1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
|
Network Working Group C. Olvera
Request for Comments: 3791 Consulintel
Category: Informational P. Nesser, II
Nesser & Nesser Consulting
June 2004
Survey of IPv4 Addresses in Currently Deployed
IETF Routing Area Standards Track and Experimental Documents
Status of this Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2004).
Abstract
This investigation work seeks to document all usage of IPv4 addresses
in currently deployed IETF Routing Area documented standards. In
order to successfully transition from an all IPv4 Internet to an all
IPv6 Internet, many interim steps will be taken. One of these steps
is the evolution of current protocols that have IPv4 dependencies.
It is hoped that these protocols (and their implementations) will be
redesigned to be network address independent, but failing that will
at least dually support IPv4 and IPv6. To this end, all Standards
(Full, Draft, and Proposed) as well as Experimental RFCs will be
surveyed and any dependencies will be documented.
Table of Contents
1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Document Organization . . . . . . . . . . . . . . . . . . . . 2
3. Full Standards. . . . . . . . . . . . . . . . . . . . . . . . 3
4. Draft Standards . . . . . . . . . . . . . . . . . . . . . . . 3
5. Proposed Standards. . . . . . . . . . . . . . . . . . . . . . 3
6. Experimental RFCs . . . . . . . . . . . . . . . . . . . . . . 7
7. Summary of Results. . . . . . . . . . . . . . . . . . . . . . 9
8. Security Considerations . . . . . . . . . . . . . . . . . . . 12
9. Acknowledgements. . . . . . . . . . . . . . . . . . . . . . . 12
10. References. . . . . . . . . . . . . . . . . . . . . . . . . . 13
10.1. Normative References . . . . . . . . . . . . . . . . . . 13
10.2. Informative References . . . . . . . . . . . . . . . . . 13
Olvera & Nesser II Informational [Page 1]
^L
RFC 3791 IPv4 Addresses in the IETF Routing Area June 2004
11. Authors' Addresses. . . . . . . . . . . . . . . . . . . . . . 14
12. Full Copyright Statement. . . . . . . . . . . . . . . . . . . 15
1. Introduction
This work aims to document all usage of IPv4 addresses in currently
deployed IETF Routing Area documented standards. Also, throughout
this document there are discussions on how routing protocols might be
updated to support IPv6 addresses.
This material was originally presented within a single document, but
in an effort to have the information in a manageable form, it has
subsequently been split into 7 documents conforming to the current
IETF main areas (Application [2], Internet [3], Operations &
Management [4], Routing [this document], Security [5], Sub-IP [6] and
Transport [7]).
The general overview, methodology used during documentation and scope
of the investigation for the whole 7 documents can be found in the
introduction of this set of documents [1].
It is important to mention that to perform this study the following
classes of IETF standards are investigated: Full, Draft, and
Proposed, as well as Experimental. Informational, BCP and Historic
RFCs are not addressed. RFCs that have been obsoleted by either
newer versions or as they have transitioned through the standards
process are also not covered.
2. Document Organization
The main Sections of this document are described below.
Sections 3, 4, 5, and 6 each describe the raw analysis of Full,
Draft, Proposed Standards and Experimental RFCs. Each RFC is
discussed in its turn starting with RFC 1 and ending (around) RFC
3100. The comments for each RFC are "raw" in nature. That is, each
RFC is discussed in a vacuum and problems or issues discussed do not
"look ahead" to see if the problems have already been fixed.
Section 7 is an analysis of the data presented in Sections 3, 4, 5,
and 6. It is here that all of the results are considered as a whole
and the problems that have been resolved in later RFCs are
correlated.
Olvera & Nesser II Informational [Page 2]
^L
RFC 3791 IPv4 Addresses in the IETF Routing Area June 2004
3. Full Standards
Full Internet Standards (most commonly simply referred to as
"Standards") are fully mature protocol specification that are widely
implemented and used throughout the Internet.
3.1. RFC 1722 (STD 57) RIP Version 2 Protocol Applicability Statement
RIPv2 is only intended for IPv4 networks.
