1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
|
Network Working Group D. Johnson
Request for Comments: 3775 Rice University
Category: Standards Track C. Perkins
Nokia Research Center
J. Arkko
Ericsson
June 2004
Mobility Support in IPv6
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2004).
Abstract
This document specifies a protocol which allows nodes to remain
reachable while moving around in the IPv6 Internet. Each mobile node
is always identified by its home address, regardless of its current
point of attachment to the Internet. While situated away from its
home, a mobile node is also associated with a care-of address, which
provides information about the mobile node's current location. IPv6
packets addressed to a mobile node's home address are transparently
routed to its care-of address. The protocol enables IPv6 nodes to
cache the binding of a mobile node's home address with its care-of
address, and to then send any packets destined for the mobile node
directly to it at this care-of address. To support this operation,
Mobile IPv6 defines a new IPv6 protocol and a new destination option.
All IPv6 nodes, whether mobile or stationary, can communicate with
mobile nodes.
Johnson, et al. Standard Track [Page 1]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . 5
2. Comparison with Mobile IP for IPv4 . . . . . . . . . . . . 6
3. Terminology. . . . . . . . . . . . . . . . . . . . . . . . 7
3.1. General Terms . . . . . . . . . . . . . . . . . . . 8
3.2. Mobile IPv6 Terms . . . . . . . . . . . . . . . . . 10
4. Overview of Mobile IPv6. . . . . . . . . . . . . . . . . . 13
4.1. Basic Operation . . . . . . . . . . . . . . . . . . 13
4.2. New IPv6 Protocol . . . . . . . . . . . . . . . . . 15
4.3. New IPv6 Destination Option . . . . . . . . . . . . 17
4.4. New IPv6 ICMP Messages. . . . . . . . . . . . . . . 17
4.5. Conceptual Data Structure Terminology . . . . . . . 17
4.6. Site-Local Addressability . . . . . . . . . . . . . 18
5. Overview of Mobile IPv6 Security . . . . . . . . . . . . . 18
5.1. Binding Updates to Home Agents. . . . . . . . . . . 18
5.2. Binding Updates to Correspondent Nodes. . . . . . . 20
5.2.1. Node Keys . . . . . . . . . . . . . . . . . 20
5.2.2. Nonces. . . . . . . . . . . . . . . . . . . 20
5.2.3. Cookies and Tokens. . . . . . . . . . . . . 21
5.2.4. Cryptographic Functions . . . . . . . . . . 22
5.2.5. Return Routability Procedure. . . . . . . . 22
5.2.6. Authorizing Binding Management Messages . . 27
5.2.7. Updating Node Keys and Nonces . . . . . . . 29
5.2.8. Preventing Replay Attacks . . . . . . . . . 30
5.3. Dynamic Home Agent Address Discovery. . . . . . . . 30
5.4. Mobile Prefix Discovery . . . . . . . . . . . . . . 30
5.5. Payload Packets . . . . . . . . . . . . . . . . . . 30
6. New IPv6 Protocol, Message Types, and Destination Option . 31
6.1. Mobility Header . . . . . . . . . . . . . . . . . . 31
6.1.1. Format. . . . . . . . . . . . . . . . . . . 32
6.1.2. Binding Refresh Request Message . . . . . . 34
6.1.3. Home Test Init Message. . . . . . . . . . . 35
6.1.4. Care-of Test Init Message . . . . . . . . . 36
6.1.5. Home Test Message . . . . . . . . . . . . . 37
6.1.6. Care-of Test Message. . . . . . . . . . . . 38
6.1.7. Binding Update Message. . . . . . . . . . . 39
6.1.8. Binding Acknowledgement Message . . . . . . 42
6.1.9. Binding Error Message . . . . . . . . . . . 44
6.2. Mobility Options. . . . . . . . . . . . . . . . . . 46
6.2.1. Format. . . . . . . . . . . . . . . . . . . 46
6.2.2. Pad1. . . . . . . . . . . . . . . . . . . . 47
6.2.3. PadN. . . . . . . . . . . . . . . . . . . . 48
6.2.4. Binding Refresh Advice. . . . . . . . . . . 48
6.2.5. Alternate Care-of Address . . . . . . . . . 49
6.2.6. Nonce Indices . . . . . . . . . . . . . . . 49
6.2.7. Binding Authorization Data. . . . . . . . . 50
6.3. Home Address Option . . . . . . . . . . . . . . . . 51
Johnson, et al. Standard Track [Page 2]
^L
RFC 3775 Mobility Support in IPv6 June 2004
6.4. Type 2 Routing Header . . . . . . . . . . . . . . . 53
6.4.1. Format. . . . . . . . . . . . . . . . . . . 54
6.5. ICMP Home Agent Address Discovery Request Message . 55
6.6. ICMP Home Agent Address Discovery Reply Message . . 56
6.7. ICMP Mobile Prefix Solicitation Message Format. . . 57
6.8. ICMP Mobile Prefix Advertisement Message Format . . 59
7. Modifications to IPv6 Neighbor Discovery . . . . . . . . . 61
7.1. Modified Router Advertisement Message Format. . . . 61
7.2. Modified Prefix Information Option Format . . . . . 62
7.3. New Advertisement Interval Option Format. . . . . . 64
7.4. New Home Agent Information Option Format. . . . . . 65
7.5. Changes to Sending Router Advertisements. . . . . . 67
8. Requirements for Types of IPv6 Nodes . . . . . . . . . . . 69
8.1. All IPv6 Nodes. . . . . . . . . . . . . . . . . . . 69
8.2. IPv6 Nodes with Support for Route Optimization. . . 69
8.3. All IPv6 Routers. . . . . . . . . . . . . . . . . . 71
8.4. IPv6 Home Agents. . . . . . . . . . . . . . . . . . 71
8.5. IPv6 Mobile Nodes . . . . . . . . . . . . . . . . . 73
9. Correspondent Node Operation . . . . . . . . . . . . . . . 74
9.1. Conceptual Data Structures. . . . . . . . . . . . . 74
9.2. Processing Mobility Headers . . . . . . . . . . . . 75
9.3. Packet Processing . . . . . . . . . . . . . . . . . 76
9.3.1. Receiving Packets with Home Address Option. 76
9.3.2. Sending Packets to a Mobile Node. . . . . . 77
9.3.3. Sending Binding Error Messages. . . . . . . 78
9.3.4. Receiving ICMP Error Messages . . . . . . . 79
9.4. Return Routability Procedure. . . . . . . . . . . . 79
9.4.1. Receiving Home Test Init Messages . . . . . 80
9.4.2. Receiving Care-of Test Init Messages. . . . 80
9.4.3. Sending Home Test Messages. . . . . . . . . 80
9.4.4. Sending Care-of Test Messages . . . . . . . 81
9.5 Processing Bindings . . . . . . . . . . . . . . . . 81
9.5.1. Receiving Binding Updates . . . . . . . . . 81
9.5.2. Requests to Cache a Binding . . . . . . . . 84
9.5.3. Requests to Delete a Binding. . . . . . . . 84
9.5.4. Sending Binding Acknowledgements. . . . . . 85
9.5.5. Sending Binding Refresh Requests. . . . . . 86
9.6. Cache Replacement Policy. . . . . . . . . . . . . . 86
10. Home Agent Operation . . . . . . . . . . . . . . . . . . . 87
10.1. Conceptual Data Structures. . . . . . . . . . . . . 87
10.2. Processing Mobility Headers . . . . . . . . . . . . 88
10.3. Processing Bindings . . . . . . . . . . . . . . . . 88
10.3.1. Primary Care-of Address Registration. . . . 88
10.3.2. Primary Care-of Address De-Registration . . 92
10.4. Packet Processing . . . . . . . . . . . . . . . . . 94
10.4.1. Intercepting Packets for a Mobile Node. . . 94
10.4.2. Processing Intercepted Packets. . . . . . . 95
10.4.3. Multicast Membership Control. . . . . . . . 96
Johnson, et al. Standard Track [Page 3]
^L
RFC 3775 Mobility Support in IPv6 June 2004
10.4.4. Stateful Address Autoconfiguration. . . . . 98
10.4.5. Handling Reverse Tunneled Packets . . . . . 98
10.4.6. Protecting Return Routability Packets . . . 99
10.5. Dynamic Home Agent Address Discovery. . . . . . . . 99
10.5.1. Receiving Router Advertisement Messages . . 100
10.6. Sending Prefix Information to the Mobile Node . . . 102
10.6.1. List of Home Network Prefixes . . . . . . . 102
10.6.2. Scheduling Prefix Deliveries. . . . . . . . 102
10.6.3. Sending Advertisements. . . . . . . . . . . 104
10.6.4. Lifetimes for Changed Prefixes. . . . . . . 105
11. Mobile Node Operation. . . . . . . . . . . . . . . . . . . 105
11.1. Conceptual Data Structures. . . . . . . . . . . . . 105
11.2. Processing Mobility Headers . . . . . . . . . . . . 107
11.3. Packet Processing . . . . . . . . . . . . . . . . . 107
11.3.1. Sending Packets While Away from Home. . . . 107
11.3.2. Interaction with Outbound IPsec Processing. 110
11.3.3. Receiving Packets While Away from Home. . . 112
11.3.4. Routing Multicast Packets . . . . . . . . . 114
11.3.5. Receiving ICMP Error Messages . . . . . . . 115
11.3.6. Receiving Binding Error Messages. . . . . . 116
11.4. Home Agent and Prefix Management. . . . . . . . . . 117
11.4.1. Dynamic Home Agent Address Discovery. . . . 117
11.4.2. Sending Mobile Prefix Solicitations . . . . 118
11.4.3. Receiving Mobile Prefix Advertisements. . . 118
11.5. Movement. . . . . . . . . . . . . . . . . . . . . . 120
11.5.1. Movement Detection. . . . . . . . . . . . . 120
11.5.2. Forming New Care-of Addresses . . . . . . . 122
11.5.3. Using Multiple Care-of Addresses. . . . . . 123
11.5.4. Returning Home. . . . . . . . . . . . . . . 124
11.6. Return Routability Procedure. . . . . . . . . . . . 126
11.6.1. Sending Test Init Messages. . . . . . . . . 126
11.6.2. Receiving Test Messages . . . . . . . . . . 127
11.6.3. Protecting Return Routability Packets . . . 128
11.7. Processing Bindings . . . . . . . . . . . . . . . . 128
11.7.1. Sending Binding Updates to the Home Agent . 128
11.7.2. Correspondent Registration. . . . . . . . . 131
11.7.3. Receiving Binding Acknowledgements. . . . . 134
11.7.4. Receiving Binding Refresh Requests. . . . . 136
11.8. Retransmissions and Rate Limiting . . . . . . . . . 137
12. Protocol Constants . . . . . . . . . . . . . . . . . . . . 138
13. Protocol Configuration Variables . . . . . . . . . . . . . 138
14. IANA Considerations. . . . . . . . . . . . . . . . . . . . 139
15. Security Considerations. . . . . . . . . . . . . . . . . . 142
15.1. Threats . . . . . . . . . . . . . . . . . . . . . . 142
15.2. Features. . . . . . . . . . . . . . . . . . . . . . 144
15.3. Binding Updates to Home Agent . . . . . . . . . . . 145
15.4. Binding Updates to Correspondent Nodes. . . . . . . 148
15.4.1. Overview. . . . . . . . . . . . . . . . . . 149
Johnson, et al. Standard Track [Page 4]
^L
RFC 3775 Mobility Support in IPv6 June 2004
15.4.2. Achieved Security Properties. . . . . . . . 149
15.4.3. Comparison to Regular IPv6 Communications . 150
15.4.4. Replay Attacks. . . . . . . . . . . . . . . 152
15.4.5. Denial-of-Service Attacks . . . . . . . . . 152
15.4.6. Key Lengths . . . . . . . . . . . . . . . . 153
15.5. Dynamic Home Agent Address Discovery. . . . . . . . 154
15.6. Mobile Prefix Discovery . . . . . . . . . . . . . . 155
15.7. Tunneling via the Home Agent. . . . . . . . . . . . 155
15.8. Home Address Option . . . . . . . . . . . . . . . . 156
15.9. Type 2 Routing Header . . . . . . . . . . . . . . . 156
16. Contributors . . . . . . . . . . . . . . . . . . . . . . . 157
17. Acknowledgements . . . . . . . . . . . . . . . . . . . . . 157
18. References . . . . . . . . . . . . . . . . . . . . . . . . 158
18.1. Normative References. . . . . . . . . . . . . . . . 158
18.2. Informative References. . . . . . . . . . . . . . . 159
Appendix A. Future Extensions . . . . . . . . . . . . . . . . . 161
A.1. Piggybacking. . . . . . . . . . . . . . . . . . . . 161
A.2. Triangular Routing. . . . . . . . . . . . . . . . . 161
A.3. New Authorization Methods . . . . . . . . . . . . . 161
A.4. Dynamically Generated Home Addresses. . . . . . . . 161
A.5. Remote Home Address Configuration . . . . . . . . . 162
A.6. Neighbor Discovery Extensions . . . . . . . . . . . 163
Authors' Addresses. . . . . . . . . . . . . . . . . . . . . . . . 164
Full Copyright Statement. . . . . . . . . . . . . . . . . . . . . 165
1. Introduction
This document specifies a protocol which allows nodes to remain
reachable while moving around in the IPv6 Internet. Without specific
support for mobility in IPv6 [11], packets destined to a mobile node
would not be able to reach it while the mobile node is away from its
home link. In order to continue communication in spite of its
movement, a mobile node could change its IP address each time it
moves to a new link, but the mobile node would then not be able to
maintain transport and higher-layer connections when it changes
location. Mobility support in IPv6 is particularly important, as
mobile computers are likely to account for a majority or at least a
substantial fraction of the population of the Internet during the
lifetime of IPv6.
The protocol defined in this document, known as Mobile IPv6, allows a
mobile node to move from one link to another without changing the
mobile node's "home address". Packets may be routed to the mobile
node using this address regardless of the mobile node's current point
of attachment to the Internet. The mobile node may also continue to
communicate with other nodes (stationary or mobile) after moving to a
Johnson, et al. Standard Track [Page 5]
^L
RFC 3775 Mobility Support in IPv6 June 2004
new link. The movement of a mobile node away from its home link is
thus transparent to transport and higher-layer protocols and
applications.
The Mobile IPv6 protocol is just as suitable for mobility across
homogeneous media as for mobility across heterogeneous media. For
example, Mobile IPv6 facilitates node movement from one Ethernet
segment to another as well as it facilitates node movement from an
Ethernet segment to a wireless LAN cell, with the mobile node's IP
address remaining unchanged in spite of such movement.
One can think of the Mobile IPv6 protocol as solving the network-
layer mobility management problem. Some mobility management
applications -- for example, handover among wireless transceivers,
each of which covers only a very small geographic area -- have been
solved using link-layer techniques. For example, in many current
wireless LAN products, link-layer mobility mechanisms allow a
"handover" of a mobile node from one cell to another, re-establishing
link-layer connectivity to the node in each new location.
Mobile IPv6 does not attempt to solve all general problems related to
the use of mobile computers or wireless networks. In particular,
this protocol does not attempt to solve:
o Handling links with unidirectional connectivity or partial
reachability, such as the hidden terminal problem where a host is
hidden from only some of the routers on the link.
o Access control on a link being visited by a mobile node.
o Local or hierarchical forms of mobility management (similar to
many current link-layer mobility management solutions).
o Assistance for adaptive applications.
o Mobile routers.
o Service Discovery.
o Distinguishing between packets lost due to bit errors vs. network
congestion.
2. Comparison with Mobile IP for IPv4
The design of Mobile IP support in IPv6 (Mobile IPv6) benefits both
from the experiences gained from the development of Mobile IP support
in IPv4 (Mobile IPv4) [22, 23, 24], and from the opportunities
provided by IPv6. Mobile IPv6 thus shares many features with Mobile
Johnson, et al. Standard Track [Page 6]
^L
RFC 3775 Mobility Support in IPv6 June 2004
IPv4, but is integrated into IPv6 and offers many other improvements.
This section summarizes the major differences between Mobile IPv4 and
Mobile IPv6:
o There is no need to deploy special routers as "foreign agents", as
in Mobile IPv4. Mobile IPv6 operates in any location without any
special support required from the local router.
o Support for route optimization is a fundamental part of the
protocol, rather than a nonstandard set of extensions.
o Mobile IPv6 route optimization can operate securely even without
pre-arranged security associations. It is expected that route
optimization can be deployed on a global scale between all mobile
nodes and correspondent nodes.
o Support is also integrated into Mobile IPv6 for allowing route
optimization to coexist efficiently with routers that perform
"ingress filtering" [26].
o The IPv6 Neighbor Unreachability Detection assures symmetric
reachability between the mobile node and its default router in the
current location.
o Most packets sent to a mobile node while away from home in Mobile
IPv6 are sent using an IPv6 routing header rather than IP
encapsulation, reducing the amount of resulting overhead compared
to Mobile IPv4.
o Mobile IPv6 is decoupled from any particular link layer, as it
uses IPv6 Neighbor Discovery [12] instead of ARP. This also
improves the robustness of the protocol.
o The use of IPv6 encapsulation (and the routing header) removes the
need in Mobile IPv6 to manage "tunnel soft state".
o The dynamic home agent address discovery mechanism in Mobile IPv6
returns a single reply to the mobile node. The directed broadcast
approach used in IPv4 returns separate replies from each home
agent.
3. Terminology
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in BCP 14, RFC 2119 [2].
Johnson, et al. Standard Track [Page 7]
^L
RFC 3775 Mobility Support in IPv6 June 2004
3.1. General Terms
IP
Internet Protocol Version 6 (IPv6).
node
A device that implements IP.
router
A node that forwards IP packets not explicitly addressed to
itself.
unicast routable address
An identifier for a single interface such that a packet sent to it
from another IPv6 subnet is delivered to the interface identified
by that address. Accordingly, a unicast routable address must
have either a global or site-local scope (but not link-local).
host
Any node that is not a router.
link
A communication facility or medium over which nodes can
communicate at the link layer, such as an Ethernet (simple or
bridged). A link is the layer immediately below IP.
interface
A node's attachment to a link.
subnet prefix
A bit string that consists of some number of initial bits of an IP
address.
interface identifier
A number used to identify a node's interface on a link. The
interface identifier is the remaining low-order bits in the node's
IP address after the subnet prefix.
Johnson, et al. Standard Track [Page 8]
^L
RFC 3775 Mobility Support in IPv6 June 2004
link-layer address
A link-layer identifier for an interface, such as IEEE 802
addresses on Ethernet links.
packet
An IP header plus payload.
security association
An IPsec security association is a cooperative relationship formed
by the sharing of cryptographic keying material and associated
context. Security associations are simplex. That is, two
security associations are needed to protect bidirectional traffic
between two nodes, one for each direction.
security policy database
A database that specifies what security services are to be offered
to IP packets and in what fashion.
destination option
Destination options are carried by the IPv6 Destination Options
extension header. Destination options include optional
information that need be examined only by the IPv6 node given as
the destination address in the IPv6 header, not by routers in
between. Mobile IPv6 defines one new destination option, the Home
Address destination option (see Section 6.3).
routing header
A routing header may be present as an IPv6 header extension, and
indicates that the payload has to be delivered to a destination
IPv6 address in some way that is different from what would be
carried out by standard Internet routing. In this document, use
of the term "routing header" typically refers to use of a type 2
routing header, as specified in Section 6.4.
"|" (concatenation)
Some formulas in this specification use the symbol "|" to indicate
bytewise concatenation, as in A | B. This concatenation requires
that all of the octets of the datum A appear first in the result,
followed by all of the octets of the datum B.
Johnson, et al. Standard Track [Page 9]
^L
RFC 3775 Mobility Support in IPv6 June 2004
First (size, input)
Some formulas in this specification use a functional form "First
(size, input)" to indicate truncation of the "input" data so that
only the first "size" bits remain to be used.
3.2. Mobile IPv6 Terms
home address
A unicast routable address assigned to a mobile node, used as the
permanent address of the mobile node. This address is within the
mobile node's home link. Standard IP routing mechanisms will
deliver packets destined for a mobile node's home address to its
home link. Mobile nodes can have multiple home addresses, for
instance when there are multiple home prefixes on the home link.
home subnet prefix
The IP subnet prefix corresponding to a mobile node's home
address.
home link
The link on which a mobile node's home subnet prefix is defined.
mobile node
A node that can change its point of attachment from one link to
another, while still being reachable via its home address.
movement
A change in a mobile node's point of attachment to the Internet
such that it is no longer connected to the same link as it was
previously. If a mobile node is not currently attached to its
home link, the mobile node is said to be "away from home".
L2 handover
A process by which the mobile node changes from one link-layer
connection to another. For example, a change of wireless access
point is an L2 handover.
Johnson, et al. Standard Track [Page 10]
^L
RFC 3775 Mobility Support in IPv6 June 2004
L3 handover
Subsequent to an L2 handover, a mobile node detects a change in an
on-link subnet prefix that would require a change in the primary
care-of address. For example, a change of access router
subsequent to a change of wireless access point typically results
in an L3 handover.
correspondent node
A peer node with which a mobile node is communicating. The
correspondent node may be either mobile or stationary.
foreign subnet prefix
Any IP subnet prefix other than the mobile node's home subnet
prefix.
foreign link
Any link other than the mobile node's home link.
care-of address
A unicast routable address associated with a mobile node while
visiting a foreign link; the subnet prefix of this IP address is a
foreign subnet prefix. Among the multiple care-of addresses that
a mobile node may have at any given time (e.g., with different
subnet prefixes), the one registered with the mobile node's home
agent for a given home address is called its "primary" care-of
address.
home agent
A router on a mobile node's home link with which the mobile node
has registered its current care-of address. While the mobile node
is away from home, the home agent intercepts packets on the home
link destined to the mobile node's home address, encapsulates
them, and tunnels them to the mobile node's registered care-of
address.
binding
The association of the home address of a mobile node with a care-
of address for that mobile node, along with the remaining lifetime
of that association.
Johnson, et al. Standard Track [Page 11]
^L
RFC 3775 Mobility Support in IPv6 June 2004
registration
The process during which a mobile node sends a Binding Update to
its home agent or a correspondent node, causing a binding for the
mobile node to be registered.
mobility message
A message containing a Mobility Header (see Section 6.1).
binding authorization
Correspondent registration needs to be authorized to allow the
recipient to believe that the sender has the right to specify a
new binding.
return routability procedure
The return routability procedure authorizes registrations by the
use of a cryptographic token exchange.
correspondent registration
A return routability procedure followed by a registration, run
between the mobile node and a correspondent node.
home registration
A registration between the mobile node and its home agent,
authorized by the use of IPsec.
nonce
Nonces are random numbers used internally by the correspondent
node in the creation of keygen tokens related to the return
routability procedure. The nonces are not specific to a mobile
node, and are kept secret within the correspondent node.
nonce index
A nonce index is used to indicate which nonces have been used when
creating keygen token values, without revealing the nonces
themselves.
Johnson, et al. Standard Track [Page 12]
^L
RFC 3775 Mobility Support in IPv6 June 2004
cookie
A cookie is a random number used by a mobile node to prevent
spoofing by a bogus correspondent node in the return routability
procedure.
care-of init cookie
A cookie sent to the correspondent node in the Care-of Test Init
message, to be returned in the Care-of Test message.
home init cookie
A cookie sent to the correspondent node in the Home Test Init
message, to be returned in the Home Test message.
keygen token
A keygen token is a number supplied by a correspondent node in the
return routability procedure to enable the mobile node to compute
the necessary binding management key for authorizing a Binding
Update.
care-of keygen token
A keygen token sent by the correspondent node in the Care-of Test
message.
home keygen token
A keygen token sent by the correspondent node in the Home Test
message.
binding management key (Kbm)
A binding management key (Kbm) is a key used for authorizing a
binding cache management message (e.g., Binding Update or Binding
Acknowledgement). Return routability provides a way to create a
binding management key.
4. Overview of Mobile IPv6
4.1. Basic Operation
A mobile node is always expected to be addressable at its home
address, whether it is currently attached to its home link or is away
from home. The "home address" is an IP address assigned to the
mobile node within its home subnet prefix on its home link. While a
Johnson, et al. Standard Track [Page 13]
^L
RFC 3775 Mobility Support in IPv6 June 2004
mobile node is at home, packets addressed to its home address are
routed to the mobile node's home link, using conventional Internet
routing mechanisms.
While a mobile node is attached to some foreign link away from home,
it is also addressable at one or more care-of addresses. A care-of
address is an IP address associated with a mobile node that has the
subnet prefix of a particular foreign link. The mobile node can
acquire its care-of address through conventional IPv6 mechanisms,
such as stateless or stateful auto-configuration. As long as the
mobile node stays in this location, packets addressed to this care-of
address will be routed to the mobile node. The mobile node may also
accept packets from several care-of addresses, such as when it is
moving but still reachable at the previous link.
The association between a mobile node's home address and care-of
address is known as a "binding" for the mobile node. While away from
home, a mobile node registers its primary care-of address with a
router on its home link, requesting this router to function as the
"home agent" for the mobile node. The mobile node performs this
binding registration by sending a "Binding Update" message to the
home agent. The home agent replies to the mobile node by returning a
"Binding Acknowledgement" message. The operation of the mobile node
is specified in Section 11, and the operation of the home agent is
specified in Section 10.
Any node communicating with a mobile node is referred to in this
document as a "correspondent node" of the mobile node, and may itself
be either a stationary node or a mobile node. Mobile nodes can
provide information about their current location to correspondent
nodes. This happens through the correspondent registration. As a
part of this procedure, a return routability test is performed in
order to authorize the establishment of the binding. The operation
of the correspondent node is specified in Section 9.
There are two possible modes for communications between the mobile
node and a correspondent node. The first mode, bidirectional
tunneling, does not require Mobile IPv6 support from the
correspondent node and is available even if the mobile node has not
registered its current binding with the correspondent node. Packets
from the correspondent node are routed to the home agent and then
tunneled to the mobile node. Packets to the correspondent node are
tunneled from the mobile node to the home agent ("reverse tunneled")
and then routed normally from the home network to the correspondent
node. In this mode, the home agent uses proxy Neighbor Discovery to
intercept any IPv6 packets addressed to the mobile node's home
Johnson, et al. Standard Track [Page 14]
^L
RFC 3775 Mobility Support in IPv6 June 2004
address (or home addresses) on the home link. Each intercepted
packet is tunneled to the mobile node's primary care-of address.
This tunneling is performed using IPv6 encapsulation [15].
The second mode, "route optimization", requires the mobile node to
register its current binding at the correspondent node. Packets from
the correspondent node can be routed directly to the care-of address
of the mobile node. When sending a packet to any IPv6 destination,
the correspondent node checks its cached bindings for an entry for
the packet's destination address. If a cached binding for this
destination address is found, the node uses a new type of IPv6
routing header [11] (see Section 6.4) to route the packet to the
mobile node by way of the care-of address indicated in this binding.
Routing packets directly to the mobile node's care-of address allows
the shortest communications path to be used. It also eliminates
congestion at the mobile node's home agent and home link. In
addition, the impact of any possible failure of the home agent or
networks on the path to or from it is reduced.
When routing packets directly to the mobile node, the correspondent
node sets the Destination Address in the IPv6 header to the care-of
address of the mobile node. A new type of IPv6 routing header (see
Section 6.4) is also added to the packet to carry the desired home
address. Similarly, the mobile node sets the Source Address in the
packet's IPv6 header to its current care-of addresses. The mobile
node adds a new IPv6 "Home Address" destination option (see Section
6.3) to carry its home address. The inclusion of home addresses in
these packets makes the use of the care-of address transparent above
the network layer (e.g., at the transport layer).
Mobile IPv6 also provides support for multiple home agents, and a
limited support for the reconfiguration of the home network. In
these cases, the mobile node may not know the IP address of its own
home agent, and even the home subnet prefixes may change over time.
A mechanism, known as "dynamic home agent address discovery" allows a
mobile node to dynamically discover the IP address of a home agent on
its home link, even when the mobile node is away from home. Mobile
nodes can also learn new information about home subnet prefixes
through the "mobile prefix discovery" mechanism. These mechanisms
are described starting from Section 6.5.
4.2. New IPv6 Protocol
Mobile IPv6 defines a new IPv6 protocol, using the Mobility Header
(see Section 6.1). This Header is used to carry the following
messages:
Johnson, et al. Standard Track [Page 15]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Home Test Init
Home Test
Care-of Test Init
Care-of Test
These four messages are used to perform the return routability
procedure from the mobile node to a correspondent node. This
ensures authorization of subsequent Binding Updates, as described
in Section 5.2.5.
Binding Update
A Binding Update is used by a mobile node to notify a
correspondent node or the mobile node's home agent of its current
binding. The Binding Update sent to the mobile node's home agent
to register its primary care-of address is marked as a "home
registration".
Binding Acknowledgement
A Binding Acknowledgement is used to acknowledge receipt of a
Binding Update, if an acknowledgement was requested in the Binding
Update, the binding update was sent to a home agent, or an error
occurred.
Binding Refresh Request
A Binding Refresh Request is used by a correspondent node to
request a mobile node to re-establish its binding with the
correspondent node. This message is typically used when the
cached binding is in active use but the binding's lifetime is
close to expiration. The correspondent node may use, for
instance, recent traffic and open transport layer connections as
an indication of active use.
Binding Error
The Binding Error is used by the correspondent node to signal an
error related to mobility, such as an inappropriate attempt to use
the Home Address destination option without an existing binding.
Johnson, et al. Standard Track [Page 16]
^L
RFC 3775 Mobility Support in IPv6 June 2004
4.3. New IPv6 Destination Option
Mobile IPv6 defines a new IPv6 destination option, the Home Address
destination option. This option is described in detail in Section
6.3.
4.4. New IPv6 ICMP Messages
Mobile IPv6 also introduces four new ICMP message types, two for use
in the dynamic home agent address discovery mechanism, and two for
renumbering and mobile configuration mechanisms. As described in
Section 10.5 and Section 11.4.1, the following two new ICMP message
types are used for home agent address discovery:
o Home Agent Address Discovery Request, described in Section 6.5.
o Home Agent Address Discovery Reply, described in Section 6.6.
The next two message types are used for network renumbering and
address configuration on the mobile node, as described in Section
10.6:
o Mobile Prefix Solicitation, described in Section 6.7.
o Mobile Prefix Advertisement, described in Section 6.8.
4.5. Conceptual Data Structure Terminology
This document describes the Mobile IPv6 protocol in terms of the
following conceptual data structures:
Binding Cache
A cache of bindings for other nodes. This cache is maintained by
home agents and correspondent nodes. The cache contains both
"correspondent registration" entries (see Section 9.1) and "home
registration" entries (see Section 10.1).
Binding Update List
This list is maintained by each mobile node. The list has an item
for every binding that the mobile node has or is trying to
establish with a specific other node. Both correspondent and home
registrations are included in this list. Entries from the list
are deleted as the lifetime of the binding expires. See Section
11.1.
Johnson, et al. Standard Track [Page 17]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Home Agents List
Home agents need to know which other home agents are on the same
link. This information is stored in the Home Agents List, as
described in more detail in Section 10.1. The list is used for
informing mobile nodes during dynamic home agent address
discovery.
4.6. Site-Local Addressability
This specification requires that home and care-of addresses MUST be
unicast routable addresses. Site-local addresses may be usable on
networks that are not connected to the Internet, but this
specification does not define when such usage is safe and when it is
not. Mobile nodes may not be aware of which site they are currently
in, it is hard to prevent accidental attachment to other sites, and
ambiguity of site-local addresses can cause problems if the home and
visited networks use the same addresses. Therefore, site-local
addresses SHOULD NOT be used as home or care-of addresses.
5. Overview of Mobile IPv6 Security
This specification provides a number of security features. These
include the protection of Binding Updates both to home agents and
correspondent nodes, the protection of mobile prefix discovery, and
the protection of the mechanisms that Mobile IPv6 uses for
transporting data packets.
Binding Updates are protected by the use of IPsec extension headers,
or by the use of the Binding Authorization Data option. This option
employs a binding management key, Kbm, which can be established
through the return routability procedure. Mobile prefix discovery is
protected through the use of IPsec extension headers. Mechanisms
related to transporting payload packets - such as the Home Address
destination option and type 2 routing header - have been specified in
a manner which restricts their use in attacks.
5.1. Binding Updates to Home Agents
The mobile node and the home agent MUST use an IPsec security
association to protect the integrity and authenticity of the Binding
Updates and Acknowledgements. Both the mobile nodes and the home
agents MUST support and SHOULD use the Encapsulating Security Payload
(ESP) [6] header in transport mode and MUST use a non-NULL payload
authentication algorithm to provide data origin authentication,
connectionless integrity and optional anti-replay protection. Note
that Authentication Header (AH) [5] is also possible but for brevity
not discussed in this specification.
Johnson, et al. Standard Track [Page 18]
^L
RFC 3775 Mobility Support in IPv6 June 2004
In order to protect messages exchanged between the mobile node and
the home agent with IPsec, appropriate security policy database
entries must be created. A mobile node must be prevented from using
its security association to send a Binding Update on behalf of
another mobile node using the same home agent. This MUST be achieved
by having the home agent check that the given home address has been
used with the right security association. Such a check is provided
in the IPsec processing, by having the security policy database
entries unequivocally identify a single security association for
protecting Binding Updates between any given home address and home
agent. In order to make this possible, it is necessary that the home
address of the mobile node is visible in the Binding Updates and
Acknowledgements. The home address is used in these packets as a
source or destination, or in the Home Address Destination option or
the type 2 routing header.
As with all IPsec security associations in this specification, manual
configuration of security associations MUST be supported. The used
shared secrets MUST be random and unique for different mobile nodes,
and MUST be distributed off-line to the mobile nodes.
Automatic key management with IKE [9] MAY be supported. When IKE is
used, either the security policy database entries or the Mobile IPv6
processing MUST unequivocally identify the IKE phase 1 credentials
which can be used to authorize the creation of security associations
for protecting Binding Updates for a particular home address. How
these mappings are maintained is outside the scope of this
specification, but they may be maintained, for instance, as a locally
administered table in the home agent. If the phase 1 identity is a
Fully Qualified Domain Name (FQDN), secure forms of DNS may also be
used.
Section 11.3.2 discusses how IKE connections to the home agent need a
careful treatment of the addresses used for transporting IKE. This
is necessary to ensure that a Binding Update is not needed before the
IKE exchange which is needed for securing the Binding Update.
When IKE version 1 is used with preshared secret authentication
between the mobile node and the home agent, aggressive mode MUST be
used.
