1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
|
Network Working Group J. Rosenberg
Request for Comments: 3680 dynamicsoft
Category: Standards Track March 2004
A Session Initiation Protocol (SIP) Event Package for Registrations
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2004). All Rights Reserved.
Abstract
This document defines a Session Initiation Protocol (SIP) event
package for registrations. Through its REGISTER method, SIP allows a
user agent to create, modify, and delete registrations.
Registrations can also be altered by administrators in order to
enforce policy. As a result, these registrations represent a piece
of state in the network that can change dynamically. There are many
cases where a user agent would like to be notified of changes in this
state. This event package defines a mechanism by which those user
agents can request and obtain such notifications.
Table of Contents
1. Introduction ................................................. 2
2. Terminology .................................................. 3
3. Usage Scenarios .............................................. 3
3.1. Forcing Re-Authentication .............................. 3
3.2. Composing Presence ..................................... 3
3.3. Welcome Notices ........................................ 4
4. Package Definition ........................................... 4
4.1. Event Package Name ..................................... 4
4.2. Event Package Parameters ............................... 5
4.3. SUBSCRIBE Bodies ....................................... 5
4.4. Subscription Duration .................................. 5
4.5. NOTIFY Bodies .......................................... 6
4.6. Notifier Processing of SUBSCRIBE Requests .............. 6
4.7. Notifier Generation of NOTIFY Requests ................. 7
4.7.1. The Registration State Machine ................. 7
Rosenberg Standards Track [Page 1]
^L
RFC 3680 SIP Registrations Event March 2004
4.7.2. Applying the state machine ..................... 9
4.8. Subscriber Processing of NOTIFY Requests ............... 9
4.9. Handling of Forked Requests ............................ 9
4.10. Rate of Notifications .................................. 10
4.11. State Agents ........................................... 10
5. Registration Information ..................................... 10
5.1. Structure of Registration Information .................. 10
5.2. Computing Registrations from the Document .............. 14
5.3. Example ................................................ 15
5.4. XML Schema ............................................. 16
6. Example Call Flow ............................................ 18
7. Security Considerations ...................................... 21
8. IANA Considerations .......................................... 21
8.1. SIP Event Package Registration ......................... 21
8.2. application/reginfo+xml MIME Registration .............. 22
8.3. URN Sub-Namespace Registration for
urn:ietf:params:xml:ns:reginfo ......................... 23
9. References ................................................... 23
9.1. Normative References ................................... 23
9.2. Informative References ................................. 24
10. Contributors ................................................. 25
11. Acknowledgements ............................................. 25
12. Author's Address ............................................. 25
13. Full Copyright Statement ..................................... 26
1. Introduction
The Session Initiation Protocol (SIP) [1] provides all of the
functions needed for the establishment and maintenance of
communications sessions between users. One of the functions it
provides is a registration operation. A registration is a binding
between a SIP URI, called an address-of-record, and one or more
contact URIs. These contact URIs represent additional resources that
can be contacted in order to reach the user identified by the
address-of-record. When a proxy receives a request within its domain
of administration, it uses the Request-URI as an address-of-record,
and uses the contacts bound to the address-of-record to forward (or
redirect) the request.
The SIP REGISTER method provides a way for a user agent to manipulate
registrations. Contacts can be added or removed, and the current set
of contacts can be queried. Registrations can also change as a
result of administrator policy. For example, if a user is suspected
of fraud, their registration can be deleted so that they cannot
receive any requests. Registrations also expire after some time if
not refreshed.
Rosenberg Standards Track [Page 2]
^L
RFC 3680 SIP Registrations Event March 2004
Registrations represent a dynamic piece of state maintained by the
network. There are many cases in which user agents would like to
know about changes to the state of registrations. The SIP Events
Framework [2] defines a generic framework for subscription to, and
notification of, events related to SIP systems. The framework
defines the methods SUBSCRIBE and NOTIFY, and introduces the notion
of a package. A package is a concrete application of the event
framework to a particular class of events. Packages have been
defined for user presence [9], for example. This specification
defines a package for registration state.
2. Terminology
In this document, the key words "MUST", "MUST NOT", "REQUIRED",
"SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
and "OPTIONAL" are to be interpreted as described in BCP 14, RFC 2119
[3] and indicate requirement levels for compliant implementations.
3. Usage Scenarios
There are many applications of this event package. A few are
documented here for illustrative purposes.
3.1. Forcing Re-Authentication
It is anticipated that many SIP devices will be wireless devices that
will be always-on, and therefore, continually registered to the
network. Unfortunately, history has shown that these devices can be
compromised. To deal with this, an administrator will want to
terminate or shorten a registration, and ask the device to
re-register so it can be re-authenticated. To do this, the device
subscribes to the registration event package for the
address-of-record that it is registering contacts against. When the
administrator shortens registration (for example, when fraud is
suspected) the registration server sends a notification to the
device. It can then re-register and re-authenticate itself. If it
cannot re-authenticate, the expiration will terminate shortly
thereafter.