3.2. RFC 2328 (STD 54) OSPF Version 2
This RFC defines a protocol for IPv4 routing. It is highly
assumptive about address formats being IPv4 in nature.
3.3. RFC 2453 (STD 56) RIP Version 2
RIPv2 is only intended for IPv4 networks.
4. Draft Standards
Draft Standards represent the penultimate standard level in the IETF.
A protocol can only achieve draft standard when there are multiple,
independent, interoperable implementations. Draft Standards are
usually quite mature and widely used.
4.1. RFC 1771 A Border Gateway Protocol 4 (BGP-4)
This RFC defines a protocol used for exchange of IPv4 routing
information and does not support IPv6 as is defined.
4.2. RFC 1772 Application of the Border Gateway Protocol in the
Internet
This RFC is a discussion of the use of BGP-4 on the Internet.
4.3. RFC 3392 Capabilities Advertisement with BGP-4
Although the protocol enhancements have no IPv4 dependencies, the
base protocol, BGP-4, is IPv4 only.
5. Proposed Standards
Proposed Standards are introductory level documents. There are no
requirements for even a single implementation. In many cases
Proposed are never implemented or advanced in the IETF standards
process. They therefore are often just proposed ideas that are
presented to the Internet community. Sometimes flaws are exposed or
Olvera & Nesser II Informational [Page 3]
^L
RFC 3791 IPv4 Addresses in the IETF Routing Area June 2004
they are one of many competing solutions to problems. In these later
cases, no discussion is presented as it would not serve the purpose
of this discussion.
5.1. RFC 1195 Use of OSI IS-IS for routing in TCP/IP and dual
environments
This document specifies a protocol for the exchange of IPv4 routing
information.
5.2. RFC 1370 Applicability Statement for OSPF
This document discusses a version of OSPF that is limited to IPv4.
5.3. RFC 1397 Default Route Advertisement In BGP2 and BGP3 Version of
The Border Gateway Protocol
BGP2 and BGP3 are both deprecated and therefore are not discussed in
this document.
5.4. RFC 1478 An Architecture for Inter-Domain Policy Routing
The architecture described in this document has no IPv4 dependencies.
5.5. RFC 1479 Inter-Domain Policy Routing Protocol Specification:
Version 1 (IDPR)
There are no IPv4 dependencies in this protocol.
5.6. RFC 1517 Applicability Statement for the Implementation of
Classless Inter-Domain Routing (CIDR)
This document deals exclusively with IPv4 addressing issue.
5.7. RFC 1518 An Architecture for IP Address Allocation with CIDR
This document deals exclusively with IPv4 addressing issue.
5.8. RFC 1519 Classless Inter-Domain Routing (CIDR): an Address
Assignment and Aggregation Strategy
This document deals exclusively with IPv4 addressing issue.
5.9. RFC 1582 Extensions to RIP to Support Demand Circuits
This protocol is an extension to a protocol for exchanging IPv4
routing information.
Olvera & Nesser II Informational [Page 4]
^L
RFC 3791 IPv4 Addresses in the IETF Routing Area June 2004
5.10. RFC 1584 Multicast Extensions to OSPF
This document defines the use of IPv4 multicast to an IPv4 only
routing protocol.
5.11. RFC 1793 Extending OSPF to Support Demand Circuits
There are no IPv4 dependencies in this protocol other than the fact
that it is a new functionality for a routing protocol that only
supports IPv4 networks.
5.12. RFC 1997 BGP Communities Attribute
Although the protocol enhancements have no IPv4 dependencies, the
base protocol, BGP-4, is IPv4 only.
5.13. RFC 2080 RIPng for IPv6
This RFC documents a protocol for exchanging IPv6 routing information
and is not discussed in this document.
5.14. RFC 2091 Triggered Extensions to RIP to Support Demand Circuits
This RFC defines an enhancement for an IPv4 routing protocol and
while it has no IPv4 dependencies it is inherently limited to IPv4.
5.15. RFC 2338 Virtual Router Redundancy Protocol (VRRP)
This protocol is IPv4 specific, there are numerous references to 32-
bit IP addresses.