The ID_IPV6_ADDR Identity Payload MUST NOT be used in IKEv1 phase 1.
Reference [21] contains a more detailed description and examples on
using IPsec to protect the communications between the mobile node and
the home agent.
Johnson, et al. Standard Track [Page 19]
^L
RFC 3775 Mobility Support in IPv6 June 2004
5.2. Binding Updates to Correspondent Nodes
The protection of Binding Updates sent to correspondent nodes does
not require the configuration of security associations or the
existence of an authentication infrastructure between the mobile
nodes and correspondent nodes. Instead, a method called the return
routability procedure is used to assure that the right mobile node is
sending the message. This method does not protect against attackers
who are on the path between the home network and the correspondent
node. However, attackers in such a location are capable of
performing the same attacks even without Mobile IPv6. The main
advantage of the return routability procedure is that it limits the
potential attackers to those having an access to one specific path in
the Internet, and avoids forged Binding Updates from anywhere else in
the Internet. For a more in depth explanation of the security
properties of the return routability procedure, see Section 15.
The integrity and authenticity of the Binding Updates messages to
correspondent nodes is protected by using a keyed-hash algorithm.
The binding management key, Kbm, is used to key the hash algorithm
for this purpose. Kbm is established using data exchanged during the
return routability procedure. The data exchange is accomplished by
use of node keys, nonces, cookies, tokens, and certain cryptographic
functions. Section 5.2.5 outlines the basic return routability
procedure. Section 5.2.6 shows how the results of this procedure are
used to authorize a Binding Update to a correspondent node.
5.2.1. Node Keys
Each correspondent node has a secret key, Kcn, called the "node key",
which it uses to produce the keygen tokens sent to the mobile nodes.
The node key MUST be a random number, 20 octets in length. The node
key allows the correspondent node to verify that the keygen tokens
used by the mobile node in authorizing a Binding Update are indeed
its own. This key MUST NOT be shared with any other entity.
A correspondent node MAY generate a fresh node key at any time; this
avoids the need for secure persistent key storage. Procedures for
optionally updating the node key are discussed later in Section
5.2.7.
5.2.2. Nonces
Each correspondent node also generates nonces at regular intervals.
The nonces should be generated by using a random number generator
that is known to have good randomness properties [1]. A
correspondent node may use the same Kcn and nonce with all the
mobiles it is in communication with.
Johnson, et al. Standard Track [Page 20]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Each nonce is identified by a nonce index. When a new nonce is
generated, it must be associated with a new nonce index; this may be
done, for example, by incrementing the value of the previous nonce
index, if the nonce index is used as an array pointer into a linear
array of nonces. However, there is no requirement that nonces be
stored that way, or that the values of subsequent nonce indices have
any particular relationship to each other. The index value is
communicated in the protocol, so that if a nonce is replaced by new
nonce during the run of a protocol, the correspondent node can
distinguish messages that should be checked against the old nonce
from messages that should be checked against the new nonce. Strictly
speaking, indices are not necessary in the authentication, but allow
the correspondent node to efficiently find the nonce value that it
used in creating a keygen token.
Correspondent nodes keep both the current nonce and a small set of
valid previous nonces whose lifetime has not yet expired. Expired
values MUST be discarded, and messages using stale or unknown indices
will be rejected.
The specific nonce index values cannot be used by mobile nodes to
determine the validity of the nonce. Expected validity times for the
nonces values and the procedures for updating them are discussed
later in Section 5.2.7.
A nonce is an octet string of any length. The recommended length is
64 bits.
5.2.3. Cookies and Tokens
The return routability address test procedure uses cookies and keygen
tokens as opaque values within the test init and test messages,
respectively.
o The "home init cookie" and "care-of init cookie" are 64 bit values
sent to the correspondent node from the mobile node, and later
returned to the mobile node. The home init cookie is sent in the
Home Test Init message, and returned in the Home Test message.
The care-of init cookie is sent in the Care-of Test Init message,
and returned in the Care-of Test message.
o The "home keygen token" and "care-of keygen token" are 64-bit
values sent by the correspondent node to the mobile node via the
home agent (via the Home Test message) and the care-of address (by
the Care-of Test message), respectively.
Johnson, et al. Standard Track [Page 21]
^L
RFC 3775 Mobility Support in IPv6 June 2004
The mobile node should set the home init or care-of init cookie to a
newly generated random number in every Home or Care-of Test Init
message it sends. The cookies are used to verify that the Home Test
or Care-of Test message matches the Home Test Init or Care-of Test
Init message, respectively. These cookies also serve to ensure that
parties who have not seen the request cannot spoof responses.
Home and care-of keygen tokens are produced by the correspondent node
based on its currently active secret key (Kcn) and nonces, as well as
the home or care-of address (respectively). A keygen token is valid
as long as both the secret key (Kcn) and the nonce used to create it
are valid.
5.2.4. Cryptographic Functions
In this specification, the function used to compute hash values is
SHA1 [20]. Message Authentication Codes (MACs) are computed using
HMAC_SHA1 [25, 20]. HMAC_SHA1(K,m) denotes such a MAC computed on
message m with key K.
5.2.5. Return Routability Procedure
The Return Routability Procedure enables the correspondent node to
obtain some reasonable assurance that the mobile node is in fact
addressable at its claimed care-of address as well as at its home
address. Only with this assurance is the correspondent node able to
accept Binding Updates from the mobile node which would then instruct
the correspondent node to direct that mobile node's data traffic to
its claimed care-of address.
This is done by testing whether packets addressed to the two claimed
addresses are routed to the mobile node. The mobile node can pass
the test only if it is able to supply proof that it received certain
data (the "keygen tokens") which the correspondent node sends to
those addresses. These data are combined by the mobile node into a
binding management key, denoted Kbm.
The figure below shows the message flow for the return routability
procedure.
Johnson, et al. Standard Track [Page 22]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Mobile node Home agent Correspondent node
| |
| Home Test Init (HoTI) | |
|------------------------->|------------------------->|
| | |
| Care-of Test Init (CoTI) |
|---------------------------------------------------->|
| |
| | Home Test (HoT) |
|<-------------------------|<-------------------------|
| | |
| Care-of Test (CoT) |
|<----------------------------------------------------|
| |
The Home and Care-of Test Init messages are sent at the same time.
The procedure requires very little processing at the correspondent
node, and the Home and Care-of Test messages can be returned quickly,
perhaps nearly simultaneously. These four messages form the return
routability procedure.
Home Test Init
A mobile node sends a Home Test Init message to the correspondent
node (via the home agent) to acquire the home keygen token. The
contents of the message can be summarized as follows:
* Source Address = home address
* Destination Address = correspondent
* Parameters:
+ home init cookie
The Home Test Init message conveys the mobile node's home address
to the correspondent node. The mobile node also sends along a
home init cookie that the correspondent node must return later.
The Home Test Init message is reverse tunneled through the home
agent. (The headers and addresses related to reverse tunneling
have been omitted from the above discussion of the message
contents.) The mobile node remembers these cookie values to
obtain some assurance that its protocol messages are being
processed by the desired correspondent node.
Johnson, et al. Standard Track [Page 23]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Care-of Test Init
The mobile node sends a Care-of Test Init message to the
correspondent node (directly, not via the home agent) to acquire
the care-of keygen token. The contents of this message can be
summarized as follows:
* Source Address = care-of address
* Destination Address = correspondent
* Parameters:
+ care-of init cookie
The Care-of Test Init message conveys the mobile node's care-of
address to the correspondent node. The mobile node also sends
along a care-of init cookie that the correspondent node must
return later. The Care-of Test Init message is sent directly to
the correspondent node.
Home Test
The Home Test message is sent in response to a Home Test Init
message. It is sent via the home agent. The contents of the
message are:
* Source Address = correspondent
* Destination Address = home address
* Parameters:
+ home init cookie
+ home keygen token
+ home nonce index
Johnson, et al. Standard Track [Page 24]
^L
RFC 3775 Mobility Support in IPv6 June 2004
When the correspondent node receives the Home Test Init message,
it generates a home keygen token as follows:
home keygen token :=
First (64, HMAC_SHA1 (Kcn, (home address | nonce | 0)))
where | denotes concatenation. The final "0" inside the HMAC_SHA1
function is a single zero octet, used to distinguish home and
care-of cookies from each other.
The home keygen token is formed from the first 64 bits of the MAC.
The home keygen token tests that the mobile node can receive were
messages sent to its home address. Kcn is used in the production
of home keygen token in order to allow the correspondent node to
verify that it generated the home and care-of nonces, without
forcing the correspondent node to remember a list of all tokens it
has handed out.
The Home Test message is sent to the mobile node via the home
network, where it is presumed that the home agent will tunnel the
message to the mobile node. This means that the mobile node needs
to already have sent a Binding Update to the home agent, so that
the home agent will have received and authorized the new care-of
address for the mobile node before the return routability
procedure. For improved security, the data passed between the
home agent and the mobile node is made immune to inspection and
passive attacks. Such protection is gained by encrypting the home
keygen token as it is tunneled from the home agent to the mobile
node as specified in Section 10.4.6. The security properties of
this additional security are discussed in Section 15.4.1.
The home init cookie from the mobile node is returned in the Home
Test message, to ensure that the message comes from a node on the
route between the home agent and the correspondent node.
The home nonce index is delivered to the mobile node to later
allow the correspondent node to efficiently find the nonce value
that it used in creating the home keygen token.
Care-of Test
This message is sent in response to a Care-of Test Init message.
This message is not sent via the home agent, it is sent directly
to the mobile node. The contents of the message are:
* Source Address = correspondent
* Destination Address = care-of address
Johnson, et al. Standard Track [Page 25]
^L
RFC 3775 Mobility Support in IPv6 June 2004
* Parameters:
+ care-of init cookie
+ care-of keygen token
+ care-of nonce index
When the correspondent node receives the Care-of Test Init
message, it generates a care-of keygen token as follows:
care-of keygen token :=
First (64, HMAC_SHA1 (Kcn, (care-of address | nonce | 1)))
Here, the final "1" inside the HMAC_SHA1 function is a single
octet containing the hex value 0x01, and is used to distinguish
home and care-of cookies from each other. The keygen token is
formed from the first 64 bits of the MAC, and sent directly to the
mobile node at its care-of address. The care-of init cookie from
the Care-of Test Init message is returned to ensure that the
message comes from a node on the route to the correspondent node.
The care-of nonce index is provided to identify the nonce used for
the care-of keygen token. The home and care-of nonce indices MAY
be the same, or different, in the Home and Care-of Test messages.
When the mobile node has received both the Home and Care-of Test
messages, the return routability procedure is complete. As a result
of the procedure, the mobile node has the data it needs to send a
Binding Update to the correspondent node. The mobile node hashes the
tokens together to form a 20 octet binding key Kbm:
Kbm = SHA1 (home keygen token | care-of keygen token)
A Binding Update may also be used to delete a previously established
binding (Section 6.1.7). In this case, the care-of keygen token is
not used. Instead, the binding management key is generated as
follows:
Kbm = SHA1(home keygen token)
Note that the correspondent node does not create any state specific
to the mobile node, until it receives the Binding Update from that
mobile node. The correspondent node does not maintain the value for
the binding management key Kbm; it creates Kbm when given the nonce
indices and the mobile node's addresses.
Johnson, et al. Standard Track [Page 26]
^L
RFC 3775 Mobility Support in IPv6 June 2004
5.2.6. Authorizing Binding Management Messages
After the mobile node has created the binding management key (Kbm),
it can supply a verifiable Binding Update to the correspondent node.
This section provides an overview of this registration. The below
figure shows the message flow.
Mobile node Correspondent node
| |
| Binding Update (BU) |
|---------------------------------------------->|
| (MAC, seq#, nonce indices, care-of address) |
| |
| |
| Binding Acknowledgement (BA) (if sent) |
|<----------------------------------------------|
| (MAC, seq#, status) |
Binding Update
To authorize a Binding Update, the mobile node creates a binding
management key Kbm from the keygen tokens as described in the
previous section. The contents of the Binding Update include the
following:
* Source Address = care-of address
* Destination Address = correspondent
* Parameters:
+ home address (within the Home Address destination option if
different from the Source Address)
+ sequence number (within the Binding Update message header)
+ home nonce index (within the Nonce Indices option)
+ care-of nonce index (within the Nonce Indices option)
+ First (96, HMAC_SHA1 (Kbm, (care-of address | correspondent
| BU)))
Johnson, et al. Standard Track [Page 27]
^L
RFC 3775 Mobility Support in IPv6 June 2004
The Binding Update contains a Nonce Indices option, indicating to
the correspondent node which home and care-of nonces to use to
recompute Kbm, the binding management key. The MAC is computed as
described in Section 6.2.7, using the correspondent node's address
as the destination address and the Binding Update message itself
("BU" above) as the MH Data.
Once the correspondent node has verified the MAC, it can create a
Binding Cache entry for the mobile.
Binding Acknowledgement
The Binding Update is in some cases acknowledged by the
correspondent node. The contents of the message are as follows:
* Source Address = correspondent
* Destination Address = care-of address
* Parameters:
+ sequence number (within the Binding Update message header)
+ First (96, HMAC_SHA1 (Kbm, (care-of address | correspondent
| BA)))
The Binding Acknowledgement contains the same sequence number as
the Binding Update. The MAC is computed as described in Section
6.2.7, using the correspondent node's address as the destination
address and the message itself ("BA" above) as the MH Data.
Bindings established with correspondent nodes using keys created
by way of the return routability procedure MUST NOT exceed
MAX_RR_BINDING_LIFETIME seconds (see Section 12).
The value in the Source Address field in the IPv6 header carrying
the Binding Update is normally also the care-of address which is
used in the binding. However, a different care-of address MAY be
specified by including an Alternate Care-of Address mobility
option in the Binding Update (see Section 6.2.5). When such a
message is sent to the correspondent node and the return
routability procedure is used as the authorization method, the
Care-of Test Init and Care-of Test messages MUST have been
performed for the address in the Alternate Care-of Address option
(not the Source Address). The nonce indices and MAC value MUST be
based on information gained in this test.
Johnson, et al. Standard Track [Page 28]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Binding Updates may also be sent to delete a previously
established binding. In this case, generation of the binding
management key depends exclusively on the home keygen token and
the care-of nonce index is ignored.
5.2.7. Updating Node Keys and Nonces
Correspondent nodes generate nonces at regular intervals. It is
recommended to keep each nonce (identified by a nonce index)
acceptable for at least MAX_TOKEN_LIFETIME seconds (see Section 12)
after it has been first used in constructing a return routability
message response. However, the correspondent node MUST NOT accept
nonces beyond MAX_NONCE_LIFETIME seconds (see Section 12) after the
first use. As the difference between these two constants is 30
seconds, a convenient way to enforce the above lifetimes is to
generate a new nonce every 30 seconds. The node can then continue to
accept tokens that have been based on the last 8 (MAX_NONCE_LIFETIME
/ 30) nonces. This results in tokens being acceptable
MAX_TOKEN_LIFETIME to MAX_NONCE_LIFETIME seconds after they have been
sent to the mobile node, depending on whether the token was sent at
the beginning or end of the first 30 second period. Note that the
correspondent node may also attempt to generate new nonces on demand,
or only if the old nonces have been used. This is possible, as long
as the correspondent node keeps track of how long a time ago the
nonces were used for the first time, and does not generate new nonces
on every return routability request.
Due to resource limitations, rapid deletion of bindings, or reboots
the correspondent node may not in all cases recognize the nonces that
the tokens were based on. If a nonce index is unrecognized, the
correspondent node replies with an error code in the Binding
Acknowledgement (either 136, 137, or 138 as discussed in Section
6.1.8). The mobile node can then retry the return routability
procedure.
An update of Kcn SHOULD be done at the same time as an update of a
nonce, so that nonce indices can identify both the nonce and the key.
Old Kcn values have to be therefore remembered as long as old nonce
values.
Given that the tokens are normally expected to be usable for
MAX_TOKEN_LIFETIME seconds, the mobile node MAY use them beyond a
single run of the return routability procedure until
MAX_TOKEN_LIFETIME expires. After this the mobile node SHOULD NOT
use the tokens. A fast moving mobile node MAY reuse a recent home
keygen token from a correspondent node when moving to a new location,
and just acquire a new care-of keygen token to show routability in
the new location.
Johnson, et al. Standard Track [Page 29]
^L
RFC 3775 Mobility Support in IPv6 June 2004
While this does not save the number of round-trips due to the
simultaneous processing of home and care-of return routability tests,
there are fewer messages being exchanged, and a potentially long
round-trip through the home agent is avoided. Consequently, this
optimization is often useful. A mobile node that has multiple home
addresses, MAY also use the same care-of keygen token for Binding
Updates concerning all of these addresses.
5.2.8. Preventing Replay Attacks
The return routability procedure also protects the participants
against replayed Binding Updates through the use of the sequence
number and a MAC. Care must be taken when removing bindings at the
correspondent node, however. Correspondent nodes must retain
bindings and the associated sequence number information at least as
long as the nonces used in the authorization of the binding are still
valid. Alternatively, if memory is very constrained, the
correspondent node MAY invalidate the nonces that were used for the
binding being deleted (or some larger group of nonces that they
belong to). This may, however, impact the ability to accept Binding
Updates from mobile nodes that have recently received keygen tokens.
This alternative is therefore recommended only as a last measure.
5.3. Dynamic Home Agent Address Discovery
No security is required for dynamic home agent address discovery.
5.4. Mobile Prefix Discovery
The mobile node and the home agent SHOULD use an IPsec security
association to protect the integrity and authenticity of the Mobile
Prefix Solicitations and Advertisements. Both the mobile nodes and
the home agents MUST support and SHOULD use the Encapsulating
Security Payload (ESP) header in transport mode with a non-NULL
payload authentication algorithm to provide data origin
authentication, connectionless integrity and optional anti-replay
protection.
5.5. Payload Packets
Payload packets exchanged with mobile nodes can be protected in the
usual manner, in the same way as stationary hosts can protect them.
However, Mobile IPv6 introduces the Home Address destination option,
a routing header, and tunneling headers in the payload packets. In
the following we define the security measures taken to protect these,
and to prevent their use in attacks against other parties.
Johnson, et al. Standard Track [Page 30]
^L
RFC 3775 Mobility Support in IPv6 June 2004
This specification limits the use of the Home Address destination
option to the situation where the correspondent node already has a
Binding Cache entry for the given home address. This avoids the use
of the Home Address option in attacks described in Section 15.1.
Mobile IPv6 uses a Mobile IPv6 specific type of a routing header.
This type provides the necessary functionality but does not open
vulnerabilities discussed in Section 15.1.
Tunnels between the mobile node and the home agent are protected by
ensuring proper use of source addresses, and optional cryptographic
protection. The mobile node verifies that the outer IP address
corresponds to its home agent. The home agent verifies that the
outer IP address corresponds to the current location of the mobile
node (Binding Updates sent to the home agents are secure). The home
agent identifies the mobile node through the source address of the
inner packet. (Typically, this is the home address of the mobile
node, but it can also be a link-local address, as discussed in
Section 10.4.2. To recognize the latter type of addresses, the home
agent requires that the Link-Local Address Compatibility (L) was set
in the Binding Update.) These measures protect the tunnels against
vulnerabilities discussed in Section 15.1.
For traffic tunneled via the home agent, additional IPsec ESP
encapsulation MAY be supported and used. If multicast group
membership control protocols or stateful address autoconfiguration
protocols are supported, payload data protection MUST be supported.
6. New IPv6 Protocol, Message Types, and Destination Option
6.1. Mobility Header
The Mobility Header is an extension header used by mobile nodes,
correspondent nodes, and home agents in all messaging related to the
creation and management of bindings. The subsections within this
section describe the message types that may be sent using the
Mobility Header.
Mobility Header messages MUST NOT be sent with a type 2 routing
header, except as described in Section 9.5.4 for Binding
Acknowledgement. Mobility Header messages also MUST NOT be used with
a Home Address destination option, except as described in Section
11.7.1 and Section 11.7.2 for Binding Update. Binding Update List or
Binding Cache information (when present) for the destination MUST NOT
be used in sending Mobility Header messages. That is, Mobility
Header messages bypass both the Binding Cache check described in
Section 9.3.2 and the Binding Update List check described in Section
Johnson, et al. Standard Track [Page 31]
^L
RFC 3775 Mobility Support in IPv6 June 2004
11.3.1 which are normally performed for all packets. This applies
even to messages sent to or from a correspondent node which is itself
a mobile node.
6.1.1. Format
The Mobility Header is identified by a Next Header value of 135 in
the immediately preceding header, and has the following format:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Payload Proto | Header Len | MH Type | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Checksum | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| |
. .
. Message Data .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Payload Proto
8-bit selector. Identifies the type of header immediately
following the Mobility Header. Uses the same values as the IPv6
Next Header field [11].
This field is intended to be used by a future extension (see
Appendix B.1).
Implementations conforming to this specification SHOULD set the
payload protocol type to IPPROTO_NONE (59 decimal).
Header Len
8-bit unsigned integer, representing the length of the Mobility
Header in units of 8 octets, excluding the first 8 octets.
The length of the Mobility Header MUST be a multiple of 8 octets.
MH Type
8-bit selector. Identifies the particular mobility message in
question. Current values are specified in Section 6.1.2 and
onward. An unrecognized MH Type field causes an error indication
to be sent.
Johnson, et al. Standard Track [Page 32]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Reserved
8-bit field reserved for future use. The value MUST be
initialized to zero by the sender, and MUST be ignored by the
receiver.
Checksum
16-bit unsigned integer. This field contains the checksum of the
Mobility Header. The checksum is calculated from the octet string
consisting of a "pseudo-header" followed by the entire Mobility
Header starting with the Payload Proto field. The checksum is the
16-bit one's complement of the one's complement sum of this
string.
The pseudo-header contains IPv6 header fields, as specified in
Section 8.1 of RFC 2460 [11]. The Next Header value used in the
pseudo-header is 2. The addresses used in the pseudo-header are
the addresses that appear in the Source and Destination Address
fields in the IPv6 packet carrying the Mobility Header.
Note that the procedures of calculating upper layer checksums
while away from home described in Section 11.3.1 apply even for
the Mobility Header. If a mobility message has a Home Address
destination option, then the checksum calculation uses the home
address in this option as the value of the IPv6 Source Address
field. The type 2 routing header is treated as explained in [11].
The Mobility Header is considered as the upper layer protocol for
the purposes of calculating the pseudo-header. The Upper-Layer
Packet Length field in the pseudo-header MUST be set to the total
length of the Mobility Header.
For computing the checksum, the checksum field is set to zero.
Message Data
A variable length field containing the data specific to the
indicated Mobility Header type.
Mobile IPv6 also defines a number of "mobility options" for use
within these messages; if included, any options MUST appear after the
fixed portion of the message data specified in this document. The
presence of such options will be indicated by the Header Len field
within the message. When the Header Len value is greater than the
length required for the message specified here, the remaining octets
are interpreted as mobility options. These options include padding
options that can be used to ensure that other options are aligned
Johnson, et al. Standard Track [Page 33]
^L
RFC 3775 Mobility Support in IPv6 June 2004
properly, and that the total length of the message is divisible by 8.
The encoding and format of defined options are described in Section
6.2.
Alignment requirements for the Mobility Header are the same as for
any IPv6 protocol Header. That is, they MUST be aligned on an 8-
octet boundary.
6.1.2. Binding Refresh Request Message
The Binding Refresh Request (BRR) message requests a mobile node to
update its mobility binding. This message is sent by correspondent
nodes according to the rules in Section 9.5.5. When a mobile node
receives a packet containing a Binding Refresh Request message it
processes the message according to the rules in Section 11.7.4.
The Binding Refresh Request message uses the MH Type value 0. When
this value is indicated in the MH Type field, the format of the
Message Data field in the Mobility Header is as follows:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
. .
. Mobility options .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Reserved
16-bit field reserved for future use. The value MUST be
initialized to zero by the sender, and MUST be ignored by the
receiver.
Mobility Options
Variable-length field of such length that the complete Mobility
Header is an integer multiple of 8 octets long. This field
contains zero or more TLV-encoded mobility options. The encoding
and format of defined options are described in Section 6.2. The
receiver MUST ignore and skip any options which it does not
understand.
Johnson, et al. Standard Track [Page 34]
^L
RFC 3775 Mobility Support in IPv6 June 2004
There MAY be additional information, associated with this Binding
Refresh Request message that need not be present in all Binding
Refresh Request messages sent. Mobility options allow future
extensions to the format of the Binding Refresh Request message to
be defined. This specification does not define any options valid
for the Binding Refresh Request message.
If no actual options are present in this message, no padding is
necessary and the Header Len field will be set to 0.
6.1.3. Home Test Init Message
A mobile node uses the Home Test Init (HoTI) message to initiate the
return routability procedure and request a home keygen token from a
correspondent node (see Section 11.6.1). The Home Test Init message
uses the MH Type value 1. When this value is indicated in the MH
Type field, the format of the Message Data field in the Mobility
Header is as follows:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ Home Init Cookie +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
. .
. Mobility Options .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Reserved
16-bit field reserved for future use. This value MUST be
initialized to zero by the sender, and MUST be ignored by the
receiver.
Home Init Cookie
64-bit field which contains a random value, the home init cookie.
Mobility Options
Variable-length field of such length that the complete Mobility
Header is an integer multiple of 8 octets long. This field
contains zero or more TLV-encoded mobility options. The receiver
Johnson, et al. Standard Track [Page 35]
^L
RFC 3775 Mobility Support in IPv6 June 2004
MUST ignore and skip any options which it does not understand.
This specification does not define any options valid for the Home
Test Init message.
If no actual options are present in this message, no padding is
necessary and the Header Len field will be set to 1.
This message is tunneled through the home agent when the mobile node
is away from home. Such tunneling SHOULD employ IPsec ESP in tunnel
mode between the home agent and the mobile node. This protection is
indicated by the IPsec security policy database. The protection of
Home Test Init messages is unrelated to the requirement to protect
regular payload traffic, which MAY use such tunnels as well.
6.1.4. Care-of Test Init Message
A mobile node uses the Care-of Test Init (CoTI) message to initiate
the return routability procedure and request a care-of keygen token
from a correspondent node (see Section 11.6.1). The Care-of Test
Init message uses the MH Type value 2. When this value is indicated
in the MH Type field, the format of the Message Data field in the
Mobility Header is as follows:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ Care-of Init Cookie +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
. .
. Mobility Options .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Reserved
16-bit field reserved for future use. The value MUST be
initialized to zero by the sender, and MUST be ignored by the
receiver.
Care-of Init Cookie
64-bit field which contains a random value, the care-of init
cookie.
Johnson, et al. Standard Track [Page 36]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Mobility Options
Variable-length field of such length that the complete Mobility
Header is an integer multiple of 8 octets long. This field
contains zero or more TLV-encoded mobility options. The receiver
MUST ignore and skip any options which it does not understand.
This specification does not define any options valid for the
Care-of Test Init message.
If no actual options are present in this message, no padding is
necessary and the Header Len field will be set to 1.
6.1.5. Home Test Message
The Home Test (HoT) message is a response to the Home Test Init
message, and is sent from the correspondent node to the mobile node
(see Section 5.2.5). The Home Test message uses the MH Type value 3.
When this value is indicated in the MH Type field, the format of the
Message Data field in the Mobility Header is as follows:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Home Nonce Index |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ Home Init Cookie +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ Home Keygen Token +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
. .
. Mobility options .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Home Nonce Index
This field will be echoed back by the mobile node to the
correspondent node in a subsequent Binding Update.
Home Init Cookie
64-bit field which contains the home init cookie.
Johnson, et al. Standard Track [Page 37]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Home Keygen Token
This field contains the 64 bit home keygen token used in the
return routability procedure.
Mobility Options
Variable-length field of such length that the complete Mobility
Header is an integer multiple of 8 octets long. This field
contains zero or more TLV-encoded mobility options. The receiver
MUST ignore and skip any options which it does not understand.
This specification does not define any options valid for the Home
Test message.
If no actual options are present in this message, no padding is
necessary and the Header Len field will be set to 2.
6.1.6. Care-of Test Message
The Care-of Test (CoT) message is a response to the Care-of Test Init
message, and is sent from the correspondent node to the mobile node
(see Section 11.6.2). The Care-of Test message uses the MH Type
value 4. When this value is indicated in the MH Type field, the
format of the Message Data field in the Mobility Header is as
follows:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Care-of Nonce Index |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ Care-of Init Cookie +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ Care-of Keygen Token +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
. .
. Mobility Options .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Care-of Nonce Index
This value will be echoed back by the mobile node to the
correspondent node in a subsequent Binding Update.
Johnson, et al. Standard Track [Page 38]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Care-of Init Cookie
64-bit field which contains the care-of init cookie.
Care-of Keygen Token
This field contains the 64 bit care-of keygen token used in the
return routability procedure.
Mobility Options
Variable-length field of such length that the complete Mobility
Header is an integer multiple of 8 octets long. This field
contains zero or more TLV-encoded mobility options. The receiver
MUST ignore and skip any options which it does not understand.
This specification does not define any options valid for the
Care-of Test message.
If no actual options are present in this message, no padding is
necessary and the Header Len field will be set to 2.
6.1.7. Binding Update Message
The Binding Update (BU) message is used by a mobile node to notify
other nodes of a new care-of address for itself. Binding Updates are
sent as described in Section 11.7.1 and Section 11.7.2.
The Binding Update uses the MH Type value 5. When this value is
indicated in the MH Type field, the format of the Message Data field
in the Mobility Header is as follows:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence # |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|A|H|L|K| Reserved | Lifetime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
. .
. Mobility options .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Acknowledge (A)
The Acknowledge (A) bit is set by the sending mobile node to
request a Binding Acknowledgement (Section 6.1.8) be returned upon
receipt of the Binding Update.
Johnson, et al. Standard Track [Page 39]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Home Registration (H)
The Home Registration (H) bit is set by the sending mobile node to
request that the receiving node should act as this node's home
agent. The destination of the packet carrying this message MUST
be that of a router sharing the same subnet prefix as the home
address of the mobile node in the binding.
Link-Local Address Compatibility (L)
The Link-Local Address Compatibility (L) bit is set when the home
address reported by the mobile node has the same interface
identifier as the mobile node's link-local address.
Key Management Mobility Capability (K)
If this bit is cleared, the protocol used for establishing the
IPsec security associations between the mobile node and the home
agent does not survive movements. It may then have to be rerun.
(Note that the IPsec security associations themselves are expected
to survive movements.) If manual IPsec configuration is used, the
bit MUST be cleared.
This bit is valid only in Binding Updates sent to the home agent,
and MUST be cleared in other Binding Updates. Correspondent nodes
MUST ignore this bit.
Reserved
These fields are unused. They MUST be initialized to zero by the
sender and MUST be ignored by the receiver.
Sequence #
A 16-bit unsigned integer used by the receiving node to sequence
Binding Updates and by the sending node to match a returned
Binding Acknowledgement with this Binding Update.
Lifetime
16-bit unsigned integer. The number of time units remaining
before the binding MUST be considered expired. A value of zero
indicates that the Binding Cache entry for the mobile node MUST be
deleted. (In this case the specified care-of address MUST also be
set equal to the home address.) One time unit is 4 seconds.
Johnson, et al. Standard Track [Page 40]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Mobility Options
Variable-length field of such length that the complete Mobility
Header is an integer multiple of 8 octets long. This field
contains zero or more TLV-encoded mobility options. The encoding
and format of defined options are described in Section 6.2. The
receiver MUST ignore and skip any options which it does not
understand.
The following options are valid in a Binding Update:
* Binding Authorization Data option (this option is mandatory in
Binding Updates sent to a correspondent node)
* Nonce Indices option.
* Alternate Care-of Address option
If no options are present in this message, 4 octets of padding are
necessary and the Header Len field will be set to 1.
The care-of address is specified either by the Source Address field
in the IPv6 header or by the Alternate Care-of Address option, if
present. The care-of address MUST be a unicast routable address.
IPv6 Source Address MUST be a topologically correct source address.
Binding Updates for a care-of address which is not a unicast routable
address MUST be silently discarded. Similarly, the Binding Update
MUST be silently discarded if the care-of address appears as a home
address in an existing Binding Cache entry, with its current location
creating a circular reference back to the home address specified in
the Binding Update (possibly through additional entries).
The deletion of a binding can be indicated by setting the Lifetime
field to 0 and by setting the care-of address equal to the home
address. In deletion, the generation of the binding management key
depends exclusively on the home keygen token, as explained in Section
5.2.5. (Note that while the senders are required to set both the
Lifetime field to 0 and the care-of address equal to the home
address, Section 9.5.1 rules for receivers are more liberal, and
interpret either condition as a deletion.)
Correspondent nodes SHOULD NOT delete the Binding Cache entry before
the lifetime expires, if any application hosted by the correspondent
node is still likely to require communication with the mobile node.
A Binding Cache entry that is de-allocated prematurely might cause
subsequent packets to be dropped from the mobile node, if they
contain the Home Address destination option. This situation is
recoverable, since a Binding Error message is sent to the mobile node
Johnson, et al. Standard Track [Page 41]
^L
RFC 3775 Mobility Support in IPv6 June 2004
(see Section 6.1.9); however, it causes unnecessary delay in the
communications.
6.1.8. Binding Acknowledgement Message
The Binding Acknowledgement is used to acknowledge receipt of a
Binding Update (Section 6.1.7). This packet is sent as described in
Section 9.5.4 and Section 10.3.1.
The Binding Acknowledgement has the MH Type value 6. When this value
is indicated in the MH Type field, the format of the Message Data
field in the Mobility Header is as follows:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Status |K| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence # | Lifetime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
. .
. Mobility options .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Key Management Mobility Capability (K)
If this bit is cleared, the protocol used by the home agent for
establishing the IPsec security associations between the mobile
node and the home agent does not survive movements. It may then
have to be rerun. (Note that the IPsec security associations
themselves are expected to survive movements.)
Correspondent nodes MUST set the K bit to 0.
Reserved
These fields are unused. They MUST be initialized to zero by the
sender and MUST be ignored by the receiver.
Johnson, et al. Standard Track [Page 42]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Status
8-bit unsigned integer indicating the disposition of the Binding
Update. Values of the Status field less than 128 indicate that
the Binding Update was accepted by the receiving node. Values
greater than or equal to 128 indicate that the Binding Update was
rejected by the receiving node. The following Status values are
currently defined:
0 Binding Update accepted
1 Accepted but prefix discovery necessary
128 Reason unspecified
129 Administratively prohibited
130 Insufficient resources
131 Home registration not supported
132 Not home subnet
133 Not home agent for this mobile node
134 Duplicate Address Detection failed
135 Sequence number out of window
136 Expired home nonce index
137 Expired care-of nonce index
138 Expired nonces
139 Registration type change disallowed
Up-to-date values of the Status field are to be specified in the IANA
registry of assigned numbers [19].