3.2. Composing Presence
An important concept to understand is the relationship between this
event package and the event package for user presence [9]. User
presence represents the willingness and ability of a user to
communicate with other users on the network. It is composed of a set
of contact addresses that represent the various means for contacting
the user. Those contact addresses might represent the contact
address for voice, for example. Typically, the contact address
Rosenberg Standards Track [Page 3]
^L
RFC 3680 SIP Registrations Event March 2004
listed for voice will be an address-of-record. The status of that
contact (whether its open or closed) may depend on any number of
factors, including the state of any registrations against that
address-of-record. As a result, registration state can be viewed as
an input to the process which determines the presence state of a
user. Effectively, registration state is "raw" data, which is
combined with other information about a user to generate a document
that describes the user's presence.
In fact, this event package allows for a presence server to be
separated from a SIP registration server, yet still use registration
information to construct a presence document. When a presence server
receives a presence subscription for some user, the presence server
itself would generate a subscription to the registration server for
the registration event package. As a result, the presence server
would learn about the registration state for that user, and it could
use that information to generate presence documents.
3.3. Welcome Notices
A common service in current mobile networks are "welcome notices".
When the user turns on their phone in a foreign country, they receive
a message that welcomes them to the country, and provides information
on transportation services, for example.
In order to implement this service in a SIP system, an application
server can subscribe to the registration state of the user. When the
user turns on their phone, the phone will generate a registration.
This will result in a notification being sent to the application that
the user has registered. The application can then send a SIP MESSAGE
request [10] to the device, welcoming the user and providing any
necessary information.
4. Package Definition
This section fills in the details needed to specify an event package
as defined in Section 4.4 of [2].
4.1. Event Package Name
The SIP Events specification requires package definitions to specify
the name of their package or template-package.
The name of this package is "reg". As specified in [2], this value
appears in the Event header present in SUBSCRIBE and NOTIFY requests.
Rosenberg Standards Track [Page 4]
^L
RFC 3680 SIP Registrations Event March 2004
Example:
Event: reg
4.2. Event Package Parameters
The SIP Events specification requires package and template-package
definitions to specify any package specific parameters of the Event
header that are used by it.
No package specific Event header parameters are defined for this
event package.
4.3. SUBSCRIBE Bodies
The SIP Events specification requires package or template-package
definitions to define the usage, if any, of bodies in SUBSCRIBE
requests.
A SUBSCRIBE for registration events MAY contain a body. This body
would serve the purpose of filtering the subscription. The
definition of such a body is outside the scope of this specification.
A SUBSCRIBE for the registration package MAY be sent without a body.
This implies that the default registration filtering policy has been
requested. The default policy is:
o Notifications are generated every time there is any change in
the state of any of the registered contacts for the resource
being subscribed to. Those notifications only contain
information on the contacts whose state has changed.
o Notifications triggered from a SUBSCRIBE contain full state
(the list of all contacts bound to the address-of-record).
Of course, the server can apply any policy it likes to the
subscription.
4.4. Subscription Duration
The SIP Events specification requires package definitions to define a
default value for subscription durations, and to discuss reasonable
choices for durations when they are explicitly specified.
Registration state changes as contacts are created through REGISTER
requests, and then time out due to lack of refresh. Their rate of
change is therefore related to the typical registration expiration.
Since the default expiration for registrations is 3600 seconds, the
Rosenberg Standards Track [Page 5]
^L
RFC 3680 SIP Registrations Event March 2004
default duration of subscriptions to registration state is slightly
longer, 3761 seconds. This helps avoid any potential problems with
coupling of subscription and registration refreshes. Of course,
clients MAY include an Expires header in the SUBSCRIBE request asking
for a different duration.
4.5. NOTIFY Bodies
The SIP Events specification requires package definitions to describe
the allowed set of body types in NOTIFY requests, and to specify the
default value to be used when there is no Accept header in the
SUBSCRIBE request.
The body of a notification of a change in registration state contains
a registration information document. This document describes some or
all of the contacts associated with a particular address-of-record.
All subscribers and notifiers MUST support the
"application/reginfo+xml" format described in Section 5. The
subscribe request MAY contain an Accept header field. If no such
header field is present, it has a default value of
"application/reginfo+xml". If the header field is present, it MUST
include "application/reginfo+xml", and MAY include any other types
capable of representing registration information.
Of course, the notifications generated by the server MUST be in one
of the formats specified in the Accept header field in the SUBSCRIBE
request.
4.6. Notifier Processing of SUBSCRIBE Requests
The SIP Events framework specifies that packages should define any
package-specific processing of SUBSCRIBE requests at a notifier,
specifically with regards to authentication and authorization.
Registration state can be sensitive information. Therefore, all
subscriptions to it SHOULD be authenticated and authorized before
approval. Authentication MAY be performed using any of the
techniques available through SIP, including digest, S/MIME, TLS or
other transport specific mechanisms [1]. Authorization policy is at
the discretion of the administrator, as always. However, a few
recommendations can be made.
