summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc3949.txt
blob: 1e94f1ddd7146860b623338996f8e86c86784c71 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
Network Working Group                                         R. Buckley
Request for Comments: 3949                                    D. Venable
Obsoletes: 2301                                        Xerox Corporation
Category: Standards Track                                    L. McIntyre
                                                              Consultant
                                                              G. Parsons
                                                         Nortel Networks
                                                             J. Rafferty
                                                              Brooktrout
                                                           February 2005


                      File Format for Internet Fax

Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2005).

Abstract

   This document is a revised version of RFC 2301.  The revisions,
   summarized in the list attached as Annex B, are based on discussions
   and suggestions for improvements that have been made since RFC 2301
   was issued in March 1998, and on the results of independent
   implementations and interoperability testing.

   This RFC 2301 revision describes the Tag Image File Format (TIFF)
   representation of image data specified by the International
   Telecommunication Union (ITU-T) Recommendations for black-and-white
   and color facsimile.  This file format specification is commonly
   known as TIFF for Fax eXtended (TIFF-FX).  It formally defines
   minimal, extended, and lossless Joint Bi-level Image experts Group
   (JBIG) profiles (Profiles S, F, J) for black-and-white fax and base
   JPEG, lossless JBIG, and Mixed Raster Content profiles (Profiles C,
   L, M) for color and grayscale fax.  These profiles correspond to the
   content of the applicable ITU-T Recommendations.







Buckley, et al.             Standards Track                     [Page 1]
^L
RFC 3949              File Format for Internet Fax         February 2005


Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  4
       1.1. Scope . . . . . . . . . . . . . . . . . . . . . . . . . .  5
       1.2. Approach. . . . . . . . . . . . . . . . . . . . . . . . .  5
       1.3. Overview of this Document . . . . . . . . . . . . . . . .  5
   2.  TIFF and Fax . . . . . . . . . . . . . . . . . . . . . . . . .  7
       2.1. TIFF Overview . . . . . . . . . . . . . . . . . . . . . .  7
            2.1.1. File Structure . . . . . . . . . . . . . . . . . .  8
            2.1.2. Image Structure. . . . . . . . . . . . . . . . . . 10
            2.1.3. TIFF File Structure for Fax Applications . . . . . 11
       2.2. TIFF Fields for All Fax Applications. . . . . . . . . . . 12
            2.2.1. TIFF Fields required for all fax profiles. . . . . 13
            2.2.2. Additional TIFF Fields required for all fax
                   profiles . . . . . . . . . . . . . . . . . . . . . 14
            2.2.3. TIFF Fields recommended for all fax profiles . . . 17
            2.2.4. New TIFF Fields recommended for fax profiles . . . 18
   3.  Profile S: Minimal Black-and-White Fax Profile . . . . . . . . 20
       3.1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . 20
       3.2. Required TIFF Fields. . . . . . . . . . . . . . . . . . . 21
            3.2.1. Baseline Fields. . . . . . . . . . . . . . . . . . 21
            3.2.2. Extension Fields . . . . . . . . . . . . . . . . . 23
            3.2.3. New Fields . . . . . . . . . . . . . . . . . . . . 23
       3.3. Recommended TIFF Fields . . . . . . . . . . . . . . . . . 23
       3.4. End of Line (EOL) and Return to Control (RTC) . . . . . . 23
            3.4.1. RTC Exclusion. . . . . . . . . . . . . . . . . . . 24
       3.5. File Structure. . . . . . . . . . . . . . . . . . . . . . 24
       3.6. Profile S: Minimal Black-and-White Profile Summary. . . . 26
   4.  Profile F: Extended Black-and-White Fax Profile. . . . . . . . 27
       4.1. TIFF-F Overview . . . . . . . . . . . . . . . . . . . . . 28
       4.2. Required TIFF Fields. . . . . . . . . . . . . . . . . . . 29
            4.2.1. Baseline Fields. . . . . . . . . . . . . . . . . . 29
            4.2.2. Extension Fields . . . . . . . . . . . . . . . . . 32
            4.2.3. New Fields . . . . . . . . . . . . . . . . . . . . 32
       4.3. Recommended TIFF Fields . . . . . . . . . . . . . . . . . 32
            4.3.1. Baseline Fields. . . . . . . . . . . . . . . . . . 32
            4.3.2. Extension Fields . . . . . . . . . . . . . . . . . 33
            4.3.3. New Fields . . . . . . . . . . . . . . . . . . . . 33
       4.4. Technical Implementation Issues . . . . . . . . . . . . . 34
            4.4.1. Strips . . . . . . . . . . . . . . . . . . . . . . 34
            4.4.2. Bit Order. . . . . . . . . . . . . . . . . . . . . 34
            4.4.3. Multi-Page . . . . . . . . . . . . . . . . . . . . 35
            4.4.4. Compression. . . . . . . . . . . . . . . . . . . . 35
            4.4.5. Example Use of Page-quality Fields . . . . . . . . 36
            4.4.6. Practical Guidelines for Writing and Reading
                   Multi-Page TIFF-F Files. . . . . . . . . . . . . . 36
            4.4.7. Use of TIFF-F for Streaming Applications . . . . . 38




Buckley, et al.             Standards Track                     [Page 2]
^L
RFC 3949              File Format for Internet Fax         February 2005


       4.5. Implementation Warnings . . . . . . . . . . . . . . . . . 38
            4.5.1. Uncompressed Data. . . . . . . . . . . . . . . . . 38
            4.5.2. Encoding and Resolution. . . . . . . . . . . . . . 38
            4.5.3. EOL byte-aligned . . . . . . . . . . . . . . . . . 39
            4.5.4. EOL. . . . . . . . . . . . . . . . . . . . . . . . 40
            4.5.5. RTC Exclusion. . . . . . . . . . . . . . . . . . . 40
            4.5.6. Use of EOFB for T.6 Compressed Images. . . . . . . 40
       4.6. Example Use of TIFF-F . . . . . . . . . . . . . . . . . . 40
       4.7. Profile F: Extended Black-and-white Fax Profile Summary . 41
   5.  Profile J: Lossless JBIG Black-and-White Fax Profile . . . . . 43
       5.1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . 43
       5.2. Required TIFF Fields. . . . . . . . . . . . . . . . . . . 44
            5.2.1. Baseline Fields. . . . . . . . . . . . . . . . . . 44
            5.2.2. Extension Fields . . . . . . . . . . . . . . . . . 44
            5.2.3. New Fields . . . . . . . . . . . . . . . . . . . . 44
       5.3. Recommended TIFF Fields . . . . . . . . . . . . . . . . . 45
       5.4. Profile J: Lossless JBIG Black-and-White Profile Summary. 45
   6.  Profile C: Base Color Fax Profile. . . . . . . . . . . . . . . 47
       6.1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . 47
       6.2. Required TIFF Fields. . . . . . . . . . . . . . . . . . . 47
            6.2.1. Baseline Fields. . . . . . . . . . . . . . . . . . 47
            6.2.2. Extension Fields . . . . . . . . . . . . . . . . . 49
            6.2.3. New Fields . . . . . . . . . . . . . . . . . . . . 50
       6.3. Recommended TIFF Fields . . . . . . . . . . . . . . . . . 52
       6.4. Profile C: Base Color Fax Profile Summary . . . . . . . . 52
   7.  Profile L: Lossless Color Profile. . . . . . . . . . . . . . . 54
       7.1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . 54
            7.1.1. Color Encoding . . . . . . . . . . . . . . . . . . 54
            7.1.2. JBIG Compression . . . . . . . . . . . . . . . . . 55
       7.2. Required TIFF Fields. . . . . . . . . . . . . . . . . . . 55
            7.2.1. Baseline Fields. . . . . . . . . . . . . . . . . . 56
            7.2.2. Extension Fields . . . . . . . . . . . . . . . . . 57
            7.2.3. New Fields . . . . . . . . . . . . . . . . . . . . 57
       7.3. Recommended TIFF Fields . . . . . . . . . . . . . . . . . 57
       7.4. Profile L: Lossless Color Fax Profile Summary . . . . . . 58
   8.  Profile M: Mixed Raster Content Profile. . . . . . . . . . . . 60
       8.1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . 60
            8.1.1. MRC 3-layer model. . . . . . . . . . . . . . . . . 60
            8.1.2. A TIFF Representation for the MRC 3-layer model. . 62
       8.2. Required TIFF Fields. . . . . . . . . . . . . . . . . . . 64
            8.2.1. Baseline Fields. . . . . . . . . . . . . . . . . . 64
            8.2.2. Extension Fields . . . . . . . . . . . . . . . . . 66
            8.2.3. New Fields . . . . . . . . . . . . . . . . . . . . 67
       8.3. Recommended TIFF Fields . . . . . . . . . . . . . . . . . 69
       8.4. Rules and Requirements for Images . . . . . . . . . . . . 69
       8.5. Profile M: MRC Fax Profile Summary. . . . . . . . . . . . 71
   9.  MIME content-types image/tiff and image/tiff-fx. . . . . . . . 74
   10. Security Considerations. . . . . . . . . . . . . . . . . . . . 74



Buckley, et al.             Standards Track                     [Page 3]
^L
RFC 3949              File Format for Internet Fax         February 2005


   11. References . . . . . . . . . . . . . . . . . . . . . . . . . . 74
       11.1. Normative References . . . . . . . . . . . . . . . . . . 74
       11.2. Informative References . . . . . . . . . . . . . . . . . 76
   Annex A: Summary of TIFF Fields for Internet Fax . . . . . . . . . 77
   Annex B: List of technical edits to RFC 2301 . . . . . . . . . . . 81
   Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 82
   Full Copyright Statement . . . . . . . . . . . . . . . . . . . . . 84

1.  Introduction

   This document describes the use of TIFF (Tag Image File Format) to
   represent the data content and structure generated by the current
   suite of ITU-T Recommendations for Group 3 facsimile.  These
   recommendations and the TIFF fields described here support the
   following facsimile profiles:

   S:  Minimal black-and-white profile, using binary MH compression
       [T.4]
   F:  Extended black-and-white profile, using binary MH, MR, and MMR
       compression [T.4, T.6]
   J:  Lossless JBIG black-and-white profile, with JBIG compression
       [T.85, T.82]
   C:  Lossy color and grayscale profile, using JPEG compression [T.42,
       T.81]
   L:  Lossless color and grayscale profile, using JBIG compression
       [T.43, T.82]
   M:  Mixed raster content profile [T.44], using a combination of
       existing compression methods

   Each profile corresponds to the content of ITU-T Recommendations
   shown and is a subset of the full TIFF for facsimile specification.

   Profile S describes a minimal interchange set of fields, which will
   guarantee that, at least, binary black-and-white images will be
   supported.  Implementations are required to support this minimal
   interchange set of fields.

   With the intent of specifying a file format for Internet fax, this
   document

   1. specifies the structure of TIFF files for facsimile data,
   2. defines ITU fax-compatible values for existing TIFF fields, and
   3. defines new TIFF fields and values required for compatibility with
      ITU color fax.







Buckley, et al.             Standards Track                     [Page 4]
^L
RFC 3949              File Format for Internet Fax         February 2005


   This specification of TIFF for facsimile is known as TIFF-FX (TIFF
   for Fax eXtended).  References to the format described by this
   specification should always use the term "TIFF-FX", and some profiles
   in this specification may not be interpreted correctly by other TIFF
   applications.

1.1.  Scope

   This document defines a TIFF-based file format specification for
   enabling standardized messaging-based fax over the Internet.  It
   specifies the TIFF fields and field values required for compatibility
   with the existing ITU-T Recommendations for Group 3 black-and-white,
   grayscale, and color facsimile.  TIFF has historically been used for
   handling fax image files in applications such as store-and-forward
   messaging.  Implementations that support this file format
   specification for import/export may elect to support it as a native
   format.  This document recommends a TIFF file structure compatible
   with low-memory and page-level streaming implementations.

   Unless otherwise noted, the current TIFF specification [TIFF] and
   selected TIFF Technical Notes [TTN1, TTN2] are the primary references
   for describing TIFF and defining TIFF fields.  This document is the
   primary reference for defining TIFF field values for fax
   applications.

1.2.  Approach

   The basic approach to using TIFF for facsimile data is to insert the
   compressed fax image data into a TIFF file and use TIFF fields to
   encode the parameters that describe the image data.  These fields
   will have values that comply with the ITU-T Recommendations.

   This approach takes advantage of TIFF features and structures that
   bridge the data formats and performance requirements of both legacy
   fax machines and host-based fax applications.  TIFF constructs for
   pages, images, and strips allow a TIFF file to preserve the fax data
   stream structure and the performance advantages that come with it.  A
   TIFF-based approach also builds on an established base of users and
   implementors and ensures backward compatibility with existing TIFF-
   based IETF proposals and work in progress for Internet fax.

1.3.  Overview of this Document

   Section 2 gives an overview of TIFF.  Section 2.1 describes the
   structure of TIFF files, including general guidelines for structuring
   multi-page TIFF files.  Section 2.2 lists the TIFF fields that are
   required or recommended for all fax profiles.  The TIFF fields used




Buckley, et al.             Standards Track                     [Page 5]
^L
RFC 3949              File Format for Internet Fax         February 2005


   only by specific fax profiles are described in Sections 3 - 8, which
   describe the individual fax profiles.  These sections also specify
   the ITU-compatible field values (image parameters) for each profile.

   The full set of permitted fields of TIFF for facsimile are included
   in the current TIFF specification, Section 2 of this document, and
   the sections on specific profiles of facsimile operation.  This
   document defines profiles of TIFF for facsimile, where a profile is a
   subset of the full set of permitted fields and field values of TIFF
   for facsimile.

   Section 3 defines the minimal black-and-white facsimile profile
   (Profile S), which is required in all implementations.  Section 4
   defines the extended black-and-white fax profile (Profile F), which
   provides a standard definition of TIFF-F.  Section 5 describes the
   lossless black-and-white profile using JBIG compression (Profile J).

   Section 6 defines the base color profile, required in all color
   implementations, for the lossy JPEG representation of color and
   grayscale facsimile data (Profile C).  Section 7 defines the lossless
   JBIG color and grayscale facsimile profile (Profile L), and Section 8
   defines the Mixed Raster Content facsimile profile (Profile M).  Each
   of these sections concludes with a table summarizing the required and
   recommended fields for each profile and the values they can have.

   Section 9 refers to the MIME content types used in connection with
   TIFF for facsimile.  Sections 10 and 11 give Security Considerations
   and References, followed by Authors' Addresses and the Copyright
   Notice.  Annex A gives a summary of the TIFF fields used or defined
   in this document and provides a convenient reference for
   implementors.

   To implement only the minimal interchange black-and-white set of
   fields and values (Profile S), one need read only Sections 1, 2, 3,
   9, and 10.

   The following tree diagram shows the relationship among profiles and
   between profiles and coding methods.













Buckley, et al.             Standards Track                     [Page 6]
^L
RFC 3949              File Format for Internet Fax         February 2005


                        S (MH)
                       / \
               B&W    /   \   Color
          ------------     ----------
         /      \                    \
        /        F (MH, MR, MMR)      C (JPEG)
       /                             / \
      J (JBIG)                   ----   \
                                /        \
                               L (JBIG)   \
                                           \
                                            M (MRC)

   A profile is based on a collection of ITU-T facsimile coding methods.
   For example, Profile S, the minimal profile, is based on Modified
   Huffman (MH) compression, which is defined in ITU-T Rec. T.4.
   Profile F specifies Modified Huffman (MH), Modified READ (MR), and
   Modified Modified READ (MMR) compressions, which are defined in ITU-T
   Rec. T.4 and T.6.

   All implementations of TIFF for facsimile MUST implement Profile S,
   which is the root node of the tree.  All color implementations of
   TIFF for facsimile MUST implement Profile C.  The implementation of a
   particular profile MUST also implement those profiles on the path
   that connect it to the root node, and MAY optionally implement
   profiles not on the path connecting it to the root node.  For
   example, an implementation of Profile M must also implement Profiles
   C and S and may optionally implement Profile F, J, or L.  For another
   example, an implementation of Profile C must also implement Profile S
   and may optionally implement Profile F or J.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", " NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [REQ].

2.  TIFF and Fax

2.1.  TIFF Overview

   TIFF provides a means for describing, storing, and interchanging
   raster image data.  A primary goal of TIFF is to provide a rich
   environment within which applications can exchange image data.  The
   current TIFF specification [TIFF] defines a commonly used core set of
   TIFF fields known as Baseline TIFF.  The current specification, the
   set of Pagemaker TIFF Technical Notes [TTN1], and TIFF Technical Note
   2 [TTN2] define several TIFF extensions.  The TIFF-based
   specification for fax applications uses a subset of Baseline TIFF




Buckley, et al.             Standards Track                     [Page 7]
^L
RFC 3949              File Format for Internet Fax         February 2005


   fields, with selected extensions, as described in this document.  In
   a few cases, this document defines new TIFF fields specifically for
   fax applications.

2.1.1.  File Structure

   TIFF is designed for raster images, which makes it a good match for
   facsimile documents, which are multi-page raster images.  Each raster
   image consists of a number of rows or scanlines, each of which has
   the same number of pixels, the unit of sampling.  Each pixel has at
   least one sample or component (exactly one for black-and-white
   images).

   A TIFF file begins with an 8-byte image file header.  The first two
   bytes describe the byte order used within the file.  Legal values are
   "II" (0x4949) when bytes are ordered from least to most significant
   (little-endian), and "MM" (0x4D4D), when bytes are ordered from most
   to least significant (big-endian) within a 16- or 32-bit integer.
   Either byte order can be used, except in the case of the minimal
   black-and-white profile, which SHALL use value "II".  The next two
   bytes contain the value 42, which identifies the file as a TIFF file
   and is ordered according to the value in the first two bytes of the
   header.  The last four bytes give the offset that points to the first
   image file directory (IFD).  This and all other offsets in a TIFF
   file are with respect to the beginning of the TIFF file.  An IFD can
   be at any location in the file after the header but must begin on a
   word boundary.

   An IFD is a sequence of tagged fields, sorted in ascending order by
   tag value.  An IFD consists of a 2-byte count of the number of
   fields, a sequence of field entries, and a 4-byte offset to the next
   IFD.  The fields contain information about the image and pointers to
   the image data.  Each separate raster image in the file is
   represented by an IFD.

   Each field entry in an IFD has 12 bytes and consists of a 2-byte Tag,
   2 bytes identifying the field type (e.g., short, long, rational,
   ASCII), 4 bytes giving the count (number of values or offsets), and 4
   bytes containing either the offset to a field value stored outside
   the IFD or, based on the type and count, the field value itself.
   Resolution and metadata such as dates, names, and descriptions are
   examples of "long" field values that do not fit in 4 bytes and
   therefore use offsets in the field entry.  Details are given in the
   TIFF specification [TIFF].

   A TIFF file can contain more than one IFD, where each IFD is a
   subfile whose type is given in the NewSubfileType field.  Multiple
   IFDs can be organized either as a linked list, with the last entry in



Buckley, et al.             Standards Track                     [Page 8]
^L
RFC 3949              File Format for Internet Fax         February 2005


   each IFD pointing to the next IFD (the pointer in the last IFD is 0),
   or as a tree, using the SubIFDs field in the primary IFD [TTN1].  The
   SubIFDs field contains an array of pointers to child IFDs of the
   primary IFD.

   Child IFDs describe related images, such as reduced resolution
   versions of the primary IFD image.  The same IFD can point both to a
   next IFD and to child IFDs, and child IFDs can themselves point to
   other IFDs.

   All fax profiles represent a multi-page fax image as a linked list of
   IFDs, with a NewSubfileType field containing a bit that identifies
   the IFD as one page of a multi-page document.  Each IFD has a
   PageNumber field, identifying the page number in ascending order,
   starting at 0 for the first page.  Although a Baseline TIFF reader is
   not required to read any IFDs beyond the first, an implementation
   that reads the files that comply with this specification SHALL read
   multiple IFDs.  Only the Mixed Raster Content fax profile, described
   in Section 8, requires the use of child IFDs.
