Sequence #
The Sequence Number in the Binding Acknowledgement is copied from
the Sequence Number field in the Binding Update. It is used by
the mobile node in matching this Binding Acknowledgement with an
outstanding Binding Update.
Johnson, et al. Standard Track [Page 43]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Lifetime
The granted lifetime, in time units of 4 seconds, for which this
node SHOULD retain the entry for this mobile node in its Binding
Cache.
The value of this field is undefined if the Status field indicates
that the Binding Update was rejected.
Mobility Options
Variable-length field of such length that the complete Mobility
Header is an integer multiple of 8 octets long. This field
contains zero or more TLV-encoded mobility options. The encoding
and format of defined options are described in Section 6.2. The
receiver MUST ignore and skip any options which it does not
understand.
There MAY be additional information, associated with this Binding
Acknowledgement that need not be present in all Binding
Acknowledgements sent. Mobility options allow future extensions
to the format of the Binding Acknowledgement to be defined. The
following options are valid for the Binding Acknowledgement:
* Binding Authorization Data option (this option is mandatory in
Binding Acknowledgements sent by a correspondent node, except
where otherwise noted in Section 9.5.4)
* Binding Refresh Advice option
If no options are present in this message, 4 octets of padding are
necessary and the Header Len field will be set to 1.
6.1.9. Binding Error Message
The Binding Error (BE) message is used by the correspondent node to
signal an error related to mobility, such as an inappropriate attempt
to use the Home Address destination option without an existing
binding; see Section 9.3.3 for details.
Johnson, et al. Standard Track [Page 44]
^L
RFC 3775 Mobility Support in IPv6 June 2004
The Binding Error message uses the MH Type value 7. When this value
is indicated in the MH Type field, the format of the Message Data
field in the Mobility Header is as follows:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Status | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Home Address +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. .
. Mobility Options .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Status
8-bit unsigned integer indicating the reason for this message.
The following values are currently defined:
1 Unknown binding for Home Address destination option
2 Unrecognized MH Type value
Reserved
A 8-bit field reserved for future use. The value MUST be
initialized to zero by the sender, and MUST be ignored by the
receiver.
Home Address
The home address that was contained in the Home Address
destination option. The mobile node uses this information to
determine which binding does not exist, in cases where the mobile
node has several home addresses.
Johnson, et al. Standard Track [Page 45]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Mobility Options
Variable-length field of such length that the complete Mobility
Header is an integer multiple of 8 octets long. This field
contains zero or more TLV-encoded mobility options. The receiver
MUST ignore and skip any options which it does not understand.
There MAY be additional information, associated with this Binding
Error message that need not be present in all Binding Error
messages sent. Mobility options allow future extensions to the
format of the format of the Binding Error message to be defined.
The encoding and format of defined options are described in
Section 6.2. This specification does not define any options valid
for the Binding Error message.
If no actual options are present in this message, no padding is
necessary and the Header Len field will be set to 2.
6.2. Mobility Options
Mobility messages can include zero or more mobility options. This
allows optional fields that may not be needed in every use of a
particular Mobility Header, as well as future extensions to the
format of the messages. Such options are included in the Message
Data field of the message itself, after the fixed portion of the
message data specified in the message subsections of Section 6.1.
The presence of such options will be indicated by the Header Len of
the Mobility Header. If included, the Binding Authorization Data
option (Section 6.2.7) MUST be the last option and MUST NOT have
trailing padding. Otherwise, options can be placed in any order.
6.2.1. Format
Mobility options are encoded within the remaining space of the
Message Data field of a mobility message, using a type-length-value
(TLV) format as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Option Type | Option Length | Option Data...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Johnson, et al. Standard Track [Page 46]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Option Type
8-bit identifier of the type of mobility option. When processing
a Mobility Header containing an option for which the Option Type
value is not recognized by the receiver, the receiver MUST quietly
ignore and skip over the option, correctly handling any remaining
options in the message.
Option Length
8-bit unsigned integer, representing the length in octets of the
mobility option, not including the Option Type and Option Length
fields.
Option Data
A variable length field that contains data specific to the option.
The following subsections specify the Option types which are
currently defined for use in the Mobility Header.
Implementations MUST silently ignore any mobility options that they
do not understand.
Mobility options may have alignment requirements. Following the
convention in IPv6, these options are aligned in a packet so that
multi-octet values within the Option Data field of each option fall
on natural boundaries (i.e., fields of width n octets are placed at
an integer multiple of n octets from the start of the header, for n =
1, 2, 4, or 8) [11].
6.2.2. Pad1
The Pad1 option does not have any alignment requirements. Its format
is as follows:
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| Type = 0 |
+-+-+-+-+-+-+-+-+
NOTE! the format of the Pad1 option is a special case - it has
neither Option Length nor Option Data fields.
Johnson, et al. Standard Track [Page 47]
^L
RFC 3775 Mobility Support in IPv6 June 2004
The Pad1 option is used to insert one octet of padding in the
Mobility Options area of a Mobility Header. If more than one octet
of padding is required, the PadN option, described next, should be
used rather than multiple Pad1 options.
6.2.3. PadN
The PadN option does not have any alignment requirements. Its format
is as follows:
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - - -
| Type = 1 | Option Length | Option Data
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - - -
The PadN option is used to insert two or more octets of padding in
the Mobility Options area of a mobility message. For N octets of
padding, the Option Length field contains the value N-2, and the
Option Data consists of N-2 zero-valued octets. PadN Option data
MUST be ignored by the receiver.
6.2.4. Binding Refresh Advice
The Binding Refresh Advice option has an alignment requirement of 2n.
Its format is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 2 | Length = 2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Refresh Interval |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Binding Refresh Advice option is only valid in the Binding
Acknowledgement, and only on Binding Acknowledgements sent from the
mobile node's home agent in reply to a home registration. The
Refresh Interval is measured in units of four seconds, and indicates
remaining time until the mobile node SHOULD send a new home
registration to the home agent. The Refresh Interval MUST be set to
indicate a smaller time interval than the Lifetime value of the
Binding Acknowledgement.
Johnson, et al. Standard Track [Page 48]
^L
RFC 3775 Mobility Support in IPv6 June 2004
6.2.5. Alternate Care-of Address
The Alternate Care-of Address option has an alignment requirement of
8n+6. Its format is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 3 | Length = 16 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Alternate Care-of Address +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Normally, a Binding Update specifies the desired care-of address in
the Source Address field of the IPv6 header. However, this is not
possible in some cases, such as when the mobile node wishes to
indicate a care-of address which it cannot use as a topologically
correct source address (Section 6.1.7 and Section 11.7.2) or when the
used security mechanism does not protect the IPv6 header (Section
11.7.1).
The Alternate Care-of Address option is provided for these
situations. This option is valid only in Binding Update. The
Alternate Care-of Address field contains an address to use as the
care-of address for the binding, rather than using the Source Address
of the packet as the care-of address.
6.2.6. Nonce Indices
The Nonce Indices option has an alignment requirement of 2n. Its
format is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 4 | Length = 4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Home Nonce Index | Care-of Nonce Index |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Johnson, et al. Standard Track [Page 49]
^L
RFC 3775 Mobility Support in IPv6 June 2004
The Nonce Indices option is valid only in the Binding Update message
sent to a correspondent node, and only when present together with a
Binding Authorization Data option. When the correspondent node
authorizes the Binding Update, it needs to produce home and care-of
keygen tokens from its stored random nonce values.
The Home Nonce Index field tells the correspondent node which nonce
value to use when producing the home keygen token.
The Care-of Nonce Index field is ignored in requests to delete a
binding. Otherwise, it tells the correspondent node which nonce
value to use when producing the care-of keygen token.
6.2.7. Binding Authorization Data
The Binding Authorization Data option does not have alignment
requirements as such. However, since this option must be the last
mobility option, an implicit alignment requirement is 8n + 2. The
format of this option is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 5 | Option Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| Authenticator |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Binding Authorization Data option is valid in the Binding Update
and Binding Acknowledgement.
The Option Length field contains the length of the authenticator in
octets.
The Authenticator field contains a cryptographic value which can be
used to determine that the message in question comes from the right
authority. Rules for calculating this value depends on the used
authorization procedure.
Johnson, et al. Standard Track [Page 50]
^L
RFC 3775 Mobility Support in IPv6 June 2004
For the return routability procedure, this option can appear in the
Binding Update and Binding Acknowledgements. Rules for calculating
the Authenticator value are the following:
Mobility Data = care-of address | correspondent | MH Data
Authenticator = First (96, HMAC_SHA1 (Kbm, Mobility Data))
Where | denotes concatenation. "Care-of address" is the care-of
address which will be registered for the mobile node if the Binding
Update succeeds, or the home address of the mobile node if this
option is used in de-registration. Note also that this address might
be different from the source address of the Binding Update message,
if the Alternative Care-of Address mobility option is used, or when
the lifetime of the binding is set to zero.
The "correspondent" is the IPv6 address of the correspondent node.
Note that, if the message is sent to a destination which is itself
mobile, the "correspondent" address may not be the address found in
the Destination Address field of the IPv6 header; instead the home
address from the type 2 Routing header should be used.
"MH Data" is the content of the Mobility Header, excluding the
Authenticator field itself. The Authenticator value is calculated as
if the Checksum field in the Mobility Header was zero. The Checksum
in the transmitted packet is still calculated in the usual manner,
with the calculated Authenticator being a part of the packet
protected by the Checksum. Kbm is the binding management key, which
is typically created using nonces provided by the correspondent node
(see Section 9.4). Note that while the contents of a potential Home
Address destination option are not covered in this formula, the rules
for the calculation of the Kbm do take the home address in account.
This ensures that the MAC will be different for different home
addresses.
The first 96 bits from the MAC result are used as the Authenticator
field.
6.3. Home Address Option
The Home Address option is carried by the Destination Option
extension header (Next Header value = 60). It is used in a packet
sent by a mobile node while away from home, to inform the recipient
of the mobile node's home address.
Johnson, et al. Standard Track [Page 51]
^L
RFC 3775 Mobility Support in IPv6 June 2004
The Home Address option is encoded in type-length-value (TLV) format
as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Option Type | Option Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Home Address +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Option Type
201 = 0xC9
Option Length
8-bit unsigned integer. Length of the option, in octets,
excluding the Option Type and Option Length fields. This field
MUST be set to 16.
Home Address
The home address of the mobile node sending the packet. This
address MUST be a unicast routable address.
The alignment requirement [11] for the Home Address option is 8n+6.
The three highest-order bits of the Option Type field are encoded to
indicate specific processing of the option [11]; for the Home Address
option, these three bits are set to 110. This indicates the
following processing requirements:
o Any IPv6 node that does not recognize the Option Type must discard
the packet, and if the packet's Destination Address was not a
multicast address, return an ICMP Parameter Problem, Code 2,
message to the packet's Source Address. The Pointer field in the
ICMP message SHOULD point at the Option Type field. Otherwise,
for multicast addresses, the ICMP message MUST NOT be sent.
o The data within the option cannot change en route to the packet's
final destination.
Johnson, et al. Standard Track [Page 52]
^L
RFC 3775 Mobility Support in IPv6 June 2004
The Home Address option MUST be placed as follows:
o After the routing header, if that header is present
o Before the Fragment Header, if that header is present
o Before the AH Header or ESP Header, if either one of those headers
are present
For each IPv6 packet header, the Home Address Option MUST NOT appear
more than once. However, an encapsulated packet [15] MAY contain a
separate Home Address option associated with each encapsulating IP
header.
The inclusion of a Home Address destination option in a packet
affects the receiving node's processing of only this single packet.
No state is created or modified in the receiving node as a result of
receiving a Home Address option in a packet. In particular, the
presence of a Home Address option in a received packet MUST NOT alter
the contents of the receiver's Binding Cache and MUST NOT cause any
changes in the routing of subsequent packets sent by this receiving
node.
6.4. Type 2 Routing Header
Mobile IPv6 defines a new routing header variant, the type 2 routing
header, to allow the packet to be routed directly from a
correspondent to the mobile node's care-of address. The mobile
node's care-of address is inserted into the IPv6 Destination Address
field. Once the packet arrives at the care-of address, the mobile
node retrieves its home address from the routing header, and this is
used as the final destination address for the packet.
The new routing header uses a different type than defined for
"regular" IPv6 source routing, enabling firewalls to apply different
rules to source routed packets than to Mobile IPv6. This routing
header type (type 2) is restricted to carry only one IPv6 address.
All IPv6 nodes which process this routing header MUST verify that the
address contained within is the node's own home address in order to
prevent packets from being forwarded outside the node. The IP
address contained in the routing header, since it is the mobile
node's home address, MUST be a unicast routable address.
Furthermore, if the scope of the home address is smaller than the
scope of the care-of address, the mobile node MUST discard the packet
(see Section 4.6).
Johnson, et al. Standard Track [Page 53]
^L
RFC 3775 Mobility Support in IPv6 June 2004
6.4.1. Format
The type 2 routing header has the following format:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Header | Hdr Ext Len=2 | Routing Type=2|Segments Left=1|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Home Address +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Next Header
8-bit selector. Identifies the type of header immediately
following the routing header. Uses the same values as the IPv6
Next Header field [11].
Hdr Ext Len
2 (8-bit unsigned integer); length of the routing header in 8-
octet units, not including the first 8 octets.
Routing Type
2 (8-bit unsigned integer).
Segments Left
1 (8-bit unsigned integer).
Reserved
32-bit reserved field. The value MUST be initialized to zero by
the sender, and MUST be ignored by the receiver.
Home Address
The Home Address of the destination Mobile Node.
Johnson, et al. Standard Track [Page 54]
^L
RFC 3775 Mobility Support in IPv6 June 2004
For a type 2 routing header, the Hdr Ext Len MUST be 2. The Segments
Left value describes the number of route segments remaining; i.e.,
number of explicitly listed intermediate nodes still to be visited
before reaching the final destination. Segments Left MUST be 1. The
ordering rules for extension headers in an IPv6 packet are described
in Section 4.1 of RFC 2460 [11]. The type 2 routing header defined
for Mobile IPv6 follows the same ordering as other routing headers.
If both a type 0 and a type 2 routing header are present, the type 2
routing header should follow the other routing header. A packet
containing such nested encapsulation should be created as if the
inner (type 2) routing header was constructed first and then treated
as an original packet by the outer (type 0) routing header
construction process.
In addition, the general procedures defined by IPv6 for routing
headers suggest that a received routing header MAY be automatically
"reversed" to construct a routing header for use in any response
packets sent by upper-layer protocols, if the received packet is
authenticated [6]. This MUST NOT be done automatically for type 2
routing headers.
6.5. ICMP Home Agent Address Discovery Request Message
The ICMP Home Agent Address Discovery Request message is used by a
mobile node to initiate the dynamic home agent address discovery
mechanism, as described in Section 11.4.1. The mobile node sends the
Home Agent Address Discovery Request message to the Mobile IPv6
Home-Agents anycast address [16] for its own home subnet prefix.
(Note that the currently defined anycast addresses may not work with
all prefix lengths other than those defined in RFC 2373 [3, 35].)
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identifier | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type
144
Code
0
Johnson, et al. Standard Track [Page 55]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Checksum
The ICMP checksum [14].
Identifier
An identifier to aid in matching Home Agent Address Discovery
Reply messages to this Home Agent Address Discovery Request
message.
Reserved
This field is unused. It MUST be initialized to zero by the
sender and MUST be ignored by the receiver.
The Source Address of the Home Agent Address Discovery Request
message packet is typically one of the mobile node's current care-of
addresses. At the time of performing this dynamic home agent address
discovery procedure, it is likely that the mobile node is not
registered with any home agent. Therefore, neither the nature of the
address nor the identity of the mobile node can be established at
this time. The home agent MUST then return the Home Agent Address
Discovery Reply message directly to the Source Address chosen by the
mobile node.
6.6. ICMP Home Agent Address Discovery Reply Message
The ICMP Home Agent Address Discovery Reply message is used by a home
agent to respond to a mobile node that uses the dynamic home agent
address discovery mechanism, as described in Section 10.5.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identifier | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
. .
. Home Agent Addresses .
. .
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Johnson, et al. Standard Track [Page 56]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Type
145
Code
0
Checksum
The ICMP checksum [14].
Identifier
The identifier from the invoking Home Agent Address Discovery
Request message.
Reserved
This field is unused. It MUST be initialized to zero by the
sender and MUST be ignored by the receiver.
Home Agent Addresses
A list of addresses of home agents on the home link for the mobile
node. The number of addresses presented in the list is indicated
by the remaining length of the IPv6 packet carrying the Home Agent
Address Discovery Reply message.
6.7. ICMP Mobile Prefix Solicitation Message Format
The ICMP Mobile Prefix Solicitation Message is sent by a mobile node
to its home agent while it is away from home. The purpose of the
message is to solicit a Mobile Prefix Advertisement from the home
agent, which will allow the mobile node to gather prefix information
about its home network. This information can be used to configure
and update home address(es) according to changes in prefix
information supplied by the home agent.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identifier | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Johnson, et al. Standard Track [Page 57]
^L
RFC 3775 Mobility Support in IPv6 June 2004
IP Fields:
Source Address
The mobile node's care-of address.
Destination Address
The address of the mobile node's home agent. This home agent must
be on the link that the mobile node wishes to learn prefix
information about.
Hop Limit
Set to an initial hop limit value, similarly to any other unicast
packet sent by the mobile node.
Destination Option:
A Home Address destination option MUST be included.
ESP header:
IPsec headers MUST be supported and SHOULD be used as described in
Section 5.4.
ICMP Fields:
Type
146
Code
0
Checksum
The ICMP checksum [14].
Identifier
An identifier to aid in matching a future Mobile Prefix
Advertisement to this Mobile Prefix Solicitation.
Johnson, et al. Standard Track [Page 58]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Reserved
This field is unused. It MUST be initialized to zero by the
sender and MUST be ignored by the receiver.
The Mobile Prefix Solicitation messages may have options. These
options MUST use the option format defined in RFC 2461 [12]. This
document does not define any option types for the Mobile Prefix
Solicitation message, but future documents may define new options.
Home agents MUST silently ignore any options they do not recognize
and continue processing the message.
6.8. ICMP Mobile Prefix Advertisement Message Format
A home agent will send a Mobile Prefix Advertisement to a mobile node
to distribute prefix information about the home link while the mobile
node is traveling away from the home network. This will occur in
response to a Mobile Prefix Solicitation with an Advertisement, or by
an unsolicited Advertisement sent according to the rules in Section
10.6.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identifier |M|O| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Options ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
IP Fields:
Source Address
The home agent's address as the mobile node would expect to see it
(i.e., same network prefix).
Destination Address
If this message is a response to a Mobile Prefix Solicitation,
this field contains the Source Address field from that packet.
For unsolicited messages, the mobile node's care-of address SHOULD
be used. Note that unsolicited messages can only be sent if the
mobile node is currently registered with the home agent.
Johnson, et al. Standard Track [Page 59]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Routing header:
A type 2 routing header MUST be included.
ESP header:
IPsec headers MUST be supported and SHOULD be used as described in
Section 5.4.
ICMP Fields:
Type
147
Code
0
Checksum
The ICMP checksum [14].
Identifier
An identifier to aid in matching this Mobile Prefix Advertisement
to a previous Mobile Prefix Solicitation.
M
1-bit Managed Address Configuration flag. When set, hosts use the
administered (stateful) protocol for address autoconfiguration in
addition to any addresses autoconfigured using stateless address
autoconfiguration. The use of this flag is described in [12, 13].
O
1-bit Other Stateful Configuration flag. When set, hosts use the
administered (stateful) protocol for autoconfiguration of other
(non-address) information. The use of this flag is described in
[12, 13].
Reserved
This field is unused. It MUST be initialized to zero by the
sender and MUST be ignored by the receiver.
Johnson, et al. Standard Track [Page 60]
^L
RFC 3775 Mobility Support in IPv6 June 2004
The Mobile Prefix Advertisement messages may have options. These
options MUST use the option format defined in RFC 2461 [12]. This
document defines one option which may be carried in a Mobile Prefix
Advertisement message, but future documents may define new options.
Mobile nodes MUST silently ignore any options they do not recognize
and continue processing the message.
Prefix Information
Each message contains one or more Prefix Information options.
Each option carries the prefix(es) that the mobile node should use
to configure its home address(es). Section 10.6 describes which
prefixes should be advertised to the mobile node.
The Prefix Information option is defined in Section 4.6.2 of RFC
2461 [12], with modifications defined in Section 7.2 of this
specification. The home agent MUST use this modified Prefix
Information option to send home network prefixes as defined in
Section 10.6.1.
If the Advertisement is sent in response to a Mobile Prefix
Solicitation, the home agent MUST copy the Identifier value from that
message into the Identifier field of the Advertisement.
The home agent MUST NOT send more than one Mobile Prefix
Advertisement message per second to any mobile node.
The M and O bits MUST be cleared if the Home Agent DHCPv6 support is
not provided. If such support is provided then they are set in
concert with the home network's administrative settings.
7. Modifications to IPv6 Neighbor Discovery
7.1. Modified Router Advertisement Message Format
Mobile IPv6 modifies the format of the Router Advertisement message
[12] by the addition of a single flag bit to indicate that the router
sending the Advertisement message is serving as a home agent on this
link. The format of the Router Advertisement message is as follows:
Johnson, et al. Standard Track [Page 61]
^L
RFC 3775 Mobility Support in IPv6 June 2004
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Cur Hop Limit |M|O|H| Reserved| Router Lifetime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reachable Time |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Retrans Timer |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Options ...
+-+-+-+-+-+-+-+-+-+-+-+-
This format represents the following changes over that originally
specified for Neighbor Discovery [12]:
Home Agent (H)
The Home Agent (H) bit is set in a Router Advertisement to
indicate that the router sending this Router Advertisement is also
functioning as a Mobile IPv6 home agent on this link.
Reserved
Reduced from a 6-bit field to a 5-bit field to account for the
addition of the above bit.
7.2. Modified Prefix Information Option Format
Mobile IPv6 requires knowledge of a router's global address in
building a Home Agents List as part of the dynamic home agent address
discovery mechanism.
However, Neighbor Discovery [12] only advertises a router's link-
local address, by requiring this address to be used as the IP Source
Address of each Router Advertisement.
Mobile IPv6 extends Neighbor Discovery to allow a router to advertise
its global address, by the addition of a single flag bit in the
format of a Prefix Information option for use in Router Advertisement
messages. The format of the Prefix Information option is as follows:
Johnson, et al. Standard Track [Page 62]
^L
RFC 3775 Mobility Support in IPv6 June 2004
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | Prefix Length |L|A|R|Reserved1|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Valid Lifetime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Preferred Lifetime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Prefix +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
This format represents the following changes over that originally
specified for Neighbor Discovery [12]:
Router Address (R)
1-bit router address flag. When set, indicates that the Prefix
field contains a complete IP address assigned to the sending
router. The indicated prefix is the first Prefix Length bits of
the Prefix field. The router IP address has the same scope and
conforms to the same lifetime values as the advertised prefix.
This use of the Prefix field is compatible with its use in
advertising the prefix itself, since Prefix Advertisement uses
only the leading bits. Interpretation of this flag bit is thus
independent of the processing required for the On-Link (L) and
Autonomous Address-Configuration (A) flag bits.
Reserved1
Reduced from a 6-bit field to a 5-bit field to account for the
addition of the above bit.
In a Router Advertisement, a home agent MUST, and all other routers
MAY, include at least one Prefix Information option with the Router
Address (R) bit set. Neighbor Discovery specifies that, if including
all options in a Router Advertisement causes the size of the
Advertisement to exceed the link MTU, multiple Advertisements can be
sent, each containing a subset of the options [12]. Also, when
sending unsolicited multicast Router Advertisements more frequently
Johnson, et al. Standard Track [Page 63]
^L
RFC 3775 Mobility Support in IPv6 June 2004
than the limit specified in RFC 2461 [12], the sending router need
not include all options in each of these Advertisements. However, in
both of these cases the router SHOULD include at least one Prefix
Information option with the Router Address (R) bit set in each such
advertisement, if this bit is set in some advertisement sent by the
router.
In addition, the following requirement can assist mobile nodes in
movement detection. Barring changes in the prefixes for the link,
routers that send multiple Router Advertisements with the Router
Address (R) bit set in some of the included Prefix Information
options SHOULD provide at least one option and router address which
stays the same in all of the Advertisements.
7.3. New Advertisement Interval Option Format
Mobile IPv6 defines a new Advertisement Interval option, used in
Router Advertisement messages to advertise the interval at which the
sending router sends unsolicited multicast Router Advertisements.
The format of the Advertisement Interval option is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Advertisement Interval |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type
7
Length
8-bit unsigned integer. The length of the option (including the
type and length fields) is in units of 8 octets. The value of
this field MUST be 1.
Reserved
This field is unused. It MUST be initialized to zero by the
sender and MUST be ignored by the receiver.
Johnson, et al. Standard Track [Page 64]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Advertisement Interval
32-bit unsigned integer. The maximum time, in milliseconds,
between successive unsolicited Router Advertisement messages sent
by this router on this network interface. Using the conceptual
router configuration variables defined by Neighbor Discovery [12],
this field MUST be equal to the value MaxRtrAdvInterval, expressed
in milliseconds.
Routers MAY include this option in their Router Advertisements. A
mobile node receiving a Router Advertisement containing this option
SHOULD utilize the specified Advertisement Interval for that router
in its movement detection algorithm, as described in Section 11.5.1.
This option MUST be silently ignored for other Neighbor Discovery
messages.
7.4. New Home Agent Information Option Format
Mobile IPv6 defines a new Home Agent Information option, used in
Router Advertisements sent by a home agent to advertise information
specific to this router's functionality as a home agent. The format
of the Home Agent Information option is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Home Agent Preference | Home Agent Lifetime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type
8
Length
8-bit unsigned integer. The length of the option (including the
type and length fields) in units of 8 octets. The value of this
field MUST be 1.
Reserved
This field is unused. It MUST be initialized to zero by the
sender and MUST be ignored by the receiver.
Johnson, et al. Standard Track [Page 65]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Home Agent Preference
16-bit unsigned integer. The preference for the home agent
sending this Router Advertisement, for use in ordering the
addresses returned to a mobile node in the Home Agent Addresses
field of a Home Agent Address Discovery Reply message. Higher
values mean more preferable. If this option is not included in a
Router Advertisement in which the Home Agent (H) bit is set, the
preference value for this home agent MUST be considered to be 0.
Greater values indicate a more preferable home agent than lower
values.
The manual configuration of the Home Agent Preference value is
described in Section 8.4. In addition, the sending home agent MAY
dynamically set the Home Agent Preference value, for example
basing it on the number of mobile nodes it is currently serving or
on its remaining resources for serving additional mobile nodes;
such dynamic settings are beyond the scope of this document. Any
such dynamic setting of the Home Agent Preference, however, MUST
set the preference appropriately, relative to the default Home
Agent Preference value of 0 that may be in use by some home agents
on this link (i.e., a home agent not including a Home Agent
Information option in its Router Advertisements will be considered
to have a Home Agent Preference value of 0).
Home Agent Lifetime
16-bit unsigned integer. The lifetime associated with the home
agent in units of seconds. The default value is the same as the
Router Lifetime, as specified in the main body of the Router
Advertisement. The maximum value corresponds to 18.2 hours. A
value of 0 MUST NOT be used. The Home Agent Lifetime applies only
to this router's usefulness as a home agent; it does not apply to
information contained in other message fields or options.
Home agents MAY include this option in their Router Advertisements.
This option MUST NOT be included in a Router Advertisement in which
the Home Agent (H) bit (see Section 7.1) is not set. If this option
is not included in a Router Advertisement in which the Home Agent (H)
bit is set, the lifetime for this home agent MUST be considered to be
the same as the Router Lifetime in the Router Advertisement. If
multiple Advertisements are being sent instead of a single larger
unsolicited multicast Advertisement, all of the multiple
Advertisements with the Router Address (R) bit set MUST include this
option with the same contents, otherwise this option MUST be omitted
from all Advertisements.
Johnson, et al. Standard Track [Page 66]
^L
RFC 3775 Mobility Support in IPv6 June 2004
This option MUST be silently ignored for other Neighbor Discovery
messages.
If both the Home Agent Preference and Home Agent Lifetime are set to
their default values specified above, this option SHOULD NOT be
included in the Router Advertisement messages sent by this home
agent.
7.5. Changes to Sending Router Advertisements
The Neighbor Discovery protocol specification [12] limits routers to
a minimum interval of 3 seconds between sending unsolicited multicast
Router Advertisement messages from any given network interface
(limited by MinRtrAdvInterval and MaxRtrAdvInterval), stating that:
"Routers generate Router Advertisements frequently enough that
hosts will learn of their presence within a few minutes, but not
frequently enough to rely on an absence of advertisements to
detect router failure; a separate Neighbor Unreachability
Detection algorithm provides failure detection."
This limitation, however, is not suitable to providing timely
movement detection for mobile nodes. Mobile nodes detect their own
movement by learning the presence of new routers as the mobile node
moves into wireless transmission range of them (or physically
connects to a new wired network), and by learning that previous
routers are no longer reachable. Mobile nodes MUST be able to
quickly detect when they move to a link served by a new router, so
that they can acquire a new care-of address and send Binding Updates
to register this care-of address with their home agent and to notify
correspondent nodes as needed.
One method which can provide for faster movement detection, is to
increase the rate at which unsolicited Router Advertisements are
sent. Mobile IPv6 relaxes this limit such that routers MAY send
unsolicited multicast Router Advertisements more frequently. This
method can be applied where the router is expecting to provide
service to visiting mobile nodes (e.g., wireless network interfaces),
or on which it is serving as a home agent to one or more mobile nodes
(who may return home and need to hear its Advertisements).
Routers supporting mobility SHOULD be able to be configured with a
smaller MinRtrAdvInterval value and MaxRtrAdvInterval value to allow
sending of unsolicited multicast Router Advertisements more often.
The minimum allowed values are:
Johnson, et al. Standard Track [Page 67]
^L
RFC 3775 Mobility Support in IPv6 June 2004
o MinRtrAdvInterval 0.03 seconds
o MaxRtrAdvInterval 0.07 seconds
In the case where the minimum intervals and delays are used, the mean
time between unsolicited multicast router advertisements is 50 ms.
Use of these modified limits MUST be configurable (see also the
configuration variable MinDelayBetweenRas in Section 13 which may
also have to be modified accordingly). Systems where these values
are available MUST NOT default to them, and SHOULD default to values
specified in RFC 2461. Knowledge of the type of network interface
and operating environment SHOULD be taken into account in configuring
these limits for each network interface. This is important with some
wireless links, where increasing the frequency of multicast beacons
can cause considerable overhead. Routers SHOULD adhere to the
intervals specified in RFC 2461 [12], if this overhead is likely to
cause service degradation.
Additionally, the possible low values of MaxRtrAdvInterval may cause
some problems with movement detection in some mobile nodes. To
ensure that this is not a problem, Routers SHOULD add 20 ms to any
Advertisement Intervals sent in RAs, which are below 200 ms, in order
to account for scheduling granularities on both the MN and the
Router.
Note that multicast Router Advertisements are not always required in
certain wireless networks that have limited bandwidth. Mobility
detection or link changes in such networks may be done at lower
layers. Router advertisements in such networks SHOULD be sent only
when solicited. In such networks it SHOULD be possible to disable
unsolicited multicast Router Advertisements on specific interfaces.
The MinRtrAdvInterval and MaxRtrAdvInterval in such a case can be set
to some high values.
Home agents MUST include the Source Link-Layer Address option in all
Router Advertisements they send. This simplifies the process of
returning home, as discussed in Section 11.5.4.
Note that according to RFC 2461 [12], AdvDefaultLifetime is by
default based on the value of MaxRtrAdvInterval. AdvDefaultLifetime
is used in the Router Lifetime field of Router Advertisements. Given
that this field is expressed in seconds, a small MaxRtrAdvInterval
value can result in a zero value for this field. To prevent this,
routers SHOULD keep AdvDefaultLifetime in at least one second, even
if the use of MaxRtrAdvInterval would result in a smaller value.
Johnson, et al. Standard Track [Page 68]
^L
RFC 3775 Mobility Support in IPv6 June 2004
8. Requirements for Types of IPv6 Nodes
Mobile IPv6 places some special requirements on the functions
provided by different types of IPv6 nodes. This section summarizes
those requirements, identifying the functionality each requirement is
intended to support.
The requirements are set for the following groups of nodes:
o All IPv6 nodes.
o All IPv6 nodes with support for route optimization.
o All IPv6 routers.
o All Mobile IPv6 home agents.
o All Mobile IPv6 mobile nodes.
It is outside the scope of this specification to specify which of
these groups are mandatory in IPv6. We only describe what is
mandatory for a node that supports, for instance, route optimization.
Other specifications are expected to define the extent of IPv6.
8.1. All IPv6 Nodes
Any IPv6 node may at any time be a correspondent node of a mobile
node, either sending a packet to a mobile node or receiving a packet
from a mobile node. There are no Mobile IPv6 specific MUST
requirements for such nodes, and basic IPv6 techniques are
sufficient. If a mobile node attempts to set up route optimization
with a node with only basic IPv6 support, an ICMP error will signal
that the node does not support such optimizations (Section 11.3.5),
and communications will flow through the home agent.
An IPv6 node MUST NOT support the Home Address destination option,
type 2 routing header, or the Mobility Header unless it fully
supports the requirements listed in the next sections for either
route optimization, mobile node, or home agent functionality.
8.2. IPv6 Nodes with Support for Route Optimization
Nodes that implement route optimization are a subset of all IPv6
nodes on the Internet. The ability of a correspondent node to
participate in route optimization is essential for the efficient
operation of the IPv6 Internet, for the following reasons:
Johnson, et al. Standard Track [Page 69]
^L
RFC 3775 Mobility Support in IPv6 June 2004
o Avoidance of congestion in the home network, and enabling the use
of lower-performance home agent equipment even for supporting
thousands of mobile nodes.
o Reduced network load across the entire Internet, as mobile devices
begin to predominate.
o Reduction of jitter and latency for the communications.
o Greater likelihood of success for QoS signaling as tunneling is
avoided and, again, fewer sources of congestion.
o Improved robustness against network partitions, congestion, and
other problems, since fewer routing path segments are traversed.