It is RECOMMENDED that a user be allowed to subscribe to their own
registration state. Such subscriptions are useful when there are
many devices that represent a user, each of which needs to learn the
registration state of the other devices. We also anticipate that
applications and automata will frequently be subscribers to the
Rosenberg Standards Track [Page 6]
^L
RFC 3680 SIP Registrations Event March 2004
registration state. In those cases, authorization policy will
typically be provided ahead of time.
4.7. Notifier Generation of NOTIFY Requests
The SIP Event framework requests that packages specify the conditions
under which notifications are sent for that package, and how such
notifications are constructed.
To determine when a notifier should send notifications of changes in
registration state, we define a finite state machine (FSM) that
represents the state of a contact for a particular address-of-record.
Transitions in this state machine MAY result in the generation of
notifications. These notifications will carry information on the new
state and the event which triggered the state change. It is
important to note that this FSM is just a model of the registration
state machinery maintained by a server. An implementation would map
its own state machines to this one in an implementation-specific
manner.
4.7.1. The Registration State Machine
The underlying state machine for a registration is shown in Figure 1.
The machine is very simple. An instance of this machine is
associated with each address-of-record. When there are no contacts
registered to the address-of-record, the state machine is in the init
state. It is important to note that this state machine exists, and
is well-defined, for each address-of-record in the domain, even if
there are no contacts registered to it. This allows a user agent to
subscribe to an address-of-record, and learn that there are no
contacts registered to it. When the first contact is registered to
that address-of-record, the state machine moves from init to active.
Rosenberg Standards Track [Page 7]
^L
RFC 3680 SIP Registrations Event March 2004
+------------+
| |
| Init |
| |
+------------+
|
V
+------------+
| |
| Active |
| |
+------------+
|
V
+------------+
| |
| Terminated |
| |
+------------+
Figure 1: Registration State Machine
As long as there is at least one contact bound to the address-of-
record, the state machine remains in the active state. When the last
contact expires or is removed, the registration transitions to
terminated. From there, it immediately transitions back to the init
state. This transition is invisible, in that it MUST NOT ever be
reported to a subscriber in a NOTIFY request.
This allows for an implementation optimization whereby the
registrar can destroy the objects associated with the registration
state machine once it enters the terminated state and a NOTIFY has
been sent. Instead, the registrar can assume that, if the objects
for that state machine no longer exist, the state machine is in
the init state.
In addition to this state machine, each registration is associated
with a set of contacts, each of which is modeled with its own state
machine. Unlike the FSM for the address-of-record, which exists even
when no contacts are registered, the per-contact FSM is instantiated
when the contact is registered, and deleted when it is removed. The
diagram for the per-contact state machine is shown in Figure 2. This
FSM is identical to the registration state machine in terms of its
states, but has many more transition events.
When a new contact is added, the FSM for it is instantiated, and it
moves into the active state. Because of that, the init state here is
transient. There are two ways in which it can become active. One is
Rosenberg Standards Track [Page 8]
^L
RFC 3680 SIP Registrations Event March 2004
through an actual SIP REGISTER request (corresponding to the
registered event), and the other is when the contact is created
administratively, or through some non-SIP means (the created event).
+------+
| | refreshed
| | shortened
V |
+------------+ +------------+ +------------+
| | | | | |
| Init |----------->| Active |----------->| Terminated |
| | | | | |
+------------+ registered +------------+ expired +------------+
created deactivated
probation
unregistered
rejected
Figure 2: Contact State Machine
The FSM remains in the active state so long as the contact is bound
to the address-of-record. When a contact is refreshed through a
REGISTER request, the FSM stays in the same state, but a refreshed
event is generated. Likewise, when an administrator modifies the
expiration time of a binding (without deleting the binding) to
trigger the contact to re-register and possibly re-authenticate, the
FSM stays in the active state, but a shortened event is generated.
When the contact is no longer bound to the address-of-record, the FSM
moves to the terminated state, and once a NOTIFY is sent, the state
machine is destroyed. As a result, the terminated state is
effectively transient. There are several reasons this can happen.
The first is an expiration, which occurs when the contact was not
refreshed by a REGISTER request. The second reason is deactivated.
This occurs when the administrator has removed the contact as a valid
binding, but still wishes the client to attempt to re-register the
contact. In contrast, the rejected event occurs when an active
contact is removed by the administrator, but
re-registrations will not help to re-establish it. This might occur
if a user does not pay their bills, for example. The probation event
occurs when an active contact is removed by the administrator, and
the administrator wants the client to re-register, but to do so at a
later time. The unregistered event occurs when a REGISTER request
sets the expiration time of that contact to zero.
