableGroup OBJECT-GROUP
Brownlee Standards Track [Page 42]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
OBJECTS {
-- flowDataIndex, <- INDEX, not-accessible
flowDataStatus,
flowDataSourceInterface,
flowDataSourceAdjacentType,
flowDataSourceAdjacentAddress, flowDataSourceAdjacentMask,
flowDataSourcePeerType,
flowDataSourcePeerAddress, flowDataSourcePeerMask,
flowDataSourceTransType,
flowDataSourceTransAddress, flowDataSourceTransMask,
flowDataDestInterface,
flowDataDestAdjacentType,
flowDataDestAdjacentAddress, flowDataDestAdjacentMask,
flowDataDestPeerType,
flowDataDestPeerAddress, flowDataDestPeerMask,
flowDataDestTransType,
flowDataDestTransAddress, flowDataDestTransMask,
-- flowDataRuleSet, <- INDEX, not-accessible
flowDataToOctets, flowDataToPDUs,
flowDataFromOctets, flowDataFromPDUs,
flowDataFirstTime, flowDataLastActiveTime,
flowDataSourceClass, flowDataDestClass, flowDataClass,
flowDataSourceKind, flowDataDestKind, flowDataKind
}
STATUS deprecated
DESCRIPTION
"The flow table group defines objects which provide the
structure for the flow table, including the creation time
and activity time indexes into it. In addition it defines
objects which provide a base set of flow attributes for the
adjacent, peer and transport layers, together with a flow's
counters and times. Finally it defines a flow's class and
kind attributes, which are set by rule actions."
::= {flowMIBGroups 2 }
flowDataScaleGroup OBJECT-GROUP
OBJECTS {
flowManagerCounterWrap,
flowDataPDUScale, flowDataOctetScale
}
STATUS deprecated
DESCRIPTION
"The flow scale group defines objects which specify scale
factors for counters."
::= {flowMIBGroups 3 }
flowDataSubscriberGroup OBJECT-GROUP
OBJECTS {
Brownlee Standards Track [Page 43]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
flowDataSourceSubscriberID, flowDataDestSubscriberID,
flowDataSessionID
}
STATUS current
DESCRIPTION
"The flow subscriber group defines objects which may be used
to identify the end point(s) of a flow."
::= {flowMIBGroups 4 }
flowDataColumnTableGroup OBJECT-GROUP
OBJECTS {
flowColumnActivityAttribute,
flowColumnActivityIndex,
flowColumnActivityTime,
flowColumnActivityData
}
STATUS deprecated
DESCRIPTION
"The flow column table group defines objects which can be used
to collect part of a column of attribute values from the flow
table."
::= {flowMIBGroups 5 }
flowDataPackageGroup OBJECT-GROUP
OBJECTS {
flowPackageData
}
STATUS current
DESCRIPTION
"The data package group defines objects which can be used
to collect a specified set of attribute values from a row of
the flow table."
::= {flowMIBGroups 6 }
flowRuleTableGroup OBJECT-GROUP
OBJECTS {
flowRuleSelector,
flowRuleMask, flowRuleMatchedValue,
flowRuleAction, flowRuleParameter
}
STATUS current
DESCRIPTION
"The rule table group defines objects which hold the set(s)
of rules specifying which traffic flows are to be accounted
for."
::= {flowMIBGroups 7 }
flowDataScaleGroup2 OBJECT-GROUP
Brownlee Standards Track [Page 44]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
OBJECTS {
-- flowManagerCounterWrap, <- Deprecated
flowDataPDUScale, flowDataOctetScale
}
STATUS current
DESCRIPTION
"The flow scale group defines objects which specify scale
factors for counters. This group replaces the earlier
version of flowDataScaleGroup above (now deprecated)."
::= {flowMIBGroups 8}
flowControlGroup2 OBJECT-GROUP
OBJECTS {
flowRuleInfoSize, flowRuleInfoOwner,
flowRuleInfoTimeStamp, flowRuleInfoStatus,
flowRuleInfoName,
-- flowRuleInfoRulesReady, <- Deprecated
flowRuleInfoFlowRecords,
flowInterfaceSampleRate,
flowInterfaceLostPackets,
flowReaderTimeout, flowReaderOwner,
flowReaderLastTime, flowReaderPreviousTime,
flowReaderStatus, flowReaderRuleSet,
flowManagerCurrentRuleSet, flowManagerStandbyRuleSet,
flowManagerHighWaterMark,
-- flowManagerCounterWrap, <- Moved to DataScaleGroup
flowManagerOwner, flowManagerTimeStamp,
flowManagerStatus, flowManagerRunningStandby,
flowFloodMark,
flowInactivityTimeout, flowActiveFlows,
flowMaxFlows, flowFloodMode }
STATUS current
DESCRIPTION
"The control group defines objects which are used to control
an accounting meter. It replaces the earlier version of
flowControlGroup above (now deprecated)."