These effects combine to enable much better performance and
robustness for communications between mobile nodes and IPv6
correspondent nodes. Route optimization introduces a small amount of
additional state for the peers, some additional messaging, and up to
1.5 roundtrip delays before it can be turned on. However, it is
believed that the benefits far outweigh the costs in most cases.
Section 11.3.1 discusses how mobile nodes may avoid route
optimization for some of the remaining cases, such as very short-term
communications.
The following requirements apply to all correspondent nodes that
support route optimization:
o The node MUST be able to validate a Home Address option using an
existing Binding Cache entry, as described in Section 9.3.1.
o The node MUST be able to insert a type 2 routing header into
packets to be sent to a mobile node, as described in Section
9.3.2.
o Unless the correspondent node is also acting as a mobile node, it
MUST ignore type 2 routing headers and silently discard all
packets that it has received with such headers.
o The node SHOULD be able to interpret ICMP messages as described in
Section 9.3.4.
o The node MUST be able to send Binding Error messages as described
in Section 9.3.3.
o The node MUST be able to process Mobility Headers as described in
Section 9.2.
Johnson, et al. Standard Track [Page 70]
^L
RFC 3775 Mobility Support in IPv6 June 2004
o The node MUST be able to participate in a return routability
procedure (Section 9.4).
o The node MUST be able to process Binding Update messages (Section
9.5).
o The node MUST be able to return a Binding Acknowledgement (Section
9.5.4).
o The node MUST be able to maintain a Binding Cache of the bindings
received in accepted Binding Updates, as described in Section 9.1
and Section 9.6.
o The node SHOULD allow route optimization to be administratively
enabled or disabled. The default SHOULD be enabled.
8.3. All IPv6 Routers
All IPv6 routers, even those not serving as a home agent for Mobile
IPv6, have an effect on how well mobile nodes can communicate:
o Every IPv6 router SHOULD be able to send an Advertisement Interval
option (Section 7.3) in each of its Router Advertisements [12], to
aid movement detection by mobile nodes (as in Section 11.5.1).
The use of this option in Router Advertisements SHOULD be
configurable.
o Every IPv6 router SHOULD be able to support sending unsolicited
multicast Router Advertisements at the faster rate described in
Section 7.5. If the router supports a faster rate, the used rate
MUST be configurable.
o Each router SHOULD include at least one prefix with the Router
Address (R) bit set and with its full IP address in its Router
Advertisements (as described in Section 7.2).
o Routers supporting filtering packets with routing headers SHOULD
support different rules for type 0 and type 2 routing headers (see
Section 6.4) so that filtering of source routed packets (type 0)
will not necessarily limit Mobile IPv6 traffic which is delivered
via type 2 routing headers.
8.4. IPv6 Home Agents
In order for a mobile node to operate correctly while away from home,
at least one IPv6 router on the mobile node's home link must function
as a home agent for the mobile node. The following additional
requirements apply to all IPv6 routers that serve as a home agent:
Johnson, et al. Standard Track [Page 71]
^L
RFC 3775 Mobility Support in IPv6 June 2004
o Every home agent MUST be able to maintain an entry in its Binding
Cache for each mobile node for which it is serving as the home
agent (Section 10.1 and Section 10.3.1).
o Every home agent MUST be able to intercept packets (using proxy
Neighbor Discovery [12]) addressed to a mobile node for which it
is currently serving as the home agent, on that mobile node's home
link, while the mobile node is away from home (Section 10.4.1).
o Every home agent MUST be able to encapsulate [15] such intercepted
packets in order to tunnel them to the primary care-of address for
the mobile node indicated in its binding in the home agent's
Binding Cache (Section 10.4.2).
o Every home agent MUST support decapsulating [15] reverse tunneled
packets sent to it from a mobile node's home address. Every home
agent MUST also check that the source address in the tunneled
packets corresponds to the currently registered location of the
mobile node (Section 10.4.5).
o The node MUST be able to process Mobility Headers as described in
Section 10.2.
o Every home agent MUST be able to return a Binding Acknowledgement
in response to a Binding Update (Section 10.3.1).
o Every home agent MUST maintain a separate Home Agents List for
each link on which it is serving as a home agent, as described in
Section 10.1 and Section 10.5.1.
o Every home agent MUST be able to accept packets addressed to the
Mobile IPv6 Home-Agents anycast address [16] for the subnet on
which it is serving as a home agent, and MUST be able to
participate in dynamic home agent address discovery (Section
10.5).
o Every home agent SHOULD support a configuration mechanism to allow
a system administrator to manually set the value to be sent by
this home agent in the Home Agent Preference field of the Home
Agent Information Option in Router Advertisements that it sends
(Section 7.4).
o Every home agent SHOULD support sending ICMP Mobile Prefix
Advertisements (Section 6.8), and SHOULD respond to Mobile Prefix
Solicitations (Section 6.7). If supported, this behavior MUST be
configurable, so that home agents can be configured to avoid
sending such Prefix Advertisements according to the needs of the
network administration in the home domain.
Johnson, et al. Standard Track [Page 72]
^L
RFC 3775 Mobility Support in IPv6 June 2004
o Every home agent MUST support IPsec ESP for protection of packets
belonging to the return routability procedure (Section 10.4.6).
o Every home agent SHOULD support the multicast group membership
control protocols as described in Section 10.4.3. If this support
is provided, the home agent MUST be capable of using it to
determine which multicast data packets to forward via the tunnel
to the mobile node.
o Home agents MAY support stateful address autoconfiguration for
mobile nodes as described in Section 10.4.4.
8.5. IPv6 Mobile Nodes
Finally, the following requirements apply to all IPv6 nodes capable
of functioning as mobile nodes:
o The node MUST maintain a Binding Update List (Section 11.1).
o The node MUST support sending packets containing a Home Address
option (Section 11.3.1), and follow the required IPsec interaction
(Section 11.3.2).
o The node MUST be able to perform IPv6 encapsulation and
decapsulation [15].
o The node MUST be able to process type 2 routing header as defined
in Section 6.4 and Section 11.3.3.
o The node MUST support receiving a Binding Error message (Section
11.3.6).
o The node MUST support receiving ICMP errors (Section 11.3.5).
o The node MUST support movement detection, care-of address
formation, and returning home (Section 11.5).
o The node MUST be able to process Mobility Headers as described in
Section 11.2.
o The node MUST support the return routability procedure (Section
11.6).
o The node MUST be able to send Binding Updates, as specified in
Section 11.7.1 and Section 11.7.2.
o The node MUST be able to receive and process Binding
Acknowledgements, as specified in Section 11.7.3.
Johnson, et al. Standard Track [Page 73]
^L
RFC 3775 Mobility Support in IPv6 June 2004
o The node MUST support receiving a Binding Refresh Request (Section
6.1.2), by responding with a Binding Update.
o The node MUST support receiving Mobile Prefix Advertisements
(Section 11.4.3) and reconfiguring its home address based on the
prefix information contained therein.
o The node SHOULD support use of the dynamic home agent address
discovery mechanism, as described in Section 11.4.1.
o The node MUST allow route optimization to be administratively
enabled or disabled. The default SHOULD be enabled.
o The node MAY support the multicast address listener part of a
multicast group membership protocol as described in Section
11.3.4. If this support is provided, the mobile node MUST be able
to receive tunneled multicast packets from the home agent.
o The node MAY support stateful address autoconfiguration mechanisms
such as DHCPv6 [29] on the interface represented by the tunnel to
the home agent.
9. Correspondent Node Operation
9.1. Conceptual Data Structures
IPv6 nodes with route optimization support maintain a Binding Cache
of bindings for other nodes. A separate Binding Cache SHOULD be
maintained by each IPv6 node for each of its unicast routable
addresses. The Binding Cache MAY be implemented in any manner
consistent with the external behavior described in this document, for
example by being combined with the node's Destination Cache as
maintained by Neighbor Discovery [12]. When sending a packet, the
Binding Cache is searched before the Neighbor Discovery conceptual
Destination Cache [12].
Each Binding Cache entry conceptually contains the following fields:
o The home address of the mobile node for which this is the Binding
Cache entry. This field is used as the key for searching the
Binding Cache for the destination address of a packet being sent.
o The care-of address for the mobile node indicated by the home
address field in this Binding Cache entry.
Johnson, et al. Standard Track [Page 74]
^L
RFC 3775 Mobility Support in IPv6 June 2004
o A lifetime value, indicating the remaining lifetime for this
Binding Cache entry. The lifetime value is initialized from the
Lifetime field in the Binding Update that created or last modified
this Binding Cache entry.
o A flag indicating whether or not this Binding Cache entry is a
home registration entry (applicable only on nodes which support
home agent functionality).
o The maximum value of the Sequence Number field received in
previous Binding Updates for this home address. The Sequence
Number field is 16 bits long. Sequence Number values MUST be
compared modulo 2**16 as explained in Section 9.5.1.
o Usage information for this Binding Cache entry. This is needed to
implement the cache replacement policy in use in the Binding
Cache. Recent use of a cache entry also serves as an indication
that a Binding Refresh Request should be sent when the lifetime of
this entry nears expiration.
Binding Cache entries not marked as home registrations MAY be
replaced at any time by any reasonable local cache replacement policy
but SHOULD NOT be unnecessarily deleted. The Binding Cache for any
one of a node's IPv6 addresses may contain at most one entry for each
mobile node home address. The contents of a node's Binding Cache
MUST NOT be changed in response to a Home Address option in a
received packet.
9.2. Processing Mobility Headers
Mobility Header processing MUST observe the following rules:
o The checksum must be verified as per Section 6.1. Otherwise, the
node MUST silently discard the message.
o The MH Type field MUST have a known value (Section 6.1.1).
Otherwise, the node MUST discard the message and issue a Binding
Error message as described in Section 9.3.3, with Status field set
to 2 (unrecognized MH Type value).
o The Payload Proto field MUST be IPPROTO_NONE (59 decimal).
Otherwise, the node MUST discard the message and SHOULD send ICMP
Parameter Problem, Code 0, directly to the Source Address of the
packet as specified in RFC 2463 [14]. Thus no Binding Cache
information is used in sending the ICMP message. The Pointer
field in the ICMP message SHOULD point at the Payload Proto field.
Johnson, et al. Standard Track [Page 75]
^L
RFC 3775 Mobility Support in IPv6 June 2004
o The Header Len field in the Mobility Header MUST NOT be less than
the length specified for this particular type of message in
Section 6.1. Otherwise, the node MUST discard the message and
SHOULD send ICMP Parameter Problem, Code 0, directly to the Source
Address of the packet as specified in RFC 2463 [14]. (The Binding
Cache information is again not used.) The Pointer field in the
ICMP message SHOULD point at the Header Len field.
Subsequent checks depend on the particular Mobility Header.
9.3. Packet Processing
This section describes how the correspondent node sends packets to
the mobile node, and receives packets from it.
9.3.1. Receiving Packets with Home Address Option
Packets containing a Home Address option MUST be dropped if the given
home address is not a unicast routable address.
Mobile nodes can include a Home Address destination option in a
packet if they believe the correspondent node has a Binding Cache
entry for the home address of a mobile node. Packets containing a
Home Address option MUST be dropped if there is no corresponding
Binding Cache entry. A corresponding Binding Cache entry MUST have
the same home address as appears in the Home Address destination
option, and the currently registered care-of address MUST be equal to
the source address of the packet. These tests MUST NOT be done for
packets that contain a Home Address option and a Binding Update.
If the packet is dropped due the above tests, the correspondent node
MUST send the Binding Error message as described in Section 9.3.3.
The Status field in this message should be set to 1 (unknown binding
for Home Address destination option).
The correspondent node MUST process the option in a manner consistent
with exchanging the Home Address field from the Home Address option
into the IPv6 header and replacing the original value of the Source
Address field there. After all IPv6 options have been processed, it
MUST be possible for upper layers to process the packet without the
knowledge that it came originally from a care-of address or that a
Home Address option was used.
The use of IPsec Authentication Header (AH) for the Home Address
option is not required, except that if the IPv6 header of a packet is
covered by AH, then the authentication MUST also cover the Home
Address option; this coverage is achieved automatically by the
definition of the Option Type code for the Home Address option, since
Johnson, et al. Standard Track [Page 76]
^L
RFC 3775 Mobility Support in IPv6 June 2004
it indicates that the data within the option cannot change en route
to the packet's final destination, and thus the option is included in
the AH computation. By requiring that any authentication of the IPv6
header also cover the Home Address option, the security of the Source
Address field in the IPv6 header is not compromised by the presence
of a Home Address option.
When attempting to verify AH authentication data in a packet that
contains a Home Address option, the receiving node MUST calculate the
AH authentication data as if the following were true: The Home
Address option contains the care-of address, and the source IPv6
address field of the IPv6 header contains the home address. This
conforms with the calculation specified in Section 11.3.2.
9.3.2. Sending Packets to a Mobile Node
Before sending any packet, the sending node SHOULD examine its
Binding Cache for an entry for the destination address to which the
packet is being sent. If the sending node has a Binding Cache entry
for this address, the sending node SHOULD use a type 2 routing header
to route the packet to this mobile node (the destination node) by way
of its care-of address. However, the sending node MUST not do this
in the following cases:
o When sending an IPv6 Neighbor Discovery [12] packet.
o Where otherwise noted in Section 6.1.
When calculating authentication data in a packet that contains a type
2 routing header, the correspondent node MUST calculate the AH
authentication data as if the following were true: The routing header
contains the care-of address, the destination IPv6 address field of
the IPv6 header contains the home address, and the Segments Left
field is zero. The IPsec Security Policy Database lookup MUST based
on the mobile node's home address.
For instance, assuming there are no additional routing headers in
this packet beyond those needed by Mobile IPv6, the correspondent
node could set the fields in the packet's IPv6 header and routing
header as follows:
o The Destination Address in the packet's IPv6 header is set to the
mobile node's home address (the original destination address to
which the packet was being sent).
Johnson, et al. Standard Track [Page 77]
^L
RFC 3775 Mobility Support in IPv6 June 2004
o The routing header is initialized to contain a single route
segment, containing the mobile node's care-of address copied from
the Binding Cache entry. The Segments Left field is, however,
temporarily set to zero.
The IP layer will insert the routing header before performing any
necessary IPsec processing. Once all IPsec processing has been
performed, the node swaps the IPv6 destination field with the Home
Address field in the routing header, sets the Segments Left field to
one, and sends the packet. This ensures the AH calculation is done
on the packet in the form it will have on the receiver after
advancing the routing header.
Following the definition of a type 2 routing header in Section 6.4,
this packet will be routed to the mobile node's care-of address,
where it will be delivered to the mobile node (the mobile node has
associated the care-of address with its network interface).
Note that following the above conceptual model in an implementation
creates some additional requirements for path MTU discovery since the
layer that decides the packet size (e.g., TCP and applications using
UDP) needs to be aware of the size of the headers added by the IP
layer on the sending node.
If, instead, the sending node has no Binding Cache entry for the
destination address to which the packet is being sent, the sending
node simply sends the packet normally, with no routing header. If
the destination node is not a mobile node (or is a mobile node that
is currently at home), the packet will be delivered directly to this
node and processed normally by it. If, however, the destination node
is a mobile node that is currently away from home, the packet will be
intercepted by the mobile node's home agent and tunneled to the
mobile node's current primary care-of address.
9.3.3. Sending Binding Error Messages
Section 9.2 and Section 9.3.1 describe error conditions that lead to
a need to send a Binding Error message.
A Binding Error message is sent directly to the address that appeared
in the IPv6 Source Address field of the offending packet. If the
Source Address field does not contain a unicast address, the Binding
Error message MUST NOT be sent.
The Home Address field in the Binding Error message MUST be copied
from the Home Address field in the Home Address destination option of
the offending packet, or set to the unspecified address if no such
option appeared in the packet.
Johnson, et al. Standard Track [Page 78]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Note that the IPv6 Source Address and Home Address field values
discussed above are the values from the wire, i.e., before any
modifications possibly performed as specified in Section 9.3.1.
Binding Error messages SHOULD be subject to rate limiting in the same
manner as is done for ICMPv6 messages [14].
9.3.4. Receiving ICMP Error Messages
When the correspondent node has a Binding Cache entry for a mobile
node, all traffic destined to the mobile node goes directly to the
current care-of address of the mobile node using a routing header.
Any ICMP error message caused by packets on their way to the care-of
address will be returned in the normal manner to the correspondent
node.
On the other hand, if the correspondent node has no Binding Cache
entry for the mobile node, the packet will be routed through the
mobile node's home link. Any ICMP error message caused by the packet
on its way to the mobile node while in the tunnel, will be
transmitted to the mobile node's home agent. By the definition of
IPv6 encapsulation [15], the home agent MUST relay certain ICMP error
messages back to the original sender of the packet, which in this
case is the correspondent node.
Thus, in all cases, any meaningful ICMP error messages caused by
packets from a correspondent node to a mobile node will be returned
to the correspondent node. If the correspondent node receives
persistent ICMP Destination Unreachable messages after sending
packets to a mobile node based on an entry in its Binding Cache, the
correspondent node SHOULD delete this Binding Cache entry. Note that
if the mobile node continues to send packets with the Home Address
destination option to this correspondent node, they will be dropped
due to the lack of a binding. For this reason it is important that
only persistent ICMP messages lead to the deletion of the Binding
Cache entry.
9.4. Return Routability Procedure
This subsection specifies actions taken by a correspondent node
during the return routability procedure.
Johnson, et al. Standard Track [Page 79]
^L
RFC 3775 Mobility Support in IPv6 June 2004
9.4.1. Receiving Home Test Init Messages
Upon receiving a Home Test Init message, the correspondent node
verifies the following:
o The packet MUST NOT include a Home Address destination option.
Any packet carrying a Home Test Init message which fails to satisfy
all of these tests MUST be silently ignored.
Otherwise, in preparation for sending the corresponding Home Test
Message, the correspondent node checks that it has the necessary
material to engage in a return routability procedure, as specified in
Section 5.2. The correspondent node MUST have a secret Kcn and a
nonce. If it does not have this material yet, it MUST produce it
before continuing with the return routability procedure.
Section 9.4.3 specifies further processing.
9.4.2. Receiving Care-of Test Init Messages
Upon receiving a Care-of Test Init message, the correspondent node
verifies the following:
o The packet MUST NOT include a Home Address destination option.
Any packet carrying a Care-of Test Init message which fails to
satisfy all of these tests MUST be silently ignored.
Otherwise, in preparation for sending the corresponding Care-of Test
Message, the correspondent node checks that it has the necessary
material to engage in a return routability procedure in the manner
described in Section 9.4.1.
Section 9.4.4 specifies further processing.
9.4.3. Sending Home Test Messages
The correspondent node creates a home keygen token and uses the
current nonce index as the Home Nonce Index. It then creates a Home
Test message (Section 6.1.5) and sends it to the mobile node at the
latter's home address.
Johnson, et al. Standard Track [Page 80]
^L
RFC 3775 Mobility Support in IPv6 June 2004
9.4.4. Sending Care-of Test Messages
The correspondent node creates a care-of keygen token and uses the
current nonce index as the Care-of Nonce Index. It then creates a
Care-of Test message (Section 6.1.6) and sends it to the mobile node
at the latter's care-of address.
9.5. Processing Bindings
This section explains how the correspondent node processes messages
related to bindings. These messages are:
o Binding Update
o Binding Refresh Request
o Binding Acknowledgement
o Binding Error
9.5.1. Receiving Binding Updates
Before accepting a Binding Update, the receiving node MUST validate
the Binding Update according to the following tests:
o The packet MUST contain a unicast routable home address, either in
the Home Address option or in the Source Address, if the Home
Address option is not present.
o The Sequence Number field in the Binding Update is greater than
the Sequence Number received in the previous valid Binding Update
for this home address, if any.
If the receiving node has no Binding Cache entry for the indicated
home address, it MUST accept any Sequence Number value in a received
Binding Update from this mobile node.
This Sequence Number comparison MUST be performed modulo 2**16, i.e.,
the number is a free running counter represented modulo 65536. A
Sequence Number in a received Binding Update is considered less than
or equal to the last received number if its value lies in the range
of the last received number and the preceding 32768 values,
inclusive. For example, if the last received sequence number was 15,
then messages with sequence numbers 0 through 15, as well as 32783
through 65535, would be considered less than or equal.
Johnson, et al. Standard Track [Page 81]
^L
RFC 3775 Mobility Support in IPv6 June 2004
When the Home Registration (H) bit is not set, the following are also
required:
o A Nonce Indices mobility option MUST be present, and the Home and
Care-of Nonce Index values in this option MUST be recent enough to
be recognized by the correspondent node. (Care-of Nonce Index
values are not inspected for requests to delete a binding.)
o The correspondent node MUST re-generate the home keygen token and
the care-of keygen token from the information contained in the
packet. It then generates the binding management key Kbm and uses
it to verify the authenticator field in the Binding Update as
specified in Section 6.1.7.
o The Binding Authorization Data mobility option MUST be present,
and its contents MUST satisfy rules presented in Section 5.2.6.
Note that a care-of address different from the Source Address MAY
have been specified by including an Alternate Care-of Address
mobility option in the Binding Update. When such a message is
received and the return routability procedure is used as an
authorization method, the correspondent node MUST verify the
authenticator by using the address within the Alternate Care-of
Address in the calculations.
o The Binding Authorization Data mobility option MUST be the last
option and MUST NOT have trailing padding.
If the Home Registration (H) bit is set, the Nonce Indices mobility
option MUST NOT be present.
If the mobile node sends a sequence number which is not greater than
the sequence number from the last valid Binding Update for this home
address, then the receiving node MUST send back a Binding
Acknowledgement with status code 135, and the last accepted sequence
number in the Sequence Number field of the Binding Acknowledgement.
If a binding already exists for the given home address and the home
registration flag has a different value than the Home Registration
(H) bit in the Binding Update, then the receiving node MUST send back
a Binding Acknowledgement with status code 139 (registration type
change disallowed). The home registration flag stored in the Binding
Cache entry MUST NOT be changed.
If the receiving node no longer recognizes the Home Nonce Index
value, Care-of Nonce Index value, or both values from the Binding
Update, then the receiving node MUST send back a Binding
Acknowledgement with status code 136, 137, or 138, respectively.
Johnson, et al. Standard Track [Page 82]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Packets carrying Binding Updates that fail to satisfy all of these
tests for any reason other than insufficiency of the Sequence Number,
registration type change, or expired nonce index values, MUST be
silently discarded.
If the Binding Update is valid according to the tests above, then the
Binding Update is processed further as follows:
o The Sequence Number value received from a mobile node in a Binding
Update is stored by the receiving node in its Binding Cache entry
for the given home address.
o If the Lifetime specified in the Binding Update is nonzero and the
specified care-of address is not equal to the home address for the
binding, then this is a request to cache a binding for the home
address. If the Home Registration (H) bit is set in the Binding
Update, the Binding Update is processed according to the procedure
specified in Section 10.3.1; otherwise, it is processed according
to the procedure specified in Section 9.5.2.
o If the Lifetime specified in the Binding Update is zero or the
specified care-of address matches the home address for the
binding, then this is a request to delete the cached binding for
the home address. In this case, the Binding Update MUST include a
valid home nonce index, and the care-of nonce index MUST be
ignored by the correspondent node. The generation of the binding
management key depends then exclusively on the home keygen token
(Section 5.2.5). If the Home Registration (H) bit is set in the
Binding Update, the Binding Update is processed according to the
procedure specified in Section 10.3.2; otherwise, it is processed
according to the procedure specified in Section 9.5.3.
The specified care-of address MUST be determined as follows:
o If the Alternate Care-of Address option is present, the care-of
address is the address in that option.
o Otherwise, the care-of address is the Source Address field in the
packet's IPv6 header.
The home address for the binding MUST be determined as follows:
o If the Home Address destination option is present, the home
address is the address in that option.
o Otherwise, the home address is the Source Address field in the
packet's IPv6 header.
Johnson, et al. Standard Track [Page 83]
^L
RFC 3775 Mobility Support in IPv6 June 2004
9.5.2. Requests to Cache a Binding
This section describes the processing of a valid Binding Update that
requests a node to cache a binding, for which the Home Registration
(H) bit is not set in the Binding Update.
In this case, the receiving node SHOULD create a new entry in its
Binding Cache for this home address, or update its existing Binding
Cache entry for this home address, if such an entry already exists.
The lifetime for the Binding Cache entry is initialized from the
Lifetime field specified in the Binding Update, although this
lifetime MAY be reduced by the node caching the binding; the lifetime
for the Binding Cache entry MUST NOT be greater than the Lifetime
value specified in the Binding Update. Any Binding Cache entry MUST
be deleted after the expiration of its lifetime.
Note that if the mobile node did not request a Binding
Acknowledgement, then it is not aware of the selected shorter
lifetime. The mobile node may thus use route optimization and send
packets with the Home Address destination option. As discussed in
Section 9.3.1, such packets will be dropped if there is no binding.
This situation is recoverable, but can cause temporary packet loss.
The correspondent node MAY refuse to accept a new Binding Cache entry
if it does not have sufficient resources. A new entry MAY also be
refused if the correspondent node believes its resources are utilized
more efficiently in some other purpose, such as serving another
mobile node with higher amount of traffic. In both cases the
correspondent node SHOULD return a Binding Acknowledgement with
status value 130.
9.5.3 Requests to Delete a Binding
This section describes the processing of a valid Binding Update that
requests a node to delete a binding when the Home Registration (H)
bit is not set in the Binding Update.
Any existing binding for the given home address MUST be deleted. A
Binding Cache entry for the home address MUST NOT be created in
response to receiving the Binding Update.
If the Binding Cache entry was created by use of return routability
nonces, the correspondent node MUST ensure that the same nonces are
not used again with the particular home and care-of address. If both
nonces are still valid, the correspondent node has to remember the
particular combination of nonce indexes, addresses, and sequence
number as illegal until at least one of the nonces has become too
old.
Johnson, et al. Standard Track [Page 84]
^L
RFC 3775 Mobility Support in IPv6 June 2004
9.5.4. Sending Binding Acknowledgements
A Binding Acknowledgement may be sent to indicate receipt of a
Binding Update as follows:
o If the Binding Update was discarded as described in Section 9.2 or
Section 9.5.1, a Binding Acknowledgement MUST NOT be sent.
Otherwise the treatment depends on the following rules.
o If the Acknowledge (A) bit set is set in the Binding Update, a
Binding Acknowledgement MUST be sent. Otherwise, the treatment
depends on the below rule.
o If the node rejects the Binding Update due to an expired nonce
index, sequence number being out of window (Section 9.5.1), or
insufficiency of resources (Section 9.5.2), a Binding
Acknowledgement MUST be sent. If the node accepts the Binding
Update, the Binding Acknowledgement SHOULD NOT be sent.
If the node accepts the Binding Update and creates or updates an
entry for this binding, the Status field in the Binding
Acknowledgement MUST be set to a value less than 128. Otherwise, the
Status field MUST be set to a value greater than or equal to 128.
Values for the Status field are described in Section 6.1.8 and in the
IANA registry of assigned numbers [19].
If the Status field in the Binding Acknowledgement contains the value
136 (expired home nonce index), 137 (expired care-of nonce index), or
138 (expired nonces) then the message MUST NOT include the Binding
Authorization Data mobility option. Otherwise, the Binding
Authorization Data mobility option MUST be included, and MUST meet
the specific authentication requirements for Binding Acknowledgements
as defined in Section 5.2.
If the Source Address field of the IPv6 header that carried the
Binding Update does not contain a unicast address, the Binding
Acknowledgement MUST NOT be sent and the Binding Update packet MUST
be silently discarded. Otherwise, the acknowledgement MUST be sent
to the Source Address. Unlike the treatment of regular packets, this
addressing procedure does not use information from the Binding Cache.
However, a routing header is needed in some cases. If the Source
Address is the home address of the mobile node, i.e., the Binding
Update did not contain a Home Address destination option, then the
Binding Acknowledgement MUST be sent to that address and the routing
header MUST NOT be used. Otherwise, the Binding Acknowledgement MUST
be sent using a type 2 routing header which contains the mobile
node's home address.
Johnson, et al. Standard Track [Page 85]
^L
RFC 3775 Mobility Support in IPv6 June 2004
9.5.5. Sending Binding Refresh Requests
If a Binding Cache entry being deleted is still in active use when
sending packets to a mobile node, then the next packet sent to the
mobile node will be routed normally to the mobile node's home link.
Communication with the mobile node continues, but the tunneling from
the home network creates additional overhead and latency in
delivering packets to the mobile node.
If the sender knows that the Binding Cache entry is still in active
use, it MAY send a Binding Refresh Request message to the mobile node
in an attempt to avoid this overhead and latency due to deleting and
recreating the Binding Cache entry. This message is always sent to
the home address of the mobile node.
The correspondent node MAY retransmit Binding Refresh Request
messages as long as the rate limitation is applied. The
correspondent node MUST stop retransmitting when it receives a
Binding Update.
9.6. Cache Replacement Policy
Conceptually, a node maintains a separate timer for each entry in its
Binding Cache. When creating or updating a Binding Cache entry in
response to a received and accepted Binding Update, the node sets the
timer for this entry to the specified Lifetime period. Any entry in
a node's Binding Cache MUST be deleted after the expiration of the
Lifetime specified in the Binding Update from which the entry was
created or last updated.
Each node's Binding Cache will, by necessity, have a finite size. A
node MAY use any reasonable local policy for managing the space
within its Binding Cache.
A node MAY choose to drop any entry already in its Binding Cache in
order to make space for a new entry. For example, a "least-recently
used" (LRU) strategy for cache entry replacement among entries should
work well, unless the size of the Binding Cache is substantially
insufficient. When entries are deleted, the correspondent node MUST
follow the rules in Section 5.2.8 in order to guard the return
routability procedure against replay attacks.
If the node sends a packet to a destination for which it has dropped
the entry from its Binding Cache, the packet will be routed through
the mobile node's home link. The mobile node can detect this and
establish a new binding if necessary.
Johnson, et al. Standard Track [Page 86]
^L
RFC 3775 Mobility Support in IPv6 June 2004
However, if the mobile node believes that the binding still exists,
it may use route optimization and send packets with the Home Address
destination option. This can create temporary packet loss, as
discussed earlier, in the context of binding lifetime reductions
performed by the correspondent node (Section 9.5.2).
10. Home Agent Operation
10.1. Conceptual Data Structures
Each home agent MUST maintain a Binding Cache and Home Agents List.
The rules for maintaining a Binding Cache are the same for home
agents and correspondent nodes and have already been described in
Section 9.1.
The Home Agents List is maintained by each home agent, recording
information about each router on the same link that is acting as a
home agent. This list is used by the dynamic home agent address
discovery mechanism. A router is known to be acting as a home agent,
if it sends a Router Advertisement in which the Home Agent (H) bit is
set. When the lifetime for a list entry (defined below) expires,
that entry is removed from the Home Agents List. The Home Agents
List is similar to the Default Router List conceptual data structure
maintained by each host for Neighbor Discovery [12]. The Home Agents
List MAY be implemented in any manner consistent with the external
behavior described in this document.
Each home agent maintains a separate Home Agents List for each link
on which it is serving as a home agent. A new entry is created or an
existing entry is updated in response to receipt of a valid Router
Advertisement in which the Home Agent (H) bit is set. Each Home
Agents List entry conceptually contains the following fields:
o The link-local IP address of a home agent on the link. This
address is learned through the Source Address of the Router
Advertisements [12] received from the router.
o One or more global IP addresses for this home agent. Global
addresses are learned through Prefix Information options with the
Router Address (R) bit set and received in Router Advertisements
from this link-local address. Global addresses for the router in
a Home Agents List entry MUST be deleted once the prefix
associated with that address is no longer valid [12].
Johnson, et al. Standard Track [Page 87]
^L
RFC 3775 Mobility Support in IPv6 June 2004
o The remaining lifetime of this Home Agents List entry. If a Home
Agent Information Option is present in a Router Advertisement
received from a home agent, the lifetime of the Home Agents List
entry representing that home agent is initialized from the Home
Agent Lifetime field in the option (if present); otherwise, the
lifetime is initialized from the Router Lifetime field in the
received Router Advertisement. If Home Agents List entry lifetime
reaches zero, the entry MUST be deleted from the Home Agents List.
o The preference for this home agent; higher values indicate a more
preferable home agent. The preference value is taken from the
Home Agent Preference field in the received Router Advertisement,
if the Router Advertisement contains a Home Agent Information
Option and is otherwise set to the default value of 0. A home
agent uses this preference in ordering the Home Agents List when
it sends an ICMP Home Agent Address Discovery message.
10.2. Processing Mobility Headers
All IPv6 home agents MUST observe the rules described in Section 9.2
when processing Mobility Headers.
10.3. Processing Bindings
10.3.1. Primary Care-of Address Registration
When a node receives a Binding Update, it MUST validate it and
determine the type of Binding Update according to the steps described
in Section 9.5.1. Furthermore, it MUST authenticate the Binding
Update as described in Section 5.1. An authorization step specific
for the home agent is also needed to ensure that only the right node
can control a particular home address. This is provided through the
home address unequivocally identifying the security association that
must be used.
This section describes the processing of a valid and authorized
Binding Update when it requests the registration of the mobile node's
primary care-of address.
To begin processing the Binding Update, the home agent MUST perform
the following sequence of tests:
o If the node implements only correspondent node functionality, or
has not been configured to act as a home agent, then the node MUST
reject the Binding Update. The node MUST also return a Binding
Acknowledgement to the mobile node, in which the Status field is
set to 131 (home registration not supported).
Johnson, et al. Standard Track [Page 88]
^L
RFC 3775 Mobility Support in IPv6 June 2004
o Else, if the home address for the binding (the Home Address field
in the packet's Home Address option) is not an on-link IPv6
address with respect to the home agent's current Prefix List, then
the home agent MUST reject the Binding Update and SHOULD return a
Binding Acknowledgement to the mobile node, in which the Status
field is set to 132 (not home subnet).
o Else, if the home agent chooses to reject the Binding Update for
any other reason (e.g., insufficient resources to serve another
mobile node as a home agent), then the home agent SHOULD return a
Binding Acknowledgement to the mobile node, in which the Status
field is set to an appropriate value to indicate the reason for
the rejection.
o A Home Address destination option MUST be present in the message.
It MUST be validated as described in Section 9.3.1 with the
following additional rule. The Binding Cache entry existence test
MUST NOT be done for IPsec packets when the Home Address option
contains an address for which the receiving node could act as a
home agent.
If home agent accepts the Binding Update, it MUST then create a new
entry in its Binding Cache for this mobile node or update its
existing Binding Cache entry, if such an entry already exists. The
Home Address field as received in the Home Address option provides
the home address of the mobile node.