Rosenberg Standards Track [Page 9]
^L
RFC 3680 SIP Registrations Event March 2004
4.7.2. Applying the state machine
The server MAY generate a notification to subscribers when any event
occurs in either the address-of-record or per-contact state machines,
except for the transition from terminated to init in the address-of-
record state machine. As noted above, a notification MUST NOT be sent
in this case. For other transitions, whether the server sends a
notification or not is policy dependent. However, several guidelines
are defined.
As a general rule, when a subscriber is authorized to receive
notifications about a set of registrations, it is RECOMMENDED that
notifications contain information about those contacts which have
changed state (and thus triggered a notification), instead of
delivering the current state of every contact in all registrations.
However, notifications triggered as a result of a fetch operation (a
SUBSCRIBE with Expires of 0) SHOULD result in the full state of all
contacts for all registrations to be present in the NOTIFY.
4.8. Subscriber Processing of NOTIFY Requests
The SIP Events framework expects packages to specify how a subscriber
processes NOTIFY requests in any package specific ways, and in
particular, how it uses the NOTIFY requests to construct a coherent
view of the state of the subscribed resource. Typically, the NOTIFY
will only contain information for contacts whose state has changed.
To construct a coherent view of the total state of all registrations,
the subscriber will need to combine NOTIFYs received over time. The
details of this process depend on the document format used to convey
registration state. Section 5 outlines the process for the
application/reginfo+xml format.
4.9. Handling of Forked Requests
The SIP Events framework mandates that packages indicate whether or
not forked SUBSCRIBE requests can install multiple subscriptions.
Registration state is normally stored in some repository (whether it
be co-located with a proxy/registrar or in a separate database). As
such, there is usually a single place where the contact information
for a particular address-of-record is resident. This implies that a
subscription for this information is readily handled by a single
element with access to this repository. There is, therefore, no
compelling need for a subscription to registration information to
fork. As a result, a subscriber MUST NOT create multiple dialogs as
a result of a single subscription request. The required processing
to guarantee that only a single dialog is established is described in
Section 4.4.9 of the SIP Events framework [2].
Rosenberg Standards Track [Page 10]
^L
RFC 3680 SIP Registrations Event March 2004
4.10. Rate of Notifications
The SIP Events framework mandates that packages define a maximum rate
of notifications for their package.
For reasons of congestion control, it is important that the rate of
notifications not become excessive. As a result, it is RECOMMENDED
that the server not generate notifications for a single subscriber at
a rate faster than once every 5 seconds.
4.11. State Agents
The SIP Events framework asks packages to consider the role of state
agents in their design.
State agents have no role in the handling of this package.
5. Registration Information
5.1. Structure of Registration Information
Registration information is an XML document [4] that MUST be
well-formed and SHOULD be valid. Registration information documents
MUST be based on XML 1.0 and MUST be encoded using UTF-8. This
specification makes use of XML namespaces for identifying
registration information documents and document fragments. The
namespace URI for elements defined by this specification is a URN
[5], using the namespace identifier 'ietf' defined by [6] and
extended by [7]. This URN is:
urn:ietf:params:xml:ns:reginfo
A registration information document begins with the root element tag
"reginfo". It consists of any number of "registration" sub-elements,
each of which contains the registration state for a particular
address-of-record. The registration information for a particular
address-of-record MUST be contained within a single "registration"
element; it cannot be spread across multiple "registration" elements
within a document. Other elements from different namespaces MAY be
present for the purposes of extensibility; elements or attributes
from unknown namespaces MUST be ignored. There are two attributes
associated with the "reginfo" element, both of which MUST be present:
version: This attribute allows the recipient of registration
information documents to properly order them. Versions
start at 0, and increment by one for each new document
sent to a subscriber. Versions are scoped within a
Rosenberg Standards Track [Page 11]
^L
RFC 3680 SIP Registrations Event March 2004
subscription. Versions MUST be representable using a
32 bit integer.
state: This attribute indicates whether the document contains
the full registration state, or whether it contains
only information on those registrations which have
changed since the previous document (partial).
Note that the document format explicitly allows for conveying
information on multiple addresses-of-record. This enables
subscriptions to groups of registrations, where such a group is
identified by some kind of URI. For example, a domain might define
sip:allusers@example.com as a subscribable resource that generates
notifications when the state of any address-of-record in the domain
changes.
The "registration" element has a list of any number of "contact"
sub-elements, each of which contains information on a single contact.
Other elements from different namespaces MAY be present for the
purposes of extensibility; elements or attributes from unknown
namespaces MUST be ignored. There are three attributes associated
with the "registration" element, all of which MUST be present:
aor: The aor attribute contains a URI which is the address-of-
record this registration refers to.
id: The id attribute identifies this registration. It MUST be
unique amongst all other id attributes present in other
registration elements conveyed to the subscriber within the
scope of their subscription. In particular, if two URI
identifying an address-of-record differ after their
canonicalization according to the procedures in step 5 of
Section 10.3 of RFC 3261 [1], the id attributes in the
"registration" elements for those addresses-of-record MUST
differ. Furthermore, the id attribute for a "registration"
element for a particular address-of-record MUST be the same
across all notifications sent within the subscription.
state: The state attribute indicates the state of the
registration. The valid values are "init", "active" and
"terminated".