::= {flowMIBGroups 9 }
flowMIBCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The compliance statement for a Traffic Flow Meter."
MODULE
MANDATORY-GROUPS {
flowControlGroup2,
flowDataTableGroup,
flowDataPackageGroup,
flowRuleTableGroup
Brownlee Standards Track [Page 45]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
}
::= { flowMIBCompliances 1 }
END
Brownlee Standards Track [Page 46]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
5 Security Considerations
5.1 SNMP Concerns
There are a number of management objects defined in this MIB that
have a MAX-ACCESS clause of read-write and/or read-create. Such
objects may be considered sensitive or vulnerable in some network
environments. The support for SET operations in a non-secure
environment without proper protection can have a negative effect on
network operations.
There are a number of managed objects in this MIB that may contain
sensitive information. These include all the objects in the Control
Group (since they control access to meter resources by Managers and
Meter Readers) and those in the Flow Table (since they hold the
collected traffic flow data).
It is thus important to control even GET access to these objects and
possibly to even encrypt the values of these object when sending them
over the network via SNMP. Not all versions of SNMP provide features
for such a secure environment.
SNMPv1 by itself is not a secure environment. Even if the network
itself is secure (for example by using IPSec), even then, there is no
control as to who on the secure network is allowed to access and
GET/SET (read/change/create/delete) the objects in this MIB.
It is recommended that the implementers consider the security
features as provided by the SNMPv3 framework. Specifically, the use
of the User-based Security Model [RFC2574] and the View-based Access
Control Model [RFC2575] is recommended.
It is then a customer/user responsibility to ensure that the SNMP
entity giving access to an instance of this MIB is properly
configured to give access to the objects only to those principals
(users) that have legitimate rights to indeed GET or SET
(change/create/delete) them.
5.2 Traffic Meter Concerns
This MIB describes how an RTFM traffic meter is controlled, and
provides a way for traffic flow data to be retrieved from it by a
meter reader. This is essentially an application using SNMP as a
method of communication between co-operating hosts; it does not - in
itself - have any inherent security risks.
Brownlee Standards Track [Page 47]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
Since, however, the traffic flow data can be extremely valuable for
network management purposes it is vital that sensible precautions be
taken to keep the meter and its data secure. In particular, an
attacker must not be permitted to write any of the meter's variables!
This requires that access to the meter for control purposes (e.g.
loading RuleSets and reading flow data) be restricted. Such
restriction could be achieved in many ways, for example:
- Physical Separation. Meter(s) and meter reader(s) could be
deployed so that control capabilities are kept within a separate
network, access to which is carefully controlled.
- Application-layer Security. A minimal level of security for SNMP
can be provided by using 'community' strings (which are essentially
clear-text passwords) with SNMPv2C [RFC1157]. Where stronger
security is needed, users should consider using the User-based
Security Model [RFC2574] and the View-based Access Control Model
[RFC2575].
- Lower-layer Security. Access to the meter can be protected using
encryption at the network layer. For example, one could run SNMP
to the meter through an encrypted TCP tunnel.
When implementing a meter it may be sensible to use separate network
interfaces for control and for metering. If this is done the control
network can be set up so that it doesn't carry any 'user' traffic,
and the metering interfaces can ignore any user attempts to take
control of the meter.
Users should also consider how they will address attempts to
circumvent a meter, i.e. to prevent it from measuring flows. Such
attempts are essentially denial-of-service attacks on the metering
interfaces. For example
- Port Scan attacks. The attacker sends packets to each of a very
large number of IP (Address : Port) pairs. Each of these packets
creates a new flow in the meter; if there are enough of them the
meter will recognise a 'flood' condition, and will probably stop
creating new flows. As a minimum, users (and implementors) should
ensure that meters can recover from flood conditions as soon as
possible after they occur.
- Counter Wrap attacks: The attacker sends enough packets to cause
the counters in a flow to wrap several times between meter
readings, thus causing the counts to be artificially low. The
change to using 64-bit counters in this MIB reduces this problem
significantly.
Brownlee Standards Track [Page 48]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
Users can reduce the severity of both the above attacks by ensuring
that their meters are read often enough to prevent them being
flooded. The resulting flow data will contain a record of the
attacking packets, which may well be useful in determining where any
attack came from.