The home agent MUST mark this Binding Cache entry as a home
registration to indicate that the node is serving as a home agent for
this binding. Binding Cache entries marked as a home registration
MUST be excluded from the normal cache replacement policy used for
the Binding Cache (Section 9.6) and MUST NOT be removed from the
Binding Cache until the expiration of the Lifetime period.
Unless this home agent already has a binding for the given home
address, the home agent MUST perform Duplicate Address Detection [13]
on the mobile node's home link before returning the Binding
Acknowledgement. This ensures that no other node on the home link
was using the mobile node's home address when the Binding Update
arrived. If this Duplicate Address Detection fails for the given
home address or an associated link local address, then the home agent
MUST reject the complete Binding Update and MUST return a Binding
Acknowledgement to the mobile node, in which the Status field is set
to 134 (Duplicate Address Detection failed). When the home agent
sends a successful Binding Acknowledgement to the mobile node, the
home agent assures to the mobile node that its address(es) will be
kept unique by the home agent for as long as the lifetime was granted
for the binding.
Johnson, et al. Standard Track [Page 89]
^L
RFC 3775 Mobility Support in IPv6 June 2004
The specific addresses, which are to be tested before accepting the
Binding Update and later to be defended by performing Duplicate
Address Detection, depend on the setting of the Link-Local Address
Compatibility (L) bit, as follows:
o L=0: Defend only the given address. Do not derive a link-local
address.
o L=1: Defend both the given non link-local unicast (home) address
and the derived link-local. The link-local address is derived by
replacing the subnet prefix in the mobile node's home address with
the link-local prefix.
The lifetime of the Binding Cache entry depends on a number of
factors:
o The lifetime for the Binding Cache entry MUST NOT be greater than
the Lifetime value specified in the Binding Update.
o The lifetime for the Binding Cache entry MUST NOT be greater than
the remaining valid lifetime for the subnet prefix in the mobile
node's home address specified with the Binding Update. The
remaining valid lifetime for this prefix is determined by the home
agent based on its own Prefix List entry [12].
The remaining preferred lifetime SHOULD NOT have any impact on the
lifetime for the binding cache entry.
The home agent MUST remove a binding when the valid lifetime of
the prefix associated with it expires.
o The home agent MAY further decrease the specified lifetime for the
binding, for example based on a local policy. The resulting
lifetime is stored by the home agent in the Binding Cache entry,
and this Binding Cache entry MUST be deleted by the home agent
after the expiration of this lifetime.
Regardless of the setting of the Acknowledge (A) bit in the Binding
Update, the home agent MUST return a Binding Acknowledgement to the
mobile node constructed as follows:
o The Status field MUST be set to a value indicating success. The
value 1 (accepted but prefix discovery necessary) MUST be used if
the subnet prefix of the specified home address is deprecated, or
becomes deprecated during the lifetime of the binding, or becomes
invalid at the end of the lifetime. The value 0 MUST be used
Johnson, et al. Standard Track [Page 90]
^L
RFC 3775 Mobility Support in IPv6 June 2004
otherwise. For the purposes of comparing the binding and prefix
lifetimes, the prefix lifetimes are first converted into units of
four seconds by ignoring the two least significant bits.
o The Key Management Mobility Capability (K) bit is set if the
following conditions are all fulfilled, and cleared otherwise:
* The Key Management Mobility Capability (K) bit was set in the
Binding Update.
* The IPsec security associations between the mobile node and the
home agent have been established dynamically.
* The home agent has the capability to update its endpoint in the
used key management protocol to the new care-of address every
time it moves.
Depending on the final value of the bit in the Binding
Acknowledgement, the home agent SHOULD perform the following
actions:
K = 0
Discard key management connections, if any, to the old care-of
address. If the mobile node did not have a binding before
sending this Binding Update, discard the connections to the
home address.
K = 1
Move the peer endpoint of the key management protocol
connection, if any, to the new care-of address. For an IKE
phase 1 connection, this means that any IKE packets sent to the
peer are sent to this address, and packets from this address
with the original ISAKMP cookies are accepted.
Note that RFC 2408 [8] Section 2.5.3 gives specific rules that
ISAKMP cookies must satisfy: they must depend on specific
parties and can only be generated by the entity itself. Then
it recommends a particular way to do this, namely a hash of IP
addresses. With the K bit set to 1, the recommended
implementation technique does not work directly. To satisfy
the two rules, the specific parties must be treated as the
original IP addresses, not the ones in use at the specific
moment.
o The Sequence Number field MUST be copied from the Sequence Number
given in the Binding Update.
Johnson, et al. Standard Track [Page 91]
^L
RFC 3775 Mobility Support in IPv6 June 2004
o The Lifetime field MUST be set to the remaining lifetime for the
binding as set by the home agent in its home registration Binding
Cache entry for the mobile node, as described above.
o If the home agent stores the Binding Cache entry in nonvolatile
storage, then the Binding Refresh Advice mobility option MUST be
omitted. Otherwise, the home agent MAY include this option to
suggest that the mobile node refreshes its binding before the
actual lifetime of the binding ends.
If the Binding Refresh Advice mobility option is present, the
Refresh Interval field in the option MUST be set to a value less
than the Lifetime value being returned in the Binding
Acknowledgement. This indicates that the mobile node SHOULD
attempt to refresh its home registration at the indicated shorter
interval. The home agent MUST still retain the registration for
the Lifetime period, even if the mobile node does not refresh its
registration within the Refresh period.
The rules for selecting the Destination IP address (and possibly
routing header construction) for the Binding Acknowledgement to the
mobile node are the same as in Section 9.5.4.
In addition, the home agent MUST follow the procedure defined in
Section 10.4.1 to intercept packets on the mobile node's home link
addressed to the mobile node, while the home agent is serving as the
home agent for this mobile node. The home agent MUST also be
prepared to accept reverse tunneled packets from the new care-of
address of the mobile node, as described in Section 10.4.5. Finally,
the home agent MUST also propagate new home network prefixes, as
described in Section 10.6.
10.3.2. Primary Care-of Address De-Registration
A binding may need to be de-registered when the mobile node returns
home or when the mobile node knows that it will not have any care-of
addresses in the visited network.
A Binding Update is validated and authorized in the manner described
in the previous section; note that when the mobile node de-registers
when it is at home, it may not include the Home Address destination
option, in which case the mobile node's home address is the source IP
address of the de-registration Binding Update. This section
describes the processing of a valid Binding Update that requests the
receiving node to no longer serve as its home agent, de-registering
its primary care-of address.
Johnson, et al. Standard Track [Page 92]
^L
RFC 3775 Mobility Support in IPv6 June 2004
To begin processing the Binding Update, the home agent MUST perform
the following test:
o If the receiving node has no entry marked as a home registration
in its Binding Cache for this mobile node, then this node MUST
reject the Binding Update and SHOULD return a Binding
Acknowledgement to the mobile node, in which the Status field is
set to 133 (not home agent for this mobile node).
If the home agent does not reject the Binding Update as described
above, then it MUST delete any existing entry in its Binding Cache
for this mobile node. Then, the home agent MUST return a Binding
Acknowledgement to the mobile node, constructed as follows:
o The Status field MUST be set to a value 0, indicating success.
o The Key Management Mobility Capability (K) bit is set or cleared
and actions based on its value are performed as described in the
previous section. The mobile node's home address is used as its
new care-of address for the purposes of moving the key management
connection to a new endpoint.
o The Sequence Number field MUST be copied from the Sequence Number
given in the Binding Update.
o The Lifetime field MUST be set to zero.
o The Binding Refresh Advice mobility option MUST be omitted.
In addition, the home agent MUST stop intercepting packets on the
mobile node's home link that are addressed to the mobile node
(Section 10.4.1).
The rules for selecting the Destination IP address (and, if required,
routing header construction) for the Binding Acknowledgement to the
mobile node are the same as in the previous section. When the Status
field in the Binding Acknowledgement is greater than or equal to 128
and the Source Address of the Binding Update is on the home link, the
home agent MUST send it to the mobile node's link layer address
(retrieved either from the Binding Update or through Neighbor
Solicitation).
Johnson, et al. Standard Track [Page 93]
^L
RFC 3775 Mobility Support in IPv6 June 2004
10.4. Packet Processing
10.4.1. Intercepting Packets for a Mobile Node
While a node is serving as the home agent for mobile node it MUST
attempt to intercept packets on the mobile node's home link that are
addressed to the mobile node.
In order to do this, when a node begins serving as the home agent it
MUST multicast onto the home link a Neighbor Advertisement message
[12] on behalf of the mobile node. For the home address specified in
the Binding Update, the home agent sends a Neighbor Advertisement
message [12] to the all-nodes multicast address on the home link to
advertise the home agent's own link-layer address for this IP address
on behalf of the mobile node. If the Link-Layer Address
Compatibility (L) flag has been specified in the Binding Update, the
home agent MUST do the same for the link-local address of the mobile
node.
All fields in each Neighbor Advertisement message SHOULD be set in
the same way they would be set by the mobile node if it was sending
this Neighbor Advertisement [12] while at home, with the following
exceptions:
o The Target Address in the Neighbor Advertisement MUST be set to
the specific IP address for the mobile node.
o The Advertisement MUST include a Target Link-layer Address option
specifying the home agent's link-layer address.
o The Router (R) bit in the Advertisement MUST be set to zero.
o The Solicited Flag (S) in the Advertisement MUST NOT be set, since
it was not solicited by any Neighbor Solicitation.
o The Override Flag (O) in the Advertisement MUST be set, indicating
that the Advertisement SHOULD override any existing Neighbor Cache
entry at any node receiving it.
o The Source Address in the IPv6 header MUST be set to the home
agent's IP address on the interface used to send the
advertisement.
Any node on the home link that receives one of the Neighbor
Advertisement messages (described above) will update its Neighbor
Cache to associate the mobile node's address with the home agent's
link layer address, causing it to transmit any future packets
normally destined to the mobile node to the mobile node's home agent.
Johnson, et al. Standard Track [Page 94]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Since multicasting on the local link (such as Ethernet) is typically
not guaranteed to be reliable, the home agent MAY retransmit this
Neighbor Advertisement message up to MAX_NEIGHBOR_ADVERTISEMENT (see
[12]) times to increase its reliability. It is still possible that
some nodes on the home link will not receive any of the Neighbor
Advertisements, but these nodes will eventually be able to detect the
link-layer address change for the mobile node's address through use
of Neighbor Unreachability Detection [12].
While a node is serving as a home agent for some mobile node, the
home agent uses IPv6 Neighbor Discovery [12] to intercept unicast
packets on the home link addressed to the mobile node. In order to
intercept packets in this way, the home agent MUST act as a proxy for
this mobile node and reply to any received Neighbor Solicitations for
it. When a home agent receives a Neighbor Solicitation, it MUST
check if the Target Address specified in the message matches the
address of any mobile node for which it has a Binding Cache entry
marked as a home registration.
If such an entry exists in the home agent's Binding Cache, the home
agent MUST reply to the Neighbor Solicitation with a Neighbor
Advertisement giving the home agent's own link-layer address as the
link-layer address for the specified Target Address. In addition,
the Router (R) bit in the Advertisement MUST be set to zero. Acting
as a proxy in this way allows other nodes on the mobile node's home
link to resolve the mobile node's address and for the home agent to
defend these addresses on the home link for Duplicate Address
Detection [12].
10.4.2. Processing Intercepted Packets
For any packet sent to a mobile node from the mobile node's home
agent (in which the home agent is the original sender of the packet),
the home agent is operating as a correspondent node of the mobile
node for this packet and the procedures described in Section 9.3.2
apply. The home agent then uses a routing header to route the packet
to the mobile node by way of the primary care-of address in the home
agent's Binding Cache.
While the mobile node is away from home, the home agent intercepts
any packets on the home link addressed to the mobile node's home
address, as described in Section 10.4.1. In order to forward each
intercepted packet to the mobile node, the home agent MUST tunnel the
packet to the mobile node using IPv6 encapsulation [15]. When a home
agent encapsulates an intercepted packet for forwarding to the mobile
node, the home agent sets the Source Address in the new tunnel IP
header to the home agent's own IP address and sets the Destination
Address in the tunnel IP header to the mobile node's primary care-of
Johnson, et al. Standard Track [Page 95]
^L
RFC 3775 Mobility Support in IPv6 June 2004
address. When received by the mobile node, normal processing of the
tunnel header [15] will result in decapsulation and processing of the
original packet by the mobile node.
However, packets addressed to the mobile node's link-local address
MUST NOT be tunneled to the mobile node. Instead, these packets MUST
be discarded and the home agent SHOULD return an ICMP Destination
Unreachable, Code 3, message to the packet's Source Address (unless
this Source Address is a multicast address). Packets addressed to
the mobile node's site-local address SHOULD NOT be tunneled to the
mobile node by default.
Interception and tunneling of the following multicast addressed
packets on the home network are only done if the home agent supports
multicast group membership control messages from the mobile node as
described in the next section. Tunneling of multicast packets to a
mobile node follows similar limitations to those defined above for
unicast packets addressed to the mobile node's link-local and site-
local addresses. Multicast packets addressed to a multicast address
with link-local scope [3], to which the mobile node is subscribed,
MUST NOT be tunneled to the mobile node. These packets SHOULD be
silently discarded (after delivering to other local multicast
recipients). Multicast packets addressed to a multicast address with
a scope larger than link-local, but smaller than global (e.g., site-
local and organization-local [3], to which the mobile node is
subscribed, SHOULD NOT be tunneled to the mobile node. Multicast
packets addressed with a global scope, to which the mobile node has
successfully subscribed, MUST be tunneled to the mobile node.
Before tunneling a packet to the mobile node, the home agent MUST
perform any IPsec processing as indicated by the security policy data
base.
10.4.3. Multicast Membership Control
This section is a prerequisite for the multicast data packet
forwarding, described in the previous section. If this support is
not provided, multicast group membership control messages are
silently ignored.
In order to forward multicast data packets from the home network to
all the proper mobile nodes, the home agent SHOULD be capable of
receiving tunneled multicast group membership control information
from the mobile node in order to determine which groups the mobile
node has subscribed to. These multicast group membership messages
are Listener Report messages specified in MLD [17] or in other
protocols such as [37].
Johnson, et al. Standard Track [Page 96]
^L
RFC 3775 Mobility Support in IPv6 June 2004
The messages are issued by the mobile node, but sent through the
reverse tunnel to the home agent. These messages are issued whenever
the mobile node decides to enable reception of packets for a
multicast group or in response to an MLD Query from the home agent.
The mobile node will also issue multicast group control messages to
disable reception of multicast packets when it is no longer
interested in receiving multicasts for a particular group.
To obtain the mobile node's current multicast group membership the
home agent must periodically transmit MLD Query messages through the
tunnel to the mobile node. These MLD periodic transmissions will
ensure the home agent has an accurate record of the groups in which
the mobile node is interested despite packet losses of the mobile
node's MLD group membership messages.
All MLD packets are sent directly between the mobile node and the
home agent. Since all of these packets are destined to a link-scope
multicast address and have a hop limit of 1, there is no direct
forwarding of such packets between the home network and the mobile
node. The MLD packets between the mobile node and the home agent are
encapsulated within the same tunnel header used for other packet
flows between the mobile node and home agent.
Note that at this time, even though a link-local source is used on
MLD packets, no functionality depends on these addresses being
unique, nor do they elicit direct responses. All MLD messages are
sent to multicast destinations. To avoid ambiguity on the home
agent, due to mobile nodes which may choose identical link-local
source addresses for their MLD function, it is necessary for the home
agent to identify which mobile node was actually the issuer of a
particular MLD message. This may be accomplished by noting which
tunnel such an MLD arrived by, which IPsec SA was used, or by other
distinguishing means.
This specification puts no requirement on how the functions in this
section and the multicast forwarding in Section 10.4.2 are to be
achieved. At the time of this writing it was thought that a full
IPv6 multicast router function would be necessary on the home agent,
but it may be possible to achieve the same effects through a "proxy
MLD" application coupled with kernel multicast forwarding. This may
be the subject of future specifications.
Johnson, et al. Standard Track [Page 97]
^L
RFC 3775 Mobility Support in IPv6 June 2004
10.4.4. Stateful Address Autoconfiguration
This section describes how home agents support the use of stateful
address autoconfiguration mechanisms such as DHCPv6 [29] from the
mobile nodes. If this support is not provided, then the M and O bits
must remain cleared on the Mobile Prefix Advertisement Messages. Any
mobile node which sends DHCPv6 messages to the home agent without
this support will not receive a response.
If DHCPv6 is used, packets are sent with link-local source addresses
either to a link-scope multicast address or a link-local address.
Mobile nodes desiring to locate a DHCPv6 service may reverse tunnel
standard DHCPv6 packets to the home agent. Since these link-scope
packets cannot be forwarded onto the home network, it is necessary
for the home agent to either implement a DHCPv6 relay agent or a
DHCPv6 server function itself. The arriving tunnel or IPsec SA of
DHCPv6 link-scope messages from the mobile node must be noted so that
DHCPv6 responses may be sent back to the appropriate mobile node.
DHCPv6 messages sent to the mobile node with a link-local destination
must be tunneled within the same tunnel header used for other packet
flows.
10.4.5. Handling Reverse Tunneled Packets
Unless a binding has been established between the mobile node and a
correspondent node, traffic from the mobile node to the correspondent
node goes through a reverse tunnel. Home agents MUST support reverse
tunneling as follows:
o The tunneled traffic arrives to the home agent's address using
IPv6 encapsulation [15].
o Depending on the security policies used by the home agent, reverse
tunneled packets MAY be discarded unless accompanied by a valid
ESP header. The support for authenticated reverse tunneling
allows the home agent to protect the home network and
correspondent nodes from malicious nodes masquerading as a mobile
node.
o Otherwise, when a home agent decapsulates a tunneled packet from
the mobile node, the home agent MUST verify that the Source
Address in the tunnel IP header is the mobile node's primary
care-of address. Otherwise, any node in the Internet could send
traffic through the home agent and escape ingress filtering
limitations. This simple check forces the attacker to know the
current location of the real mobile node and be able to defeat
ingress filtering. This check is not necessary if the reverse-
tunneled packet is protected by ESP in tunnel mode.
Johnson, et al. Standard Track [Page 98]
^L
RFC 3775 Mobility Support in IPv6 June 2004
10.4.6. Protecting Return Routability Packets
The return routability procedure, described in Section 5.2.5, assumes
that the confidentiality of the Home Test Init and Home Test messages
is protected as they are tunneled between the home agent and the
mobile node. Therefore, the home agent MUST support tunnel mode
IPsec ESP for the protection of packets belonging to the return
routability procedure. Support for a non-null encryption transform
and authentication algorithm MUST be available. It is not necessary
to distinguish between different kinds of packets during the return
routability procedure.
Security associations are needed to provide this protection. When
the care-of address for the mobile node changes as a result of an
accepted Binding Update, special treatment is needed for the next
packets sent using these security associations. The home agent MUST
set the new care-of address as the destination address of these
packets, as if the outer header destination address in the security
association had changed [21].
The above protection SHOULD be used with all mobile nodes. The use
is controlled by configuration of the IPsec security policy database
both at the mobile node and at the home agent.
As described earlier, the Binding Update and Binding Acknowledgement
messages require protection between the home agent and the mobile
node. The Mobility Header protocol carries both these messages as
well as the return routability messages. From the point of view of
the security policy database these messages are indistinguishable.
When IPsec is used to protect return routability signaling or payload
packets, this protection MUST only be applied to the return
routability packets entering the IPv6 encapsulated tunnel interface
between the mobile node and the home agent. This can be achieved,
for instance, by defining the security policy database entries
specifically for the tunnel interface. That is, the policy entries
are not generally applied on all traffic on the physical interface(s)
of the nodes, but rather only on traffic that enters the tunnel.
This makes use of per-interface security policy database entries [4]
specific to the tunnel interface (the node's attachment to the tunnel
[11]).
10.5. Dynamic Home Agent Address Discovery
This section describes how a home agent can help mobile nodes to
discover the addresses of the home agents. The home agent keeps
track of the other home agents on the same link and responds to
queries sent by the mobile node.
Johnson, et al. Standard Track [Page 99]
^L
RFC 3775 Mobility Support in IPv6 June 2004
10.5.1. Receiving Router Advertisement Messages
For each link on which a router provides service as a home agent, the
router maintains a Home Agents List recording information about all
other home agents on that link. This list is used in the dynamic
home agent address discovery mechanism, described in Section 10.5.
The information for the list is learned through receipt of the
periodic unsolicited multicast Router Advertisements, in a manner
similar to the Default Router List conceptual data structure
maintained by each host for Neighbor Discovery [12]. In the
construction of the Home Agents List, the Router Advertisements are
from each (other) home agent on the link and the Home Agent (H) bit
is set in them.
On receipt of a valid Router Advertisement, as defined in the
processing algorithm specified for Neighbor Discovery [12], the home
agent performs the following steps in addition to any steps already
required of it by Neighbor Discovery:
o If the Home Agent (H) bit in the Router Advertisement is not set,
delete the sending node's entry in the current Home Agents List
(if one exists). Skip all the following steps.
o Otherwise, extract the Source Address from the IP header of the
Router Advertisement. This is the link-local IP address on this
link of the home agent sending this Advertisement [12].
o Determine the preference for this home agent. If the Router
Advertisement contains a Home Agent Information Option, then the
preference is taken from the Home Agent Preference field in the
option; otherwise, the default preference of 0 MUST be used.
o Determine the lifetime for this home agent. If the Router
Advertisement contains a Home Agent Information Option, then the
lifetime is taken from the Home Agent Lifetime field in the
option; otherwise, the lifetime specified by the Router Lifetime
field in the Router Advertisement SHOULD be used.
o If the link-local address of the home agent sending this
Advertisement is already present in this home agent's Home Agents
List and the received home agent lifetime value is zero,
immediately delete this entry in the Home Agents List.
o Otherwise, if the link-local address of the home agent sending
this Advertisement is already present in the receiving home
agent's Home Agents List, reset its lifetime and preference to the
values determined above.
Johnson, et al. Standard Track [Page 100]
^L
RFC 3775 Mobility Support in IPv6 June 2004
o If the link-local address of the home agent sending this
Advertisement is not already present in the Home Agents List
maintained by the receiving home agent, and the lifetime for the
sending home agent is non-zero, create a new entry in the list,
and initialize its lifetime and preference to the values
determined above.
o If the Home Agents List entry for the link-local address of the
home agent sending this Advertisement was not deleted as described
above, determine any global address(es) of the home agent based on
each Prefix Information option received in this Advertisement in
which the Router Address (R) bit is set (Section 7.2). Add all
such global addresses to the list of global addresses in this Home
Agents List entry.
A home agent SHOULD maintain an entry in its Home Agents List for
each valid home agent address until that entry's lifetime expires,
after which time the entry MUST be deleted.
As described in Section 11.4.1, a mobile node attempts dynamic home
agent address discovery by sending an ICMP Home Agent Address
Discovery Request message to the Mobile IPv6 Home-Agents anycast
address [16] for its home IP subnet prefix. A home agent receiving a
Home Agent Address Discovery Request message that serves this subnet
SHOULD return an ICMP Home Agent Address Discovery Reply message to
the mobile node with the Source Address of the Reply packet set to
one of the global unicast addresses of the home agent. The Home
Agent Addresses field in the Reply message is constructed as follows:
o The Home Agent Addresses field SHOULD contain all global IP
addresses for each home agent currently listed in this home
agent's own Home Agents List (Section 10.1).
o The IP addresses in the Home Agent Addresses field SHOULD be
listed in order of decreasing preference values, based either on
the respective advertised preference from a Home Agent Information
option or on the default preference of 0 if no preference is
advertised (or on the configured home agent preference for this
home agent itself).
o Among home agents with equal preference, their IP addresses in the
Home Agent Addresses field SHOULD be listed in an order randomized
with respect to other home agents with equal preference every time
a Home Agent Address Discovery Reply message is returned by this
home agent.
o If more than one global IP address is associated with a home
agent, these addresses SHOULD be listed in a randomized order.
Johnson, et al. Standard Track [Page 101]
^L
RFC 3775 Mobility Support in IPv6 June 2004
o The home agent SHOULD reduce the number of home agent IP addresses
so that the packet fits within the minimum IPv6 MTU [11]. The
home agent addresses selected for inclusion in the packet SHOULD
be those from the complete list with the highest preference. This
limitation avoids the danger of the Reply message packet being
fragmented (or rejected by an intermediate router with an ICMP
Packet Too Big message [14]).
10.6. Sending Prefix Information to the Mobile Node
10.6.1. List of Home Network Prefixes
Mobile IPv6 arranges to propagate relevant prefix information to the
mobile node when it is away from home, so that it may be used in
mobile node home address configuration and in network renumbering.
In this mechanism, mobile nodes away from home receive Mobile Prefix
Advertisements messages. These messages include Prefix Information
Options for the prefixes configured on the home subnet interface(s)
of the home agent.
If there are multiple home agents, differences in the advertisements
sent by different home agents can lead to an inability to use a
particular home address when changing to another home agent. In
order to ensure that the mobile nodes get the same information from
different home agents, it is preferred that all of the home agents on
the same link be configured in the same manner.
To support this, the home agent monitors prefixes advertised by
itself and other home agents on the home link. In RFC 2461 [12] it
is acceptable for two routers to advertise different sets of prefixes
on the same link. For home agents, the differences should be
detected for a given home address because the mobile node
communicates only with one home agent at a time and the mobile node
needs to know the full set of prefixes assigned to the home link.
All other comparisons of Router Advertisements are as specified in
Section 6.2.7 of RFC 2461.
10.6.2. Scheduling Prefix Deliveries
A home agent serving a mobile node will schedule the delivery of the
new prefix information to that mobile node when any of the following
conditions occur:
MUST:
o The state of the flags changes for the prefix of the mobile node's
registered home address.
Johnson, et al. Standard Track [Page 102]
^L
RFC 3775 Mobility Support in IPv6 June 2004
o The valid or preferred lifetime is reconfigured or changes for any
reason other than advancing real time.
o The mobile node requests the information with a Mobile Prefix
Solicitation (see Section 11.4.2).
SHOULD:
o A new prefix is added to the home subnet interface(s) of the home
agent.
MAY:
o The valid or preferred lifetime or the state of the flags changes
for a prefix which is not used in any Binding Cache entry for this
mobile node.
The home agent uses the following algorithm to determine when to send
prefix information to the mobile node.
o If a mobile node sends a solicitation, answer right away.
o If no Mobile Prefix Advertisement has been sent to the mobile node
in the last MaxMobPfxAdvInterval seconds (see Section 13), then
ensure that a transmission is scheduled. The actual transmission
time is randomized as described below.
o If a prefix matching the mobile node's home registration is added
on the home subnet interface or if its information changes in any
way that does not deprecate the mobile node's address, ensure that
a transmission is scheduled. The actual transmission time is
randomized as described below.
o If a home registration expires, cancel any scheduled
advertisements to the mobile node.
The list of prefixes is sent in its entirety in all cases.
If the home agent has already scheduled the transmission of a Mobile
Prefix Advertisement to the mobile node, then the home agent will
replace the advertisement with a new one to be sent at the scheduled
time.
Otherwise, the home agent computes a fresh value for RAND_ADV_DELAY
which offsets from the current time for the scheduled transmission.
First calculate the maximum delay for the scheduled Advertisement:
Johnson, et al. Standard Track [Page 103]
^L
RFC 3775 Mobility Support in IPv6 June 2004
MaxScheduleDelay = min (MaxMobPfxAdvInterval, Preferred Lifetime),
where MaxMobPfxAdvInterval is as defined in Section 12. Then compute
the final delay for the advertisement:
RAND_ADV_DELAY = MinMobPfxAdvInterval +
(rand() % abs(MaxScheduleDelay - MinMobPfxAdvInterval))
Here rand() returns a random integer value in the range of 0 to the
maximum possible integer value. This computation is expected to
alleviate bursts of advertisements when prefix information changes.
In addition, a home agent MAY further reduce the rate of packet
transmission by further delaying individual advertisements, when
necessary to avoid overwhelming local network resources. The home
agent SHOULD periodically continue to retransmit an unsolicited
Advertisement to the mobile node, until it is acknowledged by the
receipt of a Mobile Prefix Solicitation from the mobile node.
The home agent MUST wait PREFIX_ADV_TIMEOUT (see Section 12) before
the first retransmission and double the retransmission wait time for
every succeeding retransmission until a maximum number of
PREFIX_ADV_RETRIES attempts (see Section 12) has been tried. If the
mobile node's bindings expire before the matching Binding Update has
been received, then the home agent MUST NOT attempt any more
retransmissions, even if not all PREFIX_ADV_RETRIES have been
retransmitted. In the meantime, if the mobile node sends another
Binding Update without returning home, then the home agent SHOULD
begin transmitting the unsolicited Advertisement again.
If some condition, as described above, occurs on the home link and
causes another Prefix Advertisement to be sent to the mobile node,
before the mobile node acknowledges a previous transmission, the home
agent SHOULD combine any Prefix Information options in the
unacknowledged Mobile Prefix Advertisement into a new Advertisement.
The home agent then discards the old Advertisement.
10.6.3. Sending Advertisements
When sending a Mobile Prefix Advertisement to the mobile node, the
home agent MUST construct the packet as follows:
o The Source Address in the packet's IPv6 header MUST be set to the
home agent's IP address to which the mobile node addressed its
current home registration or its default global home agent address
if no binding exists.
Johnson, et al. Standard Track [Page 104]
^L
RFC 3775 Mobility Support in IPv6 June 2004
o If the advertisement was solicited, it MUST be destined to the
source address of the solicitation. If it was triggered by prefix
changes or renumbering, the advertisement's destination will be
the mobile node's home address in the binding which triggered the
rule.
o A type 2 routing header MUST be included with the mobile node's
home address.
o IPsec headers MUST be supported and SHOULD be used.
o The home agent MUST send the packet as it would any other unicast
IPv6 packet that it originates.
o Set the Managed Address Configuration (M) flag if the
corresponding flag has been set in any of the Router
Advertisements from which the prefix information has been learned
(including the ones sent by this home agent).
o Set the Other Stateful Configuration (O) flag if the corresponding
flag has been set in any of the Router Advertisements from which
the prefix information has been learned (including the ones sent
by this home agent).
10.6.4. Lifetimes for Changed Prefixes
As described in Section 10.3.1, the lifetime returned by the home
agent in a Binding Acknowledgement MUST not be greater than the
remaining valid lifetime for the subnet prefix in the mobile node's
home address. This limit on the binding lifetime serves to prohibit
use of a mobile node's home address after it becomes invalid.
11. Mobile Node Operation
11.1. Conceptual Data Structures
Each mobile node MUST maintain a Binding Update List.
The Binding Update List records information for each Binding Update
sent by this mobile node, in which the lifetime of the binding has
not yet expired. The Binding Update List includes all bindings sent
by the mobile node either to its home agent or correspondent nodes.
It also contains Binding Updates which are waiting for the completion
of the return routability procedure before they can be sent.
However, for multiple Binding Updates sent to the same destination
address, the Binding Update List contains only the most recent
Binding Update (i.e., with the greatest Sequence Number value) sent
to that destination. The Binding Update List MAY be implemented in
Johnson, et al. Standard Track [Page 105]
^L
RFC 3775 Mobility Support in IPv6 June 2004
any manner consistent with the external behavior described in this
document.
Each Binding Update List entry conceptually contains the following
fields:
o The IP address of the node to which a Binding Update was sent.
o The home address for which that Binding Update was sent.
o The care-of address sent in that Binding Update. This value is
necessary for the mobile node to determine if it has sent a
Binding Update while giving its new care-of address to this
destination after changing its care-of address.
o The initial value of the Lifetime field sent in that Binding
Update.
o The remaining lifetime of that binding. This lifetime is
initialized from the Lifetime value sent in the Binding Update and
is decremented until it reaches zero, at which time this entry
MUST be deleted from the Binding Update List.
o The maximum value of the Sequence Number field sent in previous
Binding Updates to this destination. The Sequence Number field is
16 bits long and all comparisons between Sequence Number values
MUST be performed modulo 2**16 (see Section 9.5.1).
o The time at which a Binding Update was last sent to this
destination, as needed to implement the rate limiting restriction
for sending Binding Updates.
o The state of any retransmissions needed for this Binding Update.
This state includes the time remaining until the next
retransmission attempt for the Binding Update and the current
state of the exponential back-off mechanism for retransmissions.
o A flag specifying whether or not future Binding Updates should be
sent to this destination. The mobile node sets this flag in the
Binding Update List entry when it receives an ICMP Parameter
Problem, Code 1, error message in response to a return routability
message or Binding Update sent to that destination, as described
in Section 11.3.5.
The Binding Update List is used to determine whether a particular
packet is sent directly to the correspondent node or tunneled via the
home agent (see Section 11.3.1).
Johnson, et al. Standard Track [Page 106]
^L
RFC 3775 Mobility Support in IPv6 June 2004
The Binding Update list also conceptually contains the following data
related to running the return routability procedure. This data is
relevant only for Binding Updates sent to correspondent nodes.
o The time at which a Home Test Init or Care-of Test Init message
was last sent to this destination, as needed to implement the rate
limiting restriction for the return routability procedure.
o The state of any retransmissions needed for this return
routability procedure. This state includes the time remaining
until the next retransmission attempt and the current state of the
exponential back-off mechanism for retransmissions.
o Cookie values used in the Home Test Init and Care-of Test Init
messages.
o Home and care-of keygen tokens received from the correspondent
node.
o Home and care-of nonce indices received from the correspondent
node.
o The time at which each of the tokens and nonces were received from
the correspondent node, as needed to implement reuse while moving.
11.2. Processing Mobility Headers
All IPv6 mobile nodes MUST observe the rules described in Section 9.2
when processing Mobility Headers.
11.3. Packet Processing
11.3.1. Sending Packets While Away from Home
While a mobile node is away from home, it continues to use its home
address, as well as also using one or more care-of addresses. When
sending a packet while away from home, a mobile node MAY choose among
these in selecting the address that it will use as the source of the
packet, as follows:
o Protocols layered over IP will generally treat the mobile node's
home address as its IP address for most packets. For packets sent
that are part of transport-level connections established while the
mobile node was at home, the mobile node MUST use its home
address. Likewise, for packets sent that are part of transport-
level connections that the mobile node may still be using after
moving to a new location, the mobile node SHOULD use its home
address in this way. If a binding exists, the mobile node SHOULD
Johnson, et al. Standard Track [Page 107]
^L
RFC 3775 Mobility Support in IPv6 June 2004
send the packets directly to the correspondent node. Otherwise,
if a binding does not exist, the mobile node MUST use reverse
tunneling.
o The mobile node MAY choose to directly use one of its care-of
addresses as the source of the packet, not requiring the use of a
Home Address option in the packet. This is particularly useful
for short-term communication that may easily be retried if it
fails. Using the mobile node's care-of address as the source for
such queries will generally have a lower overhead than using the
mobile node's home address, since no extra options need be used in
either the query or its reply. Such packets can be routed
normally, directly between their source and destination without
relying on Mobile IPv6. If application running on the mobile node
has no particular knowledge that the communication being sent fits
within this general type of communication, however, the mobile
node should not use its care-of address as the source of the
packet in this way.