5.16. RFC 2370 The OSPF Opaque LSA Option
There are no IPv4 dependencies in this protocol other than the fact
that it is a new functionality for a routing protocol that only
supports IPv4 networks.
5.17. RFC 2439 BGP Route Flap Damping
The protocol enhancements have no IPv4 dependencies, even though the
base protocol, BGP-4, is IPv4 only routing protocol.
5.18. RFC 2545 Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-
Domain Routing
This RFC documents IPv6 routing methods and is not discussed in this
document.
Olvera & Nesser II Informational [Page 5]
^L
RFC 3791 IPv4 Addresses in the IETF Routing Area June 2004
5.19. RFC 2740 OSPF for IPv6
This document defines an IPv6 specific protocol and is not discussed
in this document.
5.20. RFC 2784 Generic Routing Encapsulation (GRE)
This protocol is only defined for IPv4. The document states in the
Appendix:
o IPv6 as Delivery and/or Payload Protocol
This specification describes the intersection of GRE currently
deployed by multiple vendors. IPv6 as delivery and/or payload
protocol is not included.
5.21. RFC 2796 BGP Route Reflection - An Alternative to Full Mesh IBGP
Although the protocol enhancements have no IPv4 dependencies, the
base protocol, BGP-4, is IPv4 only routing protocol. This
specification updates but does not obsolete RFC 1966.
5.22. RFC 2858 Multiprotocol Extensions for BGP-4
In the Abstract:
Currently BGP-4 is capable of carrying routing information only for
IPv4. This document defines extensions to BGP-4 to enable it to
carry routing information for multiple Network Layer protocols (e.g.,
IPv6, IPX, etc...). The extensions are backward compatible - a
router that supports the extensions can interoperate with a router
that doesn't support the extensions.
The document is therefore not examined further in this document.
5.23. RFC 2890 Key and Sequence Number Extensions to GRE
There are no IPv4 dependencies in this protocol.
5.24. RFC 2894 Router Renumbering for IPv6
The RFC defines an IPv6 only document and is not concerned in this
survey.
5.25. RFC 2918 Route Refresh Capability for BGP-4
Although the protocol enhancements have no IPv4 dependencies, the
base protocol, BGP-4, is IPv4 only routing protocol.
Olvera & Nesser II Informational [Page 6]
^L
RFC 3791 IPv4 Addresses in the IETF Routing Area June 2004
5.26. RFC 3065 Autonomous System Confederations for BGP
Although the protocol enhancements have no IPv4 dependencies, the
base protocol, BGP-4, is IPv4 only routing protocol.
5.27. RFC 3101 The OSPF Not-So-Stubby Area (NSSA) Option
This document defines an extension to an IPv4 routing protocol.
5.28. RFC 3107 Carrying Label Information in BGP-4
There are no IPv4 dependencies in this protocol.
5.29. RFC 3122 Extensions to IPv6 Neighbor Discovery for Inverse
Discovery Specification
This is an IPv6 related document and is not discussed in this
document.
6. Experimental RFCs
Experimental RFCs typically define protocols that do not have wide
scale implementation or usage on the Internet. They are often
propriety in nature or used in limited arenas. They are documented
to the Internet community in order to allow potential
interoperability or some other potential useful scenario. In a few
cases they are presented as alternatives to the mainstream solution
to an acknowledged problem.
6.1. RFC 1075 Distance Vector Multicast Routing Protocol (DVMRP)
This document defines a protocol for IPv4 multicast routing.
6.2. RFC 1383 An Experiment in DNS Based IP Routing
This proposal is IPv4 limited:
This record is designed for easy general purpose extensions in the
DNS, and its content is a text string. The RX record will contain
three fields: A record identifier, A cost indicator, and An IP
address.