The "contact" element contains a "uri" element, an optional
"display-name" element, and an optional "unknown-param" element.
Other elements from different namespaces MAY be present for the
purposes of extensibility; elements or attributes from unknown
namespaces MUST be ignored. There are several attributes associated
with the "contact" element which MUST be present:
Rosenberg Standards Track [Page 12]
^L
RFC 3680 SIP Registrations Event March 2004
id: The id attribute identifies this contact. It MUST be
unique amongst all other id attributes present in other
contact elements conveyed to the subscriber within the
scope of their subscription. In particular, if the URI for
two contacts differ (based on the URI comparison rules in
RFC 3261 [1]), the id attributes for those contacts MUST
differ. However, unlike the id attribute for an address-
of-record, if the URI for two contacts are the same, their
id attributes SHOULD be the same across notifications.
This requirement is at SHOULD strength, and not MUST
strength, since it is difficult to compute such an id as a
function of the URI without retaining additional state. No
hash function applied to the URI can, in fact, meet a MUST
requirement. This is because equality of the SIP URI is
not transitive. However, a hash function which includes
unknown URI parameters (that is, any not defined in RFC
3261), will always result in a value that is the different
if two URI are different, and usually the same if the URI
are equal.
state: The state attribute indicates the state of the contact.
The valid values are "active" and "terminated".
event: The event attribute indicates the event which caused the
contact state machine to go into its current state. Valid
values are registered, created, refreshed, shortened,
expired, deactivated, probation, unregistered and rejected.
If the event attribute has a value of shortened, the "expires"
attribute MUST be present. It contains an unsigned long integer
which indicates the number of seconds remaining until the binding is
due to expire. This attribute MAY be included with any event
attribute value for which the state of the contact is active.
If the event attribute has a value of probation, the "retry-after"
attribute MUST be present. It contains an unsigned long integer
which indicates the amount of seconds after which the owner of the
contact is expected to retry its registration.
The optional "duration-registered" attribute conveys the amount of
time that the contact has been bound to the address-of-record, in
seconds. The optional "q" attribute conveys the relative priority of
this contact compared to other registered contacts. The optional
"callid" attribute contains the current Call-ID carried in the
REGISTER that was last used to update this contact, and the optional
"cseq" attribute contains the last CSeq value present in a REGISTER
request that updated this contact value.
Rosenberg Standards Track [Page 13]
^L
RFC 3680 SIP Registrations Event March 2004
The "uri" element contains the URI associated with that contact. The
"display-name" element contains the display name for the contact.
The "display-name" element MAY contain the xml:lang attribute to
indicate the language of the display name.
The "unknown-param" element is used to convey contact header field
parameters that are not specified in RFC 3261. One example are the
user agent capability parameters specified in [11]. Each "unknown-
param" element describes a single contact header field parameter.
The name of the parameter is contained in the mandatory name
attribute of the "unknown-param" element, and the value of the
parameter is the content of the "unknown-param" element. For contact
header field parameters that have no value, the content of the
"unknown-param" element is empty.
5.2. Computing Registrations from the Document
Typically, the NOTIFY for registration information will only contain
information about those contacts whose state has changed. To
construct a coherent view of the total state of all registrations, a
subscriber will need to combine NOTIFYs received over time. The
subscriber maintains a table for each registration it receives
information for. Each registration is uniquely identified by the
"id" attribute in the "registration" element. Each table contains a
row for each contact in that registration. Each row is indexed by
the unique ID for that contact. It is conveyed in the "id" attribute
of the "contact" element. The contents of each row contain the state
of that contact as conveyed in the "contact" element. The tables are
also associated with a version number. The version number MUST be
initialized with the value of the "version" attribute from the
"reginfo" element in the first document received. Each time a new
document is received, the value of the local version number, and the
"version" attribute in the new document, are compared. If the value
in the new document is one higher than the local version number, the
local version number is increased by one, and the document is
processed. If the value in the document is more than one higher than
the local version number, the local version number is set to the
value in the new document, the document is processed, and the
subscriber SHOULD generate a refresh request to trigger a full state
notification. If the value in the document is less than the local
version, the document is discarded without processing.