6 IANA Considerations
The RTFM Architecture document [RTFM-ARC], has two sets of assigned
numbers: Opcodes for the PME (Pattern Matching Engine) and RTFM
Attribute numbers. All the assigned numbers used in the Meter MIB
appear in Textual Conventions. The numbers they use are derived as
follows:
The MIB's 'Type' textual conventions use names and numbers from the
Assigned Numbers RFC [ASG-NBR]:
MediumType Uses ifType Definitions
PeerType Uses Address Family Numbers
TransportType Uses Protocol Numbers
The MIB's 'AttributeNumber' textual conventions use RTFM Attribute
names and numbers from the RTFM Architecture document [RTFM-ARC], or
other numbers allocated according to that document's IANA
Considerations section:
FlowAttributeNumber Have values stored in a flow table row
RuleAttributeNumber May be tested in a rule
The MIB's ActionNumber textual convention uses RTFM PME Opcode names
and numbers from the RTFM Architecture document [RTFM-ARC], or other
numbers allocated according to that document's IANA Considerations
section.
Brownlee Standards Track [Page 49]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
7 Appendix A: Changes Introduced Since RFC 2064
The first version of the Meter MIB was published as RFC 2064 in
January 1997. The most significant changes since then are summarised
below.
- TEXTUAL CONVENTIONS: Greater use is made of textual conventions to
describe the various types of addresses used by the meter.
- PACKET MATCHING ATTRIBUTES: Computed attributes (e.g. FlowClass and
FlowKind) may now be tested. This allows one to use these
variables to store information during packet matching.
A new attribute, MatchingStoD, has been added. Its value is 1
while a packet is being matched with its adresses in 'wire'
(source-to-destination) order.
- FLOOD MODE: This is now a read-write variable. Setting it to
false(2) switches the meter out of flood mode and back to normal
operation.
- CONTROL TABLES: Several variables have been added to the RuleSet,
Reader and Manager tables to provide more effective control of the
meter's activities.
- FLOW TABLE: 64-bit counters are used for octet and PDU counts.
This reduces the problems caused by the wrap-around of 32-bit
counters in earlier versions.
flowDataRuleSet is now used as an index to the flow table. This
allows a meter reader to collect only those flow table rows created
by a specified RuleSet.
- DATA PACKAGES: This is a new table, allowing a meter reader to
retrieve values for a list of attributes from a flow as a single
object (a BER-encoded sequence [ASN-1, ASN-BER]). It provides an
efficient way to recover flow data, particularly when used with
SNMP GetBulk requests.
Earlier versions had a 'Column Activity Table'; using this it was
difficult to collect all data for a flow efficiently in a single
SNMP request.
Brownlee Standards Track [Page 50]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
8 Acknowledgements
An early draft of this document was produced under the auspices of
the IETF's Accounting Working Group with assistance from the SNMP
Working Group and the Security Area Advisory Group. Particular
thanks are due to Jim Barnes, Sig Handelman and Stephen Stibler for
their support and their assistance with checking early versions of
the MIB.
Stephen Stibler shared the development workload of producing the MIB
changes summarized in chapter 5 (above).
9 Intellectual Property Notice
The IETF takes no position regarding the validity or scope of any
intellectual property or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; neither does it represent that it
has made any effort to identify any such rights. Information on the
IETF's procedures with respect to rights in standards-track and
standards-related documentation can be found in BCP-11. Copies of
claims of rights made available for publication and any assurances of
licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such
proprietary rights by implementers or users of this specification can
be obtained from the IETF Secretariat."
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights which may cover technology that may be required to practice
this standard. Please address the information to the IETF Executive
Director.
10 References
[ACT-BKG] Mills, C., Hirsch, G. and G. Ruth, "Internet Accounting
Background", RFC 1272, November 1991.
[ASG-NBR] Reynolds, J. and J. Postel, "Assigned Numbers", STD 2,
RFC 1700, ISI, October 1994.
[ASN-1] Information processing systems - Open Systems
Interconnection - Specification of Abstract Syntax
Notation One (ASN.1), International Organization for
Standardization, International Standard 8824, December
1987.
Brownlee Standards Track [Page 51]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
[ASN-BER] Information processing systems - Open Systems
Interconnection - Specification of Basic Encoding Rules
for Abstract Notation One (ASN.1), International
Organization for Standardization, International Standard
8825, December 1987.