Olvera & Nesser II Informational [Page 7]
^L
RFC 3791 IPv4 Addresses in the IETF Routing Area June 2004
The three strings will be separated by a single comma. An example of
record would thus be:
___________________________________________________________________
| domain | type | record | value |
| - | | | |
|*.27.32.192.in-addr.arpa | IP | TXT | RX, 10, 10.0.0.7|
|_________________________|________|__________|___________________|
which means that for all hosts whose IP address starts by the three
octets "192.32.27" the IP host "10.0.0.7" can be used as a gateway,
and that the preference value is 10.
6.3. RFC 1476 RAP: Internet Route Access Protocol
This document defines an IPv7 routing protocol and has been abandoned
by the IETF as a feasible design. It is not considered in this
document.
6.4. RFC 1765 OSPF Database Overflow
There are no IPv4 dependencies in this protocol other than the fact
that it is a new functionality for a routing protocol that only
supports IPv4 networks.
6.5. RFC 1863 A BGP/IDRP Route Server alternative to a full mesh
routing
This protocol is both IPv4 and IPv6 aware and needs no changes.
6.6. RFC 1966 BGP Route Reflection An alternative to full mesh IBGP
Although the protocol enhancements have no IPv4 dependencies, the
base protocol, BGP-4, is IPv4 only routing protocol. This
specification has been updated by RFC 2796.
6.7. RFC 2189 Core Based Trees (CBT version 2) Multicast Routing
The document specifies a protocol that depends on IPv4 multicast.
There are many packet formats defined that show IPv4 usage.
6.8. RFC 2201 Core Based Trees (CBT) Multicast Routing Architecture
See previous Section for the IPv4 limitation in this protocol.
Olvera & Nesser II Informational [Page 8]
^L
RFC 3791 IPv4 Addresses in the IETF Routing Area June 2004
6.9. RFC 2337 Intra-LIS IP multicast among routers over ATM using
Sparse Mode PIM
This protocol is designed for IPv4 multicast.
6.10. RFC 2362 Protocol Independent Multicast-Sparse Mode (PIM-SM):
Protocol Specification
This protocol is both IPv4 and IPv6 aware and needs no changes.
6.11. RFC 2676 QoS Routing Mechanisms and OSPF Extensions
There are IPv4 dependencies in this protocol. It requires the use of
the IPv4 TOS header field.
7. Summary of Results
In the initial survey of RFCs, 23 positives were identified out of a
total of 46, broken down as follows:
Standards: 3 out of 3 or 100.00%
Draft Standards: 1 out of 3 or 33.33%
Proposed Standards: 13 out of 29 or 44.83%
Experimental RFCs: 6 out of 11 or 54.54%
Of those identified many require no action because they document
outdated and unused protocols, while others are document protocols
that are actively being updated by the appropriate working groups.
Additionally there are many instances of standards that should be
updated but do not cause any operational impact if they are not
updated. The remaining instances are documented below. The authors
have attempted to organize the results in a format that allows easy
reference to other protocol designers. The assignment of statements
has been based entirely on the authors perceived needs for updates
and should not be taken as an official statement.
7.1. Standards
7.1.1. STD 57 RIP Version 2 Protocol Applicability Statement (RFC 1722)
This problem has been fixed by RFC 2081, RIPng Protocol Applicability
Statement.
Olvera & Nesser II Informational [Page 9]
^L
RFC 3791 IPv4 Addresses in the IETF Routing Area June 2004
7.1.2. STD 54 OSPF Version 2 (RFC 2328)
This problem has been fixed by RFC 2740, OSPF for IPv6.
7.1.3. STD 56 RIP Version 2 (RFC 2453)
This problem has been fixed by RFC 2080, RIPng for IPv6.
7.2. Draft Standards
7.2.1. Border Gateway Protocol 4 (RFC 1771)
This problem has been fixed in RFC 2858 Multiprotocol Extensions for
BGP-4, RFC 2545 Use of BGP-4 Multiprotocol Extensions for IPv6
Inter-Domain Routing, and in [8].
RFC 2858 extends BGP to support multi-protocol extensions that allows
routing information for other address families to be exchanged. RFC
2545 further extends RFC 2858 for full support of exchanging IPv6
routing information and additionally clarifies support of the
extended BGP-4 protocol using TCP+IPv6 as a transport mechanism. RFC
1771, 2858 & 2545 must be supported in order to provide full IPv6
support.