Buckley, et al.             Standards Track                     [Page 9]
^L
RFC 3949              File Format for Internet Fax         February 2005


   The following figure illustrates the structure of a multi-page TIFF
   file.

              +-----------------------+
              |         Header        |------------+
              +-----------------------+            | First IFD
              |      IFD (page 0)     |<-----------+ Offset
          +---|                       |------------+
    Value |   +-----------------------+            |
   Offset +-->|      Long Values      |--+         |
              +-----------------------|  | Strip   |
              |       Image Data      |<-+ Offset  |
              |     strip 1 page 0    |  |         |
              +-----------------------+  |         |
              |           :           |  :         |
                                                   |
              +-----------------------+            | Next IFD
              |      IFD (page 1)     |<-----------+ Offset
          +---|                       |------------+
    Value |   +-----------------------+            |
   Offset +-->|      Long Values      |--+         |
              +-----------------------|  | Strip   |
              |       Image Data      |<-+ Offset  |
              |     strip 1 page 1    |  |         |
              +-----------------------+  |         |
              |     strip 2 page 1    |<-+         |
              +-----------------------+  |         |
              |          :            |  :         |
                                                   |
              +-----------------------+            | Next IFD
              |      IFD (page 2)     |<-----------+ Offset
              |          :            |

2.1.2.  Image Structure

   An IFD stores an image as one or more strips, as shown in the
   preceding figure.  A strip consists of 1 or more scanlines (rows) of
   raster image data in compressed form.  An image may be stored in a
   single strip or may be divided into several strips, which would
   require less memory to buffer.  (Baseline TIFF recommends about 8k
   bytes per strip, but existing fax usage is typically one strip per
   image.)

   Each IFD requires three strip-related fields: StripOffsets,
   RowsPerStrip, and StripByteCounts.  The StripOffsets field is an
   array of pointers to the strip or strips that contain the actual
   image data.  The StripByteCounts field gives the number of bytes in
   each strip after compression.  TIFF requires that each strip, except



Buckley, et al.             Standards Track                    [Page 10]
^L
RFC 3949              File Format for Internet Fax         February 2005


   the last, contain the same number of scanlines, which is given in the
   RowsPerStrip field.  This document introduces the new StripRowCounts
   field that allows a variable number of scanlines per strip, which is
   required by the Mixed Raster Content fax profile (Section 8).

   Image data is stored as uninterpreted, compressed image data streams
   within a strip.  The formats of these streams follow the ITU-T
   Recommendations.  The Compression field in the IFD indicates the type
   of compression, and other TIFF fields in the IFD describe image
   attributes such as color encoding and spatial resolution.
   Compression parameters are stored in the compressed data stream
   rather than in TIFF fields.  This makes the TIFF representation and
   compressed data format specification independent of each another.
   This approach, modeled on [TTN2], allows TIFF to add new compression
   schemes gracefully as they become available.

   Some attributes can be specified both in the compressed data stream
   and within a TIFF field.  It is possible that the two values will
   differ.  When this happens for values required to interpret the data
   stream, the values in the data stream take precedence.  For
   informational values that are not required to interpret the data
   stream, such as author name, then the TIFF field value takes
   precedence.

2.1.3.  TIFF File Structure for Fax Applications

   The TIFF specification has a very flexible file structure that does
   not specify the ordering of IFDs, field values, and image data in a
   file.  Individual applications may require or recommend an ordering.

   This specification recommends that when using a TIFF file for
   facsimile, a multi-page fax document SHOULD be represented as a
   linked list of IFDs.  It also recommends that a TIFF file for
   facsimile SHOULD order pages in a TIFF file in the same way that they
   are ordered in a fax data stream.  In a TIFF file, a page consists of
   several elements: one or more IFDs (including subIFDs), long field
   values that are stored outside the IFDs, and image data (in one or
   more strips).

   The minimal black-and-white profile (Profile S) specifies a required
   ordering of pages and elements within a page (Section 3.5).  The
   extended black-and-white profile (Profile F) provides guidelines for
   ordering pages and page elements (Section 4.4.6).  Other profiles
   SHOULD follow these guidelines.  This recommendation is intended to
   simplify the implementation of TIFF writers and readers in fax
   applications and the conversion between TIFF file and fax data stream
   representations.  However, for interchange robustness, readers SHOULD




Buckley, et al.             Standards Track                    [Page 11]
^L
RFC 3949              File Format for Internet Fax         February 2005


   be prepared to read TIFF files whose structure is consistent with
   [TIFF], which supports a more flexible file structure than is
   recommended here.

   This specification introduces an optional new GlobalParametersIFD
   field, defined in Section 2.2.4.  This field has type IFD and
   indicates parameters describing the fax session.  While it is often
   possible to obtain these parameters by scanning the file, it is
   convenient to make them available together in one place for fast and
   easy access.  If the GlobalParametersIFD occurs in a TIFF file, it
   SHOULD be located in the first IFD, immediately following the 8-byte
   image file header.

2.2.  TIFF Fields for All Fax Applications

   The TIFF specification [TIFF] is organized as a baseline set and
   several extensions, including technical notes [TTN1, TTN2] that will
   be incorporated in the next release of TIFF.  The baseline and
   extensions have required and optional fields.

   Facsimile applications require (and recommend) a mixture of baseline
   and extensions fields, as well as some new fields that are not part
   of the TIFF specification and that are defined in this document.
   This sub-section lists the fields that are required or recommended
   for all profiles.  In particular, Section 2.2.1 lists the fields that
   are required by all profiles and that have values that do not depend
   on the profile.  Section 2.2.2 lists the fields that are required by
   all profiles and that have values that do depend on the profile.
   Section 2.2.3 lists the fields that are recommended for all profiles.
   Fields required or recommended by some but not all profiles are given
   in the section (Section 3 - 8) that describes that profile.  The
   sections for each fax profile have subsections for required and
   recommended fields; each subsection organizes the fields according to
   whether they are baseline, extension or new.

   The fields required for facsimile have only a few legal values,
   specified in the ITU-T Recommendations.  Of these legal values, some
   are required and some are optional, just as they are required
   (mandatory) or optional in fax implementations that conform to the
   ITU-T Recommendations.  The required and optional values are noted in
   the sections on the different fax profiles.










Buckley, et al.             Standards Track                    [Page 12]
^L
RFC 3949              File Format for Internet Fax         February 2005


   This section describes the fields required or recommended by all fax
   profiles.  The pattern for the description of TIFF fields in this
   document is as follows:

   FieldName(TagValueInDecimal) = allowable values.
   TYPE

      WhetherRequiredByTIFForTIFFforFAX
      Count = (omitted if =1) = (if not in current spec but available)
      Explanation of the field, how it's used, and the values it can
      have.  Default value, if any, as specified in [TIFF].

   When a field's default value is the desired value, that field may be
   omitted from the relevant IFD unless specifically required by the
   text of this specification.

2.2.1.  TIFF fields required for all fax profiles

   The TIFF fields listed in this section SHALL be used by all fax
   profiles but have field values that are not specified by the ITU
   standards, i.e., the fields do not depend on the profile.  The next
   subsection lists the fields that SHALL be used by all fax profiles,
   but which do have values specified by the ITU-specified or profile-
   specific values.  Fields that SHALL be used by some but not all
   profiles are given in the Sections (3 - 8) that describe the profiles
   that use them.

   ImageLength(257)
   SHORT or LONG
      RequiredByTIFFBaseline
      Total number of scanlines in image.
      No default, must be specified.

   PageNumber(297)
   SHORT
      RequiredByTIFFforFAX, TIFFExtension
      Count = 2
      The first number represents the page number (0 for the first
      page); the second number is the total number of pages in the
      document.  If the second value is 0, then the total page count is
      not available.
      No default, must be specified









Buckley, et al.             Standards Track                    [Page 13]
^L
RFC 3949              File Format for Internet Fax         February 2005


   RowsPerStrip(278)
   SHORT or LONG
      RequiredByTIFFBaseline
      The number of scanlines per TIFF strip, except for the last strip.
      For a single strip image, this is the same as the value of the
      ImageLength field.
      Default = 2**32 - 1 (meaning all scanlines in one strip).

   StripByteCounts(279)
   SHORT or LONG
      RequiredByTIFFBaseline
      Count = number of strips
      For each strip, the number of bytes in that strip after
      compression.
      No default, must be specified.

   StripOffsets(273)
   SHORT or LONG
      RequiredByTIFFBaseline
      Count = number of strips
      For each strip, the byte offset from the beginning of the file to
      the start of that strip.
      No default, must be specified.

2.2.2.  Additional TIFF fields required for all fax profiles

   The TIFF fields listed in this section SHALL be used by all fax
   profiles, but the values associated with them depend on the profile
   being described and the associated ITU Recommendations.  Therefore,
   only the fields are defined here; the values applicable to a
   particular fax profile are described in Sections 3 - 8.  Fields that
   SHALL be used by some but not all profiles are given in the section
   (3 - 8) describing the profile that uses them.

   BitsPerSample(258)
   SHORT
      RequiredByTIFFBaseline
      Number of bits per image sample.
      Default = 1 (field may be omitted if this is the value).

   Compression(259)
   SHORT
      RequiredByTIFFBaseline
      Compression method used for image data.
      Default = 1 (no compression, so may not be omitted for FAX).






Buckley, et al.             Standards Track                    [Page 14]
^L
RFC 3949              File Format for Internet Fax         February 2005


   FillOrder(266)
   SHORT
      RequiredByTIFFforFax
      The default bit order in Baseline TIFF per [TIFF] is indicated by
      FillOrder=1, where bits are not reversed before being stored.
      However, TIFF for Fax typically uses the setting of FillOrder=2,
      where the bit order within bytes is reversed before storage (i.e.,
      bits are stored with the Least Significant Bit first).
      Default = 1 (field may be omitted if this is the value)
      Facsimile data appears on the phone line in bit-reversed order
      relative to its description in the relevant ITU compression
      Recommendation.  Therefore, a wide majority of facsimile
      implementations choose this natural order for storage.

      Nevertheless, all readers conforming to this specification must be
      able to read data in both bit orders, except in the case of
      Profile S, which only requires support for FillOrder=2 (Least
      Significant Bit first).

   ImageWidth(256)
   SHORT or LONG
      RequiredByTIFFBaseline
      The number of pixels (columns) per scanline (row) of the image
      No default, must be specified.

   NewSubFileType(254)
   LONG
      RequiredByTIFFforFAX
      A general indication of the kind of data contained in this IFD Bit
      1 is 1 if the image is a single page of a multi-page document.
      Default = 0 (no subfile bits on, so may not be omitted for FAX).

   PhotometricInterpretation(262)
   SHORT
      RequiredByTIFFBaseline
      The color space of the image data.
      No default, must be specified.

   ResolutionUnit(296)
   SHORT
      RequiredByTIFFBaseline The unit of measure for resolution. 2 =
      inch, 3 = centimeter; Default = 2 (field may be omitted if this is
      the value)








Buckley, et al.             Standards Track                    [Page 15]
^L
RFC 3949              File Format for Internet Fax         February 2005


   SamplesPerPixel(277)
   SHORT
      RequiredByTIFFBaseline
      The number of color components per pixel; SamplesPerPixel is 1 for
      a black-and-white, grayscale or indexed (palette) image.  Default
      = 1 (field may be omitted if this is the value).

   XResolution(282)
   RATIONAL
      RequiredByTIFFBaseline
      The horizontal resolution of the image in pixels per resolution
      unit.  The ITU-T Recommendations for facsimile specify a small
      number of horizontal resolutions: 100, 200, 300, 400 pixels per
      inch, and 80, 160 pixels per centimeter (or 204, 408 pixels per
      inch).  The allowed XResolution values for each profile are given
      in the section defining that profile.  Per [T.4], it is
      permissible for applications to treat the following XResolution
      values as being equivalent: <204, 200> and <400,408> in
      pixels/inch.  These equivalencies were allowed by [T.4] to permit
      conversions between inch and metric based facsimile terminals.  To
      ensure interoperability, if an application accepts any member of
      the pairs then T.4 requires it to accept both (e.g., accept 204 if
      200 pixels per inch is accepted).  TIFF for Facsimile Writers
      SHOULD express XResolution in inch-based units, for consistency
      with historical practice and to maximize interoperability.  See
      the table below for information on how to convert from an ITU-T
      metric value to its inch-based equivalent resolution.
      No default, must be specified

   YResolution(283)
   RATIONAL
      RequiredByTIFFBaseline
      The vertical resolution of the image in pixels per resolution
      unit.  The ITU-T Recommendations for facsimile specify a small
      number of vertical resolutions: 100, 200, 300, 400 pixels per
      inch, and 38.5, 77, 154 pixels per centimeter (or 98, 196, 391
      pixels per inch).  The allowed YResolution values for each profile
      are given in the section defining that profile.  Per [T.4], it is
      permissible for applications to treat the following YResolution
      values as being equivalent: <98, 100>, <196, 200>, and <391, 400>
      in pixels/inch.  These equivalencies were allowed by [T.4] to
      permit conversions between inch- and metric-based facsimile
      terminals.  To insure interoperability, if an application accepts
      any member of the pairs, then T.4 requires it to accept both
      (e.g., accept 98 if 100 pixels per inch is accepted).  TIFF for
      Facsimile Writers SHOULD express YResolution in inch-based units,
      for consistency with historical practice and to maximize




Buckley, et al.             Standards Track                    [Page 16]
^L
RFC 3949              File Format for Internet Fax         February 2005


      interoperability.  See the table below for information on
      converting from the metric value to its inch based equivalent
      resolution.
      No default, must be specified.

   +-----------------------------+-----------------------------+
   |         XResolution         |         YResolution         |
   +--------------+--------------+--------------+--------------+
   |ResolutionUnit|ResolutionUnit|ResolutionUnit|ResolutionUnit|
   |  =2 (inch)   |   =3 (cm)    |  =2 (inch)   |   =3 (cm)    |
   +--------------+--------------+--------------+--------------+
   |     100      |              |     100      |              |
   +--------------+--------------+--------------+--------------+
   |     204      |      80      |      98      |     38.5     |
   |     200      |              |     100      |              |
   +--------------+--------------+--------------+--------------+
   |     204      |      80      |     196      |      77      |
   |     200      |              |     200      |              |
   +--------------+--------------+--------------+--------------+
   |     204      |      80      |     391      |     154      |
   +--------------+--------------+--------------+--------------+
   |     300      |              |     300      |              |
   +--------------+--------------+--------------+--------------+
   |     408      |     160      |     391      |     154      |
   |     400      |              |     400      |              |
   +--------------+--------------+--------------+--------------+

2.2.3.  TIFF fields recommended for all fax profiles

   The TIFF fields listed in this section MAY be used by all fax
   profiles.  However, Profile S writers (the minimal fax profile
   described in Section 3) SHOULD NOT use these fields.  Recommended
   fields that are profile-specific are described in Sections 3 - 8.

   DateTime(306)
   ASCII
      OptionalInTIFFBaseline
      Date/time of image creation in 24-hour format
      "YYYY:MM:DD HH:MM:SS".  No default.

   DocumentName(269)
   ASCII
      OptionalInTIFFExtension(DocumentStorageAndRetrieval)
      The name of the scanned document.  This is a TIFF extension field,
      not a Baseline TIFF field.  No default.






Buckley, et al.             Standards Track                    [Page 17]
^L
RFC 3949              File Format for Internet Fax         February 2005


   ImageDescription(270)
   ASCII
      OptionalInTIFFBaseline
      A string describing the contents of the image.
      No default.

   Orientation(274) = 1 - 8.
   SHORT
      OptionalinTIFFBaseline 1: 0th row represents the visual top of the
      image; the 0th column represents the visual left side of the
      image.  See the current TIFF spec [TIFF] for further values;
      Baseline TIFF only requires value=1.  Default = 1.
      Note: It is recommended that a writer that is aware of the
      orientation include this field to give a positive indication of
      the orientation, even if the value is the default.  Writers should
      not generate mirror images, because many readers will not properly
      reverse the image before display or print.

   Software(305)
   ASCII
      OptionalInTIFFBaseline
      The name and release number of the software package that
      created the image.
      No default.

2.2.4.  New TIFF fields recommended for fax profiles

   The new TIFF fields listed in this section MAY be used by all fax
   profiles.  However, Profile S writes (the minimal fax profile
   described in Section 3) SHOULD NOT use these fields.  In addition,
   support for these new TIFF fields has not been included in historical
   TIFF-F readers described in Section 4 and [TIFF-F].  These fields
   describe "global" parameters of the fax session that created the
   image data.  They are optional, not part of the current TIFF
   specification, and are defined in this document.

   The first new field, GlobalParametersIFD, is an IFD that contains
   global parameters and is located in a Primary IFD.

   GlobalParametersIFD (400) IFD or LONG

      An IFD containing global parameters.  It is recommended that a
      TIFF writer place this field in the first IFD, where a TIFF reader
      would find it quickly.

      Each field in the GlobalParametersIFD is a TIFF field that is
      legal in any IFD.  Required baseline fields should not be located
      in the GlobalParametersIFD but should be in each image IFD.  If a



Buckley, et al.             Standards Track                    [Page 18]
^L
RFC 3949              File Format for Internet Fax         February 2005


      conflict exists between fields in the GlobalParametersIFD and in
      the image IFDs, then the data in the image IFD shall prevail.

      Among the GlobalParametersIFD entries is a new ProfileType field
      that generally describes information in this IFD and in the TIFF
      file.

   ProfileType(401)
   LONG
      The type of image data stored in this IFD.
      0 = Unspecified
      1 = Group 3 fax
      No default

   The following new global fields are defined in this document as IFD
   entries for use with fax applications.

   FaxProfile(402) = 0 - 6.
   BYTE
      The profile that applies to this file; a profile is subset of the
      full set of permitted fields and field values of TIFF for
      facsimile.  The currently defined values are:
      0: does not conform to a profile defined for TIFF for facsimile
      1: minimal black & white lossless, Profile S
      2: extended black & white lossless, Profile F
      3: lossless JBIG black & white, Profile J
      4: lossy color and grayscale, Profile C
      5: lossless color and grayscale, Profile L
      6: Mixed Raster Content, Profile M

   CodingMethods(403)
   LONG
      This field indicates which coding methods are used in the file.  A
      value of 1 in a bit location indicates the corresponding coding
      method is used.  More than one bit set to 1 means more than one
      coding method is used in the file.
   Bit 0: unspecified compression
   Bit 1: 1-dimensional coding, ITU-T Rec. T.4 (MH - Modified Huffman)
   Bit 2: 2-dimensional coding, ITU-T Rec. T.4 (MR - Modified READ)
   Bit 3: 2-dimensional coding, ITU-T Rec. T.6 (MMR - Modified MR)
   Bit 4: ITU-T Rec. T.82 coding, using ITU-T Rec. T.85 (JBIG)
   Bit 5: ITU-T Rec. T.81 (Baseline JPEG)
   Bit 6: ITU-T Rec. T.82 coding, using ITU-T Rec. T.43 (JBIG color)
   Bits 7 - 31: reserved for future use







Buckley, et al.             Standards Track                    [Page 19]
^L
RFC 3949              File Format for Internet Fax         February 2005


   Note: There is a limit of 32 compression types to identify standard
   compression methods.

   VersionYear(404)
   BYTE
      Count: 4
      The year of the standard specified by the FaxProfile field, given
      as 4 characters, e.g., '1997'; used in lossy and lossless color
      profiles.

   ModeNumber (405)
   BYTE
      The mode of the standard specified by the FaxProfile field.  A
      value of 0 indicates Mode 1.0; used in Mixed Raster Content
      profile.

3.  Profile S: Minimal Black-and-White Fax Profile

   This section defines the minimal black-and-white subset of TIFF for
   facsimile.  This subset is designated Profile S.  All implementations
   of TIFF for facsimile SHALL support the minimal subset.