The processing of the document depends on whether it contains full or
partial state. If it contains full state, indicated by the value of
the "state" attribute in the "reginfo" element, the contents of all
tables associated with this subscription are flushed. They are
re-populated from the document. A new table is created for each
"registration" element, and a new row in each table is created for
Rosenberg Standards Track [Page 14]
^L
RFC 3680 SIP Registrations Event March 2004
each "contact" element. If the reginfo contains partial state, as
indicated by the value of the "state" attribute in the "reginfo"
element, the document is used to update the existing tables. For
each "registration" element, the subscriber checks to see if a table
exists for that registration. This check is done by comparing the
value in the "id" attribute of the "registration" element with the ID
associated with the table. If a table doesn't exist for that
registration, one is created. For each "contact" element in the
registration, the subscriber checks to see whether a row exists for
that contact. This check is done by comparing the ID in the "id"
attribute of the "contact" element with the ID associated with the
row. If the contact doesn't exist in the table, a row is added, and
its state is set to the information from that "contact" element. If
the contact does exist, its state is updated to be the information
from that "contact" element. If a row is updated or created, such
that its state is now terminated, that entry MAY be removed from the
table at any time.
5.3. Example
The following is an example registration information document:
<?xml version="1.0"?>
<reginfo xmlns="urn:ietf:params:xml:ns:reginfo"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="0" state="full">
<registration aor="sip:user@example.com" id="as9"
state="active">
<contact id="76" state="active" event="registered"
duration-registered="7322"
q="0.8">
<uri>sip:user@pc887.example.com</uri>
</contact>
<contact id="77" state="terminated" event="expired"
duration-registered="3600"
q="0.5">
<uri>sip:user@university.edu</uri>
</contact>
</registration>
</reginfo>
Rosenberg Standards Track [Page 15]
^L
RFC 3680 SIP Registrations Event March 2004
5.4. XML Schema
The following is the schema definition of the reginfo format:
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="urn:ietf:params:xml:ns:reginfo"
xmlns:tns="urn:ietf:params:xml:ns:reginfo"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">
<!-- This import brings in the XML language attribute xml:lang-->
<xs:import namespace="http://www.w3.org/XML/1998/namespace"
schemaLocation="http://www.w3.org/2001/03/xml.xsd"/>
<xs:element name="reginfo">
<xs:complexType>
<xs:sequence>
<xs:element ref="tns:registration" minOccurs="0"
maxOccurs="unbounded"/>
<xs:any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="version" type="xs:nonNegativeInteger"
use="required"/>
<xs:attribute name="state" use="required">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="full"/>
<xs:enumeration value="partial"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>
<xs:element name="registration">
<xs:complexType>
<xs:sequence>
<xs:element ref="tns:contact" minOccurs="0" maxOccurs="unbounded"/>
<xs:any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="aor" type="xs:anyURI" use="required"/>
<xs:attribute name="id" type="xs:string" use="required"/>
<xs:attribute name="state" use="required">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="init"/>
<xs:enumeration value="active"/>
<xs:enumeration value="terminated"/>
</xs:restriction>
Rosenberg Standards Track [Page 16]
^L
RFC 3680 SIP Registrations Event March 2004
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>
<xs:element name="contact">
<xs:complexType>
<xs:sequence>
<xs:element name="uri" type="xs:anyURI"/>
<xs:element name="display-name" minOccurs="0">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute ref="xml:lang" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="unknown-param" minOccurs="0"
maxOccurs="unbounded">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="name" type="xs:string" use="required"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="state" use="required">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="active"/>
<xs:enumeration value="terminated"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="event" use="required">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="registered"/>
<xs:enumeration value="created"/>
<xs:enumeration value="refreshed"/>
<xs:enumeration value="shortened"/>
<xs:enumeration value="expired"/>
<xs:enumeration value="deactivated"/>
<xs:enumeration value="probation"/>
Rosenberg Standards Track [Page 17]
^L
RFC 3680 SIP Registrations Event March 2004
<xs:enumeration value="unregistered"/>
<xs:enumeration value="rejected"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="duration-registered" type="xs:unsignedLong"/>
<xs:attribute name="expires" type="xs:unsignedLong"/>
<xs:attribute name="retry-after" type="xs:unsignedLong"/>
<xs:attribute name="id" type="xs:string" use="required"/>
<xs:attribute name="q" type="xs:string"/>