[ENET-OBJ] Kastenholz, F., "Definitions of Managed Objects for the
Ethernet-like Interface Types", RFC 1643, July 1994.
[FDDI-MIB] Case, J. and A. Rijsinghani, "FDDI Management Information
Base", RFC 1512, September 1993.
[IPPM-FRM] Paxson, V., Almes, G., Mahdavi, J. and M. Mathis,
"Framework for IP Performance Metrics", RFC 2330, May
1998.
[MIB-II] McCloghrie, K. and M. Rose, "Management Information Base
for Network Management of TCP/IP-based internets: MIB-
II", STD 17, RFC 1213, March 1991.
[RFC1155] Rose, M., and K. McCloghrie, "Structure and
Identification of Management Information for TCP/IP-based
Internets", STD 16, RFC 1155, May 1990
[RFC1157] Case, J., Fedor, M., Schoffstall, M. and J. Davin,
"Simple Network Management Protocol", STD 15, RFC 1157,
May 1990.
[RFC1212] Rose, M. and K. McCloghrie, "Concise MIB Definitions",
STD 16, RFC 1212, March 1991.
[RFC1215] Rose, M., "A Convention for Defining Traps for use with
the SNMP", RFC 1215, March 1991
[RFC1901] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
"Introduction to Community-based SNMPv2", RFC 1901,
January 1996.
[RFC1905] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
"Protocol Operations for Version 2 of the Simple Network
Management Protocol (SNMPv2)", RFC 1905, January 1996.
[RFC1906] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
"Transport Mappings for Version 2 of the Simple Network
Management Protocol (SNMPv2)", RFC 1906, January 1996.
Brownlee Standards Track [Page 52]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
[RFC1908] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
"Coexistence between version 1 and version 2 of the
Internet-standard Network Management Framework", RFC
1908, January 1996.
[RFC2570] Case, J., Mundy, R., Partain, D. and B. Stewart,
"Introduction to Version 3 of the Internet-standard
Network Management Framework", RFC 2570, April 1999.
[RFC2571] Harrington, D., Presuhn, R. and B. Wijnen, "An
Architecture for Describing SNMP Management Frameworks",
RFC 2571, April 1999.
[RFC2572] Case, J., Harrington D., Presuhn R. and B. Wijnen,
"Message Processing and Dispatching for the Simple
Network Management Protocol (SNMP)", RFC 2572, April
1999.
[RFC2573] Levi, D., Meyer, P. and B. Stewart, "SNMPv3
Applications", RFC 2573, April 1999.
[RFC2574] Blumenthal, U. and B. Wijnen, "User-based Security Model
(USM) for version 3 of the Simple Network Management
Protocol (SNMPv3)", RFC 2574, April 1999.
[RFC2575] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based
Access Control Model (VACM) for the Simple Network
Management Protocol (SNMP)", RFC 2575, April 1999.
[RFC2578] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
Rose, M. and S. Waldbusser, "Structure of Management
Information Version 2 (SMIv2)", STD 58, RFC 2578, April
1999.
[RFC2579] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
Rose, M. and S. Waldbusser, "Textual Conventions for
SMIv2", STD 58, RFC 2579, April 1999.
[RFC2580] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
Rose, M. and S. Waldbusser, "Conformance Statements for
SMIv2", STD 58, RFC 2580, April 1999.
[RMON-MIB] Waldbusser, S., "Remote Network Monitoring Management
Information Base", RFC 1757, February 1995.
[RMON2-MIB] Waldbusser, S., "Remote Network Monitoring Management
Information Base Version 2 using SMIv2", RFC 2021,
January 1997.
Brownlee Standards Track [Page 53]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
[RTFM-ARC] Brownlee, N., Mills, C. and Ruth, G., "Traffic Flow
Measurement: Architecture", RFC 722, October 1999.
[UTF-8] Yergeau, F., "UTF-8, a transformation format of ISO
10646", RFC 2279, January 1998.
[V6-ADDR] Hinden, R. and S. Deering, "IP Version 6 Addressing
Architecture", RFC 2373, July 1998.
11 Author's Address
Nevil Brownlee
Information Technology Systems & Services
The University of Auckland
Private Bag 92-019
Auckland, New Zealand
Phone: +64 9 373 7599 x8941
EMail: n.brownlee@auckland.ac.nz
Brownlee Standards Track [Page 54]
^L
RFC 2720 Traffic Flow Measurement: Meter MIB October 1999
12 Full Copyright Statement
Copyright (C) The Internet Society (1999). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Brownlee Standards Track [Page 55]
^L
|