   Black-and-white mode is the binary fax application most users are
   familiar with today.  This mode is appropriate for black-and-white
   text and line art.  Black-and-white mode is divided into two levels
   of capability.  This section describes the minimal interchange set of
   TIFF fields that must be supported by all implementations in order to
   assure that some form of image, albeit black-and-white, can be
   interchanged.  This minimum interchange set is a strict subset of the
   fields and values defined for the extended black-and-white profile
   (TIFF-F or Profile F) in Section 4, which describes extensions to the
   minimal interchange set of fields that provide a richer set of
   black-and-white capabilities.

3.1.  Overview

   The minimal interchange portion of the black-and-white facsimile mode
   supports 1-dimensional Modified Huffman (MH) compression, with the
   original Group 3 fax resolutions, commonly called "standard" and
   "fine."

   To assure interchange, this profile uses the minimal set of fields
   with a minimal set of values.  There are no recommended fields in
   this profile.  Further, the TIFF file is required to be "little-
   endian", which means that the byte order value in the TIFF header is
   "II".  This profile defines a required ordering for the pages in a
   fax document and for the IFDs and image data of a page.  It also
   requires



Buckley, et al.             Standards Track                    [Page 20]
^L
RFC 3949              File Format for Internet Fax         February 2005


   that a single strip contain the image data for each page; see Section
   3.5.  The image data may contain RTC sequences, as specified in
   Section 3.4.

3.2.  Required TIFF Fields

   Besides the fields listed in Section 2.2.1, the minimal black-and-
   white fax profile requires the following fields.  The fields listed
   in Section 2.2.1 and the fields and fax-specific values specified in
   this subsection must be supported by all implementations.

3.2.1.  Baseline fields

   BitsPerSample(258) = 1.
   SHORT
      RequiredByTIFFBaseline
      Binary data only.
      Default = 1 (field may be omitted if this is the value)

   Compression(259) = 3.
   SHORT
      RequiredByTIFFBaseline
      3 = 1- or 2- dimensional coding.
      The value 3 is a TIFF extension value [TIFF].  The T4Options field
      must be specified, and its value specifies that the data is
      encoded with the Modified Huffman (MH) compression of [T.4].

   FillOrder(266) = 2.
   SHORT
      RequiredByTIFFBaseline
      2 = Least Significant Bit first

      NOTE: Baseline TIFF readers are only required to support FillOrder
      1, where the lowest numbered pixel is stored in the MSB of the
      byte.  However, because many devices, such as modems, transmit the
      LSB first when converting the data to serial form, it is common
      for black-and-white fax products to use the second FillOrder = 2,
      where the lowest numbered pixel is stored in the LSB.  Therefore,
      this value is specified in the minimal black-and-white profile.

   ImageWidth(256) = 1728.
   SHORT or LONG
      RequiredByTIFFBaseline
      This profile only supports a page width of 1728 pixels.  This
      width corresponds to North American Letter and Legal and to ISO A4
      size pages.  No default, must be specified.





Buckley, et al.             Standards Track                    [Page 21]
^L
RFC 3949              File Format for Internet Fax         February 2005


   NewSubFileType(254) = (Bit 1=1).
   LONG
      RequiredByTIFFforFAX
      Bit 1 is 1 if the image is a single page of a multi-page document.
      Default = 0 (no subfile bits on, so may not be omitted for fax).

   PhotometricInterpretation(262) = 0.
   SHORT
      RequiredByTIFFBaseline
      0 = pixel value 1 means black.
      No default, must be specified.

   ResolutionUnit(296) = 2.
   SHORT
      RequiredByTIFFBaseline
      The unit of measure for resolution. 2 = inch.
      Default = 2 (field may be omitted if this is the value).

   SamplesPerPixel(277) = 1.
   SHORT
      RequiredByTIFFBaseline
      The number of components per pixel; 1 for black-and-white.
      Default = 1 (field may be omitted if this is the value).

   XResolution(282) = 200, 204.
   RATIONAL
      RequiredByTIFFBaseline
      The horizontal resolution of the image is expressed in pixels per
      resolution unit.  In pixels/inch, the allowed values are 200 and
      204, which may be treated as equivalent.  See Section 2.2.2 for
      inch metric equivalency.  No default, must be specified.

   YResolution(283) = 98, 100, 196, 200.
   RATIONAL
      RequiredByTIFFBaseline The vertical resolution of the image is
      expressed in pixels per resolution unit.  In pixels/inch, the
      allowed values are 98, 100, 196, and 200; 98 and 100 may be
      treated as equivalent, and 196 and 200 may be treated as
      equivalent.  See Section 2.2.2 for inch metric equivalency.  No
      default, must be specified.











Buckley, et al.             Standards Track                    [Page 22]
^L
RFC 3949              File Format for Internet Fax         February 2005


3.2.2.  Extension fields

   T4Options(292) = (Bit 0 = 0, Bit 1 = 0, Bit 2 = 0, 1)
      LONG
      RequiredTIFFExtension (when Compression = 3)
      Bit 0 = 0 indicates MH compression.
      Bit 1 must be 0.
      Bit 2 = 1 indicates that EOLs are byte aligned, = 0 EOLs not byte
      aligned.
      Default is all bits are 0 (applies when EOLs are not byte aligned)

   Note: The T4Options field is required when the Compression field has
   a value of 3.  Bit 0 of this field specifies the compression used (MH
   only in this profile).  MH coding requires the use of EOL (End of
   Line) codes: Bit 2 indicates whether the EOL codes are byte-aligned
   or not.  See Section 3.4 for details.

3.2.3.  New Fields

   None.

3.3.  Recommended TIFF Fields

   None.

3.4.  End of Line (EOL) and Return to Control (RTC)

   TIFF extensions for fax, used in this specification, differ from
   Baseline TIFF in the following ways:

   -  A 12-bit EOL sequence MUST precede each line of MH-compressed
      image data.  (Baseline TIFF does not use these EOL sequences.)
   -  The EOL sequence MAY be byte-aligned, in which case fill bits are
      added so that the EOL sequence ends on a byte boundary, and any
      subsequent image data begins on a byte boundary.
   -  If the EOL codes are not byte aligned, the image data MAY be
      followed by an RTC (Return to Control) sequence, consisting of 6
      consecutive EOLs.

   In conventional fax, an MH-compressed fax data stream for a page
   consists of the following sequence:
      EOL, compressed data (first line), EOL, compressed data, ... ,
      EOL, compressed data (last line), RTC (6 consecutive EOL codes)

   Baseline TIFF does not use EOL codes or Return to Control (RTC)
   sequences for MH-compressed data.  However, the TIFF extension field
   T4Options used in this specification for MH compression (Compression
   = 3) requires EOLs.



Buckley, et al.             Standards Track                    [Page 23]
^L
RFC 3949              File Format for Internet Fax         February 2005


   Furthermore, Bit 2 in the T4Options field indicates whether or not
   the EOL codes are byte aligned.  If Bit 2 = 1, indicating the EOL
   codes are byte aligned, then fill bits have been added as necessary
   before EOL codes so that an EOL code always ends on a byte boundary,
   and the first bit of data following an EOL begins on a byte boundary.
   Without fill bits, an EOL code may end in the middle of a byte.  Byte
   alignment relieves application software of the burden of bit-shifting
   every byte while parsing scanlines for line-oriented image
   manipulation (such as writing a TIFF file).  Not all TIFF readers
   historically used for fax are able to deal with non byte aligned
   data.

   While TIFF extension requires EOL codes, TIFF in fax applications has
   traditionally prohibited RTC sequences.  Implementations that seek
   common processing and interfaces for fax data streams and Internet
   fax files would prefer that the TIFF data include RTC sequences.

   To reconcile these differences, RTCs are allowed in cases where EOL
   codes are not byte aligned and no fill bits have been added to the
   data.  This corresponds to situations where the fax data is simply
   inserted in a strip without being processed or interpreted.  RTCs
   should not occur in the data when EOLs have been byte aligned.  This
   is formally specified in the next subsection.

3.4.1.  RTC Exclusion

   Implementations that seek to maintain strict conformance with TIFF
   and compatibility with the historical use of TIFF for fax SHOULD NOT
   include the RTC sequence when writing TIFF files.  However,
   implementations that need to support "transparency" of T.4-generated
   image data MAY include RTCs when writing TIFF files if the flag
   settings of the T4Options field are set for non byte aligned data,
   i.e., Bit 2 is 0.  Implementors of TIFF readers should be aware that
   there are some existing TIFF implementations for fax that include the
   RTC sequence in MH image data.  Therefore, minimal set readers MUST
   be able to process files that do not include RTCs and SHOULD be able
   to process files that do include RTCs.

3.5.  File Structure

   The TIFF header, described in Section 2.1.1, contains two bytes that
   describe the byte order used within the file.  For the minimal
   black-and-white profile, these bytes SHALL have the value "II"
   (0x4949), denoting that the bytes in the TIFF file are in LSByte-
   first order (little-endian).  The first or 0th IFD immediately
   follows the header, so offset to the first IFD is 8.  The header
   values are shown in the following table:




Buckley, et al.             Standards Track                    [Page 24]
^L
RFC 3949              File Format for Internet Fax         February 2005


      +--------+-------------------+--------+-----------+
      | Offset |   Description     |     Value          |
      +--------+-------------------+--------+-----------+
      |   0    |   Byte Order      |  0x4949 (II)       |
      +--------+-------------------+--------+-----------+
      |   2    |   Identifier      |  42 decimal        |
      +--------+-------------------+--------+-----------+
      |   4    | Offset of 0th IFD |  0x 0000 0008      |
      +--------+-------------------+--------+-----------+

   The minimal black-and-white profile SHALL order IFDs and image data
   within a file as follows: (1) There SHALL be an IFD for each page in
   a multi-page fax document; (2) the IFDs SHALL occur in the same order
   in the file as the pages occur in the document; (3) the IFD SHALL
   precede the image data to which it has offsets; (4) the image data
   SHALL occur in the same order in the file as the pages occur in the
   document; (5) the IFD, the value data, and the image data to which it
   has offsets SHALL precede the next image IFD; and (6) the image data
   for each page SHALL be contained within a single strip.

   As a result of (6), the StripOffsets field will contain the pointer
   to the image data. With two exceptions, the field entries in the IFD
   contain the field values instead of offsets to field values located
   outside the IFD.  The two exceptions are the values for the
   XResolution and YResolution fields, both of which are type RATIONAL
   and require 2 4-byte numbers.  These "long" field values SHALL be
   placed immediately after the IFD which containing the offsets to
   them, and before the image data pointed to by that IFD.

   The effect of these requirements is that the IFD for the first page
   SHALL come first in the file after the TIFF header, followed by the
   long field values for XResolution and YResolution, followed by the
   image data for the first page, then the IFD for second page, and so
   on.  This is shown in the following figure.  Each IFD is required to
   have a PageNumber field, which has value 0 for the first page, 1 for
   the second page, and so on.















Buckley, et al.             Standards Track                    [Page 25]
^L
RFC 3949              File Format for Internet Fax         February 2005


              +-----------------------+
              |         Header        |------------+
              +-----------------------+            | First IFD
              |      IFD (page 0)     | <----------+ Offset
          +---|                       |------------+
          |   |                       |--+         |
    Value |   +-----------------------+  |         |
   Offset +-->|      Long Values      |  |         |
              +-----------------------|  | Strip   |
              |  Image Data (page 0)  |<-+ Offset  |
              +-----------------------+            | Next IFD
              |      IFD (page 1)     | <----------+ Offset
          +---|                       |------------+
          |   |                       |--+         |
    Value |   +-----------------------+  |         |
   Offset +-->|      Long Values      |  |         |
              +-----------------------|  | Strip   |
              |  Image Data (page 1)  |<-+ Offset  |
              +-----------------------+            | Next IFD
              |      IFD (page 2)     | <----------+ Offset
              +-----------------------+
              |          :            |

   Using this file structure may reduce the memory requirements in
   implementations.  It also provides some support for streaming, in
   which a file can be processed as it is received and before the entire
   file is received.

3.6.  Profile S: Minimal Black-and-White Profile Summary

   The table below summarizes the TIFF fields that compose the minimal
   interchange set for black-and-white facsimile.  The Baseline and
   Extension fields and field values MUST be supported by all
   implementations.  For convenience, certain fields that have a value
   that is a sequence of flag bits are shown with integer values
   corresponding to the flags that are set.  An implementation should
   test the setting of the relevant flag bits individually, however, to
   allow extensions to the sequence of flag bits to be appropriately
   ignored.  (See, for example, T4Options below.)

   +---------------------------+--------------------------------+
   | Baseline Fields           |  Values                        |
   +---------------------------+--------------------------------+
   | BitsPerSample             | 1                              |
   +---------------------------+--------------------------------+
   | Compression               | 3: 1D Modified Huffman coding  |
   |                           |     set T4Options = 0 or 4     |
   +------------------------------------------------------------+



Buckley, et al.             Standards Track                    [Page 26]
^L
RFC 3949              File Format for Internet Fax         February 2005


   +---------------------------+--------------------------------+
   | FillOrder                 | 2: least significant bit first |
   +---------------------------+--------------------------------+
   | ImageWidth                | 1728                           |
   +---------------------------+--------------------------------+
   | ImageLength               | n: total number of scanlines   |
   |                           | in image                       |
   +---------------------------+--------------------------------+
   | NewSubFileType            | 2: Bit 1 identifies single     |
   |                           | page of a multi-page document  |
   +---------------------------+--------------------------------+
   | PageNumber                | n,m: page number n followed by |
   |                           | total page count m             |
   +---------------------------+--------------------------------+
   | PhotometricInterpretation | 0: pixel value 1 means black   |
   +---------------------------+--------------------------------+
   | ResolutionUnit            | 2: inch                        |
   +---------------------------+--------------------------------+
   | RowsPerStrip              | number of scanlines per strip  |
   |                           | = ImageLength, with one strip  |
   +---------------------------+--------------------------------+
   | SamplesPerPixel           | 1                              |
   +---------------------------+--------------------------------+
   | StripByteCounts           | number of bytes in TIFF strip  |
   +---------------------------+--------------------------------+
   | StripOffsets              | offset from beginning of       |
   |                           | file to single TIFF strip      |
   +---------------------------+--------------------------------+
   | XResolution               | 204, 200 (pixels/inch)         |
   +---------------------------+--------------------------------+
   | YResolution               | 98, 196, 100, 200 (pixels/inch)|
   +---------------------------+--------------------------------+
   | Extension Fields                                           |
   +---------------------------+--------------------------------+
   | T4Options                 | 0: MH coding, EOLs not byte    |
   |                           |               aligned          |
   |                           | 4: MH coding, EOLs byte aligned|
   +---------------------------+--------------------------------+

4.  Profile F: Extended Black-and-White fax profile

   This section defines the extended black-and-white profile or Profile
   F of TIFF for facsimile.  It provides a standard definition of what
   has historically been known as TIFF Class F and now as TIFF-F.  In
   doing so, it aligns this profile with current ITU-T Recommendations
   for black-and-white fax and with existing industry practice.
   Implementations of this profile include implementations of Profile S.




Buckley, et al.             Standards Track                    [Page 27]
^L
RFC 3949              File Format for Internet Fax         February 2005


   This section describes extensions to the minimal interchange set of
   fields (Profile S) that provide a richer set of black-and-white
   capabilities.  The fields and values described in this section are a
   superset of the fields and values defined for the minimal interchange
   set in Section 3.  In addition to the MH compression, Modified READ
   (MR) and Modified Modified READ (MMR) compression, as described in
   [T.4] and [T.6] are supported.

   Section 4.1 gives an overview of TIFF-F.  Section 4.2 describes the
   TIFF fields that SHALL be used in this profile.  Section 4.3
   describes the fields that MAY be used in this profile.  In the spirit
   of the original TIFF-F specification, Sections 4.4 and 4.5 discuss
   technical implementation issues and warnings.  Section 4.6 gives an
   example of TIFF-F use.  Section 4.7 gives a summary of the required
   and recommended fields and their values.

4.1.  TIFF-F Overview

   Though it has been in common use for many years, TIFF-F has
   previously never been documented in the form of a standard.  An
   informal TIFF-F document was originally created by a small group of
   fax experts led by Joe Campbell.  The existence of TIFF-F is noted in
   [TIFF], but it is not defined.  This document serves as the formal
   definition of the F application of [TIFF] for Internet applications.
   For ease of reference, the term TIFF-F will be used throughout this
   document as a shorthand for the extended black-and-white profile of
   TIFF for facsimile.

   Up until the TIFF 6.0 specification, TIFF supported various "Classes"
   that defined the use of TIFF for various applications.  Classes were
   used to support specific applications. In this spirit, TIFF-F has
   been known historically as "TIFF Class F".  Previous informal TIFF-F
   documents [TIFF-F0] used the "Class F" terminology.  As of TIFF 6.0
   [TIFF], the TIFF Class concept has been eliminated in favor of the
   concept of Baseline TIFF.  Therefore, this document updates the
   definition of TIFF-F as the F profile of TIFF for facsimile, by using
   Baseline TIFF as defined in [TIFF] as the starting point and then
   adding the TIFF extensions to Baseline TIFF that apply for TIFF-F.
   In almost all cases, the resulting definition of TIFF-F fields and
   values remains consistent with those used historically in earlier
   definitions of TIFF Class F.  Where some of the values for fields
   have been updated to provide more precise conformance with the ITU-T
   [T.4] and [T.30] fax recommendations, these differences are noted.








Buckley, et al.             Standards Track                    [Page 28]
^L
RFC 3949              File Format for Internet Fax         February 2005


4.2.  Required TIFF Fields

   This section lists the required fields and the values they must have
   to be ITU-compatible.  Besides the fields listed in Section 2.2.1,
   the extended black-and-white fax profile SHALL use the following
   fields.

4.2.1.  Baseline fields

   BitsPerSample(258) = 1.
   SHORT
      RequiredByTIFFBaseline
      Binary data only.
      Default = 1 (field may be omitted if this is the value)

   Compression(259) = 3, 4.
   SHORT
      RequiredByTIFFBaseline
      3 = 1- or 2- dimensional coding, must have T4Options field This is
      a TIFF Extension value [TIFF].
      4 = 2-dimensional coding, ITU-T Rec. T.6 (MMR - Modified Modified
      READ, must have T6Options field)) This is a TIFF Extension value.
      Default = 1 (and is not applicable; field must be specified)

   NOTE: Baseline TIFF permits use of value 2 for Modified Huffman
   compression, but data is presented in a form that does not use EOLs,
   and so TIFF for facsimile uses Compression=3 instead.  See Sections
   4.4.4, 4.5.1, and 4.5.2 for more information on compression and
   encoding.

   FillOrder(266) = 1 , 2.
   SHORT
      RequiredByTIFFBaseline
      Profile F readers must be able to read data in both bit orders,
      but the vast majority of facsimile products store data LSB first,
      exactly as it appears on the telephone line.
         1 = Most Significant Bit first.
         2 = Least Significant Bit first.

   ImageWidth(256)
   SHORT or LONG
      RequiredByTIFFBaseline
      This profile supports the following fixed page widths: 1728, 2592,
      3456 (corresponding to North American Letter and Legal and ISO A4
      paper sizes), 2048, 3072, 4096 (corresponding to ISO B4 paper
      size), and 2432, 3648, 4864 (corresponding to ISO A3 paper size).
      No default; must be specified.




Buckley, et al.             Standards Track                    [Page 29]
^L
RFC 3949              File Format for Internet Fax         February 2005


   NOTE: Historical TIFF-F did not include support for the following
   widths related to higher resolutions: 2592, 3072, 3648, 3456, 4096,
   and 4864.  Historical TIFF-F documents also included the following
   values related to A5 and A6 widths: 816 and 1216.  Per the most
   recent version of [T.4], A5 and A6 documents are no longer supported
   in Group 3 facsimile, so the related width values are now obsolete.
   See section 4.5.2 for more information on inch/metric equivalencies
   and other implementation details.