Note also that all the BGP extensions analyzed previously in this
memo function without changes with the updated version of BGP-4.
7.3. Proposed Standards
7.3.1. Use of OSI IS-IS for routing in TCP/IP and dual environments
(RFC 1195)
This problem is being addressed by the IS-IS WG [9].
7.3.2. Applicability Statement for OSPFv2 (RFC 1370)
This problem has been resolved in RFC 2740, OSPF for IPv6.
7.3.3. Applicability of CIDR (RFC 1517)
The contents of this specification has been treated in various IPv6
addressing architecture RFCs, see RFC 3513 & 3587.
7.3.4. CIDR Architecture (RFC 1518)
The contents of this specification has been treated in various IPv6
addressing architecture RFCs, see RFC 3513 & 3587.
Olvera & Nesser II Informational [Page 10]
^L
RFC 3791 IPv4 Addresses in the IETF Routing Area June 2004
7.3.5. Classless Inter-Domain Routing (CIDR): an Address Assignment
and Aggregation Strategy (RFC 1519)
The contents of this specification has been treated in various IPv6
addressing architecture RFCs, see RFC 3513 & 3587.
7.3.6. RIP Extensions for Demand Circuits (RFC 1582)
This problem has been addressed in RFC 2080, RIPng for IPv6.
7.3.7. OSPF Multicast Extensions (RFC 1584)
This functionality has been covered in RFC 2740, OSPF for IPv6.
7.3.8. OSPF For Demand Circuits (RFC 1793)
This functionality has been covered in RFC 2740, OSPF for IPv6.
7.3.9. RIP Triggered Extensions for Demand Circuits (RFC 2091)
This functionality is provided in RFC 2080, RIPng for IPv6.
7.3.10. Virtual Router Redundancy Protocol (VRRP)(RFC 2338)
The problems identified are being addressed by the VRRP WG [10].
7.3.11. OSPF Opaque LSA Option (RFC 2370)
This problem has been fixed by RFC 2740, OSPF for IPv6. Opaque
options support is an inbuilt functionality in OSPFv3.
7.3.12. Generic Routing Encapsulation (GRE)(RFC 2784)
Even though GRE tunneling over IPv6 has been implemented and used,
its use has not been formally specified. Clarifications are
required.
7.3.13. OSPF NSSA Option (RFC 3101)
This functionality has been covered in RFC 2740, OSPF for IPv6.
7.4. Experimental RFCs
7.4.1. Distance Vector Multicast Routing Protocol (RFC 1075)
This protocol is a routing protocol for IPv4 multicast routing. It
is no longer in use and need not be redefined.
Olvera & Nesser II Informational [Page 11]
^L
RFC 3791 IPv4 Addresses in the IETF Routing Area June 2004
7.4.2. An Experiment in DNS Based IP Routing (RFC 1383)
This protocol relies on IPv4 DNS RR, but is no longer relevant has
never seen much use; no action is necessary.
7.4.3. Core Based Trees (CBT version 2) Multicast Routing (RFC 2189)
This protocol relies on IPv4 IGMP Multicast and a new protocol
standard may be produced. However, the multicast routing protocol
has never been in much use and is no longer relevant; no action is
necessary.
7.4.4. Core Based Trees (CBT) Multicast Routing Architecture (RFC 2201)
See previous Section for the limitation in this protocol.
7.4.5. Intra-LIS IP multicast among routers over ATM using Sparse
Mode PIM (RFC 2337)
This protocol is designed for IPv4 multicast. However, Intra-LIS IP
multicast among routers over ATM is not believed to be relevant
anymore. A new mechanism may be defined for IPv6 multicast.
7.4.6. QoS Routing Mechanisms and OSPF Extensions (RFC 2676)
QoS extensions for OSPF were never used for OSPFv2, and there seems
to be little need for them in OSPFv3.
However, if necessary, an update to this document could simply define
the use of the IPv6 Traffic Class field since it is defined to be
exactly the same as the IPv4 TOS field.