<xs:attribute name="callid" type="xs:string"/>
<xs:attribute name="cseq" type="xs:unsignedLong"/>
</xs:complexType>
</xs:element>
</xs:schema>
6. Example Call Flow
User Registrar Application
| |(1) SUBSCRIBE |
| |Event:reg |
| |<------------------|
| |(2) 200 OK |
| |------------------>|
| |(3) NOTIFY |
| |------------------>|
| |(4) 200 OK |
| |<------------------|
|(5) REGISTER | |
|------------------>| |
|(6) 200 OK | |
|<------------------| |
| |(7) NOTIFY |
| |------------------>|
| |(8) 200 OK |
| |<------------------|
|(9) MESSAGE | |
|<--------------------------------------|
Figure 3: Example Call Flow
Rosenberg Standards Track [Page 18]
^L
RFC 3680 SIP Registrations Event March 2004
This section provides an example call flow, shown in Figure 3. It
shows an implementation of the welcome notice application described
in Section 3.3. First, the application SUBSCRIBEs to the
registration event package for the desired user (1):
SUBSCRIBE sip:joe@example.com SIP/2.0
Via: SIP/2.0/UDP app.example.com;branch=z9hG4bKnashds7
From: sip:app.example.com;tag=123aa9
To: sip:joe@example.com
Call-ID: 9987@app.example.com
CSeq: 9887 SUBSCRIBE
Contact: sip:app.example.com
Event: reg
Max-Forwards: 70
Accept: application/reginfo+xml
The registrar (which is acting as the notifier for the registration
event package) generates a 200 OK to the SUBSCRIBE:
SIP/2.0 200 OK
Via: SIP/2.0/UDP app.example.com;branch=z9hG4bKnashds7
;received=192.0.2.1
From: sip:app.example.com;tag=123aa9
To: sip:joe@example.com;tag=xyzygg
Call-ID: 9987@app.example.com
CSeq: 9987 SUBSCRIBE
Contact: sip:server19.example.com
Expires: 3600
The registrar then generates a notification (3) with the current
state. Since there is no active registration, the state of the
registration is "init":
NOTIFY sip:app.example.com SIP/2.0
Via: SIP/2.0/UDP server19.example.com;branch=z9hG4bKnasaii
From: sip:joe@example.com;tag=xyzygg
To: sip:app.example.com;tag=123aa9
Call-ID: 9987@app.example.com
CSeq: 1288 NOTIFY
Contact: sip:server19.example.com
Event: reg
Max-Forwards: 70
Content-Type: application/reginfo+xml
Content-Length: ...
Rosenberg Standards Track [Page 19]
^L
RFC 3680 SIP Registrations Event March 2004
<?xml version="1.0"?>
<reginfo xmlns="urn:ietf:params:xml:ns:reginfo"
version="0" state="full">
<registration aor="sip:joe@example.com" id="a7" state="init" />
</reginfo>
Later on, the user registers (5):
REGISTER sip:example.com SIP/2.0
Via: SIP/2.0/UDP pc34.example.com;branch=z9hG4bKnaaff
From: sip:joe@example.com;tag=99a8s
To: sip:joe@example.com
Call-ID: 88askjda9@pc34.example.com
CSeq: 9976 REGISTER
Contact: sip:joe@pc34.example.com
This results in a NOTIFY being generated to the application (7):
NOTIFY sip:app.example.com SIP/2.0
Via: SIP/2.0/UDP server19.example.com;branch=z9hG4bKnasaij
From: sip:joe@example.com;tag=xyzygg
To: sip:app.example.com;tag=123aa9
Call-ID: 9987@app.example.com
CSeq: 1289 NOTIFY
Contact: sip:server19.example.com
Event: reg
Max-Forwards: 70
Content-Type: application/reginfo+xml
Content-Length: ...
<?xml version="1.0"?>
<reginfo xmlns="urn:ietf:params:xml:ns:reginfo"
version="1" state="partial">
<registration aor="sip:joe@example.com" id="a7" state="active">
<contact id="76" state="active" event="registered"
duration-registered="0">
<uri>sip:joe@pc34.example.com</uri>
</contact>
</registration>
</reginfo>
Rosenberg Standards Track [Page 20]
^L
RFC 3680 SIP Registrations Event March 2004
The application can then send its instant message to the device (9):
MESSAGE sip:joe@pc34.example.com SIP/2.0
Via: SIP/2.0/UDP app.example.com;branch=z9hG4bKnashds8
From: sip:app.example.com;tag=123aa10
To: sip:joe@example.com
Call-ID: 9988@app.example.com
CSeq: 82779 MESSAGE
Max-Forwards: 70
Content-Type: text/plain
Content-Length: ...
Welcome to the example.com service!
7. Security Considerations
Security considerations for SIP event packages are discussed in RFC
3265 [2], and those considerations apply here.
Registration information is sensitive, potentially private,
information. Subscriptions to this event package SHOULD be
authenticated and authorized according to local policy. Some policy
guidelines are suggested in Section 4.6. In addition, notifications
SHOULD be sent in such a way to ensure confidentiality, message
integrity and verification of subscriber identity, such as sending
subscriptions and notifications using a SIPS URL or protecting the
notification bodies with S/MIME.
8. IANA Considerations
This document registers a new SIP Event Package, a new MIME type
(application/reginfo+xml), and a new XML namespace.
8.1. SIP Event Package Registration
Package name: reg
Type: package
Contact: Jonathan Rosenberg, <jdrosen@jdrosen.net>
Published Specification: RFC 3680.
Rosenberg Standards Track [Page 21]
^L
RFC 3680 SIP Registrations Event March 2004
8.2. application/reginfo+xml MIME Registration
MIME media type name: application
MIME subtype name: reginfo+xml
Mandatory parameters: none
Optional parameters: Same as charset parameter application/xml
as specified in RFC 3023 [8].
Encoding considerations: Same as encoding considerations of
application/xml as specified in RFC 3023 [8].