The choice of the most efficient communications method is
application specific, and outside the scope of this specification.
The APIs necessary for controlling the choice are also out of
scope.
o While not at its home link, the mobile node MUST NOT use the Home
Address destination option when communicating with link-local or
site-local peers, if the scope of the home address is larger than
the scope of the peer's address.
Similarly, the mobile node MUST NOT use the Home Address
destination option for IPv6 Neighbor Discovery [12] packets.
Detailed operation of these cases is described later in this section
and also discussed in [31].
For packets sent by a mobile node while it is at home, no special
Mobile IPv6 processing is required. Likewise, if the mobile node
uses any address other than one of its home addresses as the source
of a packet sent while away from home, no special Mobile IPv6
processing is required. In either case, the packet is simply
addressed and transmitted in the same way as any normal IPv6 packet.
For packets sent by the mobile node sent while away from home using
the mobile node's home address as the source, special Mobile IPv6
processing of the packet is required. This can be done in the
following two ways:
Johnson, et al. Standard Track [Page 108]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Route Optimization
This manner of delivering packets does not require going through the
home network, and typically will enable faster and more reliable
transmission.
The mobile node needs to ensure that a Binding Cache entry exists for
its home address so that the correspondent node can process the
packet (Section 9.3.1 specifies the rules for Home Address
Destination Option Processing at a correspondent node). The mobile
node SHOULD examine its Binding Update List for an entry which
fulfills the following conditions:
* The Source Address field of the packet being sent is equal to the
home address in the entry.
* The Destination Address field of the packet being sent is equal to
the address of the correspondent node in the entry.
* One of the current care-of addresses of the mobile node appears as
the care-of address in the entry.
* The entry indicates that a binding has been successfully created.
* The remaining lifetime of the binding is greater than zero.
When these conditions are met, the mobile node knows that the
correspondent node has a suitable Binding Cache entry.
A mobile node SHOULD arrange to supply the home address in a Home
Address option, and MUST set the IPv6 header's Source Address field
to the care-of address which the mobile node has registered to be
used with this correspondent node. The correspondent node will then
use the address supplied in the Home Address option to serve the
function traditionally done by the Source IP address in the IPv6
header. The mobile node's home address is then supplied to higher
protocol layers and applications.
Specifically:
* Construct the packet using the mobile node's home address as the
packet's Source Address, in the same way as if the mobile node
were at home. This includes the calculation of upper layer
checksums using the home address as the value of the source.
* Insert a Home Address option into the packet with the Home Address
field copied from the original value of the Source Address field
in the packet.
Johnson, et al. Standard Track [Page 109]
^L
RFC 3775 Mobility Support in IPv6 June 2004
* Change the Source Address field in the packet's IPv6 header to one
of the mobile node's care-of addresses. This will typically be
the mobile node's current primary care-of address, but MUST be an
address assigned to the interface on the link being used.
By using the care-of address as the Source Address in the IPv6
header, with the mobile node's home address instead in the Home
Address option, the packet will be able to safely pass through any
router implementing ingress filtering [26].
Reverse Tunneling
This is the mechanism which tunnels the packets via the home
agent. It is not as efficient as the above mechanism, but is
needed if there is no binding yet with the correspondent node.
This mechanism is used for packets that have the mobile node's
home address as the Source Address in the IPv6 header, or with
multicast control protocol packets as described in Section 11.3.4.
Specifically:
* The packet is sent to the home agent using IPv6 encapsulation
[15].
* The Source Address in the tunnel packet is the primary care-of
address as registered with the home agent.
* The Destination Address in the tunnel packet is the home
agent's address.
Then, the home agent will pass the encapsulated packet to the
correspondent node.
11.3.2. Interaction with Outbound IPsec Processing
This section sketches the interaction between outbound Mobile IPv6
processing and outbound IP Security (IPsec) processing for packets
sent by a mobile node while away from home. Any specific
implementation MAY use algorithms and data structures other than
those suggested here, but its processing MUST be consistent with the
effect of the operation described here and with the relevant IPsec
specifications. In the steps described below, it is assumed that
IPsec is being used in transport mode [4] and that the mobile node is
using its home address as the source for the packet (from the point
of view of higher protocol layers or applications, as described in
Section 11.3.1):
Johnson, et al. Standard Track [Page 110]
^L
RFC 3775 Mobility Support in IPv6 June 2004
o The packet is created by higher layer protocols and applications
(e.g., by TCP) as if the mobile node were at home and Mobile IPv6
were not being used.
o Determine the outgoing interface for the packet. (Note that the
selection between reverse tunneling and route optimization may
imply different interfaces, particularly if tunnels are considered
interfaces as well.)
o As part of outbound packet processing in IP, the packet is
compared against the IPsec security policy database to determine
what processing is required for the packet [4].
o If IPsec processing is required, the packet is either mapped to an
existing Security Association (or SA bundle), or a new SA (or SA
bundle) is created for the packet, according to the procedures
defined for IPsec.
o Since the mobile node is away from home, the mobile is either
using reverse tunneling or route optimization to reach the
correspondent node.
If reverse tunneling is used, the packet is constructed in the
normal manner and then tunneled through the home agent.
If route optimization is in use, the mobile node inserts a Home
Address destination option into the packet, replacing the Source
Address in the packet's IP header with the care-of address used
with this correspondent node, as described in Section 11.3.1. The
Destination Options header in which the Home Address destination
option is inserted MUST appear in the packet after the routing
header, if present, and before the IPsec (AH [5] or ESP [6])
header, so that the Home Address destination option is processed
by the destination node before the IPsec header is processed.
Finally, once the packet is fully assembled, the necessary IPsec
authentication (and encryption, if required) processing is
performed on the packet, initializing the Authentication Data in
the IPsec header.
RFC 2402 treatment of destination options is extended as follows.
The AH authentication data MUST be calculated as if the following
were true:
* the IPv6 source address in the IPv6 header contains the mobile
node's home address,
Johnson, et al. Standard Track [Page 111]
^L
RFC 3775 Mobility Support in IPv6 June 2004
* the Home Address field of the Home Address destination option
(Section 6.3) contains the new care-of address.
o This allows, but does not require, the receiver of the packet
containing a Home Address destination option to exchange the two
fields of the incoming packet to reach the above situation,
simplifying processing for all subsequent packet headers.
However, such an exchange is not required, as long as the result
of the authentication calculation remains the same.
When an automated key management protocol is used to create new
security associations for a peer, it is important to ensure that the
peer can send the key management protocol packets to the mobile node.
This may not be possible if the peer is the home agent of the mobile
node and the purpose of the security associations would be to send a
Binding Update to the home agent. Packets addressed to the home
address of the mobile node cannot be used before the Binding Update
has been processed. For the default case of using IKE [9] as the
automated key management protocol, such problems can be avoided by
the following requirements when communicating with its home agent:
o When the mobile node is away from home, it MUST use its care-of
address as the Source Address of all packets it sends as part of
the key management protocol (without use of Mobile IPv6 for these
packets, as suggested in Section 11.3.1).
o In addition, for all security associations bound to the mobile
node's home address established by IKE, the mobile node MUST
include an ISAKMP Identification Payload [8] in the IKE phase 2
exchange, giving the mobile node's home address as the initiator
of the Security Association [7].
The Key Management Mobility Capability (K) bit in Binding Updates and
Acknowledgements can be used to avoid the need to rerun IKE upon
movements.
11.3.3. Receiving Packets While Away from Home
While away from home, a mobile node will receive packets addressed to
its home address, by one of two methods:
o Packets sent by a correspondent node, that does not have a Binding
Cache entry for the mobile node, will be sent to the home address,
captured by the home agent and tunneled to the mobile node.
o Packets sent by a correspondent node that has a Binding Cache
entry for the mobile node that contains the mobile node's current
care-of address, will be sent by the correspondent node using a
Johnson, et al. Standard Track [Page 112]
^L
RFC 3775 Mobility Support in IPv6 June 2004
type 2 routing header. The packet will be addressed to the mobile
node's care-of address, with the final hop in the routing header
directing the packet to the mobile node's home address; the
processing of this last hop of the routing header is entirely
internal to the mobile node, since the care-of address and home
address are both addresses within the mobile node.
For packets received by the first method, the mobile node MUST check
that the IPv6 source address of the tunneled packet is the IP address
of its home agent. In this method, the mobile node may also send a
Binding Update to the original sender of the packet as described in
Section 11.7.2 and subject to the rate limiting defined in Section
11.8. The mobile node MUST also process the received packet in the
manner defined for IPv6 encapsulation [15], which will result in the
encapsulated (inner) packet being processed normally by upper-layer
protocols within the mobile node as if it had been addressed (only)
to the mobile node's home address.
For packets received by the second method, the following rules will
result in the packet being processed normally by upper-layer
protocols within the mobile node as if it had been addressed to the
mobile node's home address.
A node receiving a packet addressed to itself (i.e., one of the
node's addresses is in the IPv6 destination field) follows the next
header chain of headers and processes them. When it encounters a
type 2 routing header during this processing, it performs the
following checks. If any of these checks fail, the node MUST
silently discard the packet.
o The length field in the routing header is exactly 2.
o The segments left field in the routing header is 1 on the wire.
(But implementations may process the routing header so that the
value may become 0 after the routing header has been processed,
but before the rest of the packet is processed.)
o The Home Address field in the routing header is one of the node's
home addresses, if the segments left field was 1. Thus, in
particular the address field is required to be a unicast routable
address.
Once the above checks have been performed, the node swaps the IPv6
destination field with the Home Address field in the routing header,
decrements segments left by one from the value it had on the wire,
and resubmits the packet to IP for processing the next header.
Johnson, et al. Standard Track [Page 113]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Conceptually, this follows the same model as in RFC 2460. However,
in the case of type 2 routing header this can be simplified since it
is known that the packet will not be forwarded to a different node.
The definition of AH requires the sender to calculate the AH
integrity check value of a routing header in the same way it appears
in the receiver after it has processed the header. Since IPsec
headers follow the routing header, any IPsec processing will operate
on the packet with the home address in the IP destination field and
segments left being zero. Thus, the AH calculations at the sender
and receiver will have an identical view of the packet.
11.3.4. Routing Multicast Packets
A mobile node that is connected to its home link functions in the
same way as any other (stationary) node. Thus, when it is at home, a
mobile node functions identically to other multicast senders and
receivers. Therefore, this section describes the behavior of a
mobile node that is not on its home link.
In order to receive packets sent to some multicast group, a mobile
node must join that multicast group. One method, in which a mobile
node MAY join the group, is via a (local) multicast router on the
foreign link being visited. In this case, the mobile node MUST use
its care-of address and MUST NOT use the Home Address destination
option when sending MLD packets [17].
Alternatively, a mobile node MAY join multicast groups via a bi-
directional tunnel to its home agent. The mobile node tunnels its
multicast group membership control packets (such as those defined in
[17] or in [37]) to its home agent, and the home agent forwards
multicast packets down the tunnel to the mobile node. A mobile node
MUST NOT tunnel multicast group membership control packets until (1)
the mobile node has a binding in place at the home agent, and (2) the
latter sends at least one multicast group membership control packet
via the tunnel. Once this condition is true, the mobile node SHOULD
assume it does not change as long as the binding does not expire.
A mobile node that wishes to send packets to a multicast group also
has two options:
1. Send directly on the foreign link being visited.
The application is aware of the care-of address and uses it as a
source address for multicast traffic, just like it would use a
stationary address. The mobile node MUST NOT use Home Address
destination option in such traffic.
Johnson, et al. Standard Track [Page 114]
^L
RFC 3775 Mobility Support in IPv6 June 2004
2. Send via a tunnel to its home agent.
Because multicast routing in general depends upon the Source
Address used in the IPv6 header of the multicast packet, a mobile
node that tunnels a multicast packet to its home agent MUST use
its home address as the IPv6 Source Address of the inner
multicast packet.
Note that direct sending from the foreign link is only applicable
while the mobile node is at that foreign link. This is because the
associated multicast tree is specific to that source location and any
change of location and source address will invalidate the source
specific tree or branch and the application context of the other
multicast group members.
This specification does not provide mechanisms to enable such local
multicast session to survive hand-off and to seamlessly continue from
a new care-of address on each new foreign link. Any such mechanism,
developed as an extension to this specification, needs to take into
account the impact of fast moving mobile nodes on the Internet
multicast routing protocols and their ability to maintain the
integrity of source specific multicast trees and branches.
While the use of bidirectional tunneling can ensure that multicast
trees are independent of the mobile nodes movement, in some case such
tunneling can have adverse affects. The latency of specific types of
multicast applications (such as multicast based discovery protocols)
will be affected when the round-trip time between the foreign subnet
and the home agent is significant compared to that of the topology to
be discovered. In addition, the delivery tree from the home agent in
such circumstances relies on unicast encapsulation from the agent to
the mobile node. Therefore, bandwidth usage is inefficient compared
to the native multicast forwarding in the foreign multicast system.
11.3.5. Receiving ICMP Error Messages
Any node that does not recognize the Mobility header will return an
ICMP Parameter Problem, Code 1, message to the sender of the packet.
If the mobile node receives such an ICMP error message in response to
a return routability procedure or Binding Update, it SHOULD record in
its Binding Update List that future Binding Updates SHOULD NOT be
sent to this destination. Such Binding Update List entries SHOULD be
removed after a period of time in order to allow for retrying route
optimization.
New Binding Update List entries MUST NOT be created as a result of
receiving ICMP error messages.
Johnson, et al. Standard Track [Page 115]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Correspondent nodes that have participated in the return routability
procedure MUST implement the ability to correctly process received
packets containing a Home Address destination option. Therefore,
correctly implemented correspondent nodes should always be able to
recognize Home Address options. If a mobile node receives an ICMP
Parameter Problem, Code 2, message from some node indicating that it
does not support the Home Address option, the mobile node SHOULD log
the error and then discard the ICMP message.
11.3.6. Receiving Binding Error Messages
When a mobile node receives a packet containing a Binding Error
message, it should first check if the mobile node has a Binding
Update List entry for the source of the Binding Error message. If
the mobile node does not have such an entry, it MUST ignore the
message. This is necessary to prevent a waste of resources on, e.g.,
return routability procedure due to spoofed Binding Error messages.
Otherwise, if the message Status field was 1 (unknown binding for
Home Address destination option), the mobile node should perform one
of the following two actions:
o If the mobile node has recent upper layer progress information,
which indicates that communications with the correspondent node
are progressing, it MAY ignore the message. This can be done in
order to limit the damage that spoofed Binding Error messages can
cause to ongoing communications.
o If the mobile node has no upper layer progress information, it
MUST remove the entry and route further communications through the
home agent. It MAY also optionally start a return routability
procedure (see Section 5.2).
If the message Status field was 2 (unrecognized MH Type value), the
mobile node should perform one of the following two actions:
o If the mobile node is not expecting an acknowledgement or response
from the correspondent node, the mobile node SHOULD ignore this
message.
o Otherwise, the mobile node SHOULD cease the use of any extensions
to this specification. If no extensions had been used, the mobile
node should cease the attempt to use route optimization.
Johnson, et al. Standard Track [Page 116]
^L
RFC 3775 Mobility Support in IPv6 June 2004
11.4. Home Agent and Prefix Management
11.4.1. Dynamic Home Agent Address Discovery
Sometimes when the mobile node needs to send a Binding Update to its
home agent to register its new primary care-of address, as described
in Section 11.7.1, the mobile node may not know the address of any
router on its home link that can serve as a home agent for it. For
example, some nodes on its home link may have been reconfigured while
the mobile node has been away from home, such that the router that
was operating as the mobile node's home agent has been replaced by a
different router serving this role.
In this case, the mobile node MAY attempt to discover the address of
a suitable home agent on its home link. To do so, the mobile node
sends an ICMP Home Agent Address Discovery Request message to the
Mobile IPv6 Home-Agents anycast address [16] for its home subnet
prefix. As described in Section 10.5, the home agent on its home
link that receives this Request message will return an ICMP Home
Agent Address Discovery Reply message. This message gives the
addresses for the home agents operating on the home link.
The mobile node, upon receiving this Home Agent Address Discovery
Reply message, MAY then send its home registration Binding Update to
any of the unicast IP addresses listed in the Home Agent Addresses
field in the Reply. For example, the mobile node MAY attempt its
home registration to each of these addresses, in turn, until its
registration is accepted. The mobile node sends a Binding Update to
an address and waits for the matching Binding Acknowledgement, moving
on to the next address if there is no response. The mobile node
MUST, however, wait at least InitialBindackTimeoutFirstReg seconds
(see Section 13) before sending a Binding Update to the next home
agent. In trying each of the returned home agent addresses, the
mobile node SHOULD try each of them in the order they appear in the
Home Agent Addresses field in the received Home Agent Address
Discovery Reply message.
If the mobile node has a current registration with some home agent
(the Lifetime for that registration has not yet expired), then the
mobile node MUST attempt any new registration first with that home
agent. If that registration attempt fails (e.g., timed out or
rejected), the mobile node SHOULD then reattempt this registration
with another home agent. If the mobile node knows of no other
suitable home agent, then it MAY attempt the dynamic home agent
address discovery mechanism described above.
Johnson, et al. Standard Track [Page 117]
^L
RFC 3775 Mobility Support in IPv6 June 2004
If, after a mobile node transmits a Home Agent Address Discovery
Request message to the Home Agents Anycast address, it does not
receive a corresponding Home Agent Address Discovery Reply message
within INITIAL_DHAAD_TIMEOUT (see Section 12) seconds, the mobile
node MAY retransmit the same Request message to the same anycast
address. This retransmission MAY be repeated up to a maximum of
DHAAD_RETRIES (see Section 12) attempts. Each retransmission MUST be
delayed by twice the time interval of the previous retransmission.
11.4.2. Sending Mobile Prefix Solicitations
When a mobile node has a home address that is about to become
invalid, it SHOULD send a Mobile Prefix Solicitation to its home
agent in an attempt to acquire fresh routing prefix information. The
new information also enables the mobile node to participate in
renumbering operations affecting the home network, as described in
Section 10.6.
The mobile node MUST use the Home Address destination option to carry
its home address. The mobile node MUST support and SHOULD use IPsec
to protect the solicitation. The mobile node MUST set the Identifier
field in the ICMP header to a random value.
As described in Section 11.7.2, Binding Updates sent by the mobile
node to other nodes MUST use a lifetime no greater than the remaining
lifetime of its home registration of its primary care-of address.
The mobile node SHOULD further limit the lifetimes that it sends on
any Binding Updates to be within the remaining valid lifetime (see
Section 10.6.2) for the prefix in its home address.
When the lifetime for a changed prefix decreases, and the change
would cause cached bindings at correspondent nodes in the Binding
Update List to be stored past the newly shortened lifetime, the
mobile node MUST issue a Binding Update to all such correspondent
nodes.
These limits on the binding lifetime serve to prohibit use of a
mobile node's home address after it becomes invalid.
11.4.3. Receiving Mobile Prefix Advertisements
Section 10.6 describes the operation of a home agent to support boot
time configuration and renumbering a mobile node's home subnet while
the mobile node is away from home. The home agent sends Mobile
Prefix Advertisements to the mobile node while away from home, giving
"important" Prefix Information options that describe changes in the
prefixes in use on the mobile node's home link.
Johnson, et al. Standard Track [Page 118]
^L
RFC 3775 Mobility Support in IPv6 June 2004
The Mobile Prefix Solicitation is similar to the Router Solicitation
used in Neighbor Discovery [12], except it is routed from the mobile
node on the visited network to the home agent on the home network by
usual unicast routing rules.
When a mobile node receives a Mobile Prefix Advertisement, it MUST
validate it according to the following test:
o The Source Address of the IP packet carrying the Mobile Prefix
Advertisement is the same as the home agent address to which the
mobile node last sent an accepted home registration Binding Update
to register its primary care-of address. Otherwise, if no such
registrations have been made, it SHOULD be the mobile node's
stored home agent address, if one exists. Otherwise, if the
mobile node has not yet discovered its home agent's address, it
MUST NOT accept Mobile Prefix Advertisements.
o The packet MUST have a type 2 routing header and SHOULD be
protected by an IPsec header as described in Section 5.4 and
Section 6.8.
o If the ICMP Identifier value matches the ICMP Identifier value of
the most recently sent Mobile Prefix Solicitation and no other
advertisement has yet been received for this value, then the
advertisement is considered to be solicited and will be processed
further.
Otherwise, the advertisement is unsolicited, and MUST be
discarded. In this case the mobile node SHOULD send a Mobile
Prefix Solicitation.
Any received Mobile Prefix Advertisement not meeting these tests MUST
be silently discarded.
For an accepted Mobile Prefix Advertisement, the mobile node MUST
process Managed Address Configuration (M), Other Stateful
Configuration (O), and the Prefix Information Options as if they
arrived in a Router Advertisement [12] on the mobile node's home
link. (This specification does not, however, describe how to acquire
home addresses through stateful protocols.) Such processing may
result in the mobile node configuring a new home address, although
due to separation between preferred lifetime and valid lifetime, such
changes should not affect most communications by the mobile node, in
the same way as for nodes that are at home.
This specification assumes that any security associations and
security policy entries that may be needed for new prefixes have been
pre-configured in the mobile node. Note that while dynamic key
Johnson, et al. Standard Track [Page 119]
^L
RFC 3775 Mobility Support in IPv6 June 2004
management avoids the need to create new security associations, it is
still necessary to add policy entries to protect the communications
involving the home address(es). Mechanisms for automatic set-up of
these entries are outside the scope of this specification.
11.5. Movement
11.5.1. Movement Detection
The primary goal of movement detection is to detect L3 handovers.
This section does not attempt to specify a fast movement detection
algorithm which will function optimally for all types of
applications, link-layers and deployment scenarios; instead, it
describes a generic method that uses the facilities of IPv6 Neighbor
Discovery, including Router Discovery and Neighbor Unreachability
Detection. At the time of this writing, this method is considered
well enough understood to recommend for standardization, however it
is expected that future versions of this specification or other
specifications may contain updated versions of the movement detection
algorithm that have better performance.
Generic movement detection uses Neighbor Unreachability Detection to
detect when the default router is no longer bi-directionally
reachable, in which case the mobile node must discover a new default
router (usually on a new link). However, this detection only occurs
when the mobile node has packets to send, and in the absence of
frequent Router Advertisements or indications from the link-layer,
the mobile node might become unaware of an L3 handover that occurred.
Therefore, the mobile node should supplement this method with other
information whenever it is available to the mobile node (e.g., from
lower protocol layers).
When the mobile node detects an L3 handover, it performs Duplicate
Address Detection [13] on its link-local address, selects a new
default router as a consequence of Router Discovery, and then
performs Prefix Discovery with that new router to form new care-of
address(es) as described in Section 11.5.2. It then registers its
new primary care-of address with its home agent as described in
Section 11.7.1. After updating its home registration, the mobile
node then updates associated mobility bindings in correspondent nodes
that it is performing route optimization with as specified in Section
11.7.2.
Due to the temporary packet flow disruption and signaling overhead
involved in updating mobility bindings, the mobile node should avoid
performing an L3 handover until it is strictly necessary.
Specifically, when the mobile node receives a Router Advertisement
from a new router that contains a different set of on-link prefixes,
Johnson, et al. Standard Track [Page 120]
^L
RFC 3775 Mobility Support in IPv6 June 2004
if the mobile node detects that the currently selected default router
on the old link is still bi-directionally reachable, it should
generally continue to use the old router on the old link rather than
switch away from it to use a new default router.
Mobile nodes can use the information in received Router
Advertisements to detect L3 handovers. In doing so the mobile node
needs to consider the following issues:
o There might be multiple routers on the same link, thus hearing a
new router does not necessarily constitute an L3 handover.
o When there are multiple routers on the same link they might
advertise different prefixes. Thus even hearing a new router with
a new prefix might not be a reliable indication of an L3 handover.
o The link-local addresses of routers are not globally unique, hence
after completing an L3 handover the mobile node might continue to
receive Router Advertisements with the same link-local source
address. This might be common if routers use the same link-local
address on multiple interfaces. This issue can be avoided when
routers use the Router Address (R) bit, since that provides a
global address of the router.
In addition, the mobile node should consider the following events as
indications that an L3 handover may have occurred. Upon receiving
such indications, the mobile node needs to perform Router Discovery
to discover routers and prefixes on the new link, as described in
Section 6.3.7 of RFC 2461 [12].
o If Router Advertisements that the mobile node receives include an
Advertisement Interval option, the mobile node may use its
Advertisement Interval field as an indication of the frequency
with which it should expect to continue to receive future
Advertisements from that router. This field specifies the minimum
rate (the maximum amount of time between successive
Advertisements) that the mobile node should expect. If this
amount of time elapses without the mobile node receiving any
Advertisement from this router, the mobile node can be sure that
at least one Advertisement sent by the router has been lost. The
mobile node can then implement its own policy to determine how
many lost Advertisements from its current default router
constitute an L3 handover indication.
o Neighbor Unreachability Detection determines that the default
router is no longer reachable.
Johnson, et al. Standard Track [Page 121]
^L
RFC 3775 Mobility Support in IPv6 June 2004
o With some types of networks, notification that an L2 handover has
occurred might be obtained from lower layer protocols or device
driver software within the mobile node. While further details
around handling L2 indications as movement hints is an item for
further study, at the time of writing this specification the
following is considered reasonable:
An L2 handover indication may or may not imply L2 movement and L2
movement may or may not imply L3 movement; the correlations might
be a function of the type of L2 but might also be a function of
actual deployment of the wireless topology.
Unless it is well-known that an L2 handover indication is likely
to imply L3 movement, instead of immediately multicasting a router
solicitation it may be better to attempt to verify whether the
default router is still bi-directionally reachable. This can be
accomplished by sending a unicast Neighbor Solicitation and
waiting for a Neighbor Advertisement with the solicited flag set.
Note that this is similar to Neighbor Unreachability detection but
it does not have the same state machine, such as the STALE state.
If the default router does not respond to the Neighbor
Solicitation it makes sense to proceed to multicasting a Router
Solicitation.
11.5.2. Forming New Care-of Addresses
After detecting that it has moved a mobile node SHOULD generate a new
primary care-of address using normal IPv6 mechanisms. This SHOULD
also be done when the current primary care-of address becomes
deprecated. A mobile node MAY form a new primary care-of address at
any time, but a mobile node MUST NOT send a Binding Update about a
new care-of address to its home agent more than MAX_UPDATE_RATE times
within a second.
In addition, a mobile node MAY form new non-primary care-of addresses
even when it has not switched to a new default router. A mobile node
can have only one primary care-of address at a time (which is
registered with its home agent), but it MAY have an additional care-
of address for any or all of the prefixes on its current link.
Furthermore, since a wireless network interface may actually allow a
mobile node to be reachable on more than one link at a time (i.e.,
within wireless transmitter range of routers on more than one
separate link), a mobile node MAY have care-of addresses on more than
one link at a time. The use of more than one care-of address at a
time is described in Section 11.5.3.
Johnson, et al. Standard Track [Page 122]
^L
RFC 3775 Mobility Support in IPv6 June 2004
As described in Section 4, in order to form a new care-of address, a
mobile node MAY use either stateless [13] or stateful (e.g., DHCPv6
[29]) Address Autoconfiguration. If a mobile node needs to use a
source address (other than the unspecified address) in packets sent
as a part of address autoconfiguration, it MUST use an IPv6 link-
local address rather than its own IPv6 home address.
RFC 2462 [13] specifies that in normal processing for Duplicate
Address Detection, the node SHOULD delay sending the initial Neighbor
Solicitation message by a random delay between 0 and
MAX_RTR_SOLICITATION_DELAY. Since delaying DAD can result in
significant delays in configuring a new care-of address when the
Mobile Node moves to a new link, the Mobile Node preferably SHOULD
NOT delay DAD when configuring a new care-of address. The Mobile
Node SHOULD delay according to the mechanisms specified in RFC 2462
unless the implementation has a behavior that desynchronizes the
steps that happen before the DAD in the case that multiple nodes
experience handover at the same time. Such desynchronizing behaviors
might be due to random delays in the L2 protocols or device drivers,
or due to the movement detection mechanism that is used.
11.5.3. Using Multiple Care-of Addresses
As described in Section 11.5.2, a mobile node MAY use more than one
care-of address at a time. Particularly in the case of many wireless
networks, a mobile node effectively might be reachable through
multiple links at the same time (e.g., with overlapping wireless
cells), on which different on-link subnet prefixes may exist. The
mobile node MUST ensure that its primary care-of address always has a
prefix that is advertised by its current default router. After
selecting a new primary care-of address, the mobile node MUST send a
Binding Update containing that care-of address to its home agent.
The Binding Update MUST have the Home Registration (H) and
Acknowledge (A) bits set its home agent, as described on Section
11.7.1.
To assist with smooth handovers, a mobile node SHOULD retain its
previous primary care-of address as a (non-primary) care-of address,
and SHOULD still accept packets at this address, even after
registering its new primary care-of address with its home agent.
This is reasonable, since the mobile node could only receive packets
at its previous primary care-of address if it were indeed still
connected to that link. If the previous primary care-of address was
allocated using stateful Address Autoconfiguration [29], the mobile
node may not wish to release the address immediately upon switching
to a new primary care-of address.
Johnson, et al. Standard Track [Page 123]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Whenever a mobile node determines that it is no longer reachable
through a given link, it SHOULD invalidate all care-of addresses
associated with address prefixes that it discovered from routers on
the unreachable link which are not in the current set of address
prefixes advertised by the (possibly new) current default router.
11.5.4. Returning Home
A mobile node detects that it has returned to its home link through
the movement detection algorithm in use (Section 11.5.1), when the
mobile node detects that its home subnet prefix is again on-link.
The mobile node SHOULD then send a Binding Update to its home agent,
to instruct its home agent to no longer intercept or tunnel packets
for it. In this home registration, the mobile node MUST set the
Acknowledge (A) and Home Registration (H) bits, set the Lifetime
field to zero, and set the care-of address for the binding to the
mobile node's own home address. The mobile node MUST use its home
address as the source address in the Binding Update.
When sending this Binding Update to its home agent, the mobile node
must be careful in how it uses Neighbor Solicitation [12] (if needed)
to learn the home agent's link-layer address, since the home agent
will be currently configured to intercept packets to the mobile
node's home address using Duplicate Address Detection (DAD). In
particular, the mobile node is unable to use its home address as the
Source Address in the Neighbor Solicitation until the home agent
stops defending the home address.
Neighbor Solicitation by the mobile node for the home agent's address
will normally not be necessary, since the mobile node has already
learned the home agent's link-layer address from a Source Link-Layer
Address option in a Router Advertisement. However, if there are
multiple home agents it may still be necessary to send a
solicitation. In this special case of the mobile node returning
home, the mobile node MUST multicast the packet, and in addition set
the Source Address of this Neighbor Solicitation to the unspecified
address (0:0:0:0:0:0:0:0). The target of the Neighbor Solicitation
MUST be set to the mobile node's home address. The destination IP
address MUST be set to the Solicited-Node multicast address [3]. The
home agent will send a multicast Neighbor Advertisement back to the
mobile node with the Solicited flag (S) set to zero. In any case,
the mobile node SHOULD record the information from the Source Link-
Layer Address option or from the advertisement, and set the state of
the Neighbor Cache entry for the home agent to REACHABLE.
The mobile node then sends its Binding Update to the home agent's
link-layer address, instructing its home agent to no longer serve as
a home agent for it. By processing this Binding Update, the home
Johnson, et al. Standard Track [Page 124]
^L
RFC 3775 Mobility Support in IPv6 June 2004
agent will cease defending the mobile node's home address for
Duplicate Address Detection and will no longer respond to Neighbor
Solicitations for the mobile node's home address. The mobile node is
then the only node on the link receiving packets at the mobile node's
home address. In addition, when returning home prior to the
expiration of a current binding for its home address, and configuring
its home address on its network interface on its home link, the
mobile node MUST NOT perform Duplicate Address Detection on its own
home address, in order to avoid confusion or conflict with its home
agent's use of the same address. This rule also applies to the
derived link-local address of the mobile node, if the Link Local
Address Compatibility (L) bit was set when the binding was created.
If the mobile node returns home after the bindings for all of its
care-of addresses have expired, then it SHOULD perform DAD.
After the Mobile Node sends the Binding Update, it MUST be prepared
to reply to Neighbor Solicitations for its home address. Such
replies MUST be sent using a unicast Neighbor Advertisement to the
sender's link-layer address. It is necessary to reply, since sending
the Binding Acknowledgement from the home agent may require
performing Neighbor Discovery, and the mobile node may not be able to
distinguish Neighbor Solicitations coming from the home agent from
other Neighbor Solicitations. Note that a race condition exists
where both the mobile node and the home agent respond to the same
solicitations sent by other nodes; this will be only temporary,
however, until the Binding Update is accepted.
After receiving the Binding Acknowledgement for its Binding Update to
its home agent, the mobile node MUST multicast onto the home link (to
the all-nodes multicast address) a Neighbor Advertisement [12], to
advertise the mobile node's own link-layer address for its own home
address. The Target Address in this Neighbor Advertisement MUST be
set to the mobile node's home address, and the Advertisement MUST
include a Target Link-layer Address option specifying the mobile
node's link-layer address. The mobile node MUST multicast such a
Neighbor Advertisement for each of its home addresses, as defined by
the current on-link prefixes, including its link-local address and
site-local address. The Solicited Flag (S) in these Advertisements
MUST NOT be set, since they were not solicited by any Neighbor
Solicitation. The Override Flag (O) in these Advertisements MUST be
set, indicating that the Advertisements SHOULD override any existing
Neighbor Cache entries at any node receiving them.
Since multicasting on the local link (such as Ethernet) is typically
not guaranteed to be reliable, the mobile node MAY retransmit these
Neighbor Advertisements [12] up to MAX_NEIGHBOR_ADVERTISEMENT times
to increase their reliability. It is still possible that some nodes
Johnson, et al. Standard Track [Page 125]
^L
RFC 3775 Mobility Support in IPv6 June 2004
on the home link will not receive any of these Neighbor
Advertisements, but these nodes will eventually be able to recover
through use of Neighbor Unreachability Detection [12].