   NewSubFileType(254) = (Bit 1=1).
   LONG
      RequiredByTIFFforFAX
      Bit 1 is 1 if the image is a single page of a multi-page document.
      Default = 0 (no subfile bits on, so may not be omitted for fax).

   NOTE: Bit 1 is always set to 1 for TIFF-F, indicating a single page
   of a multi-page image.  The same bit settings are used when TIFF-F is
   used for a one-page fax image.  See Section 4.4.3 for details on
   multi-page files.

   PhotometricInterpretation(262) = 0, 1.
   SHORT
      RequiredByTIFFBaseline
      0 = pixel value 1 means black, 1 = pixel value 1 means white.
      This field allows notation of an inverted or negative image.
      No default, must be specified.

   ResolutionUnit(296) = 2, 3.
   SHORT
      RequiredByTIFFBaseline
      The unit of measure for resolution. 2 = inch, 3 = centimeter; =
      TIFF-F has traditionally used inch-based measurement.
      Default = 2 (field may be omitted if this is the value).

   SamplesPerPixel(277) = 1.
   SHORT
      RequiredByTIFFBaseline
      1 = monochrome, bi-level in this case (see BitsPerSample).
      Default = 1 (field may be omitted if this is the value).

   XResolution(282) = 200, 204, 300, 400, 408
   RATIONAL
      RequiredByTIFFBaseline
      The horizontal resolution of the image is expressed in pixels per
      resolution unit.  In pixels/inch, the allowed values are 200, 204,
      300, 400, and 408.  See Section 2.2.2 for inch metric equivalency.
      No default, must be specified.




Buckley, et al.             Standards Track                    [Page 30]
^L
RFC 3949              File Format for Internet Fax         February 2005


   NOTE: The values of 200 and 408 have been added to the historical
   TIFF-F values, for consistency with [T.30].  Some existing TIFF-F
   implementations may also support values of 80 pixels/cm, which is
   equivalent to 204 pixels per inch.  See section 4.5.2 for information
   on implementation details.

   YResolution(283) = 98, 100, 196, 200, 300, 391, and 400
   RATIONAL
      RequiredByTIFFBaseline
      The vertical resolution of the image is expressed in pixels per
      resolution unit.  In pixels/inch, the allowed values are 98, 100,
      196, 200, 300, 391, and 400 pixels/inch. See Section 2.2.2 for
      inch metric equivalency.
      No default, must be specified

   NOTE: The values of 100, 200, and 391 have been added to the
   historical TIFF-F values, for consistency with [T.30].  Some existing
   TIFF-F implementations may also support values of 77 and 38.5 (cm),
   which are equivalent to 196 and 98 pixels per inch, respectively. See
   section 4.5.2 for more information on implementation details.

   NOTE: Not all combinations of XResolution, YResolution, and
   ImageWidth are legal.  The following table gives the legal
   combinations and corresponding paper sizes [T.30].

   +--------------+-----------------+---------------------------+
   |   XResolution x YResolution    |         ImageWidth        |
   +--------------+-----------------+---------+--------+--------+
   |      200x100, 204x98           |         |        |        |
   |      200x200, 204x196          |  1728   |  2048  |  2432  |
   |           204x391              |         |        |        |
   +--------------+-----------------+---------+--------+--------+
   |          300 x 300             |  2592   |  3072  |  3648  |
   +--------------+-----------------+---------+--------+--------+
   |     408 x 391, 400 x 400       |  3456   |  4096  |  4864  |
   +--------------+-----------------+---------+--------+--------+
                                    |Letter,A4|   B4   |   A3   |
                                    |  Legal  |        |        |
                                    +---------+--------+--------+
                                    |         Paper Size        |
                                    +---------------------------+










Buckley, et al.             Standards Track                    [Page 31]
^L
RFC 3949              File Format for Internet Fax         February 2005


4.2.2.  Extension fields

   T4Options(292) = (Bit 0 = 0 or 1, Bit 1 = 0, Bit 2 = 0 or 1)
   LONG
      RequiredTIFFExtension (when Compression = 3)
      T4Options was also known as Group3Options in a prior version of
      [TIFF].
      Bit 0 = 1 indicates MR compression, = 0 indicates MH compression.
      Bit 1 must be 0.
      Bit 2 = 1 indicates that EOLs are byte aligned, = 0 EOLs not byte
      aligned.
      Default is all bits are 0 (applies when MH compression is used and
      EOLs are not byte aligned) (See Section 3.2.2.)  The T4Options
      field is required when the Compression field has a value of 3.
      This field specifies the compression used (MH or MR) and whether
      the EOL codes are byte aligned or not.  If they are byte aligned,
      then fill bits have been added as necessary so that the End of
      Line (EOL) codes always end on byte boundaries.  See Sections 3.4,
      4.5.3, and 4.5.4 for details.

   T6Options(293) = (Bit 0 = 0, Bit 1 = 0).
   LONG
      RequiredTIFFExtension (when Compression = 4)
      Used to indicate parameterization of 2D Modified Modified READ
      (MMR) compression.  T6Options was also known as Group4Options in a
      prior version of [TIFF].  Bit 0 must be 0.
      Bit 1 = 0 indicates uncompressed data mode is not allowed; = 1
      indicates that uncompressed data is allowed (see [TIFF]).  Default
      is all bits 0.  For FAX, the field must be present and have the
      value 0.  The use of uncompressed data where compression would
      expand the data size is not allowed for FAX.

   NOTE: MMR compressed data is two-dimensional and does not use EOLs.
   Each MMR encoded image MUST include an "end-of-facsimile-block"
   (EOFB) code at the end of each coded strip; see Section 4.5.6.

4.2.3.  New fields

   None.

4.3.  Recommended TIFF fields

4.3.1.  Baseline fields

   See Section 2.2.3.






Buckley, et al.             Standards Track                    [Page 32]
^L
RFC 3949              File Format for Internet Fax         February 2005


4.3.2.  Extension fields

   See Section 2.2.3.

4.3.3.  New fields

   See Section 2.2.4 and optional fields below.

   Three new, optional fields, used in the original TIFF-F description
   to describe page quality, are defined in this specification.  The
   information contained in these fields is usually obtained from
   receiving facsimile hardware (if applicable).  They SHOULD NOT be
   used in writing TIFF-F files for facsimile image data that is error
   corrected or otherwise guaranteed not to have coding errors.  Some
   applications need to understand exactly the error content of the
   data.  For example, a CAD program might wish to verify that a  file
   has a low error level before importing it into a high-accuracy
   document.  Because Group 3 facsimile devices do not necessarily
   perform error correction on the image data, the quality of a received
   page must be inferred from the pixel count of decoded scanlines.  A
   "good" scan line is defined as a line that, when decoded, contains
   the correct number of pixels.  Conversely, a "bad" scanline is
   defined as a line that, when decoded, contains an incorrect number of
   pixels.

   BadFaxLines(326)
   SHORT or LONG
      The number of "bad" scanlines encountered by the facsimile device
      during reception.  A "bad" scanline is defined as a scanline that,
      when decoded, comprises an incorrect number of pixels.  Note that
      PercentBad = (BadFaxLines/ImageLength) * 100.
      No default.

   CleanFaxData(327) = 0, 1, 2.
   SHORT
      Indicates whether "bad" lines encountered during reception are
      stored in the data, or whether "bad" lines have been replaced by
      the receiver.
      0 = No "bad" lines
      1 = "bad" lines exist but were regenerated by the receiver,
      2 = "bad" lines exist but have not been regenerated.
      No default.

   NOTE: Many facsimile devices do not actually output bad lines.
   Instead, the previous good line is repeated in place of a bad line.
   Although this substitution, known as line regeneration, results in a
   visual improvement to the image, the data is nevertheless corrupted.
   The CleanFaxData field describes the error content of the data.  That



Buckley, et al.             Standards Track                    [Page 33]
^L
RFC 3949              File Format for Internet Fax         February 2005


   is, when the BadFaxLines and ImageLength fields indicate that the
   facsimile device encountered lines with an incorrect number of pixels
   during reception, the CleanFaxData field indicates whether these bad
   lines are actually still in the data or whether the receiving
   facsimile device replaced them with regenerated lines.

   ConsecutiveBadFaxLines(328)
   LONG or SHORT
      Maximum number of consecutive "bad" scanlines received.  The
      BadFaxLines field indicates only the quantity of bad lines.
      No Default.

   NOTE: The BadFaxLines and ImageLength data indicate only the quantity
   of bad lines.  The ConsecutiveBadFaxLines field is an indicator of
   the distribution of bad lines and may therefore be a better general
   indicator of perceived image quality.  See Section 4.4.5 for examples
   of the use of these fields.

4.4.  Technical Implementation Issues

4.4.1.  Strips

   In general, TIFF files divide an image into "strips", also known as
   "bands".  Each strip contains a few scanlines of the image.  By using
   strips, a TIFF reader need not load the entire image into memory,
   enabling it to fetch and decompress small random portions of the
   image as necessary.

   The number of scanlines in a strip is described by the RowsPerStrip
   value and the number of bytes in the strip after compression by the
   StripByteCount value.  The location in the TIFF file of each strip is
   given by the StripOffsets values.

   Strip size is application dependent.  The recommended approach for
   multi-page TIFF-F images is to represent each page as a single strip.
   Existing TIFF-F usage is typically one strip per page in multi-page
   TIFF-F files.  See Sections 2.1.2 and 2.1.3.

4.4.2.  Bit Order

   The current TIFF specification [TIFF] does not require a Baseline
   TIFF reader to support FillOrder=2, i.e., lowest numbered 1-bit pixel
   in the least significant bit of a byte.  It further recommends that
   FillOrder=2 be used only in special purpose applications.







Buckley, et al.             Standards Track                    [Page 34]
^L
RFC 3949              File Format for Internet Fax         February 2005


   Facsimile data appears on the phone line in bit-reversed order
   relative to its description in ITU-T Recommendation T.4.  Therefore,
   most facsimile applications choose this natural order for data in a
   file.  Nevertheless, TIFF-F readers must be able to read data in both
   bit orders and support FillOrder values of 1 and 2.

4.4.3.  Multi-Page

   Many existing applications already read TIFF-F-like files but do not
   support the multi-page field.  Since a multi-page format greatly
   simplifies file management in fax application software, TIFF-F
   specifies multi-page documents (NewSubfileType = 2) as the standard
   case.

   It is recommended that applications export multiple-page TIFF-F files
   without manipulating fields and values.  Historically, some TIFF-F
   writers have attempted to produce individual single-page TIFF-F files
   with modified NewSubFileType and PageNumber (page one-of-one) values
   for export purposes.  However, there is no easy way to link such
   multiple single-page files together into a logical multiple-page
   document, so this practice is not recommended.

4.4.4.  Compression

   In Group 3 facsimile, there are three compression methods which had
   been standardized as of 1994 and are in common use.  The ITU-T T.4
   Recommendation [T.4] defines a one-dimensional compression method
   known as Modified Huffman (MH) and a two-dimensional method known as
   Modified READ (MR) (READ is short for Relative Element Address
   Designate).  In 1984, a somewhat more efficient compression method
   known as Modified Modified READ (MMR) was defined in the ITU-T T.6
   Recommendation [T.6].  MMR was originally defined for use with Group
   4 facsimile, so that this compression method has been commonly called
   Group 4 compression.  In 1991, the MMR method was approved for use in
   Group 3 facsimile and has since been widely utilized.

   TIFF-F supports these three compression methods.  The most commonly
   used is the one-dimensional Modified Huffman (MH) compression method.
   This is specified by setting the Compression field value to 3 and
   then setting bit 0 of the T4Options field to 0.  Alternatively, the
   two dimensional Modified READ (MR) method, which is much less
   frequently used in historical TIFF-F implementations, may be selected
   by setting bit 0 of the T4Options field to 1.  The value of Bit 2 in
   this field is determined by the use of fill bits.

   Depending upon the application, the more efficient two-dimensional
   Modified Modified READ (MMR)compression method from T.6 may be
   selected by setting the Compression field value to 4 and then setting



Buckley, et al.             Standards Track                    [Page 35]
^L
RFC 3949              File Format for Internet Fax         February 2005


   the first two bits (and all unused bits) of the T6Options field to 0.
   More information to aid the implementor in making a compression
   selection is contained in Section 4.5.2.

   Baseline TIFF also permits use of Compression=2 to specify Modified
   Huffman compression, but the data does not use EOLs.  As a result,
   TIFF-F uses Compression=3 instead of Compression=2 to specify
   Modified Huffman compression.

4.4.5.  Example Use of Page-quality Fields

   Here are examples for writing the CleanFaxData, BadFaxLines, and
   ConsecutiveBadFaxLines fields:

   1. Facsimile hardware does not provide page-quality information: MUST
      NOT write page-quality fields.

   2. Facsimile hardware provides page-quality information, but reports
      no bad lines.  Write only BadFaxLines = 0.

   3. Facsimile hardware provides page-quality information and reports
      bad lines.  Write both BadFaxLines and ConsecutiveBadFaxLines.
      Also write CleanFaxData = 1 or 2 if the hardware's regeneration
      capability is known.

   4. Source image data stream is error corrected or otherwise
      guaranteed to be error free such as for a computer-generated file:
      SHOULD NOT write page-quality fields.

   TIFF Writers SHOULD only generate these fields when the image has
   been generated from a fax image data stream where error correction,
   e.g., Group 3 Error Correction Mode, was not used.

4.4.6.  Practical Guidelines for Writing and Reading Multi-Page TIFF-F
        Files

   Traditionally, TIFF-F has required readers and writers to be able to
   handle multi-page TIFF-F files.  The experience of various TIFF-F
   implementors has shown that implementing TIFF-F can be greatly
   simplified if certain practical guidelines are followed when writing
   multi-page TIFF-F files.

   The structure for a multi-page TIFF-F file will include one IFD per
   document page.  In this case, this IFD will define the attributes for
   a single page.  A second simplifying guideline is that the writer of
   TIFF-F files SHOULD present IFDs in the same order as the actual
   sequence of pages.  (The pages are numbered within TIFF-F beginning
   with page 0 as the first page and then ascending (i.e., 0, 1,



Buckley, et al.             Standards Track                    [Page 36]
^L
RFC 3949              File Format for Internet Fax         February 2005


   2, ...).  However, any field values over 4 bytes will be stored
   separately from the IFD.  TIFF-F readers SHOULD expect IFDs to be
   presented in page order but be able to handle exceptions.

   Per [TIFF], the exact placement of image data is not specified.
   However, the offsets for each image strip are defined from within
   each IFD.  Where possible, another guideline for TIFF-F writers is
   that the image data for each page of a multi-page document SHOULD be
   contained within a single strip (i.e., one image strip per fax page).
   A single image strip per page further simplifies TIFF-F file writing
   for applications such as store and forward messaging, where the file
   is usually prepared in advance of the transmission, but other
   assumptions may apply for the size of the image strip for
   applications that require "streaming" techniques (see section 4.4.7).
   If a different image strip size guideline has been used (e.g.,
   constant size for image strips that may be less than the page size),
   this will immediately be evident from the values/offsets of the
   fields related to strips.

   Another simplifying guideline is that each IFD SHOULD be placed in
   the TIFF-F file structure at a point preceding the image that the IFD
   describes.

   In addition, placing the image data in a physical order within the
   TIFF file structure which is consistent with the logical page order
   simplifies TIFF-F file writing and reading.  In practice, TIFF-F
   readers will need to use the strip offsets to find the exact physical
   location of the image data, whether or not it is presented in logical
   page order.

   If the image data is stored in multiple strips, then the strips
   SHOULD occur in the file in the same order that the data they contain
   occurs in the facsimile transmission, starting from the top of the
   page.

   TIFF-F writers MAY follow another simplifying guideline, in which the
   IFD, the value data and the image data to which the IFD has offsets
   precede the next image IFD.  However, this guideline has been relaxed
   compared to the others given here.

   In the case of the minimal profile, which is also the minimal subset
   of Profile F, the SHOULDs and MAYs of these guidelines become SHALLs
   (see Section 3.5).

   A TIFF-F file structured using the guidelines of this section will
   essentially consist of a linked list of IFDs, presented in ascending
   page order, each pointing to a single page of image data




Buckley, et al.             Standards Track                    [Page 37]
^L
RFC 3949              File Format for Internet Fax         February 2005


   (one strip per page), where the pages of image data are also placed
   in a logical page order sequence within the TIFF-F file structure.
   (The pages of image data may themselves be stored in a contiguous
   manner, at the option of the implementor).

4.4.7.  Use of TIFF-F for Streaming Applications

   TIFF-F has historically been used for handling fax image files in
   applications such as store and forward messaging, where the entire
   size of the file is known in advance.  Although TIFF-F may also be
   used as a file format for cases such as streaming applications,
   assumptions differing from those provided in this section (e.g., the
   entire size and number of pages within the image are not known in
   advance) may be required.  As a result, a definition for the
   streaming application of TIFF-F is beyond the scope of this document.

4.5.  Implementation Warnings

4.5.1.  Uncompressed data

   TIFF-F requires the ability to read and write at least one-
   dimensional T.4 Huffman ("compressed") data.  Uncompressed data is
   not allowed.  The "Uncompressed" bit in T4Options or T6Options must
   be set to 0.

4.5.2.  Encoding and Resolution

   Since two-dimensional encoding is not required for Group 3
   compatibility, some historic TIFF-F readers have not been able to
   read such files.  The minimum subset of TIFF-F REQUIRES support for
   one-dimensional (Modified Huffman) files, so this choice maximizes
   portability.  However, implementors seeking greater efficiency SHOULD
   use T.6 MMR compression when writing TIFF-F files.  Some TIFF-F
   readers will also support two-dimensional Modified READ files.
   Implementors who wish to have the maximum flexibility in reading
   TIFF-F files should support all three of these compression methods
   (MH, MR, and MMR).

   Almost all facsimile products support both standard (98 dpi) vertical
   resolution  and "fine" (196 dpi) resolution.  Therefore, fine-
   resolution files are quite portable in the real world.

   In 1993, the ITU-T added support for higher resolutions in the T.30
   recommendation, including 200 x 200, 300 x 300, and 400 x 400 in dots
   per inch-based units.  At the same time, support was added for metric
   dimensions equivalent to the following inch-based resolutions: 391v x
   204h and 391v x 408h.  Therefore, the full set of inch-based
   equivalents of the new resolutions are supported in the TIFF-F



Buckley, et al.             Standards Track                    [Page 38]
^L
RFC 3949              File Format for Internet Fax         February 2005


   writer, as they may appear in some image-data streams received from
   Group 3 facsimile devices.  However, many facsimile terminals and
   older versions of TIFF-F readers are likely not to support these
   higher resolutions.

   Per [T.4], it is permissible for applications to treat the following
   XResolution values as equivalent: <204,200> and <400,408>.
   Similarly, the following YResolution values may also be treated as
   equivalent:  <98, 100>, <196, 200>, and <391, 400>.  These
   equivalencies were allowed by [T.4] to permit conversions between
   inch- and metric-based facsimile terminals.

   The optional support of metric-based resolutions in the TIFF-F reader
   (i.e., 77 x 38.5 cm) is included for completeness, as they are used
   in some legacy TIFF-F applications, but this use is not recommended
   for the creation of TIFF-F files by a writer.

4.5.3.  EOL byte-aligned

   The historical convention for TIFF-F has been that all EOLs in
   Modified Huffman or Modified READ data must be byte-aligned.
   However, Baseline TIFF has permitted use of non byte-aligned EOLs by
   default, so that a large percentage of TIFF-F reader implementations
   support both conventions.  Therefore, the minimum subset of TIFF-F,
   or Profile S, as defined in Section 3, includes support for both
   byte-aligned and non-byte-aligned EOLs; see Section 3.2.2.

   An EOL is said to be byte-aligned when Fill bits have been added as
   necessary before EOL codes so that EOL always ends on a byte
   boundary, thus ensuring an EOL sequence of a one byte preceded by a
   zero nibble: xxxx0000 00000001.