Security considerations: See Section 10 of RFC 3023 [8] and
Section 7 of this specification.
Interoperability considerations: none.
Published specification: This document.
Applications which use this media type: This document type is
being used in notifications to alert SIP user agents that
their registrations have expired and must be redone.
Additional Information:
Magic Number: None
File Extension: .rif or .xml
Macintosh file type code: "TEXT"
Personal and email address for further information: Jonathan
Rosenberg, <jdrosen@jdrosen.net>
Intended usage: COMMON
Author/Change controller: The IETF.
Rosenberg Standards Track [Page 22]
^L
RFC 3680 SIP Registrations Event March 2004
8.3. URN Sub-Namespace Registration for urn:ietf:params:xml:ns:reginfo
This section registers a new XML namespace, as per the guidelines in
[7].
URI: The URI for this namespace is
urn:ietf:params:xml:ns:reginfo.
Registrant Contact: IETF, SIMPLE working group,
<simple@ietf.org>, Jonathan Rosenberg
<jdrosen@jdrosen.net>.
XML:
BEGIN
<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"
"http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="content-type"
content="text/html;charset=iso-8859-1"/>
<title>Registration Information Namespace</title>
</head>
<body>
<h1>Namespace for Registration Information</h1>
<h2>urn:ietf:params:xml:ns:reginfo</h2>
<p>See <a href="ftp://ftp.rfc-editor.org/in-notes/rfc3680.txt">
RFC3680</a>.</p>
</body>
</html>
END
9. References
9.1. Normative References
[1] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
Peterson, J., Sparks, R., Handley, M. and E. Schooler, "SIP:
Session Initiation Protocol", RFC 3261, June 2002.
[2] Roach, A., "Session Initiation Protocol (SIP)-Specific Event
Notification", RFC 3265, June 2002.
[3] Bradner, S., "Key words for use in RFCs to indicate requirement
levels", BCP 14, RFC 2119, March 1997.
Rosenberg Standards Track [Page 23]
^L
RFC 3680 SIP Registrations Event March 2004
[4] W. W. W. C. (W3C), "Extensible markup language (xml) 1.0." The
XML 1.0 spec can be found at
http://www.w3.org/TR/1998/REC-xml-19980210.
[5] Moats, R., "URN Syntax", RFC 2141, May 1997.
[6] Moats, R., "A URN Namespace for IETF Documents", RFC 2648,
August 1999.
[7] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, January
2004.
[8] Murata, M., St. Laurent, S. and D. Kohn, "XML media types", RFC
3023, January 2001.
9.2. Informative References
[9] Rosenberg, J., "Session initiation protocol (SIP) extensions for
presence", Work In Progress.
[10] Campbell, B., Rosenberg, J., Schulzrinne, H., Huitema, C. and D.
Gurle, "Session Initiation Protocol (SIP) Extension for Instant
Messaging", RFC 3428, December 2002.
[11] Schulzrinne, H. and J. Rosenberg, "Session initiation protocol
(SIP) caller preferences and callee capabilities", Work In
Progress.
[12] Mayer, G. and M. Beckmann, "Registration event package", Work In
Progress.
Rosenberg Standards Track [Page 24]
^L
RFC 3680 SIP Registrations Event March 2004
10. Contributors
This document is based heavily on the registration event package
originally proposed by Beckmann and Mayer in [12]. They can be
contacted at:
Georg Mayer
Siemens AG
Hoffmannstr. 51
Munich 81359
Germany
EMail: Georg.Mayer@icn.siemens.de
Mark Beckmann
Siemens AG
P.O. Box 100702
Salzgitter 38207
Germany
EMail: Mark.Beckmann@siemens.com
Rohan Mahy provided editorial work in order to progress this
specification. His contact address is:
Rohan Mahy
Cisco Systems
170 West Tasman Dr, MS: SJC-21/3/3
Phone: +1 408 526 8570
EMail: rohan@cisco.com
11. Acknowledgements
We would like to thank Dean Willis for his support.
12. Author's Address
Jonathan Rosenberg
dynamicsoft
600 Lanidex Plaza
Parsippany, NJ 07054
EMail: jdrosen@dynamicsoft.com
Rosenberg Standards Track [Page 25]
^L
RFC 3680 SIP Registrations Event March 2004
13. Full Copyright Statement
Copyright (C) The Internet Society (2004). This document is subject
to the rights, licenses and restrictions contained in BCP 78 and
except as set forth therein, the authors retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE
INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed
to pertain to the implementation or use of the technology
described in this document or the extent to which any license
under such rights might or might not be available; nor does it
represent that it has made any independent effort to identify any
such rights. Information on the procedures with respect to
rights in RFC documents can be found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use
of such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository
at http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention
any copyrights, patents or patent applications, or other
proprietary rights that may cover technology that may be required
to implement this standard. Please address the information to the
IETF at ietf-ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Rosenberg Standards Track [Page 26]
^L
|