Note that the tunnel via the home agent typically stops operating at
the same time that the home registration is deleted.
11.6. Return Routability Procedure
This section defines the rules that the mobile node must follow when
performing the return routability procedure. Section 11.7.2
describes the rules when the return routability procedure needs to be
initiated.
11.6.1. Sending Test Init Messages
A mobile node that initiates a return routability procedure MUST send
(in parallel) a Home Test Init message and a Care-of Test Init
messages. However, if the mobile node has recently received (see
Section 5.2.7) one or both home or care-of keygen tokens, and
associated nonce indices for the desired addresses, it MAY reuse
them. Therefore, the return routability procedure may in some cases
be completed with only one message pair. It may even be completed
without any messages at all, if the mobile node has a recent home
keygen token and has previously visited the same care-of address so
that it also has a recent care-of keygen token. If the mobile node
intends to send a Binding Update with the Lifetime set to zero and
the care-of address equal to its home address - such as when
returning home - sending a Home Test Init message is sufficient. In
this case, generation of the binding management key depends
exclusively on the home keygen token (Section 5.2.5).
A Home Test Init message MUST be created as described in Section
6.1.3.
A Care-of Test Init message MUST be created as described in Section
6.1.4. When sending a Home Test Init or Care-of Test Init message
the mobile node MUST record in its Binding Update List the following
fields from the messages:
o The IP address of the node to which the message was sent.
o The home address of the mobile node. This value will appear in
the Source Address field of the Home Test Init message. When
sending the Care-of Test Init message, this address does not
appear in the message, but represents the home address for which
the binding is desired.
Johnson, et al. Standard Track [Page 126]
^L
RFC 3775 Mobility Support in IPv6 June 2004
o The time at which each of these messages was sent.
o The cookies used in the messages.
Note that a single Care-of Test Init message may be sufficient even
when there are multiple home addresses. In this case the mobile node
MAY record the same information in multiple Binding Update List
entries.
11.6.2. Receiving Test Messages
Upon receiving a packet carrying a Home Test message, a mobile node
MUST validate the packet according to the following tests:
o The Source Address of the packet belongs to a correspondent node
for which the mobile node has a Binding Update List entry with a
state indicating that return routability procedure is in progress.
Note that there may be multiple such entries.
o The Binding Update List indicates that no home keygen token has
been received yet.
o The Destination Address of the packet has the home address of the
mobile node, and the packet has been received in a tunnel from the
home agent.
o The Home Init Cookie field in the message matches the value stored
in the Binding Update List.
Any Home Test message not satisfying all of these tests MUST be
silently ignored. Otherwise, the mobile node MUST record the Home
Nonce Index and home keygen token in the Binding Update List. If the
Binding Update List entry does not have a care-of keygen token, the
mobile node SHOULD continue waiting for the Care-of Test message.
Upon receiving a packet carrying a Care-of Test message, a mobile
node MUST validate the packet according to the following tests:
o The Source Address of the packet belongs to a correspondent node
for which the mobile node has a Binding Update List entry with a
state indicating that return routability procedure is in progress.
Note that there may be multiple such entries.
o The Binding Update List indicates that no care-of keygen token has
been received yet.
o The Destination Address of the packet is the current care-of
address of the mobile node.
Johnson, et al. Standard Track [Page 127]
^L
RFC 3775 Mobility Support in IPv6 June 2004
o The Care-of Init Cookie field in the message matches the value
stored in the Binding Update List.
Any Care-of Test message not satisfying all of these tests MUST be
silently ignored. Otherwise, the mobile node MUST record the Care-of
Nonce Index and care-of keygen token in the Binding Update List. If
the Binding Update List entry does not have a home keygen token, the
mobile node SHOULD continue waiting for the Home Test message.
If after receiving either the Home Test or the Care-of Test message
and performing the above actions, the Binding Update List entry has
both the home and the care-of keygen tokens, the return routability
procedure is complete. The mobile node SHOULD then proceed with
sending a Binding Update as described in Section 11.7.2.
Correspondent nodes from the time before this specification was
published may not support the Mobility Header protocol. These nodes
will respond to Home Test Init and Care-of Test Init messages with an
ICMP Parameter Problem code 1. The mobile node SHOULD take such
messages as an indication that the correspondent node cannot provide
route optimization, and revert back to the use of bidirectional
tunneling.
11.6.3. Protecting Return Routability Packets
The mobile node MUST support the protection of Home Test and Home
Test Init messages as described in Section 10.4.6.
When IPsec is used to protect return routability signaling or payload
packets, the mobile node MUST set the source address it uses for the
outgoing tunnel packets to the current primary care-of address. The
mobile node starts to use a new primary care-of address immediately
after sending a Binding Update to the home agent to register this new
address.
11.7. Processing Bindings
11.7.1. Sending Binding Updates to the Home Agent
After deciding to change its primary care-of address as described in
Section 11.5.1 and Section 11.5.2, a mobile node MUST register this
care-of address with its home agent in order to make this its primary
care-of address.
Also, if the mobile node wants the services of the home agent beyond
the current registration period, the mobile node should send a new
Binding Update to it well before the expiration of this period, even
if it is not changing its primary care-of address. However, if the
Johnson, et al. Standard Track [Page 128]
^L
RFC 3775 Mobility Support in IPv6 June 2004
home agent returned a Binding Acknowledgement for the current
registration with Status field set to 1 (accepted but prefix
discovery necessary), the mobile node should not try to register
again before it has learned the validity of its home prefixes through
mobile prefix discovery. This is typically necessary every time this
Status value is received, because information learned earlier may
have changed.
To register a care-of address or to extend the lifetime of an
existing registration, the mobile node sends a packet to its home
agent containing a Binding Update, with the packet constructed as
follows:
o The Home Registration (H) bit MUST be set in the Binding Update.
o The Acknowledge (A) bit MUST be set in the Binding Update.
o The packet MUST contain a Home Address destination option, giving
the mobile node's home address for the binding.
o The care-of address for the binding MUST be used as the Source
Address in the packet's IPv6 header, unless an Alternate Care-of
Address mobility option is included in the Binding Update. This
option MUST be included in all home registrations, as the ESP
protocol will not be able to protect care-of addresses in the IPv6
header. (Mobile IPv6 implementations that know they are using
IPsec AH to protect a particular message might avoid this option.
For brevity the usage of AH is not discussed in this document.)
o If the mobile node's link-local address has the same interface
identifier as the home address for which it is supplying a new
care-of address, then the mobile node SHOULD set the Link-Local
Address Compatibility (L) bit.
o If the home address was generated using RFC 3041 [18], then the
link local address is unlikely to have a compatible interface
identifier. In this case, the mobile node MUST clear the Link-
Local Address Compatibility (L) bit.
o If the IPsec security associations between the mobile node and the
home agent have been established dynamically, and the mobile node
has the capability to update its endpoint in the used key
management protocol to the new care-of address every time it
moves, the mobile node SHOULD set the Key Management Mobility
Capability (K) bit in the Binding Update. Otherwise, the mobile
node MUST clear the bit.
Johnson, et al. Standard Track [Page 129]
^L
RFC 3775 Mobility Support in IPv6 June 2004
o The value specified in the Lifetime field MUST be non-zero and
SHOULD be less than or equal to the remaining valid lifetime of
the home address and the care-of address specified for the
binding.
Mobile nodes that use dynamic home agent address discovery should
be careful with long lifetimes. If the mobile node loses the
knowledge of its binding with a specific home agent, registering a
new binding with another home agent may be impossible as the
previous home agent is still defending the existing binding.
Therefore, to ensure that mobile nodes using home agent address
discovery do not lose information about their binding, they SHOULD
de-register before losing this information, or use small
lifetimes.
The Acknowledge (A) bit in the Binding Update requests the home agent
to return a Binding Acknowledgement in response to this Binding
Update. As described in Section 6.1.8, the mobile node SHOULD
retransmit this Binding Update to its home agent until it receives a
matching Binding Acknowledgement. Once reaching a retransmission
timeout period of MAX_BINDACK_TIMEOUT, the mobile node SHOULD restart
the process of delivering the Binding Update, but trying instead the
next home agent returned during dynamic home agent address discovery
(see Section 11.4.1). If there was only one home agent, the mobile
node instead SHOULD continue to periodically retransmit the Binding
Update at this rate until acknowledged (or until it begins attempting
to register a different primary care-of address). See Section 11.8
for information about retransmitting Binding Updates.
With the Binding Update, the mobile node requests the home agent to
serve as the home agent for the given home address. Until the
lifetime of this registration expires, the home agent considers
itself the home agent for this home address.
Each Binding Update MUST be authenticated as coming from the right
mobile node, as defined in Section 5.1. The mobile node MUST use its
home address - either in the Home Address destination option or in
the Source Address field of the IPv6 header - in Binding Updates sent
to the home agent. This is necessary in order to allow the IPsec
policies to be matched with the correct home address.
When sending a Binding Update to its home agent, the mobile node MUST
also create or update the corresponding Binding Update List entry, as
specified in Section 11.7.2.
The last Sequence Number value sent to the home agent in a Binding
Update is stored by the mobile node. If the sending mobile node has
no knowledge of the correct Sequence Number value, it may start at
Johnson, et al. Standard Track [Page 130]
^L
RFC 3775 Mobility Support in IPv6 June 2004
any value. If the home agent rejects the value, it sends back a
Binding Acknowledgement with a status code 135, and the last accepted
sequence number in the Sequence Number field of the Binding
Acknowledgement. The mobile node MUST store this information and use
the next Sequence Number value for the next Binding Update it sends.
If the mobile node has additional home addresses, then the mobile
node SHOULD send an additional packet containing a Binding Update to
its home agent to register the care-of address for each such other
home address.
The home agent will only perform DAD for the mobile node's home
address when the mobile node has supplied a valid binding between its
home address and a care-of address. If some time elapses during
which the mobile node has no binding at the home agent, it might be
possible for another node to autoconfigure the mobile node's home
address. Therefore, the mobile node MUST treat the creation of a new
binding with the home agent using an existing home address, the same
as creation of a new home address. In the unlikely event that the
mobile node's home address is autoconfigured as the IPv6 address of
another network node on the home network, the home agent will reply
to the mobile node's subsequent Binding Update with a Binding
Acknowledgement containing a Status of 134 (Duplicate Address
Detection failed). In this case, the mobile node MUST NOT attempt to
re-use the same home address. It SHOULD continue to register the
care-of addresses for its other home addresses, if any. (Mechanisms
outlined in Appendix B.5 may in the future allow mobile nodes to
acquire new home addresses to replace the one for which Status 134
was received.)
11.7.2. Correspondent Registration
When the mobile node is assured that its home address is valid, it
can initiate a correspondent registration with the purpose of
allowing the correspondent node to cache the mobile node's current
care-of address. This procedure consists of the return routability
procedure followed by a registration.
This section defines when the correspondent registration is to be
initiated and the rules to follow while it is being performed.
After the mobile node has sent a Binding Update to its home agent,
registering a new primary care-of address (as described in Section
11.7.1), the mobile node SHOULD initiate a correspondent registration
for each node that already appears in the mobile node's Binding
Update List. The initiated procedures can be used to either update
or delete binding information in the correspondent node.
Johnson, et al. Standard Track [Page 131]
^L
RFC 3775 Mobility Support in IPv6 June 2004
For nodes that do not appear in the mobile node's Binding Update
List, the mobile node MAY initiate a correspondent registration at
any time after sending the Binding Update to its home agent.
Considerations regarding when (and if) to initiate the procedure
depend on the specific movement and traffic patterns of the mobile
node and are outside the scope of this document.
In addition, the mobile node MAY initiate the correspondent
registration in response to receiving a packet that meets all of the
following tests:
o The packet was tunneled using IPv6 encapsulation.
o The Destination Address in the tunnel (outer) IPv6 header is equal
to any of the mobile node's care-of addresses.
o The Destination Address in the original (inner) IPv6 header is
equal to one of the mobile node's home addresses.
o The Source Address in the tunnel (outer) IPv6 header differs from
the Source Address in the original (inner) IPv6 header.
o The packet does not contain a Home Test, Home Test Init, Care-of
Test, or Care-of Test Init message.
If a mobile node has multiple home addresses, it becomes important to
select the right home address to use in the correspondent
registration. The used home address MUST be the Destination Address
of the original (inner) packet.
The peer address used in the procedure MUST be determined as follows:
o If a Home Address destination option is present in the original
(inner) packet, the address from this option is used.
o Otherwise, the Source Address in the original (inner) IPv6 header
of the packet is used.
Note that the validity of the original packet is checked before
attempting to initiate a correspondent registration. For instance,
if a Home Address destination option appeared in the original packet,
then rules in Section 9.3.1 are followed.
A mobile node MAY also choose to keep its topological location
private from certain correspondent nodes, and thus need not initiate
the correspondent registration.
Johnson, et al. Standard Track [Page 132]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Upon successfully completing the return routability procedure, and
after receiving a successful Binding Acknowledgement from the Home
Agent, a Binding Update MAY be sent to the correspondent node.
In any Binding Update sent by a mobile node, the care-of address
(either the Source Address in the packet's IPv6 header or the Care-of
Address in the Alternate Care-of Address mobility option of the
Binding Update) MUST be set to one of the care-of addresses currently
in use by the mobile node or to the mobile node's home address. A
mobile node MAY set the care-of address differently for sending
Binding Updates to different correspondent nodes.
A mobile node MAY also send a Binding Update to such a correspondent
node, instructing it to delete any existing binding for the mobile
node from its Binding Cache, as described in Section 6.1.7. Even in
this case a successful completion of the return routability procedure
is required first.
If the care-of address is not set to the mobile node's home address,
the Binding Update requests that the correspondent node create or
update an entry for the mobile node in the correspondent node's
Binding Cache. This is done in order to record a care-of address for
use in sending future packets to the mobile node. In this case, the
value specified in the Lifetime field sent in the Binding Update
SHOULD be less than or equal to the remaining lifetime of the home
registration and the care-of address specified for the binding. The
care-of address given in the Binding Update MAY differ from the
mobile node's primary care-of address.
If the Binding Update is sent to the correspondent node, requesting
the deletion of any existing Binding Cache entry it has for the
mobile node, the care-of address is set to the mobile node's home
address and the Lifetime field set to zero. In this case, generation
of the binding management key depends exclusively on the home keygen
token (Section 5.2.5). The care-of nonce index SHOULD be set to zero
in this case. In keeping with the Binding Update creation rules
below, the care-of address MUST be set to the home address if the
mobile node is at home, or to the current care-of address if it is
away from home.
If the mobile node wants to ensure that its new care-of address has
been entered into a correspondent node's Binding Cache, the mobile
node needs to request an acknowledgement by setting the Acknowledge
(A) bit in the Binding Update.
Johnson, et al. Standard Track [Page 133]
^L
RFC 3775 Mobility Support in IPv6 June 2004
A Binding Update is created as follows:
o The current care-of address of the mobile node MUST be sent either
in the Source Address of the IPv6 header, or in the Alternate
Care-of Address mobility option.
o The Destination Address of the IPv6 header MUST contain the
address of the correspondent node.
o The Mobility Header is constructed according to rules in Section
6.1.7 and Section 5.2.6, including the Binding Authorization Data
(calculated as defined in Section 6.2.7) and possibly the Nonce
Indices mobility options.
o The home address of the mobile node MUST be added to the packet in
a Home Address destination option, unless the Source Address is
the home address.
Each Binding Update MUST have a Sequence Number greater than the
Sequence Number value sent in the previous Binding Update to the same
destination address (if any). The sequence numbers are compared
modulo 2**16, as described in Section 9.5.1. There is no
requirement, however, that the Sequence Number value strictly
increase by 1 with each new Binding Update sent or received, as long
as the value stays within the window. The last Sequence Number value
sent to a destination in a Binding Update is stored by the mobile
node in its Binding Update List entry for that destination. If the
sending mobile node has no Binding Update List entry, the Sequence
Number SHOULD start at a random value. The mobile node MUST NOT use
the same Sequence Number in two different Binding Updates to the same
correspondent node, even if the Binding Updates provide different
care-of addresses.
The mobile node is responsible for the completion of the
correspondent registration, as well as any retransmissions that may
be needed (subject to the rate limitation defined in Section 11.8).
11.7.3. Receiving Binding Acknowledgements
Upon receiving a packet carrying a Binding Acknowledgement, a mobile
node MUST validate the packet according to the following tests:
o The packet meets the authentication requirements for Binding
Acknowledgements defined in Section 6.1.8 and Section 5. That is,
if the Binding Update was sent to the home agent, underlying IPsec
protection is used. If the Binding Update was sent to the
correspondent node, the Binding Authorization Data mobility option
MUST be present and have a valid value.
Johnson, et al. Standard Track [Page 134]
^L
RFC 3775 Mobility Support in IPv6 June 2004
o The Binding Authorization Data mobility option, if present, MUST
be the last option and MUST not have trailing padding.
o The Sequence Number field matches the Sequence Number sent by the
mobile node to this destination address in an outstanding Binding
Update.
Any Binding Acknowledgement not satisfying all of these tests MUST be
silently ignored.
When a mobile node receives a packet carrying a valid Binding
Acknowledgement, the mobile node MUST examine the Status field as
follows:
o If the Status field indicates that the Binding Update was accepted
(the Status field is less than 128), then the mobile node MUST
update the corresponding entry in its Binding Update List to
indicate that the Binding Update has been acknowledged; the mobile
node MUST then stop retransmitting the Binding Update. In
addition, if the value specified in the Lifetime field in the
Binding Acknowledgement is less than the Lifetime value sent in
the Binding Update being acknowledged, the mobile node MUST
subtract the difference between these two Lifetime values from the
remaining lifetime for the binding as maintained in the
corresponding Binding Update List entry (with a minimum value for
the Binding Update List entry lifetime of 0). That is, if the
Lifetime value sent in the Binding Update was L_update, the
Lifetime value received in the Binding Acknowledgement was L_ack,
and the current remaining lifetime of the Binding Update List
entry is L_remain, then the new value for the remaining lifetime
of the Binding Update List entry should be
max((L_remain - (L_update - L_ack)), 0)
where max(X, Y) is the maximum of X and Y. The effect of this
step is to correctly manage the mobile node's view of the
binding's remaining lifetime (as maintained in the corresponding
Binding Update List entry) so that it correctly counts down from
the Lifetime value given in the Binding Acknowledgement, but with
the timer countdown beginning at the time that the Binding Update
was sent.
Mobile nodes SHOULD send a new Binding Update well before the
expiration of this period in order to extend the lifetime. This
helps to avoid disruptions in communications which might otherwise
be caused by network delays or clock drift.
Johnson, et al. Standard Track [Page 135]
^L
RFC 3775 Mobility Support in IPv6 June 2004
o Additionally, if the Status field value is 1 (accepted but prefix
discovery necessary), the mobile node SHOULD send a Mobile Prefix
Solicitation message to update its information about the available
prefixes.
o If the Status field indicates that the Binding Update was rejected
(the Status field is greater than or equal to 128), then the
mobile node can take steps to correct the cause of the error and
retransmit the Binding Update (with a new Sequence Number value),
subject to the rate limiting restriction specified in Section
11.8. If this is not done or it fails, then the mobile node
SHOULD record in its Binding Update List that future Binding
Updates SHOULD NOT be sent to this destination.
The treatment of a Binding Refresh Advice mobility option within the
Binding Acknowledgement depends on where the acknowledgement came
from. This option MUST be ignored if the acknowledgement came from a
correspondent node. If it came from the home agent, the mobile node
uses the Refresh Interval field in the option as a suggestion that it
SHOULD attempt to refresh its home registration at the indicated
shorter interval.
If the acknowledgement came from the home agent, the mobile node
examines the value of the Key Management Mobility Capability (K) bit.
If this bit is not set, the mobile node SHOULD discard key management
protocol connections, if any, to the home agent. The mobile node MAY
also initiate a new key management connection.
If this bit is set, the mobile node SHOULD move its own endpoint in
the key management protocol connections to the home agent, if any.
The mobile node's new endpoint should be the new care-of address.
For an IKE phase 1 connection, this means that packets sent to this
address with the original ISAKMP cookies are accepted.
11.7.4. Receiving Binding Refresh Requests
When a mobile node receives a packet containing a Binding Refresh
Request message, the mobile node has a Binding Update List entry for
the source of the Binding Refresh Request, and the mobile node wants
to retain its binding cache entry at the correspondent node, then the
mobile node should start a return routability procedure. If the
mobile node wants to have its binding cache entry removed, it can
either ignore the Binding Refresh Request and wait for the binding to
time out, or at any time, it can delete its binding from a
correspondent node with an explicit binding update with a zero
lifetime and the care-of address set to the home address. If the
Johnson, et al. Standard Track [Page 136]
^L
RFC 3775 Mobility Support in IPv6 June 2004
mobile node does not know if it needs the binding cache entry, it can
make the decision in an implementation dependent manner, such as
based on available resources.
Note that the mobile node should be careful to not respond to Binding
Refresh Requests for addresses not in the Binding Update List to
avoid being subjected to a denial of service attack.
If the return routability procedure completes successfully, a Binding
Update message SHOULD be sent, as described in Section 11.7.2. The
Lifetime field in this Binding Update SHOULD be set to a new
lifetime, extending any current lifetime remaining from a previous
Binding Update sent to this node (as indicated in any existing
Binding Update List entry for this node), and the lifetime SHOULD
again be less than or equal to the remaining lifetime of the home
registration and the care-of address specified for the binding. When
sending this Binding Update, the mobile node MUST update its Binding
Update List in the same way as for any other Binding Update sent by
the mobile node.
11.8. Retransmissions and Rate Limiting
The mobile node is responsible for retransmissions and rate limiting
in the return routability procedure, registrations, and in solicited
prefix discovery.
When the mobile node sends a Mobile Prefix Solicitation, Home Test
Init, Care-of Test Init or Binding Update for which it expects a
response, the mobile node has to determine a value for the initial
retransmission timer:
o If the mobile node is sending a Mobile Prefix Solicitation, it
SHOULD use an initial retransmission interval of
INITIAL_SOLICIT_TIMER (see Section 12).
o If the mobile node is sending a Binding Update and does not have
an existing binding at the home agent, it SHOULD use
InitialBindackTimeoutFirstReg (see Section 13) as a value for the
initial retransmission timer. This long retransmission interval
will allow the home agent to complete the Duplicate Address
Detection procedure mandated in this case, as detailed in Section
11.7.1.
o Otherwise, the mobile node should use the specified value of
INITIAL_BINDACK_TIMEOUT for the initial retransmission timer.
Johnson, et al. Standard Track [Page 137]
^L
RFC 3775 Mobility Support in IPv6 June 2004
If the mobile node fails to receive a valid matching response within
the selected initial retransmission interval, the mobile node SHOULD
retransmit the message until a response is received.
The retransmissions by the mobile node MUST use an exponential back-
off process in which the timeout period is doubled upon each
retransmission, until either the node receives a response or the
timeout period reaches the value MAX_BINDACK_TIMEOUT. The mobile
node MAY continue to send these messages at this slower rate
indefinitely.
The mobile node SHOULD start a separate back-off process for
different message types, different home addresses and different
care-of addresses. However, in addition an overall rate limitation
applies for messages sent to a particular correspondent node. This
ensures that the correspondent node has a sufficient amount of time
to respond when bindings for multiple home addresses are registered,
for instance. The mobile node MUST NOT send Mobility Header messages
of a particular type to a particular correspondent node more than
MAX_UPDATE_RATE times within a second.
Retransmitted Binding Updates MUST use a Sequence Number value
greater than that used for the previous transmission of this Binding
Update. Retransmitted Home Test Init and Care-of Test Init messages
MUST use new cookie values.
12. Protocol Constants
DHAAD_RETRIES 4 retransmissions
INITIAL_BINDACK_TIMEOUT 1 second
INITIAL_DHAAD_TIMEOUT 3 seconds
INITIAL_SOLICIT_TIMER 3 seconds
MAX_BINDACK_TIMEOUT 32 seconds
MAX_NONCE_LIFETIME 240 seconds
MAX_TOKEN_LIFETIME 210 seconds
MAX_RR_BINDING_LIFETIME 420 seconds
MAX_UPDATE_RATE 3 times
PREFIX_ADV_RETRIES 3 retransmissions
PREFIX_ADV_TIMEOUT 3 seconds
13. Protocol Configuration Variables
MaxMobPfxAdvInterval Default: 86,400 seconds
MinDelayBetweenRAs Default: 3 seconds,
Min: 0.03 seconds
MinMobPfxAdvInterval Default: 600 seconds
InitialBindackTimeoutFirstReg Default: 1.5 seconds
Johnson, et al. Standard Track [Page 138]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Home agents MUST allow the first three variables to be configured by
system management, and mobile nodes MUST allow the last variable to
be configured by system management.
The default value for InitialBindackTimeoutFirstReg has been
calculated as 1.5 times the default value of RetransTimer [12] times
the default value of DupAddrDetectTransmits [13].
The value MinDelayBetweenRAs overrides the value of the protocol
constant MIN_DELAY_BETWEEN_RAS, as specified in RFC 2461 [12]. This
variable SHOULD be set to MinRtrAdvInterval, if MinRtrAdvInterval is
less than 3 seconds.
14. IANA Considerations
This document defines a new IPv6 protocol, the Mobility Header,
described in Section 6.1. This protocol has been assigned protocol
number 135.
This document also creates a new name space "Mobility Header Type",
for the MH Type field in the Mobility Header. The current message
types are described starting from Section 6.1.2, and are the
following:
0 Binding Refresh Request
1 Home Test Init
2 Care-of Test Init
3 Home Test
4 Care-of Test
5 Binding Update
6 Binding Acknowledgement
7 Binding Error
Future values of the MH Type can be allocated using Standards Action
or IESG Approval [10].
Furthermore, each mobility message may contain mobility options as
described in Section 6.2. This document defines a new name space
"Mobility Option" to identify these options. The current mobility
options are defined starting from Section 6.2.2 and are the
following:
Johnson, et al. Standard Track [Page 139]
^L
RFC 3775 Mobility Support in IPv6 June 2004
0 Pad1
1 PadN
2 Binding Refresh Advice
3 Alternate Care-of Address
4 Nonce Indices
5 Authorization Data
Future values of the Option Type can be allocated using Standards
Action or IESG Approval [10].
Finally, this document creates a third new name space "Status Code"
for the Status field in the Binding Acknowledgement message. The
current values are described in Section 6.1.8, and are the following:
0 Binding Update accepted
1 Accepted but prefix discovery necessary
128 Reason unspecified
129 Administratively prohibited
130 Insufficient resources
131 Home registration not supported
132 Not home subnet
133 Not home agent for this mobile node
134 Duplicate Address Detection failed
135 Sequence number out of window
136 Expired home nonce index
137 Expired care-of nonce index
138 Expired nonces
139 Registration type change disallowed
Johnson, et al. Standard Track [Page 140]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Future values of the Status field can be allocated using Standards
Action or IESG Approval [10].
All fields labeled "Reserved" are only to be assigned through
Standards Action or IESG Approval.
This document also defines a new IPv6 destination option, the Home
Address option, described in Section 6.3. This option has been
assigned the Option Type value 0xC9.
This document also defines a new IPv6 type 2 routing header,
described in Section 6.4. The value 2 has been allocated by IANA.
In addition, this document defines four ICMP message types, two used
as part of the dynamic home agent address discovery mechanism, and
two used in lieu of Router Solicitations and Advertisements when the
mobile node is away from the home link. These messages have been
assigned ICMPv6 type numbers from the informational message range:
o The Home Agent Address Discovery Request message, described in
Section 6.5;
o The Home Agent Address Discovery Reply message, described in
Section 6.6;
o The Mobile Prefix Solicitation, described in Section 6.7; and
o The Mobile Prefix Advertisement, described in Section 6.8.
This document also defines two new Neighbor Discovery [12] options,
which have been assigned Option Type values within the option
numbering space for Neighbor Discovery messages:
o The Advertisement Interval option, described in Section 7.3; and
o The Home Agent Information option, described in Section 7.4.
Johnson, et al. Standard Track [Page 141]
^L
RFC 3775 Mobility Support in IPv6 June 2004
15. Security Considerations
15.1. Threats
Any mobility solution must protect itself against misuses of the
mobility features and mechanisms. In Mobile IPv6, most of the
potential threats are concerned with false Bindings, usually
resulting in Denial-of-Service attacks. Some of the threats also
pose potential for Man-in-the-Middle, Hijacking, Confidentiality, and
Impersonation attacks. The main threats this protocol protects
against are the following:
o Threats involving Binding Updates sent to home agents and
correspondent nodes. For instance, an attacker might claim that a
certain mobile node is currently at a different location than it
really is. If a home agent accepts such spoofed information sent
to it, the mobile node might not get traffic destined to it.
Similarly, a malicious (mobile) node might use the home address of
a victim node in a forged Binding Update sent to a correspondent
node.
These pose threats against confidentiality, integrity, and
availability. That is, an attacker might learn the contents of
packets destined to another node by redirecting the traffic to
itself. Furthermore, an attacker might use the redirected packets
in an attempt to set itself as a Man-in-the-Middle between a
mobile and a correspondent node. This would allow the attacker to
impersonate the mobile node, leading to integrity and availability
problems.
A malicious (mobile) node might also send Binding Updates in which
the care-of address is set to the address of a victim node. If
such Binding Updates were accepted, the malicious node could lure
the correspondent node into sending potentially large amounts of
data to the victim; the correspondent node's replies to messages
sent by the malicious mobile node will be sent to the victim host
or network. This could be used to cause a Distributed Denial-of-
Service attack. For example, the correspondent node might be a
site that will send a high-bandwidth stream of video to anyone who
asks for it. Note that the use of flow-control protocols such as
TCP does not necessarily defend against this type of attack,
because the attacker can fake the acknowledgements. Even keeping
TCP initial sequence numbers secret does not help, because the
attacker can receive the first few segments (including the ISN) at
its own address, and only then redirect the stream to the victim's
address. These types of attacks may also be directed to networks
instead of nodes. Further variations of this threat are described
elsewhere [27, 34].
Johnson, et al. Standard Track [Page 142]
^L
RFC 3775 Mobility Support in IPv6 June 2004
An attacker might also attempt to disrupt a mobile node's
communications by replaying a Binding Update that the node had
sent earlier. If the old Binding Update was accepted, packets
destined for the mobile node would be sent to its old location as
opposed to its current location.
In conclusion, there are Denial-of-Service, Man-in-the-Middle,
Confidentiality, and Impersonation threats against the parties
involved in sending legitimate Binding Updates, and Denial-of-
Service threats against any other party.
o Threats associated with payload packets: Payload packets exchanged
with mobile nodes are exposed to similar threats as that of
regular IPv6 traffic. However, Mobile IPv6 introduces the Home
Address destination option, a new routing header type (type 2),
and uses tunneling headers in the payload packets. The protocol
must protect against potential new threats involving the use of
these mechanisms.
Third parties become exposed to a reflection threat via the Home
Address destination option, unless appropriate security
precautions are followed. The Home Address destination option
could be used to direct response traffic toward a node whose IP
address appears in the option. In this case, ingress filtering
would not catch the forged "return address" [36, 32].
A similar threat exists with the tunnels between the mobile node
and the home agent. An attacker might forge tunnel packets
between the mobile node and the home agent, making it appear that
the traffic is coming from the mobile node when it is not. Note
that an attacker who is able to forge tunnel packets would
typically also be able to forge packets that appear to come
directly from the mobile node. This is not a new threat as such.
However, it may make it easier for attackers to escape detection
by avoiding ingress filtering and packet tracing mechanisms.
Furthermore, spoofed tunnel packets might be used to gain access
to the home network.
Finally, a routing header could also be used in reflection
attacks, and in attacks designed to bypass firewalls. The
generality of the regular routing header would allow circumvention
of IP-address based rules in firewalls. It would also allow
reflection of traffic to other nodes. These threats exist with
routing headers in general, even if the usage that Mobile IPv6
requires is safe.
o Threats associated with dynamic home agent and mobile prefix
discovery.
Johnson, et al. Standard Track [Page 143]
^L
RFC 3775 Mobility Support in IPv6 June 2004
o Threats against the Mobile IPv6 security mechanisms themselves: An
attacker might, for instance, lure the participants into executing
expensive cryptographic operations or allocating memory for the
purpose of keeping state. The victim node would have no resources
left to handle other tasks.
As a fundamental service in an IPv6 stack, Mobile IPv6 is expected to
be deployed in most nodes of the IPv6 Internet. The above threats
should therefore be considered as being applicable to the whole
Internet.
It should also be noted that some additional threats result from
movements as such, even without the involvement of mobility
protocols. Mobile nodes must be capable to defend themselves in the
networks that they visit, as typical perimeter defenses applied in
the home network no longer protect them.
15.2. Features
This specification provides a series of features designed to mitigate
the risk introduced by the threats listed above. The main security
features are the following:
o Reverse Tunneling as a mandatory feature.
o Protection of Binding Updates sent to home agents.
o Protection of Binding Updates sent to correspondent nodes.
o Protection against reflection attacks that use the Home Address
destination option.
o Protection of tunnels between the mobile node and the home agent.
o Closing routing header vulnerabilities.
o Mitigating Denial-of-Service threats to the Mobile IPv6 security
mechanisms themselves.
The support for encrypted reverse tunneling (see Section 11.3.1)
allows mobile nodes to defeat certain kinds of traffic analysis.
Protecting those Binding Updates that are sent to home agents and
those that are sent to arbitrary correspondent nodes requires very
different security solutions due to the different situations. Mobile
nodes and home agents are naturally expected to be subject to the
network administration of the home domain.
Johnson, et al. Standard Track [Page 144]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Thus, they can and are supposed to have a security association that
can be used to reliably authenticate the exchanged messages. See
Section 5.1 for the description of the protocol mechanisms, and
Section 15.3 below for a discussion of the resulting level of
security.
It is expected that Mobile IPv6 route optimization will be used on a
global basis between nodes belonging to different administrative
domains. It would be a very demanding task to build an
authentication infrastructure on this scale. Furthermore, a
traditional authentication infrastructure cannot be easily used to
authenticate IP addresses because IP addresses can change often. It
is not sufficient to just authenticate the mobile nodes;
Authorization to claim the right to use an address is needed as well.
Thus, an "infrastructureless" approach is necessary. The chosen
infrastructureless method is described in Section 5.2, and Section
15.4 discusses the resulting security level and the design rationale
of this approach.
Specific rules guide the use of the Home Address destination option,
the routing header, and the tunneling headers in the payload packets.