   Modified Huffman compression encodes bits, not bytes.  This means
   that the end-of-line token may end in the middle of a byte.  In byte
   alignment, extra zero bits (Fill) are added so that the first bit of
   data following an EOL begins on a byte boundary.  In effect, byte
   alignment relieves application software of the burden of bit-shifting
   every byte while parsing scan-lines for line-oriented image
   manipulation (such as writing a TIFF file).

   For Modified READ compression, each line is terminated by an EOL and
   a one-bit tag bit.  Per [T.4], the value of the tag bit is 0 if the
   next line contains two-dimensional data and 1 if the next line is a
   reference line.  To maintain byte alignment, fill bits are added
   before the EOL/tag bit sequence so that the first bit of data
   following an MR tag bit begins on a byte boundary.





Buckley, et al.             Standards Track                    [Page 39]
^L
RFC 3949              File Format for Internet Fax         February 2005


4.5.4.  EOL

   As illustrated in FIGURE 1/T.4 in [T.4], MH-encoded facsimile
   documents begin with an EOL, which in TIFF-F may be byte-aligned.
   The last line of the image is not terminated by an EOL.  Similarly,
   respect, images encoded with Modified READ two-dimensional
   compression begin with an EOL, followed by a tag bit.

4.5.5.  RTC Exclusion

   Aside from EOLs, TIFF-F files have historically only contained image
   data.  This means that applications seeking to maintain strict
   conformance with the rules in [TIFF] and compatibility with
   historical TIFF-F SHOULD NOT include the Return To Control sequence
   (RTC) (consisting of 6 consecutive EOLs) when writing TIFF-F files.
   However, applications intended to support "transparency" of [T.4]
   image data MAY include RTCs if the flag settings of the T4Options
   field are set for non byte aligned MH or MR image data.  Implementors
   of TIFF readers should also be aware that there are some existing
   TIFF-F implementations that include the RTC sequence in MH/MR image
   data.  Therefore, TIFF-F readers MUST be able to process files that
   do not include RTCs and SHOULD be able to process files that do
   include RTCs.

4.5.6.  Use of EOFB for T.6 Compressed Images

   TIFF-F pages encoded with the T.6 Modified Modified READ compression
   method MUST include an "end-of-facsimile-block" (EOFB) code at the
   end of each coded strip.  Per [TIFF], the EOFB code is followed by
   pad bits as needed to align on a byte boundary.  TIFF readers SHOULD
   ignore any bits other than pad bits beyond the EOFB.

4.6.  Example Use of TIFF-F

   The Profile F of TIFF (i.e., TIFF-F content) is a secondary component
   of the VPIM Message, as defined in [VPIM 2].  Voice messaging systems
   can often handle fax store-and-forward capabilities in addition to
   traditional voice message store-and-forward functions. As a result,
   TIFF-F fax messages can optionally be sent between compliant VPIM
   systems and may be rejected if the recipient system cannot deal with
   fax.

   Refer to the VPIM Specification for proper usage of this content.








Buckley, et al.             Standards Track                    [Page 40]
^L
RFC 3949              File Format for Internet Fax         February 2005


4.7.  Profile F: Extended Black-and-white Fax Profile Summary

   Recommended fields are shown with an asterisk (*).

   Required fields or values are shown with a double asterisk (**).  If
   the double asterisk is on the field name, then all the listed values
   are required of implementations; if the double asterisks are in the
   Values column, then only the values suffixed with a double asterisk
   are required of implementations.

   +---------------------------+--------------------------------+
   | Baseline Fields           |  Values                        |
   +---------------------------+--------------------------------+
   | BitsPerSample             | 1**                            |
   +---------------------------+--------------------------------+
   | Compression               | 3**: 1D Modified Huffman and   |
   |                           |      2D Modified READ coding   |
   |                           | 4: 2D Modified Modified READ   |
   |                           |    coding                      |
   +---------------------------+--------------------------------+
   | DateTime*                 | {ASCII}: date/time in 24-hour  |
   |                           | format "YYYY:MM:DD HH:MM:SS"   |
   +---------------------------+--------------------------------+
   | FillOrder**               | 1: most significant bit first  |
   |                           | 2: least significant bit first |
   +------------------------------------------------------------+
   | ImageDescription*         | {ASCII}: A string describing   |
   |                           | the contents of the image.     |
   +---------------------------+--------------------------------+
   | ImageWidth                | 1728**, 2048, 2432, 2592,      |
   |                           | 3072, 3456, 3648, 4096, 4864   |
   +---------------------------+--------------------------------+
   | ImageLength**             | n: total number of scanlines   |
   |                           | in image                       |
   +---------------------------+--------------------------------+
   | NewSubFileType            | 2**: Bit 1 identifies single   |
   |                           | page of a multi-page document  |
   +---------------------------+--------------------------------+
   | Orientation               | 1**-8, Default 1               |
   +---------------------------+--------------------------------+
   | PhotometricInterpretation | 0: pixel value 1 means black   |
   |  **                       | 1: pixel value 1 means white   |
   +---------------------------+--------------------------------+
   | ResolutionUnit**          | 2: inch                        |
   |                           | 3: centimeter                  |
   +------------------------------------------------------------+





Buckley, et al.             Standards Track                    [Page 41]
^L
RFC 3949              File Format for Internet Fax         February 2005


   +---------------------------+--------------------------------+
   | RowsPerStrip**            | n: number of scanlines per     |
   |                           | TIFF strip                     |
   +---------------------------+--------------------------------+
   | SamplesPerPixel           | 1**                            |
   +---------------------------+--------------------------------+
   | Software*                 | {ASCII}: name & release        |
   |                           | number of creator software     |
   +---------------------------+--------------------------------+
   | StripByteCounts**         | <n>: number or bytes in TIFF   |
   |                           | strip                          |
   +---------------------------+--------------------------------+
   | StripOffsets**            | <n>: offset from beginning of  |
   |                           | file to each TIFF strip        |
   +---------------------------+--------------------------------+
   | XResolution               | 200, 204**, 300, 400, 408      |
   |                           | (written in pixels/inch)       |
   +---------------------------+--------------------------------+
   | YResolution               | 98**, 196**, 100,              |
   |                           | 200, 300, 391, 400             |
   |                           | (written in pixels/inch)       |
   +---------------------------+--------------------------------+
   | Extension Fields                                           |
   +---------------------------+--------------------------------+
   | T4Options                 | 0**: required if Compression   |
   |                           | is Modified Huffman, EOLs are  |
   |                           | not byte aligned               |
   |                           | 1: required if Compression is  |
   |                           | 2D Modified READ, EOLs are     |
   |                           | not byte aligned               |
   |                           | 4**: required if Compression   |
   |                           | is Modified Huffman, EOLs are  |
   |                           | byte aligned                   |
   +---------------------------+--------------------------------+
   | T4Options (continued)     | 5: required if Compression     |
   |                           | is 2D Modified READ, EOLs are  |
   |                           | byte aligned                   |
   +---------------------------+--------------------------------+
   | T6Options                 | 0: required if Compression is  |
   |                           | 2D Modified Modified READ      |
   +---------------------------+--------------------------------+
   | DocumentName*             | {ASCII}: name of scanned       |
   |                           | document                       |
   +---------------------------+--------------------------------+
   | PageNumber**              | n,m: page number followed by   |
   |                           | total page count               |
   +---------------------------+--------------------------------+




Buckley, et al.             Standards Track                    [Page 42]
^L
RFC 3949              File Format for Internet Fax         February 2005


   +---------------------------+--------------------------------+
   | New Fields                                                 |
   +---------------------------+--------------------------------+
   | BadFaxLines*              | number of "bad" scanlines      |
   |                           | encountered during reception   |
   +---------------------------+--------------------------------+
   | CleanFaxData*             | 0: no "bad" lines              |
   |                           | 1: "bad" lines exist, but were |
   |                           | regenerated by receiver        |
   |                           | 2: "bad" lines exist, but have |
   |                           | not been regenerated           |
   +---------------------------+--------------------------------+
   | ConsecutiveBadFaxLines*   | Max number of consecutive      |
   |                           | "bad" lines received           |
   +---------------------------+--------------------------------+
   | GlobalParametersIFD*      | IFD: global parameters IFD     |
   +---------------------------+--------------------------------+
   | ProfileType*              | n: type of data stored in file |
   +---------------------------+--------------------------------+
   | FaxProfile*               | n: ITU-compatible fax profile  |
   +---------------------------+--------------------------------+
   | CodingMethods*            | n: compression algorithms used |
   |                           | in file                        |
   +---------------------------+--------------------------------+

5.  Profile J: Lossless JBIG Black-and-White Fax profile

   This section defines the lossless JBIG black-and-white profile of
   TIFF for facsimile, designated Profile J.  Implementations of this
   profile are required to implement Profile S as well.

   The previous section described the extended interchange set of TIFF
   fields for black-and-white fax, which provided support for the MH,
   MR, and MMR compression of black-and-white images.  This section adds
   a profile with JBIG compression capability.

5.1.  Overview

   This section describes a black-and-white profile that uses JBIG
   compression.  The ITU-T has approved the single-progression
   sequential mode of JBIG [T.82] for Group 3 facsimile.  JBIG coding
   offers improved compression for halftoned originals.  JBIG
   compression is used in accordance with the application rules given in
   ITU-T Rec. T.85 [T.85].

   This profile is essentially the extended black-and-white profile with
   JBIG compression used instead of MH, MR, or MMR.




Buckley, et al.             Standards Track                    [Page 43]
^L
RFC 3949              File Format for Internet Fax         February 2005


5.2.  Required TIFF Fields

   This section lists the required fields and the values they must have
   to be ITU-compatible.  Besides the fields listed in Section 2.2.1,
   the extended black-and-white fax profile requires the following
   fields.

5.2.1.  Baseline fields

   The TIFF fields that SHALL be used in this profile are the same as
   those described in Section 4.2.1 for the extended black-and-white
   profile, with two exceptions: the following text replaces the text in
   Section 4.2.1 for the Compression and FillOrder fields.

   Compression(259) = 9.
   SHORT
      RequiredByTIFFBaseline
      9 = JBIG coding.  This is a TIFF extension value.
      Default = 1 (and is not applicable; field must be specified).
      Profile J uses ITU-T T.85 profile of T.82; see T82Options field.

   FillOrder(266) = 1, 2.
   SHORT
      RequiredByTIFFBaseline
      1 = Pixels are arranged within a byte such that pixels with lower
      values are stored in the higher-order bits of the byte, i.e., most
      significant bit first (MSB).
      2 = Pixels are arranged within a byte such that pixels with lower
      column values are stored in the lower-order bits of the bytes,
      i.e., least significant bit first (LSB).
      Profile J readers must be able to read data in both bit orders.

5.2.2.  Extension fields

   Same fields as those in Section 2.2.1.

5.2.3.  New fields

   T82Options(435) = 0
   LONG
      Required when Compression = 9
      Individual bits are set to indicate the applicable profile of JBIG
      coding; all bits set to 0 indicates ITU-T T.85 profile of T.82;
      Other values are for further study.
      Default is all bits 0, and field may be omitted if this is the
      value.  (Field may be omitted in Profile J files.)





Buckley, et al.             Standards Track                    [Page 44]
^L
RFC 3949              File Format for Internet Fax         February 2005


   Note: A T.82 decoder can decode a T.85-encoded image when it handles
   the NEWLE marker code as described Corrigendum 1 in [T.85].

5.3.  Recommended TIFF Fields

   See Sections 2.2.3 and 2.2.4.

5.4.  Profile J: Lossless JBIG Black-and-white Fax Profile Summary

   Recommended fields are shown with an asterisk (*).

   Required fields or values are shown with a double asterisk (**).  If
   the double asterisk is on the field name, then all the listed values
   are required of implementations; if the double asterisks are in the
   Values column, then only the values suffixed with a double asterisk
   are required of implementations.

+---------------------------+--------------------------------+
| Baseline Fields           |  Values                        |
+---------------------------+--------------------------------+
| BitsPerSample             | 1**                            |
+---------------------------+--------------------------------+
| Compression               | 9**: JBIG coding               |
+---------------------------+--------------------------------+
| DateTime*                 | {ASCII}: date/time in 24-hour  |
|                           | format "YYYY:MM:DD HH:MM:SS"   |
+---------------------------+--------------------------------+
| FillOrder**               | 1: most significant bit first  |
|                           | 2: least significant bit first |
+---------------------------+--------------------------------+
| ImageDescription*         | {ASCII}: A string describing   |
|                           | the contents of the image      |
+---------------------------+--------------------------------+
| ImageWidth                | 1728**, 2048, 2432, 2592,      |
|                           | 3072, 3456, 3648, 4096, 4864   |
+---------------------------+--------------------------------+
| ImageLength**             | n: total number of scanlines   |
|                           | in image                       |
+---------------------------+--------------------------------+
| NewSubFileType**          | 2: Bit 1 identifies single     |
|                           | page of a multi-page document  |
+---------------------------+--------------------------------+
| Orientation               | 1**-8, Default 1               |
+---------------------------+--------------------------------+
| PhotometricInterpretation | 0: pixel value 1 means black   |
|  **                       | 1: pixel value 1 means white   |
+---------------------------+--------------------------------+




Buckley, et al.             Standards Track                    [Page 45]
^L
RFC 3949              File Format for Internet Fax         February 2005


+---------------------------+--------------------------------+
| ResolutionUnit**          | 2: inch                        |
|                           | 3: centimeter                  |
+---------------------------+--------------------------------+
| RowsPerStrip**            | n: number of scanlines per     |
|                           | TIFF strip                     |
+---------------------------+--------------------------------+
| SamplesPerPixel**         | 1                              |
+---------------------------+--------------------------------+
| Software*                 | {ASCII}: name & release        |
|                           | number of creator software     |
+---------------------------+--------------------------------+
| StripByteCounts**         | <n>: number of bytes in TIFF   |
|                           | strip                          |
+---------------------------+--------------------------------+
| StripOffsets**            | <n>: offset from beginning of  |
|                           | file to each TIFF strip        |
+---------------------------+--------------------------------+
| XResolution               | 200, 204**, 300, 400, 408      |
|                           | (written in pixels/inch)       |
+---------------------------+--------------------------------+
| YResolution               | 98**, 196**, 100,              |
|                           | 200, 300, 391, 400             |
|                           | (written in pixels/inch)       |
+---------------------------+--------------------------------+
| Extension Fields                                           |
+---------------------------+--------------------------------+
| DocumentName*             | {ASCII}: name of document      |
|                           |  scanned                       |
+---------------------------+--------------------------------+
| PageNumber**              | n,m: page number followed by   |
|                           | total page count               |
+---------------------------+--------------------------------+
| New Fields                                                 |
+---------------------------+--------------------------------+
| GlobalParametersIFD*      | IFD: global parameters IFD     |
+---------------------------+--------------------------------+
| T82Options**              | 0: T.85 profile of T.82        |
+---------------------------+--------------------------------+
| ProfileType*              | n: type of data stored in file |
+---------------------------+--------------------------------+
| FaxProfile*               | n: ITU-compatible fax profile  |
+---------------------------+--------------------------------+
| CodingMethods*            | n: compression algorithms used |
|                           | in file                        |
+---------------------------+--------------------------------+





Buckley, et al.             Standards Track                    [Page 46]
^L
RFC 3949              File Format for Internet Fax         February 2005


6.  Profile C: Base Color Fax profile

6.1.  Overview

   This section defines the lossy color profile of TIFF for facsimile,
   designated Profile C.  Implementations of this profile are required
   to also implement Profile S as well.

   This is the base profile for color and grayscale facsimile, which
   means that all applications that support color fax must support this
   profile.  The basic approach is the lossy JPEG compression [T.4,
   Annex E; T.81] of L*a*b* color data [T.42].  Grayscale applications
   use the L* lightness component; color applications use the L*, a* and
   b* components.

   This profile uses a new PhotometricInterpretation field value to
   describe the L*a*b* encoding specified in [T.42].  This encoding
   differs in two ways from the other L*a*b* encodings used in TIFF
   [TIFF, TTN1]: it specifies a different default range for the a* and
   b* components, based on a comprehensive evaluation of existing
   hardcopy output, and it optionally allows selectable range for the
   L*, a* and b* components.

6.2.  Required TIFF Fields

   This section lists the required fields, in addition to those given in
   Section 2.2.1, and the values they must support to be compatible with
   ITU-T Rec. T.42 and Annex E in ITU-T Rec. T.4.

6.2.1.  Baseline Fields

   ImageWidth(256).
   SHORT or LONG
      This profile supports the following fixed page widths: 864, 1024,
      1216, 1728, 2048, 2432, 2592, 3072, 3456, 3648, 4096, 4864.

   NewSubFileType(254) = (Bit 1=1).
   LONG
      RequiredByTIFFforFAX
      Bit 1 is 1 if the image is a single page of a multi-page document.
      Default = 0 (no subfile bits on, so may not be omitted for fax).

   BitsPerSample(258) = 8.
   SHORT
      Count = SamplesPerPixel
      The base color fax profile requires 8 bits per sample.





Buckley, et al.             Standards Track                    [Page 47]
^L
RFC 3949              File Format for Internet Fax         February 2005


   Compression(259) = 7.
   SHORT
      Base color fax profile uses Baseline JPEG compression.  Value 7
      represents JPEG compression as specified in [TTN2].

   FillOrder(266) = 1 , 2.
   SHORT
      RequiredByTIFFBaseline
      Profile C readers must be able to read data in both bit orders,
      but the vast majority of facsimile products store data LSB first,
      exactly as it appears on the telephone line.
         1 = Most Significant Bit first.
         2 = Least Significant Bit first.

   PhotometricInterpretation(262) = 10.
   SHORT
      Base color fax profile requires pixel values to be stored with the
      CIE L*a*b* encoding defined in ITU-T Rec. T.42.  This encoding is
      indicated by the PhotometricInterpretation value 10, referred to
      as ITULAB.  With this encoding, the minimum sample value is
      mapped to 0, and the maximum sample value is mapped to (2^n - 1),
      i.e., the maximum value, where n is the BitsPerSample value.  The
      conversion from unsigned ITULAB-encoded samples values to signed
      CIE L*a*b* values is determined by the Decode field; see Section
      6.2.3.

   NOTE: PhotometricInterpretation values 8 and 9 specify encodings for
   use with 8-bit-per-sample CIE L*a*b* [TIFF] and ICC L*a*b* [TTN1]
   data, but they are fixed encodings, which use different minimum and
   maximum samples than the T.42 default encoding.  As currently
   defined, they are not able to represent fax-encoded L*a*b* data.

   ResolutionUnit(296) = 2.
   SHORT
      The unit of measure for resolution. 2 = inch.
      ITU-T standards only specify inch-based resolutions for color fax.
      Default = 2 (field may be omitted if this is the value).

   SamplesPerPixel(277) = 1, 3.
   SHORT
      1: L* component only, required in base color profile
      3: L*, a*, b* components
      Encoded according to PhotometricInterpretation field








Buckley, et al.             Standards Track                    [Page 48]
^L
RFC 3949              File Format for Internet Fax         February 2005


   XResolution(282) = 100, 200, 300, 400.
   RATIONAL
   YResolution(283) = 100, 200, 300, 400.
   RATIONAL
      The resolution of the image is expressed in pixels per resolution
      unit.  In pixels per inch, allowed XResolution values are 100,
      200, 300, and 400.  The base color fax profile requires the pixels
      to be square, hence YResolution must equal XResolution.  Base
      resolution is 200 pixels per inch and SHALL be supported by all
      implementations of this profile.

   NOTE: The functional equivalence of inch-based and metric-based
   resolutions is maintained, per Annex E.6.5 in [T.4].  See table in
   Section 2.2.2.

   NOTE: Not all combinations of XResolution, YResolution and ImageWidth
   are legal.  The following table gives the legal combinations for
   inch-based resolutions and the corresponding paper sizes [T.30].