8. Security Considerations
This document examines the IPv6-readiness of routing specification;
this does not have security considerations in itself.
9. Acknowledgements
The original author, Philip J. Nesser II, would like to acknowledge
the support of the Internet Society in the research and production of
this document.
He also would like to thanks his partner in all ways, Wendy M.
Nesser.
Olvera & Nesser II Informational [Page 12]
^L
RFC 3791 IPv4 Addresses in the IETF Routing Area June 2004
Cesar Olvera would like to thanks Pekka Savola for an extended
guidance and comments for the edition of this document, and Jordi
Palet for his support and reviews.
Additionally, he would further like to thank Andreas Bergstrom, Brian
Carpenter, Jeff Haas, Vishwas Manral, Gabriela Medina, Venkata Naidu,
Jeff Parker and Curtis Villamizar for valuable feedback.
10. References
10.1. Normative References
[1] Nesser, II, P. and A. Bergstrom, Editor, "Introduction to the
Survey of IPv4 Addresses in Currently Deployed IETF Standards",
RFC 3789, June 2004.
[2] Sofia, R. and P. Nesser, II, "Survey of IPv4 Addresses in
Currently Deployed IETF Application Area Standards", RFC 3795,
June 2004.
[3] Mickles, C. and P. Nesser, II, "Internet Area: Survey of IPv4
Addresses Currently Deployed IETF Standards", RFC 3790, June
2004.
[4] Nesser, II, P. and A. Bergstrom, "Survey of IPv4 addresses in
Currently Deployed IETF Operations & Management Area
Standards", RFC 3796, June 2004.
[5] Nesser, II, P. and A. Bergstrom. "Survey of IPv4 Addresses in
Currently Deployed IETF Security Area Standards", RFC 3792,
June 2004.
[6] Nesser, II, P. and A. Bergstrom. "Survey of IPv4 Addresses in
Currently Deployed IETF Sub-IP Area Standards", RFC 3793, June
2004.
[7] Nesser, II, P. and A. Bergstrom "Survey of IPv4 Addresses in
Currently Deployed IETF Transport Area Standards", RFC 3794,
June 2004.
10.2. Informative References
[8] Chen, E. and J. Yuan, "AS-wide Unique BGP Identifier for BGP-
4", Work in Progress, December 2003.
[9] Hopps, C., "Routing IPv6 with IS-IS", Work in Progress, January
2003.
Olvera & Nesser II Informational [Page 13]
^L
RFC 3791 IPv4 Addresses in the IETF Routing Area June 2004
[10] Hinden, R., "Virtual Router Redundancy Protocol for IPv6", Work
in Progress, February 2004.
11. Authors' Addresses
Please contact the authors with any questions, comments or
suggestions at:
Cesar Olvera Morales
Researcher
Consulintel
San Jose Artesano, 1
28108 - Alcobendas
Madrid, Spain
Phone: +34 91 151 81 99
Fax: +34 91 151 81 98
EMail: cesar.olvera@consulintel.es
Philip J. Nesser II
Principal
Nesser & Nesser Consulting
13501 100th Ave NE, #5202
Kirkland, WA 98034
Phone: +1 425 481 4303
EMail: phil@nesser.com
Olvera & Nesser II Informational [Page 14]
^L
RFC 3791 IPv4 Addresses in the IETF Routing Area June 2004
12. Full Copyright Statement
Copyright (C) The Internet Society (2004). This document is subject
to the rights, licenses and restrictions contained in BCP 78, and
except as set forth therein, the authors retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE
INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed
to pertain to the implementation or use of the technology
described in this document or the extent to which any license
under such rights might or might not be available; nor does it
represent that it has made any independent effort to identify any
such rights. Information on the procedures with respect to
rights in RFC documents can be found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use
of such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository
at http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention
any copyrights, patents or patent applications, or other
proprietary rights that may cover technology that may be required
to implement this standard. Please address the information to the
IETF at ietf-ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Olvera & Nesser II Informational [Page 15]
^L
|