These rules are necessary to remove the vulnerabilities associated
with their unrestricted use. The effect of the rules is discussed in
Section 15.7, Section 15.8, and Section 15.9.
Denial-of-Service threats against Mobile IPv6 security mechanisms
themselves concern mainly the Binding Update procedures with
correspondent nodes. The protocol has been designed to limit the
effects of such attacks, as will be described in Section 15.4.5.
15.3. Binding Updates to Home Agent
Signaling between the mobile node and the home agent requires message
integrity. This is necessary to assure the home agent that a Binding
Update is from a legitimate mobile node. In addition, correct
ordering and anti-replay protection are optionally needed.
IPsec ESP protects the integrity of the Binding Updates and Binding
Acknowledgements by securing mobility messages between the mobile
node and the home agent.
IPsec can provide anti-replay protection only if dynamic keying is
used (which may not always be the case). IPsec does not guarantee
correct ordering of packets, only that they have not been replayed.
Because of this, sequence numbers within the Mobile IPv6 messages are
used to ensure correct ordering (see Section 5.1). However, if the
16 bit Mobile IPv6 sequence number space is cycled through, or the
home agent reboots and loses its state regarding the sequence
Johnson, et al. Standard Track [Page 145]
^L
RFC 3775 Mobility Support in IPv6 June 2004
numbers, replay and reordering attacks become possible. The use of
dynamic keying, IPsec anti-replay protection, and the Mobile IPv6
sequence numbers can together prevent such attacks. It is also
recommended that use of non-volatile storage be considered for home
agents, to avoid losing their state.
A sliding window scheme is used for the sequence numbers. The
protection against replays and reordering attacks without a key
management mechanism works when the attacker remembers up to a
maximum of 2**15 Binding Updates.
The above mechanisms do not show that the care-of address given in
the Binding Update is correct. This opens the possibility for
Denial-of-Service attacks against third parties. However, since the
mobile node and home agent have a security association, the home
agent can always identify an ill-behaving mobile node. This allows
the home agent operator to discontinue the mobile node's service, and
possibly take further actions based on the business relationship with
the mobile node's owner.
Note that the use of a single pair of manually keyed security
associations conflicts with the generation of a new home address [18]
for the mobile node, or with the adoption of a new home subnet
prefix. This is because IPsec security associations are bound to the
used addresses. While certificate-based automatic keying alleviates
this problem to an extent, it is still necessary to ensure that a
given mobile node cannot send Binding Updates for the address of
another mobile node. In general, this leads to the inclusion of home
addresses in certificates in the Subject AltName field. This again
limits the introduction of new addresses without either manual or
automatic procedures to establish new certificates. Therefore, this
specification restricts the generation of new home addresses (for any
reason) to those situations where a security association or
certificate for the new address already exists. (Appendix B.4 lists
the improvement of security for new addresses as one of the future
developments for Mobile IPv6.)
Support for IKE has been specified as optional. The following should
be observed about the use of manual keying:
o As discussed above, with manually keyed IPsec, only a limited form
of protection exists against replay and reordering attacks. A
vulnerability exists if either the sequence number space is cycled
through, or if the home agent reboots and forgets its sequence
numbers (and uses volatile memory to store the sequence numbers).
Assuming the mobile node moves continuously every 10 minutes, it
Johnson, et al. Standard Track [Page 146]
^L
RFC 3775 Mobility Support in IPv6 June 2004
takes roughly 455 days before the sequence number space has been
cycled through. Typical movement patterns rarely reach this high
frequency today.
o A mobile node and its home agent belong to the same domain. If
this were not the case, manual keying would not be possible [28],
but in Mobile IPv6 only these two parties need to know the
manually configured keys. Similarly, we note that Mobile IPv6
employs standard block ciphers in IPsec, and is not vulnerable to
problems associated with stream ciphers and manual keying.
o It is expected that the owner of the mobile node and the
administrator of the home agent agree on the used keys and other
parameters with some off-line mechanism.
The use of IKEv1 with Mobile IPv6 is documented in more detail in
[21]. The following should be observed from the use of IKEv1:
o It is necessary to prevent a mobile node from claiming another
mobile node's home address. The home agent must verify that the
mobile node trying to negotiate the SA for a particular home
address is authorized for that home address. This implies that
even with the use of IKE, a policy entry needs to be configured
for each home address served by the home agent.
It may be possible to include home addresses in the Subject
AltName field of certificate to avoid this. However,
implementations are not guaranteed to support the use of a
particular IP address (care-of address) while another address
(home address) appears in the certificate. In any case, even this
approach would require user-specific tasks in the certificate
authority.
o If preshared secret authentication is used, IKEv1 main mode cannot
be used. Aggressive mode or group preshared secrets need to be
used with corresponding security implications instead.
Note that, like many other issues, this is a general IKEv1 issue
related to the ability to use different IP addresses, and not
specifically related to Mobile IPv6. For further information, see
Section 4.4 in [21].
o Due to the problems outlined in Section 11.3.2, IKE phase 1
between the mobile node and its home agent is established using
the mobile node's current care-of address. This implies that when
the mobile node moves to a new location, it may have to re-
establish phase 1. A Key Management Mobility Capability (K) flag
Johnson, et al. Standard Track [Page 147]
^L
RFC 3775 Mobility Support in IPv6 June 2004
is provided for implementations that can update the IKE phase 1
endpoints without re-establishing phase 1, but the support for
this behavior is optional.
o When certificates are used, IKE fragmentation can occur as
discussed in Section 7 in [21].
o Nevertheless, even if per-mobile node configuration is required
with IKE, an important benefit of IKE is that it automates the
negotiation of cryptographic parameters, including the SPIs,
cryptographic algorithms, and so on. Thus, less configuration
information is needed.
o The frequency of movements in some link layers or deployment
scenarios may be high enough to make replay and reordering attacks
possible, if only manual keying is used. IKE SHOULD be used in
such cases. Potentially vulnerable scenarios involve continuous
movement through small cells, or uncontrolled alternation between
available network attachment points.
o Similarly, in some deployment scenarios the number of mobile nodes
may be very large. In these cases, it can be necessary to use
automatic mechanisms to reduce the management effort in the
administration of cryptographic parameters, even if some per-
mobile node configuration is always needed. IKE SHOULD also be
used in such cases.
o Other automatic key management mechanisms exist beyond IKEv1, but
this document does not address the issues related to them. We
note, however, that most of the above discussion applies to IKEv2
[30] as well, at least as it is currently specified.
15.4. Binding Updates to Correspondent Nodes
The motivation for designing the return routability procedure was to
have sufficient support for Mobile IPv6, without creating significant
new security problems. The goal for this procedure was not to
protect against attacks that were already possible before the
introduction of Mobile IPv6.
The next sections will describe the security properties of the used
method, both from the point of view of possible on-path attackers who
can see those cryptographic values that have been sent in the clear
(Section 15.4.2 and Section 15.4.3) and from the point of view of
other attackers (Section 15.4.6).
Johnson, et al. Standard Track [Page 148]
^L
RFC 3775 Mobility Support in IPv6 June 2004
15.4.1. Overview
The chosen infrastructureless method verifies that the mobile node is
"live" (that is, it responds to probes) at its home and care-of
addresses. Section 5.2 describes the return routability procedure in
detail. The procedure uses the following principles:
o A message exchange verifies that the mobile node is reachable at
its addresses, i.e., is at least able to transmit and receive
traffic at both the home and care-of addresses.
o The eventual Binding Update is cryptographically bound to the
tokens supplied in the exchanged messages.
o Symmetric exchanges are employed to avoid the use of this protocol
in reflection attacks. In a symmetric exchange, the responses are
always sent to the same address the request was sent from.
o The correspondent node operates in a stateless manner until it
receives a fully authorized Binding Update.
o Some additional protection is provided by encrypting the tunnels
between the mobile node and home agent with IPsec ESP. As the
tunnel also transports the nonce exchanges, the ability of
attackers to see these nonces is limited. For instance, this
prevents attacks from being launched from the mobile node's
current foreign link, even when no link-layer confidentiality is
available.
The resulting level of security is in theory the same even without
this additional protection: the return routability tokens are
still exposed only to one path within the whole Internet.
However, the mobile nodes are often found on an insecure link,
such as a public access Wireless LAN. Thus, in many cases, this
addition makes a practical difference.
For further information about the design rationale of the return
routability procedure, see [27, 34, 33, 32]. The mechanisms used
have been adopted from these documents.
15.4.2. Achieved Security Properties
The return routability procedure protects Binding Updates against all
attackers who are unable to monitor the path between the home agent
and the correspondent node. The procedure does not defend against
attackers who can monitor this path. Note that such attackers are in
any case able to mount an active attack against the mobile node when
Johnson, et al. Standard Track [Page 149]
^L
RFC 3775 Mobility Support in IPv6 June 2004
it is at its home location. The possibility of such attacks is not
an impediment to the deployment of Mobile IPv6 because these attacks
are possible regardless of whether or not Mobile IPv6 is in use.
This procedure also protects against Denial-of-Service attacks in
which the attacker pretends to be mobile, but uses the victim's
address as the care-of address. This would cause the correspondent
node to send the victim some unexpected traffic. This procedure
defends against these attacks by requiring at least the passive
presence of the attacker at the care-of address or on the path from
the correspondent to the care-of address. Normally, this will be the
mobile node.
15.4.3. Comparison to Regular IPv6 Communications
This section discusses the protection offered by the return
routability method by comparing it to the security of regular IPv6
communications. We will divide vulnerabilities into three classes:
(1) those related to attackers on the local network of the mobile
node, home agent, or the correspondent node, (2) those related to
attackers on the path between the home network and the correspondent
node, and (3) off-path attackers, i.e., the rest of the Internet.
We will now discuss the vulnerabilities of regular IPv6
communications. The on-link vulnerabilities of IPv6 communications
include Denial-of-Service, Masquerading, Man-in-the-Middle,
Eavesdropping, and other attacks. These attacks can be launched
through spoofing Router Discovery, Neighbor Discovery and other IPv6
mechanisms. Some of these attacks can be prevented with the use of
cryptographic protection in the packets.
A similar situation exists with on-path attackers. That is, without
cryptographic protection, the traffic is completely vulnerable.
Assuming that attackers have not penetrated the security of the
Internet routing protocols, attacks are much harder to launch from
off-path locations. Attacks that can be launched from these
locations are mainly Denial-of-Service attacks, such as flooding and/
or reflection attacks. It is not possible for an off-path attacker
to become a Man-in-the-Middle.
Next, we will consider the vulnerabilities that exist when IPv6 is
used together with Mobile IPv6 and the return routability procedure.
On the local link, the vulnerabilities are the same as those in IPv6,
but Masquerade and Man-in-the-Middle attacks can now also be launched
against future communications, and not just against current
communications. If a Binding Update was sent while the attacker was
present on the link, its effects remain for the lifetime of the
Johnson, et al. Standard Track [Page 150]
^L
RFC 3775 Mobility Support in IPv6 June 2004
binding. This happens even if the attacker moves away from the link.
In contrast, an attacker who uses only plain IPv6 generally has to
stay on the link in order to continue the attack. Note that in order
to launch these new attacks, the IP address of the victim must be
known. This makes this attack feasible, mainly in the context of
well-known interface IDs, such as those already appearing in the
traffic on the link or registered in the DNS.
On-path attackers can exploit similar vulnerabilities as in regular
IPv6. There are some minor differences, however. Masquerade, Man-
in-the-Middle, and Denial-of-Service attacks can be launched with
just the interception of a few packets, whereas in regular IPv6 it is
necessary to intercept every packet. The effect of the attacks is
the same regardless of the method, however. In any case, the most
difficult task an attacker faces in these attacks is getting on the
right path.
The vulnerabilities for off-path attackers are the same as in regular
IPv6. Those nodes that are not on the path between the home agent
and the correspondent node will not be able to receive the home
address probe messages.
In conclusion, we can state the following main results from this
comparison:
o Return routability prevents any off-path attacks beyond those that
are already possible in regular IPv6. This is the most important
result, preventing attackers on the Internet from exploiting any
vulnerabilities.
o Vulnerabilities to attackers on the home agent link, the
correspondent node link, and the path between them are roughly the
same as in regular IPv6.
o However, one difference is that in basic IPv6 an on-path attacker
must be constantly present on the link or the path, whereas with
Mobile IPv6, an attacker can leave a binding behind after moving
away.
For this reason, this specification limits the creation of
bindings to at most MAX_TOKEN_LIFETIME seconds after the last
routability check has been performed, and limits the duration of a
binding to at most MAX_RR_BINDING_LIFETIME seconds. With these
limitations, attackers cannot take any practical advantages of
this vulnerability.
Johnson, et al. Standard Track [Page 151]
^L
RFC 3775 Mobility Support in IPv6 June 2004
o There are some other minor differences, such as an effect to the
Denial-of-Service vulnerabilities. These can be considered to be
insignificant.
o The path between the home agent and a correspondent node is
typically easiest to attack on the links at either end, in
particular if these links are publicly accessible wireless LANs.
Attacks against the routers or switches on the path are typically
harder to accomplish. The security on layer 2 of the links plays
then a major role in the resulting overall network security.
Similarly, security of IPv6 Neighbor and Router Discovery on these
links has a large impact. If these were secured using some new
technology in the future, this could change the situation
regarding the easiest point of attack.
For a more in-depth discussion of these issues, see [32].
15.4.4. Replay Attacks
The return routability procedure also protects the participants
against replayed Binding Updates. The attacker is unable replay the
same message due to the sequence number which is a part of the
Binding Update. It is also unable to modify the Binding Update since
the MAC verification would fail after such a modification.
Care must be taken when removing bindings at the correspondent node,
however. If a binding is removed while the nonce used in its
creation is still valid, an attacker could replay the old Binding
Update. Rules outlined in Section 5.2.8 ensure that this cannot
happen.
15.4.5. Denial-of-Service Attacks
The return routability procedure has protection against resource
exhaustion Denial-of-Service attacks. The correspondent nodes do not
retain any state about individual mobile nodes until an authentic
Binding Update arrives. This is achieved through the construct of
keygen tokens from the nonces and node keys that are not specific to
individual mobile nodes. The keygen tokens can be reconstructed by
the correspondent node, based on the home and care-of address
information that arrives with the Binding Update. This means that
the correspondent nodes are safe against memory exhaustion attacks
except where on-path attackers are concerned. Due to the use of
symmetric cryptography, the correspondent nodes are relatively safe
against CPU resource exhaustion attacks as well.
Johnson, et al. Standard Track [Page 152]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Nevertheless, as [27] describes, there are situations in which it is
impossible for the mobile and correspondent nodes to determine if
they actually need a binding or whether they just have been fooled
into believing so by an attacker. Therefore, it is necessary to
consider situations where such attacks are being made.
Even if route optimization is a very important optimization, it is
still only an optimization. A mobile node can communicate with a
correspondent node even if the correspondent refuses to accept any
Binding Updates. However, performance will suffer because packets
from the correspondent node to the mobile node will be routed via the
mobile's home agent rather than a more direct route. A correspondent
node can protect itself against some of these resource exhaustion
attacks as follows. If the correspondent node is flooded with a
large number of Binding Updates that fail the cryptographic integrity
checks, it can stop processing Binding Updates. If a correspondent
node finds that it is spending more resources on checking bogus
Binding Updates than it is likely to save by accepting genuine
Binding Updates, then it may silently discard some or all Binding
Updates without performing any cryptographic operations.
Layers above IP can usually provide additional information to help
decide if there is a need to establish a binding with a specific
peer. For example, TCP knows if the node has a queue of data that it
is trying to send to a peer. An implementation of this specification
is not required to make use of information from higher protocol
layers, but some implementations are likely to be able to manage
resources more effectively by making use of such information.
We also require that all implementations be capable of
administratively disabling route optimization.
15.4.6. Key Lengths
Attackers can try to break the return routability procedure in many
ways. Section 15.4.2 discusses the situation where the attacker can
see the cryptographic values sent in the clear, and Section 15.4.3
discusses the impact this has on IPv6 communications. This section
discusses whether attackers can guess the correct values without
seeing them.
While the return routability procedure is in progress, 64 bit cookies
are used to protect spoofed responses. This is believed to be
sufficient, given that to blindly spoof a response a very large
number of messages would have to be sent before success would be
probable.
Johnson, et al. Standard Track [Page 153]
^L
RFC 3775 Mobility Support in IPv6 June 2004
The tokens used in the return routability procedure provide together
128 bits of information. This information is used internally as
input to a hash function to produce a 160 bit quantity suitable for
producing the keyed hash in the Binding Update using the HMAC_SHA1
algorithm. The final keyed hash length is 96 bits. The limiting
factors in this case are the input token lengths and the final keyed
hash length. The internal hash function application does not reduce
the entropy.
The 96 bit final keyed hash is of typical size and is believed to be
secure. The 128 bit input from the tokens is broken in two pieces,
the home keygen token and the care-of keygen token. An attacker can
try to guess the correct cookie value, but again this would require a
large number of messages (an the average 2**63 messages for one or
2**127 for two). Furthermore, given that the cookies are valid only
for a short period of time, the attack has to keep a high constant
message rate to achieve a lasting effect. This does not appear
practical.
When the mobile node is returning home, it is allowed to use just the
home keygen token of 64 bits. This is less than 128 bits, but
attacking it blindly would still require a large number of messages
to be sent. If the attacker is on the path and capable of seeing the
Binding Update, it could conceivably break the keyed hash with brute
force. However, in this case the attacker has to be on the path,
which appears to offer easier ways for denial-of-service than
preventing route optimization.
15.5. Dynamic Home Agent Address Discovery
The dynamic home agent address discovery function could be used to
learn the addresses of home agents in the home network.
The ability to learn addresses of nodes may be useful to attackers
because brute-force scanning of the address space is not practical
with IPv6. Thus, they could benefit from any means which make
mapping the networks easier. For example, if a security threat
targeted at routers or even home agents is discovered, having a
simple ICMP mechanism to easily find out possible targets may prove
to be an additional (though minor) security risk.
Apart from discovering the address(es) of home agents, attackers will
not be able to learn much from this information, and mobile nodes
cannot be tricked into using wrong home agents, as all other
communication with the home agents is secure.
Johnson, et al. Standard Track [Page 154]
^L
RFC 3775 Mobility Support in IPv6 June 2004
15.6. Mobile Prefix Discovery
The mobile prefix discovery function may leak interesting information
about network topology and prefix lifetimes to eavesdroppers; for
this reason, requests for this information has to be authenticated.
Responses and unsolicited prefix information needs to be
authenticated to prevent the mobile nodes from being tricked into
believing false information about the prefixes and possibly
preventing communications with the existing addresses. Optionally,
encryption may be applied to prevent leakage of the prefix
information.
15.7. Tunneling via the Home Agent
Tunnels between the mobile node and the home agent can be protected
by ensuring proper use of source addresses, and optional
cryptographic protection. These procedures are discussed in Section
5.5.
Binding Updates to the home agents are secure. When receiving
tunneled traffic, the home agent verifies that the outer IP address
corresponds to the current location of the mobile node. This acts as
a weak form of protection against spoofing packets that appear to
come from the mobile node. This is particularly useful, if no end-
to-end security is being applied between the mobile and correspondent
nodes. The outer IP address check prevents attacks where the
attacker is controlled by ingress filtering. It also prevents
attacks when the attacker does not know the current care-of address
of the mobile node. Attackers who know the care-of address and are
not controlled by ingress filtering could still send traffic through
the home agent. This includes attackers on the same local link as
the mobile node is currently on. But such attackers could send
packets that appear to come from the mobile node without attacking
the tunnel; the attacker could simply send packets with the source
address set to the mobile node's home address. However, this attack
does not work if the final destination of the packet is in the home
network, and some form of perimeter defense is being applied for
packets sent to those destinations. In such cases it is recommended
that either end-to-end security or additional tunnel protection be
applied, as is usual in remote access situations.
Home agents and mobile nodes may use IPsec ESP to protect payload
packets tunneled between themselves. This is useful for protecting
communications against attackers on the path of the tunnel.
When site local home addresses are used, reverse tunneling can be
used to send site local traffic from another location.
Administrators should be aware of this when allowing such home
Johnson, et al. Standard Track [Page 155]
^L
RFC 3775 Mobility Support in IPv6 June 2004
addresses. In particular, the outer IP address check described above
is not sufficient against all attackers. The use of encrypted
tunnels is particularly useful for these kinds of home addresses.
15.8. Home Address Option
When the mobile node sends packets directly to the correspondent
node, the Source Address field of the packet's IPv6 header is the
care-of address. Therefore, ingress filtering [26] works in the
usual manner even for mobile nodes, as the Source Address is
topologically correct. The Home Address option is used to inform the
correspondent node of the mobile node's home address.
However, the care-of address in the Source Address field does not
survive in replies sent by the correspondent node unless it has a
binding for this mobile node. Also, not all attacker tracing
mechanisms work when packets are being reflected through
correspondent nodes using the Home Address option. For these
reasons, this specification restricts the use of the Home Address
option. It may only be used when a binding has already been
established with the participation of the node at the home address,
as described in Section 5.5 and Section 6.3. This prevents
reflection attacks through the use of the Home Address option. It
also ensures that the correspondent nodes reply to the same address
that the mobile node sends traffic from.
No special authentication of the Home Address option is required
beyond the above, but note that if the IPv6 header of a packet is
covered by IPsec Authentication Header, then that authentication
covers the Home Address option as well. Thus, even when
authentication is used in the IPv6 header, the security of the Source
Address field in the IPv6 header is not compromised by the presence
of a Home Address option. Without authentication of the packet, any
field in the IPv6 header, including the Source Address field or any
other part of the packet and the Home Address option can be forged or
modified in transit. In this case, the contents of the Home Address
option is no more suspect than any other part of the packet.
15.9. Type 2 Routing Header
The definition of the type 2 routing header is described in Section
6.4. This definition and the associated processing rules have been
chosen so that the header cannot be used for what is traditionally
viewed as source routing. In particular, the Home Address in the
routing header will always have to be assigned to the home address of
the receiving node; otherwise the packet will be dropped.
Johnson, et al. Standard Track [Page 156]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Generally, source routing has a number of security concerns. These
include the automatic reversal of unauthenticated source routes
(which is an issue for IPv4, but not for IPv6). Another concern is
the ability to use source routing to "jump" between nodes inside, as
well as outside a firewall. These security concerns are not issues
in Mobile IPv6, due to the rules mentioned above.
In essence the semantics of the type 2 routing header is the same as
a special form of IP-in-IP tunneling where the inner and outer source
addresses are the same.
This implies that a device which implements the filtering of packets
should be able to distinguish between a type 2 routing header and
other routing headers, as required in Section 8.3. This is necessary
in order to allow Mobile IPv6 traffic while still having the option
of filtering out other uses of routing headers.
16. Contributors
Tuomas Aura, Mike Roe, Greg O'Shea, Pekka Nikander, Erik Nordmark,
and Michael Thomas worked on the return routability protocols
eventually led to the procedures used in this protocol. The
procedures described in [34] were adopted in the protocol.
Significant contributions were made by members of the Mobile IPv6
Security Design Team, including (in alphabetical order) Gabriel
Montenegro, Erik Nordmark and Pekka Nikander.
17. Acknowledgements
We would like to thank the members of the Mobile IP and IPng Working
Groups for their comments and suggestions on this work. We would
particularly like to thank (in alphabetical order) Fred Baker, Josh
Broch, Samita Chakrabarti, Robert Chalmers, Noel Chiappa, Greg Daley,
Vijay Devarapalli, Rich Draves, Francis Dupont, Thomas Eklund, Jun-
Ichiro Itojun Hagino, Brian Haley, Marc Hasson, John Ioannidis, James
Kempf, Rajeev Koodli, Krishna Kumar, T.J. Kniveton, Joe Lau, Jiwoong
Lee, Aime Le Rouzic, Vesa-Matti Mantyla, Kevin Miles, Glenn Morrow,
Thomas Narten, Karen Nielsen, Simon Nybroe, David Oran, Brett
Pentland, Lars Henrik Petander, Basavaraj Patil, Mohan Parthasarathy,
Alexandru Petrescu, Mattias Petterson, Ken Powell, Phil Roberts, Ed
Remmell, Patrice Romand, Luis A. Sanchez, Jeff Schiller, Pekka
Savola, Arvind Sevalkar, Keiichi Shima, Tom Soderlund, Hesham
Soliman, Jim Solomon, Tapio Suihko, Dave Thaler, Benny Van Houdt,
Jon-Olov Vatn, Carl E. Williams, Vladislav Yasevich, Alper Yegin, and
Johnson, et al. Standard Track [Page 157]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Xinhua Zhao, for their detailed reviews of earlier versions of this
document. Their suggestions have helped to improve both the design
and presentation of the protocol.
We would also like to thank the participants of the Mobile IPv6
testing event (1999), implementors who participated in Mobile IPv6
interoperability testing at Connectathons (2000, 2001, 2002, and
2003), and the participants at the ETSI interoperability testing
(2000, 2002). Finally, we would like to thank the TAHI project who
has provided test suites for Mobile IPv6.
18. References
18.1. Normative References
[1] Eastlake 3rd., D., Crocker, S. and J. Schiller, "Randomness
Recommendations for Security", RFC 1750, December 1994.
[2] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997.
[3] Hinden, R. and S. Deering, "Internet Protocol Version 6 (IPv6)
Addressing Architecture", RFC 3513, April 2003.
[4] Kent, S. and R. Atkinson, "Security Architecture for the
Internet Protocol", RFC 2401, November 1998.
[5] Kent, S. and R. Atkinson, "IP Authentication Header", RFC 2402,
November 1998.
[6] Kent, S. and R. Atkinson, "IP Encapsulating Security Payload
(ESP)", RFC 2406, November 1998.
[7] Piper, D., "The Internet IP Security Domain of Interpretation
for ISAKMP", RFC 2407, November 1998.
[8] Maughan, D., Schertler, M., Schneider, M. and J. Turner,
"Internet Security Association and Key Management Protocol
(ISAKMP)", RFC 2408, November 1998.
[9] Harkins, D. and D. Carrel, "The Internet Key Exchange (IKE)",
RFC 2409, November 1998.
[10] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
Considerations Section in RFCs", BCP 26, RFC 2434, October
1998.
Johnson, et al. Standard Track [Page 158]
^L
RFC 3775 Mobility Support in IPv6 June 2004
[11] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6)
Specification", RFC 2460, December 1998.
[12] Narten, T., Nordmark, E. and W. Simpson, "Neighbor Discovery
for IP Version 6 (IPv6)", RFC 2461, December 1998.
[13] Thomson, S. and T. Narten, "IPv6 Stateless Address
Autoconfiguration", RFC 2462, December 1998.
[14] Conta, A. and S. Deering, "Internet Control Message Protocol
(ICMPv6) for the Internet Protocol Version 6 (IPv6)
Specification", RFC 2463, December 1998.
[15] Conta, A. and S. Deering, "Generic Packet Tunneling in IPv6
Specification", RFC 2473, December 1998.
[16] Johnson, D. and S. Deering, "Reserved IPv6 Subnet Anycast
Addresses", RFC 2526, March 1999.
[17] Deering, S., Fenner, W. and B. Haberman, "Multicast Listener
Discovery (MLD) for IPv6", RFC 2710, October 1999.
[18] Narten, T. and R. Draves, "Privacy Extensions for Stateless
Address Autoconfiguration in IPv6", RFC 3041, January 2001.
[19] Reynolds, J., Ed., "Assigned Numbers: RFC 1700 is Replaced by
an On-line Database", RFC 3232, January 2002.
[20] National Institute of Standards and Technology, "Secure Hash
Standard", FIPS PUB 180-1, April 1995, <http://
www.itl.nist.gov/fipspubs/fip180-1.htm>.
[21] Arkko, J., Devarapalli, V. and F. Dupont, "Using IPsec to
Protect Mobile IPv6 Signaling Between Mobile Nodes and Home
Agents", RFC 3776, June 2004.
18.2. Informative References
[22] Perkins, C., Ed., "IP Mobility Support for IPv4", RFC 3344,
August 2002.
[23] Perkins, C., "IP Encapsulation within IP", RFC 2003, October
1996.
[24] Perkins, C., "Minimal Encapsulation within IP", RFC 2004,
October 1996.
Johnson, et al. Standard Track [Page 159]
^L
RFC 3775 Mobility Support in IPv6 June 2004
[25] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC: Keyed-Hashing
for Message Authentication", RFC 2104, February 1997.
[26] Ferguson, P. and D. Senie, "Network Ingress Filtering:
Defeating Denial of Service Attacks which employ IP Source
Address Spoofing", BCP 38, RFC 2827, May 2000.
[27] Aura, T. and J. Arkko, "MIPv6 BU Attacks and Defenses", Work in
Progress, March 2002.
[28] Bellovin, S., "Guidelines for Mandating Automated Key
Management", Work in Progress, August 2003.
[29] Droms, R., Ed., Bound, J., Volz, B., Lemon, T., Perkins, C. and
M. Carney, "Dynamic Host Configuration Protocol for IPv6
(DHCPv6)", RFC 3315, July 2003.
[30] Kaufman, C., "Internet Key Exchange (IKEv2) Protocol", Work in
Progress, April 2003.
[31] Draves, R., "Default Address Selection for Internet Protocol
version 6 (IPv6)", RFC 3484, February 2003.
[32] Nikander, P., Aura, T., Arkko, J., Montenegro, G. and E.
Nordmark, "Mobile IP version 6 Route Optimization Security
Design Background", Work in Progress, April 2003.
[33] Nordmark, E., "Securing MIPv6 BUs using return routability
(BU3WAY)", Work in Progress, November 2001.
[34] Roe, M., Aura, T., O'Shea, G. and J. Arkko, "Authentication of
Mobile IPv6 Binding Updates and Acknowledgments", Work in
Progress, March 2002.
[35] Savola, P., "Use of /127 Prefix Length Between Routers
Considered Harmful", RFC 3627, September 2003.
[36] Savola, P., "Security of IPv6 Routing Header and Home Address
Options", Work in Progress, December 2002.
[37] Vida, R. and L. Costa, Eds., "Multicast Listener Discovery
Version 2 (MLDv2) for IPv6", RFC 3810, June 2004.
Johnson, et al. Standard Track [Page 160]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Appendix A. Future Extensions
A.1. Piggybacking
This document does not specify how to piggyback payload packets on
the binding related messages. However, it is envisioned that this
can be specified in a separate document when issues such as the
interaction between piggybacking and IPsec are fully resolved (see
also Appendix A.3). The return routability messages can indicate
support for piggybacking with a new mobility option.
A.2. Triangular Routing
Due to the concerns about opening reflection attacks with the Home
Address destination option, this specification requires that this
option be verified against the Binding Cache, i.e., there must be a
Binding Cache entry for the Home Address and Care-of Address.
Future extensions may be specified that allow the use of unverified
Home Address destination options in ways that do not introduce
security issues.
A.3. New Authorization Methods
While the return routability procedure provides a good level of
security, there exist methods that have even higher levels of
security. Secondly, as discussed in Section 15.4, future
enhancements of IPv6 security may cause a need to also improve the
security of the return routability procedure. Using IPsec as the
sole method for authorizing Binding Updates to correspondent nodes is
also possible. The protection of the Mobility Header for this
purpose is easy, though one must ensure that the IPsec SA was created
with appropriate authorization to use the home address referenced in
the Binding Update. For instance, a certificate used by IKE to
create the security association might contain the home address. A
future specification may specify how this is done.
A.4. Dynamically Generated Home Addresses
A future version of this specification may include functionality that
allows the generation of new home addresses without requiring pre-
arranged security associations or certificates even for the new
addresses.
Johnson, et al. Standard Track [Page 161]
^L
RFC 3775 Mobility Support in IPv6 June 2004
A.5. Remote Home Address Configuration
The method for initializing a mobile node's home address upon power-
up or after an extended period of being disconnected from the network
is beyond the scope of this specification. Whatever procedure is
used should result in the mobile node having the same stateless or
stateful (e.g., DHCPv6) home address autoconfiguration information it
would have if it were attached to the home network. Due to the
possibility that the home network could be renumbered while the
mobile node is disconnected, a robust mobile node would not rely
solely on storing these addresses locally.
Such a mobile node could be initialized by using the following
procedure:
1. Generate a care-of address.
2. Query DNS for an anycast address associated with the FQDN of the
home agent(s).
3. Perform home agent address discovery, and select a home agent.
4. Configure one home address based on the selected home agent's
subnet prefix and the interface identifier of the mobile node.
5. Create security associations and security policy database entries
for protecting the traffic between the selected home address and
home agent.
6. Perform a home registration on the selected home agent.
7. Perform mobile prefix discovery.
8. Make a decision if further home addresses need to be configured.
This procedure is restricted to those situations where the home
prefix is 64 bits and the mobile node knows its own interface
identifier, which is also 64 bits.
Johnson, et al. Standard Track [Page 162]
^L
RFC 3775 Mobility Support in IPv6 June 2004
A.6. Neighbor Discovery Extensions
Future specifications may improve the efficiency of Neighbor
Discovery tasks, which could be helpful for fast movements. One
factor is currently being looked at: the delays caused by the
Duplicate Address Detection mechanism. Currently, Duplicate Address
Detection needs to be performed for every new care-of address as the
mobile node moves, and for the mobile node's link-local address on
every new link. In particular, the need and the trade-offs of re-
performing Duplicate Address Detection for the link-local address
every time the mobile node moves on to new links will need to be
examined. Improvements in this area are, however, generally
applicable and progress independently from the Mobile IPv6
specification.
Future functional improvements may also be relevant for Mobile IPv6
and other applications. For instance, mechanisms that would allow
recovery from a Duplicate Address Detection collision would be useful
for link-local, care-of, and home addresses.
Johnson, et al. Standard Track [Page 163]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Authors' Addresses
David B. Johnson
Rice University
Dept. of Computer Science, MS 132
6100 Main Street
Houston TX 77005-1892
USA
EMail: dbj@cs.rice.edu
Charles E. Perkins
Nokia Research Center
313 Fairchild Drive
Mountain View CA 94043
USA
EMail: charliep@iprg.nokia.com
Jari Arkko
Ericsson
02420 Jorvas
Finland
EMail: jari.arkko@ericsson.com
Johnson, et al. Standard Track [Page 164]
^L
RFC 3775 Mobility Support in IPv6 June 2004
Full Copyright Statement
Copyright (C) The Internet Society (2004). This document is subject
to the rights, licenses and restrictions contained in BCP 78, and
except as set forth therein, the authors retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at ietf-
ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Johnson, et al. Standard Track [Page 165]
^L
|