   +--------------------------------+---------------------------+
   |   XResolution x YResolution    |         ImageWidth        |
   +--------------------------------+---------------------------+
   |           100 x 100            |   864   |  1024  |  1216  |
   +--------------------------------+---------------------------+
   |           200 x 200            |  1728   |  2048  |  2432  |
   +--------------------------------+---------------------------+
   |           300 x 300            |  2592   |  3072  |  3648  |
   +--------------------------------+---------------------------+
   |           400 x 400            |  3456   |  4096  |  4864  |
   +--------------------------------+---------------------------+
                                    |Letter,A4|   B4   |   A3   |
                                    |  Legal  |        |        |
                                    +---------------------------+
                                    |         Paper Size        |
                                    +---------------------------+

6.2.2.  Extension Fields

   The JPEG compression standard allows for the a*b* chroma components
   of an image to be subsampled relative to the L* lightness component.
   The extension fields ChromaSubSampling and ChromaPositioning define
   the subsampling.  They are the same as YCbCrSubSampling and
   YCbCrPositioning in [TIFF] but have been renamed to reflect their
   applicability to other color spaces.







Buckley, et al.             Standards Track                    [Page 49]
^L
RFC 3949              File Format for Internet Fax         February 2005


   ChromaSubSampling(530).
   SHORT
      Count = 2
      Specifies the subsampling factors for the chroma components of a
      L*a*b* image.  The two subfields of this field,
      ChromaSubsampleHoriz and ChromaSubsampleVert, specify the
      horizontal and vertical subsampling factors respectively.

      SHORT 0: ChromaSubsampleHoriz = 1, 2.
      1: equal numbers of lightness and chroma samples horizontally,
      2: twice as many lightness samples as chroma samples horizontally,

      SHORT 1: ChromaSubsampleVert = 1, 2.
      1: equal numbers of lightness and chroma samples vertically,
      2: twice as many lightness samples as chroma samples vertically,

      The default value for ChromaSubSampling is (2,2), which is the
      default for chroma subsampling in color fax [T.4, Annex E].  No
      chroma subsampling, i.e., ChromaSubSampling = (1,1), is an option
      for color fax.

   ChromaPositioning(531) = 1.
   SHORT
      Specifies the spatial positioning of chroma components relative to
      the lightness component.
      1: centered, value of 1 means chrominance samples are spatially
      offset and centered with respect to luminance samples.  See the
      current TIFF specification under YcbCr positioning for further
      information.
      Default = 1, which is what ITU-T T.4, Annex E specifies.

6.2.3.  New Fields

   Decode(433).
   SRATIONAL
      Count = 2 * SamplesPerPixel
      Describes how to map image sample values into the range of values
      appropriate for the current color space.  In general, the values
      are taken in pairs and specify the minimum and maximum output
      value for each color component.  For the base color fax profile,
      Decode has a count of 6 values and maps the unsigned ITULAB-
      encoded sample values (Lsample, asample, bsample) to signed L*a*b*
      values, as follows:
         L* = Decode[0] + Lsample x (Decode[1]-Decode[0])/(2^n -1)
         a* = Decode[2] + asample x (Decode[3]-Decode[2])/(2^n -1)
         b* = Decode[4] + bsample x (Decode[5]-Decode[4])/(2^n -1)
      where Decode[0], Decode[2] and Decode[4] are the minimum values
      for L*, a*, and b*; Decode[1], Decode[3] and Decode[5] are the



Buckley, et al.             Standards Track                    [Page 50]
^L
RFC 3949              File Format for Internet Fax         February 2005


      maximum values for L*, a*, and b*; and n is the BitsPerSample.
      When n=8,=20  L*=Decode[0] when Lsample=0 and L*=Decode[1] when
      Lsample=255.

   ITU-T Rec. T.42 specifies the ITULAB encoding in terms of a range and
   offset for each component, which are related to the minimum and
   maximum values as follows:

      minimum = - (range x offset) / 2^n - 1
      maximum = minimum + range

   The Decode field default values depend on the color space.  For the
   ITULAB color space encoding, the default values correspond to the
   base range and offset, as specified in ITU-T Rec. T.42 [T.42].  The
   following table gives the base range and offset values for
   BitsPerSample=8, and the corresponding default minimum and maximum
   default values for the Decode field, calculated using the equations
   above when PhotometricInterpetation=10.

   Refer to ITU-T Rec. T.42 [T.42] to calculate the range and offset,
   and hence the minimum and maximum values, for other BitsPerSample
   values.

                      +-----------------------------------------------+
                      | ITU-T Rec. T.42  |           Decode           |
+---------+-----------|   base values    |       default values       |
| BitsPer + Component +------------------+----------------------------+
| -Sample |           |  Range | Offset  |      Min     |     Max     |
+---------+-----------+--------+---------+--------------+-------------+
|    8    |    L*     |   100  |    0    |       0      |     100     |
|         +-----------+--------+---------+--------------+-------------+
|         |    a*     |   170  |   128   |  -21760/255  |  21590/255  |
|         +-----------+--------+---------+--------------+-------------+
|         |    b*     |   200  |    96   |  -19200/255  |  31800/255  |
+---------+-----------+--------+---------+--------------+-------------+

   For example, when PhotometricInterpretation=10 and BitsPerSample=8,
   the default value for Decode is (0, 100, -21760/255, 21590/255,
   -19200/255, 31800/255).  For guidelines on the use of the Decode
   field, see section 5.2.2 of [GUIDE].











Buckley, et al.             Standards Track                    [Page 51]
^L
RFC 3949              File Format for Internet Fax         February 2005


6.3.  Recommended TIFF Fields

   See Sections 2.2.3. and 2.2.4.

6.4.  Profile C: Base Color Fax Profile Summary

   Recommended fields are shown with an asterisk (*).

   Required fields or values are shown with a double asterisk (**).  If
   the double asterisk is on the field name, then all the listed values
   are required of implementations; if the double asterisk is in the
   Values column, then only the values suffixed with a double asterisk
   are required of implementations.

   +---------------------------+--------------------------------+
   | Baseline Fields           | Values                         |
   +---------------------------+--------------------------------+
   | BitsPerSample             | 8**: 8 bits per color sample   |
   +---------------------------+--------------------------------+
   | Compression**             | 7: JPEG                        |
   +---------------------------+--------------------------------+
   | DateTime*                 | {ASCII}: date/time in 24-hour  |
   |                           | format "YYYY:MM:DD HH:MM:SS"   |
   +---------------------------+--------------------------------+
   | FillOrder**               | 1: most significant bit first  |
   |                           | 2: least significant bit first |
   +---------------------------+--------------------------------+
   | ImageDescription*         | {ASCII}: A string describing   |
   |                           | the contents of the image      |
   +---------------------------+--------------------------------+
   | ImageWidth                | 864, 1024, 1216, 1728**, 2048  |
   |                           | 2432, 2592, 3072, 3456, 3648   |
   |                           | 4096, 4864                     |
   +---------------------------+--------------------------------+
   | ImageLength**             | n: total number of scanlines   |
   |                           | in image                       |
   +---------------------------+--------------------------------+
   | NewSubFileType**          | 2: Bit 1 identifies single page|
   |                           | of a multi-page document       |
   +---------------------------+--------------------------------+
   | Orientation               | 1**-8, Default 1               |
   +---------------------------+--------------------------------+









Buckley, et al.             Standards Track                    [Page 52]
^L
RFC 3949              File Format for Internet Fax         February 2005


   +------------------------------------------------------------+
   | PhotometricInterpretation | 10**: ITULAB                   |
   +---------------------------+--------------------------------+
   | ResolutionUnit**          | 2: inch                        |
   +---------------------------+--------------------------------+
   | RowsPerStrip**            | n: number of scanlines per     |
   |                           | TIFF strip                     |
   +---------------------------+--------------------------------+
   | SamplesPerPixel           | 1**: L* (lightness)            |
   |                           | 3: LAB                         |
   +---------------------------+--------------------------------+
   | Software*                 | {ASCII}: name & release number |
   |                           | of creator software            |
   +---------------------------+--------------------------------+
   | StripByteCounts**         | <n>: number or bytes in        |
   |                           | TIFF strip                     |
   +---------------------------+--------------------------------+
   | StripOffsets**            | <n>: offset from beginning     |
   |                           | of file to each TIFF strip     |
   +---------------------------+--------------------------------+
   | XResolution               | 100, 200**, 300, 400 (written  |
   |                           | in pixels/inch)                |
   +---------------------------+--------------------------------+
   | YResolution               | 100, 200**, 300, 400           |
   |                           | (must equal XResolution)       |
   +---------------------------+--------------------------------+
   | Extension Fields                                           |
   +---------------------------+--------------------------------+
   | DocumentName*             | {ASCII}: name of scanned       |
   |                           | document                       |
   +---------------------------+--------------------------------+
   | PageNumber**              | n,m: page number followed by   |
   |                           | total page count               |
   +---------------------------+--------------------------------+
   | ChromaSubSampling         | (1,1), (2, 2)**                |
   |                           | (1, 1): equal numbers of       |
   |                           | lightness and chroma samples   |
   |                           | horizontally and vertically    |
   |                           | (2, 2): twice as many lightness|
   |                           | samples as chroma samples      |
   |                           | horizontally and vertically    |
   +---------------------------+--------------------------------+
   | ChromaPositioning         | 1**: centered                  |
   +------------------------------------------------------------+







Buckley, et al.             Standards Track                    [Page 53]
^L
RFC 3949              File Format for Internet Fax         February 2005


   +---------------------------+--------------------------------+
   | New Fields                                                 |
   +---------------------------+--------------------------------+
   | Decode**                  | minL, maxL, mina, maxa, minb,  |
   |                           | maxb: minimum and maximum      |
   |                           | values for L*a*b*              |
   +---------------------------+--------------------------------+
   | GlobalParametersIFD*      | IFD: IFD containing            |
   |                           | global parameters              |
   +---------------------------+--------------------------------+
   | ProfileType*              | n: type of data stored in      |
   |                           | TIFF file                      |
   +---------------------------+--------------------------------+
   | FaxProfile*               | n: ITU-compatible fax profile  |
   +---------------------------+--------------------------------+
   | CodingMethods*            | n: compression algorithms      |
   |                           | used in file                   |
   +---------------------------+--------------------------------+
   | VersionYear*              | byte sequence: year of ITU std |
   +---------------------------+--------------------------------+

7.  Profile L: Lossless Color Profile

   This section defines the lossless color profile of TIFF for
   facsimile, designated Profile L.  Implementations of this profile are
   required to also implement Profiles S and C as well.

7.1.  Overview

   This profile, specified in [T.43] and [T.4] Annex G, uses JBIG to
   code three types of color and grayscale images losslessly: one bit
   per color CMY, CMYK, and RGB images; a palettized (i.e., mapped)
   color image; and continuous tone color and grayscale images.  The
   last two are multi-level and use the L*a*b* encoding specified in
   [T.42].

7.1.1.  Color Encoding

   While under development, ITU-T Rec. T.43 was called T.Palette, as one
   of its major additions was palettized color images.  Baseline TIFF
   only allows RGB color maps, but ITU-T Rec. T.43 requires L*a*b* color
   maps, using the encoding specified in ITU-T Rec. T.42.  Palette color
   images are expressed with indices (bits per sample) of 12 bits or
   less, or optionally 13 to 16 bits, per [T.43] and Annex G in [T.4].
   Profile L files use the color table in the T.43 data stream rather
   than the TIFF ColorMap field.





Buckley, et al.             Standards Track                    [Page 54]
^L
RFC 3949              File Format for Internet Fax         February 2005


   Enabling T.43 color maps in TIFF requires the extension field
   Indexed, as defined in [TTN1], and the PhotometricInterpretation
   field value 10, as defined in Section 6.2.1.  The following table
   shows the corresponding PhotometricInterpretation, SamplesPerPixel,
   BitsPerSample, and Indexed field values for the different T.43 image
   types.

   +----------------------------------------------------------+
   | Image Type |PhotometricIn| Samples  | Bits Per | Indexed |
   |            |-terpretation| Per Pixel|  Sample  |         |
   |------------+-------------+----------+----------+---------|
   |     RGB    |    2=RGB    |     3    |    1     |    0    |
   +----------------------------------------------------------+
   |     CMY    |    5=CMYK   |     3    |    1     |    0    |
   +------------+-------------+----------+----------+---------+
   |     CMYK   |    5=CMYK   |     4    |    1     |    0    |
   +------------+-------------+----------+----------+---------+
   |   Palette  |  10=ITULAB  |     1    |    n     |    1    |
   +------------+-------------+----------+----------+---------+
   |  Grayscale |  10=ITULAB  |     1    |2-8, 9-12 |    0    |
   +------------+-------------+----------+----------+---------+
   |    Color   |  10=ITULAB  |     3    |2-8, 9-12 |    0    |
   +------------+-------------+----------+----------+---------+

7.1.2.  JBIG Compression

   T.43 uses the single-progression sequential mode of JBIG, defined in
   ITU-T Rec. T.82.  (Other compression methods are for further study.)
   To code multi-level images using JBIG, which is a bi-level
   compression method, an image is resolved into a set of bit-planes,
   and each bit-plane is then JBIG compressed.  For continuous-tone
   color and grayscale images, Gray code conversion is used.  The Gray
   code conversion is part of the data-stream encoding and is therefore
   invisible to TIFF.

7.2.  Required TIFF Fields

   This section lists the required fields, in addition to those in
   Section 2.2.1, and the values they must have to be compatible with
   ITU-T Rec. T.43.











Buckley, et al.             Standards Track                    [Page 55]
^L
RFC 3949              File Format for Internet Fax         February 2005


7.2.1.  Baseline Fields

   ImageWidth(256).
   SHORT or LONG
      Same page widths as the base color profile; see Section 6.2.1.
      NewSubFileType(254) = (Bit 1=1).
   LONG
      RequiredByTIFFforFAX
      Bit 1 is 1 if the image is a single page of a multi-page document.
      Default = 0 (no subfile bits on, so may not be omitted for fax).

   BitsPerSample(258) = 1, 2 - 8, 9 - 12.
   SHORT
      Count = SamplesPerPixel
      RGB, CMY, CMYK: 1 bit per sample
      Continuous tone (L*a*b*): 2 - 8 bits per sample, 9 - 12 bits
      optional.  Palette color: 12 or fewer bits per sample.
      Note: More than 8 bits per sample is not baseline TIFF.

   Compression(259) = 10.
   SHORT
      10: ITU-T Rec. T.43 representation, using ITU-T Rec. T.82 (JBIG)
      coding

   FillOrder(266) = 1 , 2.
   SHORT
      RequiredByTIFFBaseline
      Profile L readers must be able to read data in both bit orders,
      but the vast majority of facsimile products store data LSB
      first, exactly as it appears on the telephone line.
         1 = Most Significant Bit first.
         2 = Least Significant Bit first.

   PhotometricInterpretation(262) = 2, 5, 10.
   SHORT
      2: RGB
      5: CMYK, including CMY
      10: ITULAB
      Image data may also be stored as palette-color images, where pixel
      values are represented by a single component that is an index into
      a color map using the ITULAB encoding.  This color map is
      specified by the color palette table embedded in the image data
      stream.  To use palette-color images, set the
      PhotometricInterpretation to 10, SamplesPerPixel to 1, Indexed to
      1, and use the color map in the data stream.  See Section 7.1.1
      for discussion of the color encoding.





Buckley, et al.             Standards Track                    [Page 56]
^L
RFC 3949              File Format for Internet Fax         February 2005


   ResolutionUnit(296) = 2.
   SHORT
      The unit of measure for resolution. 2 = inch.
      ITU-T standards only specify inch-based resolutions for color fax.
      Default = 2 (field may be omitted if this is the value).

   SamplesPerPixel(277) = 1, 3, 4.
   SHORT
      1: Palette-color image, or L*-only if Indexed = 0 and
         PhotometricInterpretation is 10 (ITULAB).
      3: RGB, or L*a*b*, or CMY if PhotometricInterpretation is 5
      (CMYK).
      4: CMYK.

   XResolution(282) = 100, 200, 300, 400.
   RATIONAL
   YResolution(283) = 100, 200, 300, 400.
   RATIONAL
      The resolution of the image is expressed in pixels per resolution
      unit.  In pixels per inch, allowed XResolution values are 100,
      200, 300, and 400.  The lossless color fax profile requires the
      pixels to be square, hence YResolution must equal XResolution.
      Base resolution is 200 pixels per inch.

7.2.2.  Extension Fields

   Indexed(346) = 0, 1.
   SHORT
      0: not a palette-color image.
      1: palette-color image.
      This field is used to indicate that each sample value is an index
      into an array of color values specified in the image data stream.
      Because the color map is embedded in the image data stream, the
      ColorMap field is not used in Profile L.  Lossless color fax
      profile supports palette-color images with the ITULAB encoding.
      The SamplesPerPixel value must be 1.

7.2.3.  New Fields

   Decode(433)
   SRATIONAL
      Decode is used in connection with the ITULAB encoding of image
      data; see Section 6.2.3.

7.3.  Recommended TIFF Fields

   See Sections 2.2.3. and 2.2.4.




Buckley, et al.             Standards Track                    [Page 57]
^L
RFC 3949              File Format for Internet Fax         February 2005


7.4.  Profile L: Lossless Color Fax Profile Summary

   Recommended fields are shown with an asterisk (*).

   Required fields or values are shown with a double asterisk (**).  If
   the double asterisk is on the field name, then all the listed values
   are required of implementations; if the double asterisks are in the
   Values column, then only the values suffixed with a double asterisk
   are required of implementations.

   +--------------------+--------------------------------------+
   |   Baseline Fields  |             Values                   |
   +--------------------+--------------------------------------+
   | BitsPerSample      | 1: Binary RGB, CMY(K)                |
   |                    | 8**: 8 bits per color sample         |
   |                    | 9 - 12: optional                     |
   +--------------------+--------------------------------------+
   | Compression        | 10**: JBIG, per T.43                 |
   +--------------------+--------------------------------------+
   | DateTime*          | {ASCII}:  date/time in the 24-hour   |
   |                    | format "YYYY:MM:DD HH:MM:SS"         |
   +--------------------+--------------------------------------+
   | FillOrder**        | 1: Most significant bit first        |
   |                    | 2: Least significant bit first       |
   +--------------------+--------------------------------------+
   | ImageDescription*  | {ASCII}: A string describing the     |
   |                    | contents of the image                |
   +--------------------+--------------------------------------+
   | ImageWidth         | 864, 1024, 1216, 1728**, 2048, 2432, |
   |                    | 2592, 3072, 3456, 3648, 4096, 4864   |
   +--------------------+--------------------------------------+
   | ImageLength**      | n: total number of scanlines in image|
   +--------------------+--------------------------------------+
   | NewSubFileType     | 2**: Bit 1 identifies single page of |
   |                    | a multi-page document                |
   +--------------------+--------------------------------------+















Buckley, et al.             Standards Track                    [Page 58]
^L
RFC 3949              File Format for Internet Fax         February 2005


   +--------------------+--------------------------------------+
   | Orientation        | 1**-8, Default 1                     |
   +--------------------+--------------------------------------+
   | PhotometricInter-  | 2: RGB                               |
   | pretation          | 5: CMYK                              |
   |                    | 10**: ITULAB                         |
   +--------------------+--------------------------------------+
   | ResolutionUnit**   | 2: inch                              |
   +--------------------+--------------------------------------+
   | RowsPerStrip**     | n: number of scanlines per TIFF strip|
   +--------------------+--------------------------------------+
   | SamplesPerPixel    | 1**: L* (lightness)                  |
   |                    | 3: LAB, RGB, CMY                     |
   |                    | 4: CMYK                              |
   +--------------------+--------------------------------------+
   | Software*          | {ASCII}: name & release number of    |
   |                    | creator software                     |
   +--------------------+--------------------------------------+
   | StripByteCounts**  | <n>: number or bytes in TIFF strip   |
   +--------------------+--------------------------------------+
   | StripOffsets**     | <n>: offset from beginning of file to|
   |                    | each TIFF strip                      |
   +--------------------+--------------------------------------+
   | XResolution        | 100, 200**, 300, 400 (pixels/inch)   |
   +--------------------+--------------------------------------+
   | YResolution        | equal to XResolution (pixels must be |
   |                    | square)                              |
   +--------------------+--------------------------------------+
   | Extension Fields                                          |
   +--------------------+--------------------------------------+
   | DocumentName*      | {ASCII}: name of scanned document    |
   +--------------------+--------------------------------------+
   | PageNumber**       | n,m: page number followed by total   |
   |                    | page count                           |
   +--------------------+--------------------------------------+
   | Indexed            | 0: not a palette-color image         |
   |                    | 1: palette-color image               |
   +--------------------+--------------------------------------+
   | New Fields                                                |
   +--------------------+--------------------------------------|
   | Decode             | minL, maxL, mina, maxa, minb, maxb:  |
   |                    | minimum and maximum values for L*a*b*|
   +--------------------+--------------------------------------+
   | GlobalParameters   | IFD: global parameters IFD           |
   | IFD*               |                                      |
   +-----------------------------------------------------------+





Buckley, et al.             Standards Track                    [Page 59]
^L
RFC 3949              File Format for Internet Fax         February 2005


   +--------------------+--------------------------------------+
   | ProfileType*       | n: type of data stored in TIFF file  |
   +--------------------+--------------------------------------+
   | FaxProfile*        | n: ITU-compatible fax profile        |
   +--------------------+--------------------------------------+
   | CodingMethods*     | n: compression algorithms used in    |
   |                    | file                                 |
   +--------------------+--------------------------------------+
   | VersionYear*       | byte sequence: year of ITU fax std   |
   +--------------------+--------------------------------------+

8.  Profile M: Mixed Raster Content Profile

   This section defines the Mixed Raster Content profile of TIFF for
   facsimile, designated Profile M.  Implementations of this profile are
   required to implement Profiles S and C and may optionally implement
   Profiles F, J and L.

8.1.  Overview

   Unlike previous fax profiles, which use a single coding method and
   resolution for an entire fax page, Mixed Raster Content [T.44]
   enables different coding methods and resolutions within a single
   page.  For example, consider a page that contains black-and-white
   text, which is best coded with MMR or JBIG; a color bar chart, best
   coded with JBIG; and a scanned color image, best coded with JPEG.
   Similarly, although spatial resolution of 400 pixels per inch may be
   best for the black-and-white text, 200 pixels per inch is usually
   sufficient for a color image.

   Rather than applying one coding method and resolution to all
   elements, MRC allows multiple coders and resolutions within a page.
   By itself, MRC does not define any new coding methods or resolutions.
   Instead it defines a 3-layer image model for structuring and
   combining the scanned image data.  The MRC 3-layer model has been
   applied here with the TIFF format to yield a data structure that
   differs from [T.44], though it applies the same coding methods, uses
   the same compressed image data streams, and is consistent with the
   TIFF principle of a single IFD per image.

8.1.1.  MRC 3-layer model

   The 3 layers of the MRC model are Foreground and Background, which
   are both multi-level, and Mask, which is bi-level.  Each layer may
   appear only once on a page and is coded independently of the other
   two layers.  The final image is obtained by using the Mask layer to
   determine whether output pixels come from the Foreground layer or the
   Background layer.  When the Mask layer pixel value is 1, the



Buckley, et al.             Standards Track                    [Page 60]
^L
RFC 3949              File Format for Internet Fax         February 2005


   corresponding pixel from the Foreground layer is selected; when it is
   0, the corresponding pixel from the Background layer is selected.
   Details are given in the Introduction of [T.44].

   In our earlier example, the shape of the black-and-white text and the
   mask for the color chart could be in the Mask layer, the color of the
   chart and text in the Foreground layer, and the color image in the
   Background layer.  If a Mask layer pixel has a value of 1, the final
   image pixel will be, depending on the pixel location, from either the
   color chart or text color in the Foreground layer.  If a Mask layer
   pixel has a value of 0, the final image pixel will be from the color
   image in the Background layer.

   Each layer is an image and, when present, is represented by at least
   one IFD in a TIFF file.  This is consistent with TIFF, which provides
   fields to define the attributes, such as resolution, image size, bits
   per sample, etc., of a single image or layer.  The distribution of
   content among layers is determined by the writer, as is the choice of
   coding method, color encoding, and spatial resolution for a layer.

   Not all pages, and not all parts of a page, require 3 layers.  If a
   page has of only one layer, then that layer is the primary image
   whether it is a Background, Mask, or Foreground layer.  If there is
   more than one layer, then the Mask must be one of the layers, in
   which case it is the primary image.  In all cases, the primary image
   must be page size.

   MRC [T.44] allows a page to be transmitted as a series of stripes,
   each consisting of 1, 2 or 3 layers.  The number of scanlines in each
   stripe can vary over the page.  Although [T.44] does not allow
   overlap between images of a single layer, the MRC profile permits
   overlapping IFDs when one of the IFDs is used only to define a
   default image color.  According to [T.4] Annex H, stripes having more
   than 1 layer SHOULD NOT be more than 256 lines in length unless the
   capability to receive longer stripes has been negotiated.

   Furthermore, color fax also requires the spatial resolutions of
   Background and Foreground images to be legal fax values that are also
   integer factors of the Mask image resolution.  For example, if the
   Mask-Layer resolution is 400 pixels per inch, then allowable
   resolutions for the Foreground and Background layers are 100, 200, or
   400 pixels per inch; if the Mask is at 300 pixels per inch, then
   allowable values are 100 and 300.  The Foreground and Background
   layer resolutions can be set independently of each other.







Buckley, et al.             Standards Track                    [Page 61]
^L
RFC 3949              File Format for Internet Fax         February 2005


8.1.2.  A TIFF Representation for the MRC 3-layer model

   In the TIFF representation of the 3-layer MRC model, each page is
   represented by a single IFD, called the Primary IFD.  The nextIFD
   offset associated with a Primary IFD will point to the Primary IFD of
   the next page.  If the page consists of a single layer, then the
   Primary IFD represents that layer.  If more than one layer is
   present, the Primary IFD represents the Mask layer and the other
   layers are represented by a set of child IFDs that are referenced
   through the SubIFD extension field [TTN1] of the Primary IFD.  To
   distinguish MRC-specific SubIFDs from other SubIFDs, the
   NewSubFileType field MUST have Bit 4 ON, indicating an MRC-related
   IFD.  A new ImageLayer field is also introduced that consists of two
   values that identify the layer (Foreground, Background, or Mask) and
   the order within the layer (first, second, ... image of the layer);
   see Section 8.2.3.

   In Profile M, the Primary IFD represents a complete layer and
   corresponds to the primary image described in Section 8.1.1.  There
   must be no other MRC-related IFDs or SubIFDs that contain image data
   corresponding to the layer represented by the Primary IFD.

   MRC [T.44] allows a page to be transmitted as a series of stripes.  A
   strip within an IFD in a Profile M file represents a stripe in a
   [T.44] data stream.  The [T.44] stripes of the Primary image are
   represented by a single, multiple-strip IFD; the [T.44] stripes of
   other layers are represented as multiple, single-strip IFDs.

   The layer represented by the Primary IFD may consist of strips of
   image data, but all the strips must be part of the single Primary
   IFD.  For example, if the page consisted of only the Background
   layer, then all strips associated with the Background layer must be
   treated as a single image.  Because MRC allows stripes with variable
   numbers of scanlines, a reader MUST support StripRowCounts field, as
   a writer may use it in place of the RowsPerStrip field to support a
   variable number of scanlines in each strip of the Primary IFD.  In
   accordance with [TTN2], each strip shall be independently encoded,
   but coding parameters may not change between strips.

   Layers other than the layer represented by the Primary IFD store each
   strip as a separate IFD, allowing the coding parameters to change
   from strip to strip as described by the MRC standard [T.44].  In all
   cases, if the Mask layer exists, it shall be represented by a single
   IFD and a single set of coding parameters.

   The use of SubIFDs to store child IFDs is described in [TTN1].  When
   the Mask is the primary image, the Background and Foreground layer
   images are represented with child IFDs referenced by the SubIFDs



Buckley, et al.             Standards Track                    [Page 62]
^L
RFC 3949              File Format for Internet Fax         February 2005


   field in the Primary IFD.  There are multiple ways to organize the
   images of the Background and Foreground layer images:  (1) the SubIFD
   field of the Primary IFD is an array of pointers to all child image
   IFDs, one entry per child image; (2) the SubIFD field is a single
   pointer to a linked list of all child image IFDs; (3) the SubIFD
   field is an array of two pointers, where the first pointer is to a
   linked list of all Background layer image IFDs, and the second
   pointer is to a linked list of all Foreground layer image IFDs.  A
   Profile M writer SHOULD structure the Background and Foreground layer
   images by using (3), as shown in the example below.  Furthermore, the
   child IFDs representing the images of the Background and Foreground
   layers SHOULD be ordered in the file in the same order as they occur
   on the page.  However, a Profile M reader must scan all available
   child IFDs to locate and identify IFDs associated with MRC layers.

                             (nextIFD)
PRIMARY IFD PAGE 0  -----------------------> PRIMARY IFD PAGE 1--> ...
          ImageLayer = [2,1]
          NewSubFileType = 18
          SubIFD[0] ---------------------- SubIFD[1]
               |                                |
               V                                V
            Child IFD                        Child IFD
               ImageLayer = [1,1]               ImageLayer [3,1]
               NewSubFileType = 16              NewSubFileType 16
               |                                |
               |(nextIFD)                       |(nextIFD)
               V                                V
            Child IFD                        Child IFD
               ImageLayer = [1,2]               ImageLayer [3,2]
               NewSubFileType = 16              NewSubFileType 16
               |                                |
               |(nextIFD)                       |(nextIFD)
               V                                V
            Child IFD                        Child IFD
               ImageLayer = [1,3]               ImageLayer [3,3]
               NewSubFileType = 16              NewSubFileType 16
               |                                |
               |(nextIFD)                       |(nextIFD)
               V                                V
               0                                0

   The XPosition and YPosition TIFF fields specify the offset to the
   upper left corner of the IFD in resolution units, which are inches in
   Profile M; see Section 8.2.2.  The Primary IFD must not use XPosition
   or YPosition fields.





Buckley, et al.             Standards Track                    [Page 63]
^L
RFC 3949              File Format for Internet Fax         February 2005


   MRC [T.44] allows the specification of a default image color that is
   to be applied in the event no image data is transmitted for a given
   stripe and layer.  The new field ImageBaseColor is used to store
   default image color specifications in Profile M, see 8.2.3.  By
   setting the StripByteCounts array to zero values, an IFD defining a
   default color but containing no encoded image data can be specified.
   ImageBaseColor can also be used in IFDs that contain encoded image
   data.  In that case, the fields of the IFD must accurately reflect
   the encoding of the image data.  If the StripByteCount entry for a
   given strip is 0, then the ImageBaseColor is used for that strip.  If
   the encoded image data is ITU L*a*b, the ImageBaseColor is
   interpreted with the encoding parameters of the image data.  If the
   image data is not ITU L*a*b*, the ImageBaseColor is interpreted as
   8-bit ITU L*a*b*; see Section 8.2.3.

8.2.  Required TIFF Fields

   This section describes the TIFF fields required, in addition to those
   in Section 2.2.1, to represent MRC fax images.  Since MRC stores fax
   data as a collection of images corresponding to layers or parts of
   layers, the coding methods, color encodings, and spatial resolutions
   used by previous profiles apply to Profile M.  Therefore, the
   descriptions here will typically reference the appropriate earlier
   sections.  Fields and values specific to Profile M are pointed out.

8.2.1.  Baseline Fields

   ImageWidth(256).
   SHORT or LONG
      Same page widths as Profile C, the base color profile; see Section
      6.2.1.  In Profile M, the width of a Foreground or Background
      image in the coded data stream may be less than the page width,
      unless the Background or Foreground is the primary image, in which
      case the width of the coded data stream is the page width.  The
      ImageWidth field will always store the actual width of the coded
      data.

   NewSubFileType(254) = 16, 18.
   LONG
      For Profile M, the NewSubFileType field has two bits that are
      required.  Bit 1 indicates a single page of a multi-page document
      and must be set for the Primary IFD; Bit 4 indicates the MRC
      imaging model as described in ITU-T Recommendation T.44 [T.44] and
      must be set for Primary IFDs and all MRC-specific child IFDs.







Buckley, et al.             Standards Track                    [Page 64]
^L
RFC 3949              File Format for Internet Fax         February 2005


   BitsPerSample(258) = 1, 2-8, 9-12
   SHORT
   SamplesPerPixel(277) = 1, 3, 4.
   SHORT
   Compression(259) = 1, 3, 4, 7, 9, 10.
   SHORT
      For Mask layer, see Sections 4.2.1 and 5.2.1.  For Foreground and
      Background layers, see Sections 6.2.1 and 7.2.1 Compression=1 is
      not used by previous profiles.  An IFD used only to specify the
      default image color for a layer and strip will not have any
      encoded image data associated with it, i.e., the StripByteCounts
      field will contain a 0.  Since no image data exists in the IFD,
      the Compression field shall be set to 1, indicating no
      compression.  A Compression field value of 1 is not allowed for
      any other IFDs.

   FillOrder(266) = 1 , 2.
   SHORT
   RequiredByTIFFBaseline
      Profile M readers must be able to read data in both bit orders,
      but the vast majority of facsimile products store data LSB first,
      exactly as it appears on the telephone line
         1 = Most Significant Bit first.
         2 = Least Significant Bit first.

   PhotometricInterpretation(262) = 0, 2, 10.
   SHORT
      For Mask layer, 0.  For Foreground and Background layers, see
      Sections 6.2.1 and 7.2.1.

   ResolutionUnit(296) = 2.
   SHORT
      The unit of measure for resolution. 2 = inch.
      ITU-T standards only specify inch-based resolutions for color fax
      Default = 2 (field may be omitted if this is the value).

   StripByteCounts(279)
   SHORT or LONG
      In Profile M, it is permissible for the StripByteCounts value for
      a given strip to have a zero entry.  This means there is no
      encoded image data corresponding to that strip.  Instead, the
      current default image color should be used for the strip.  The
      standard default image colors are black for the Foreground layer
      and White for the Background layer.  The ImageBaseColor field can
      be used to specify other default colors; see Section 8.2.3.






Buckley, et al.             Standards Track                    [Page 65]
^L
RFC 3949              File Format for Internet Fax         February 2005


   XResolution(282) = 100, 200, 300, 400.
   RATIONAL
   YResolution(283) = 100, 200, 300, 400.
   RATIONAL
      The resolution of the image is expressed in pixels per resolution
      unit.  In pixels per inch, allowed XResolution values for all
      layers are 100, 200, 300, and 400.  Color fax requires the pixels
      to be square, hence YResolution must equal XResolution for all
      layers.  The resolution of Background and Foreground layers must
      each be an integer factor of the Primary image, which is the Mask
      layer, when it is present; see Section 8.4.

8.2.2.  Extension Fields

   ChromaSubSampling(530).
   SHORT
   ChromaPositioning(531).
   SHORT
      For Foreground and Background layers, see Section 6.2.2.

   Indexed(346) = 0, 1.
   SHORT
      For Foreground and Background layers: 1 indicates a palette-color
      image; see Section 7.2.2.

   T4Options(292) = 0, 1, 4, 5.
   SHORT
   T6Options(293) = 0.
   SHORT
      For Mask layer, see Section 4.2.2.

   SubIFDs(330).
   IFD
      Count = number of child IFDs.  Each value is an offset from the
      beginning of the TIFF file to a child IFD [TTN1].

   XPosition(286).
   RATIONAL
   YPosition(287).
   RATIONAL
      Specifies the horizontal and vertical offsets of the top left of
      the IFD from the top left of the Primary IFD in resolution units.
      For example, if the Primary IFD is at 400 pixels per inch, and a
      foreground layer IFD is at 200 pixels per inch and located at
      pixel coordinate (345, 678) with respect to the Primary IFD, the
      XPosition value is 345/400 and the YPosition value is 678/400 in
      inches.




Buckley, et al.             Standards Track                    [Page 66]
^L
RFC 3949              File Format for Internet Fax         February 2005


      The Primary IFD does not use the XPosition or YPosition fields.
      The XPosition and YPosition values must be specified for MRC child
      IFDs; there is no default value.

8.2.3.  New Fields

   Decode(433).
   SRATIONAL
      For Foreground and Background layers, see Section 6.2.3.

   T82Options(435)
   LONG
      For Mask layer, see Section 5.2.3.

   ImageBaseColor(434).
   SHORT
      Count = SamplesPerPixel

   In areas of an image layer where no image data is available (i.e.,
   where no strips are defined, or where the StripByteCounts entry for
   a given strip is 0), the color specified by ImageBaseColor will be
   used.

   If the ImageBaseColor field is used in an IFD that contains image
   data encoded in ITU L*a*b*, then the ImageBaseColor will be
   interpreted with the color-encoding parameters of the image data
   (i.e., color gamut, illuminant, bit/sample, and decode).  If the
   ImageBaseColor field is used in an IFD that contains image data that
   is not encoded in ITU L*a*b, then the ImageBaseColor SHALL be
   interpreted as 8 bits/sample, 3 samples/pixel ITU L*a*b*.  If the
   ImageBaseColor field is used in an IFD that contains no encoded
   image data, then the ImageBaseColor SHALL be interpreted as 8
   bits/sample, 3 samples/pixel ITU L*a*b*.  If the fax data stream
   requires a different encoding, then transferring the default color
   value between a TIFF file and fax data stream requires a color
   conversion.

   A [T.44] stripe may contain a Foreground or Background image less
   than full stripe size, with the rest of the stripe assuming a
   default image color.  In this case, the default image color is imaged
   first, followed by the image data.  In Profile M, this is represented
   as a child IFD containing no encoded image data but specifying the
   default image color in the ImageBaseColor field.  A second child IFD
   contains the image data.  To ensure the default image color is imaged
   first, the order value in the ImageLayer field of the IFD defining
   the ImageBaseColor field MUST have a lower value than the order
   value in the ImageLayer field of the IFD defining the image data.




Buckley, et al.             Standards Track                    [Page 67]
^L
RFC 3949              File Format for Internet Fax         February 2005


   To define a child IFD specifying a ImageBaseColor but containing no
   encoded image data, create an IFD with the following settings.

      ImageLayer[0]:             specified layer
      ImageLayer[1]:             less than any other IFDs corresponding
                                 to the same layer and strip.
      RowsPerStrip:              strip height
      ImageLength:               strip height
      ImageWidth:                full image width
      BitsPerSample:             8
      PhotometricInterpretation: 10 (ITULAB)
      SamplesPerPixel:           3
      Compression:               1 (none)
      X/YResolution:             that of the Primary IFD
      XPosition:                 0
      YPosition:                 the offset from the top of the page to
                                 the beginning of the strip in the
                                 resolution units of inches
      StripByteCounts:           single 0 value
      StripOffsets:              single 0 entry
      NewSubFileType:            bit 4 O     (MRC)
      ImageBaseColor:            desired color in 8 bit ITULAB

   For the Foreground layer image, the default value for the
   ImageBaseColor field is black.  For other cases, including the
   Background layer image, the default value is white.

   StripRowCounts(559).
   LONG
      Count = number of strips.
      The number of scanlines stored in a strip.  Profile M allows each
      fax strip to store a different number of scanlines.  For strips
      with more than one layer, the maximum strip size is either 256
      scanlines or full page size.  The 256 maximum SHOULD be used
      unless the capability to receive longer strips has been
      negotiated.  This field replaces RowsPerStrip for IFDs with
      variable-size strips.  Only one of the two fields, StripRowCounts
      and RowsPerStrip, may be used in an IFD.

   ImageLayer (34732).
   LONG
      Count = 2.
      Image layers are defined such that layer 1 is the Background
      layer, layer 3 is the Foreground layer, and layer 2 is the Mask
      layer, which selects pixels from the Background and Foreground
      layers.  The ImageLayer tag contains two values, which describe
      the layer to which the image belongs and the order in which it is
      imaged.



Buckley, et al.             Standards Track                    [Page 68]
^L
RFC 3949              File Format for Internet Fax         February 2005


      ImageLayer[0] = 1, 2, 3.
      1: Image is a Background image, i.e., the image that will appear
         whenever the Mask contains a value of 0.  Background images
         typically contain low-resolution, continuous-tone imagery.
      2: Image is the Mask layer.  In MRC, if the Mask layer is present,
         it must be the Primary IFD and be full page in extent.
      3: Image is a Foreground image, i.e., the image that will appear
         whenever the Mask contains a value of 1.  The Foreground image
         generally defines the color of text or lines but may also
         contain high-resolution imagery.

      ImageLayer[1]:
      1: first image to be imaged in this layer
      2: second image to be imaged in this layer
      3: ...

      In Profile M, more than one image can exist in a single layer.
      ImageLayer[1] specifies the order in which images within a single
      layer are to be imaged.  This insures that overlapping images
      within a single layer are imaged correctly.

      If an IFD contains no encoded image data and is used only to
      specify the ImageBaseColor field, the value of ImageLayer[1] must
      be less than that of any other IFD corresponding to the same layer
      and strip to ensure the image data is interpreted as on top of the
      default color.

      In Profile M, it is possible to have only a single layer.  For
      example, if a page contains only a single continuous-tone
      photograph, then only the Background layer would occur.  In this
      case, the Background layer will be stored as the Primary IFD.
      ImageLayer[0] will be 1, indicating Background; ImageLayer[1] will
      be 1, as there can be no other IFDs associated with that layer.
      No Mask layer will exist.

8.3.  Recommended TIFF Fields

   See Sections 2.2.3. and 2.2.4.

8.4.  Rules and Requirements for Images

   Profile M defines a fundamental set of rules for images in the 3
   layer representation.








Buckley, et al.             Standards Track                    [Page 69]
^L
RFC 3949              File Format for Internet Fax         February 2005


   1. If more than one layer exists, then the binary Mask layer SHALL be
      present and be the primary image.  The Mask layer SHALL support
      the binary data representations defined in Section 3 and MAY
      support those defined in Sections 4 and 5, with the exception that
      PhotometricInterpretation MUST be 0.  If only one layer exists,
      then the image corresponding to that layer is the primary image.

   2. The Primary IFD defines and extends to the entire page boundary;
      all attached model images cannot extend beyond the Primary image.
      Resolution differences may cause some pixels to "hang over" the
      page boundary, but no new pixels should exist completely beyond
      the page extent.

   3. The Background and Foreground images SHALL support the color
      representations defined in Section 6 and MAY support those defined
      in Section 7.  These images MAY optionally cover only a portion of
      the strip or page.

   4. Each Primary IFD and each MRC-specific SubIFD must have an
      ImageLayer field to specify which layer the IFD belongs to, and
      the imaging order of that IFD within the layer.

   5. Each Primary IFD must have a NewSubFileType field value set to 18,
      indicating a single page of a multi-page document (bit 1) and MRC
      (bit 4).

   6. Each MRC-specific child IFD must have a NewSubFileType field value
      set to 16, indicating MRC (bit 4).

   7. In MRC fax, each layer is transmitted as a sequence of strips.  If
      the page consists of a single layer, then all strips shall be
      stored in the single Primary IFD.  In this case, coding parameters
      cannot change between strips.  If the page consists of more than
      one layer, then all strips of the Mask layer shall be stored in
      the single Primary IFD.  All strips of the Foreground/Background
      layers SHALL be stored in separate IFDs, referenced by the Primary
      IFD's SubIFD field, containing an ImageLayer field with
      ImageLayer[0] identifying either Background (layer 1) or
      Foreground (layer 3), and Imagelayer[1] identifying order in which
      images within a single layer are to be imaged.  The TIFF XPosition
      and YPosition fields are used to indicate the placement of these
      images with respect to the primary image.

   8. When the Mask image is present, the resolution of Background and
      Foreground images must each be an integer factor of the Mask
      image.  For example, if the Mask image is 400 pixels/inch, then
      the Background or Foreground image may be at 400 pixels/inch
      (400/1), 200 pixels/inch (400/2), or 100 pixels/inch (400/4).



Buckley, et al.             Standards Track                    [Page 70]
^L
RFC 3949              File Format for Internet Fax         February 2005


8.5.  Profile M: MRC Fax Profile Summary

   Recommended fields are shown with an asterisk (*).

   Required fields or values are shown with a double asterisk (**).  If
   the double asterisk is on the field name, then all the listed values
   are required of implementations; if the double asterisk is in the
   Values column, then only the values suffixed with a double asterisk
   are required of implementations.

   +------------------+-----------------------------------------+
   | Baseline Fields  |               Values                    |
   +------------------+-----------------------------------------+
   | BitsPerSample    | 1**: binary mask, RGB, CMY(K)           |
   |                  | 2 - 8**: bits per color sample          |
   |                  | 9 - 12: optional 12 bits/sample         |
   +------------------+-----------------------------------------+
   | Compression      | 1: None (ImageBaseColor IFD only)       |
   |                  | 3**: Modified Huffman and Modified READ |
   |                  | 4: Modified Modified READ               |
   |                  | 7**: JPEG                               |
   |                  | 9: JBIG, per T.85                       |
   |                  | 10: JBIG, per T.43                      |
   +------------------+-----------------------------------------+
   | DateTime*        | {ASCII): date/time in the 24-hour format|
   |                  | "YYYY:MM:DD HH:MM:SS"                   |
   +------------------+-----------------------------------------+
   | FillOrder**      | 1: Most significant bit first           |
   |                  | 2: Least significant bit first          |
   +------------------+-----------------------------------------+
   | ImageDescription*| {ASCII}: A string describing the        |
   |                  | contents of the image.                  |
   +------------------+-----------------------------------------+
   | ImageWidth       | 864, 1024, 1216, 1728**, 2048, 2432,    |
   |                  | 2592, 3072, 3456, 3648, 4096, 4864      |
   |                  | Note: legal widths for the Primary IFD. |
   +------------------+-----------------------------------------+
   | ImageLength**    | n: total number of scanlines in image   |
   +------------------+-----------------------------------------+
   | NewSubFileType** | 16, 18:                                 |
   |                  | Bit 1 indicates single page of a multi- |
   |                  | page document on Primary IFD            |
   |                  | Bit 4 indicates MRC model               |
   +------------------+-----------------------------------------+







Buckley, et al.             Standards Track                    [Page 71]
^L
RFC 3949              File Format for Internet Fax         February 2005


   +------------------+-----------------------------------------+
   | Orientation      | 1**-8, Default 1                        |
   +------------------+-----------------------------------------+
   | PhotometricInter | 0**:  WhiteIsZero  (Mask Layer)         |
   | pretation        | 2:  RGB                                 |
   |                  | 10**: ITULAB                            |
   +------------------+-----------------------------------------+
   | ResolutionUnit** | 2: inch                                 |
   +------------------+-----------------------------------------+
   | RowsPerStrip     | n: number or scanlines per strip        |
   +------------------+-----------------------------------------+
   | SamplesPerPixel  | 1**: L* (lightness)                     |
   |                  | 3: RGB, LAB, CMY                        |
   |                  | 4: CMYK                                 |
   +------------------+-----------------------------------------+
   | Software*        | {ASCII}: name & release number of       |
   |                  | creator software                        |
   +------------------+-----------------------------------------+
   | StripByteCounts**| <n>: number or bytes in each strip      |
   +------------------+-----------------------------------------+
   | StripOffsets**   | <n>: offset from beginning of file to   |
   |                  | each TIFF strip                         |
   +------------------+-----------------------------------------+
   | XResolution      | 100, 200**, 300, 400 (written in        |
   |                  | pixels/inch)                            |
   +------------------+-----------------------------------------+
   | YResolution      | equal to XResolution (pixels must be    |
   |                  | square)                                 |
   +------------------+-----------------------------------------+
   | Extension Fields                                           |
   +------------------+-----------------------------------------+
   | T4Options        | 0**: required if Compression is Modified|
   |                  | Huffman, EOLs not byte aligned          |
   |                  | 1: required if Compression 2D Modified  |
   |                  | READ, EOLs are not byte aligned         |
   |                  | 4**: required if Compression Modified   |
   |                  | Huffman, EOLs byte aligned              |
   |                  | 5: required if Compression 2D Modified  |
   |                  | READ, EOLs are byte aligned             |
   +------------------+-----------------------------------------+
   | T6Options        | 0: required if Compression is 2D        |
   |                  | Modified Modified READ                  |
   +------------------+-----------------------------------------+
   | DocumentName*    | {ASCII}: name of scanned document       |
   +------------------+-----------------------------------------+
   | PageNumber**     | n,m: page number followed by total page |
   |                  | count                                   |
   +------------------+-----------------------------------------+



Buckley, et al.             Standards Track                    [Page 72]
^L
RFC 3949              File Format for Internet Fax         February 2005


   +------------------+-----------------------------------------+
   | ChromaSubSampling| (1,1), (2, 2)**                         |
   |                  | (1, 1): equal numbers of lightness and  |
   |                  | chroma samples horizontally & vertically|
   |                  | (2, 2): twice as many lightness samples |
   |                  | as chroma horizontally and vertically   |
   +------------------+-----------------------------------------+
   | ChromaPositioning| 1: centered                             |
   +------------------+-----------------------------------------+
   | Indexed          | 0: not a palette-color image            |
   |                  | 1: palette-color image                  |
   +------------------+-----------------------------------------+
   | SubIFDs          | <IFD>: byte offset to FG/BG IFDs        |
   +------------------+-----------------------------------------+
   | XPosition        | horizontal offset in primary IFD        |
   |                  | resolution units                        |
   +------------------+-----------------------------------------+
   | YPosition        | vertical offset in primary IFD          |
   |                  | resolution units                        |
   +------------------+-----------------------------------------+
   | New Fields                                                 |
   +------------------+-----------------------------------------+
   | Decode           | minL, maxL, mina, maxa, minb, maxb:     |
   |                  | minimum and maximum values for L*a*b*   |
   +------------------+-----------------------------------------+
   | ImageBaseColor   | a,b,c: background color in ITULAB       |
   +------------------+-----------------------------------------+
   | StripRowCounts   | <n>: number of scanlines in each strip  |
   +------------------+-----------------------------------------+
   | ImageLayer       | n, m: layer number, imaging sequence    |
   |                  | (e.g., strip number)                    |
   +------------------+-----------------------------------------+
   | T82Options       | 0: T.85 profile of T.82 coding          |
   +------------------+-----------------------------------------+
   | GlobalParameters | IFD: global parameters IFD              |
   | IFD*             |                                         |
   +------------------+-----------------------------------------+
   | ProfileType*     | n: type of data stored in TIFF file     |
   +------------------+-----------------------------------------+
   | FaxProfile*      | n: ITU-compatible fax profile           |
   +------------------+-----------------------------------------+
   | CodingMethods*   | n: compression algorithms used in file  |
   +------------------+-----------------------------------------+
   | ModeNumber*      | n: version of T.44 standard             |
   +------------------+-----------------------------------------+
   | VersionYear*     | byte sequence: year of ITU fax standard |
   +------------------+-----------------------------------------+




Buckley, et al.             Standards Track                    [Page 73]
^L
RFC 3949              File Format for Internet Fax         February 2005


9.  MIME content-types image/tiff and image/tiff-fx

   The MIME content-types image/tiff and image/tiff-fx are used for
   TIFF-FX encoded image data, as defined in this document.  [TIFF-REG]
   and [TIFF-FX-REG] describe the registration of these MIME content-
   types.

10.  Security Considerations

   This document describes a file format for Internet fax, which is a
   series of profiles of TIFF for facsimile.  As such, it does not
   create any security issues not already identified in [TIFF-REG], in
   its use of fields as defined in [TIFF].  There are also new TIFF
   fields defined within this specification, but they are of a purely
   descriptive nature, so no new security risks are incurred.

   Further, the encoding specified in this document does not in any way
   preclude the use of any Internet security protocol to encrypt,
   authenticate, or non-repudiate TIFF-encoded facsimile messages.

11.  References

11.1.  Normative References

   [REQ]         Bradner, S., "Key words for use in RFCs to Indicate
                 Requirement Levels", BCP 14, RFC 2119, March 1997.

   [T.4]         ITU-T Recommendation T.4, Standardization of group 3
                 facsimile apparatus for document transmission, October
                 1997.

   [T.6]         ITU-T Recommendation T.6, Facsimile coding schemes and
                 coding control functions for group 4 facsimile
                 apparatus, November 1988

   [T.30]        ITU-T Recommendation T.30 - Procedures for Document
                 Facsimile Transmission in the General Switched
                 Telephone Network, June 1996

   [T.42]        ITU-T Recommendation T.42, Continuous-tone colour
                 representation method for facsimile, February 1996

   [T.43]        ITU-T Recommendation T.43, Colour and gray-scale image
                 representations using lossless coding scheme for
                 facsimile, February 1997

   [T.44]        ITU-T Recommendation T.44, Mixed Raster Content (MRC),
                 April 1999.



Buckley, et al.             Standards Track                    [Page 74]
^L
RFC 3949              File Format for Internet Fax         February 2005


   [T.81]        ITU-T Recommendation T.81, Information technology -
                 Digital compression and coding of continuous-tone still
                 images - Requirements and guidelines, September 1992

   [T.85]        ITU-T Recommendation T.85, Application profile for
                 Recommendation T.82 - Progressive bi-level image
                 compression (JBIG coding scheme) for facsimile
                 apparatus, August 1995

   [T.82]        ITU-T Recommendation T.82, Information technology -
                 Coded representation of picture and audio information -
                 Progressive bi-level image compression, March 1995

   [TIFF]        Tag Image File Format, Revision 6.0, Adobe Developers
                 Association, June 3, 1992,
                 http://partners.adobe.com/public/developers/en/tiff/
                 TIFF6.pdf

                 The TIFF 6.0 specification dated June 3, 1992
                 specification (c) 1986-1988, 1992 Adobe Systems
                 Incorporated. All Rights Reserved.

   [TIFF-F0]     TIFF Class F specification, Apr 28, 1990,
                 ftp://ftp.faximum.com/pub/documents/tiff_f.txt

   [TIFF-REG]    Parsons, G. and J. Rafferty, "Tag Image File Format
                 (TIFF) - image/tiff MIME Sub-type Registration", RFC
                 3302, September 2002.

   [TTN1]        Adobe PageMaker 6.0 TIFF Technical Notes, Sept. 14,
                 1995,
                 http://partners.adobe.com/public/developers/en/tiff/
                 TIFFPM6.pdf

   [TTN2]        Draft TIFF Technical Note 2, Replacement TIFF/JPEG
                 specification, March 17, 1995,
                 ftp://ftp.uu.net/graphics/jpeg/

   [TIFF-FX-REG] McIntyre, L., Parsons, G., and J. Rafferty, "Tag Image
                 File Format Fax eXtended (TIFF-FX) - image/tiff-fx MIME
                 Sub-type Registration", RFC 3250, September 2002.










Buckley, et al.             Standards Track                    [Page 75]
^L
RFC 3949              File Format for Internet Fax         February 2005


11.2.  Informative References

   [GUIDE]       Cancio, V., Moldovan, M., Tamura, H., and D. Wing,
                 "Implementers Guide for Facsimile Using Internet Mail",
                 RFC 3249, September 2002.

   [TIFF-F]      Parsons, G. and J. Rafferty, "Tag Image File Format
                 (TIFF) - F Profile for Facsimile", RFC 2306, March
                 1998.

   [VPIM 2]      Vaudreuil G. and G. Parsons, "Voice Profile for
                 Internet Mail - version 2 (VPIMv2)", RFC 3801, June
                 2004.






































Buckley, et al.             Standards Track                    [Page 76]
^L
RFC 3949              File Format for Internet Fax         February 2005


Annex A:  Summary of TIFF Fields for Internet Fax

   This annex includes tables which list by profile the TIFF fields used
   in the proposed fax file format.  The fields are organized into 3
   categories:

      1)  TIFF Baseline Fields
      2)  TIFF Extension Fields
      3)  New Fields.

   The tables include the allowed values for each fax profile.  Entries
   other than explicit numbers are described by:

      n        - single number
      n, m     - 2 numbers
      a, b, c  - 3 numbers
      r        - rational number
      <n>      - array of numbers
      <b>      - byte sequence
      {ASCII}  - string
      IFD      - IFD byte offset
      <IFD>    - array of IFD byte offsets

   A blank entry in the table indicates that the field is not used by
   that particular fax profile.

   Table A.1  TIFF Baseline Fields

           +---------------------------------------------------------+
           |                       Fax Profile                       |
           +---------------------------------------------------------|
           | Minimal | Extended |  JBIG  |  Lossy  |Lossless| Mixed  |
+----------|   B&W   |    B&W   |  B&W   |  Color  | Color  | Raster |
|   TIFF   |         |          |        |         |        | Content|
|  Field   |    S    |     F    |   J    |    C    |   L    |   M    |
+----------+---------+----------+--------+---------+--------+--------+
| BitsPer  | 1       | 1        | 1      | 8       | 1, 2-8 | 1, 2-8 |
| Sample   |         |          |        |         | 9-12   | 9-12   |
+----------+---------+----------+--------+---------+--------+--------+
| Compres- | 3       | 3, 4     | 9      | 7       | 10     | 3, 4, 7|
| sion     |         |          |        |         |        | 9,10   |
+----------+---------+----------+--------+---------+--------+--------+
| DateTime |         | {ASCII}  | {ASCII}| {ASCII} | {ASCII}| {ASCII}|
+----------+---------+----------+--------+---------+--------+--------+
| FillOrder| 2       | 1, 2     | 1, 2   | 1, 2    | 1, 2   | 1,2    |
+----------+---------+----------+--------+---------+--------+--------+





Buckley, et al.             Standards Track                    [Page 77]
^L
RFC 3949              File Format for Internet Fax         February 2005


+----------+---------+----------+--------+---------+--------+--------+
| ImageDes-|         | {ASCII}  | {ASCII}| {ASCII} | {ASCII}| {ASCII}|
| cription |         |          |        |         |        |        |
+----------+---------+----------+--------+---------+--------+--------+
| Image-   | n       | n        | n      | n       | n      | n      |
| Length   |         |          |        |         |        |        |
+----------+---------+----------+--------+---------+--------+--------+
| Image-   | 1728    | 1728, 2048, 2432  |   864, 1024, 1216, 1728,  |
| Width    |         | 2592, 3072, 3456  |  2048, 2432, 2592, 3072,  |
|          |         | 3648, 4096, 4864  |  3456, 3648, 4096, 4864   |
|          |         | Note, for the Mixed Raster Content M profile  |
|          |         | these widths apply to the Primary IFD.        |
+----------+---------+----------+--------+---------+--------+--------+
| NewSub-  | 2       | 2        | 2      | 2       | 2      | 16, 18 |
| FileType |         |          |        |         |        |        |
+----------+---------+----------+--------+---------+--------+--------+
| Orien-   | 1       | 1-8      | 1-8    | 1-8     | 1-8    | 1-8    |
| tation   |         |          |        |         |        |        |
+----------+---------+----------+--------+---------+--------+--------+
| Photo-   | 0       | 0, 1     | 0, 1   | 10      | 2, 5,  | 0,     |
| metric-  |         |          |        |         | 10     | 2,     |
| Interp-  |         |          |        |         |        | 10     |
| retation |         |          |        |         |        |        |
+----------+---------+----------+--------+---------+--------+--------+
| Resolu-  | 2       | 2, 3     | 2, 3   | 2, 3    | 2, 3   | 2, 3   |
| tionUnit |         |          |        |         |        |        |
+----------+---------+----------+--------+---------+--------+--------+
| RowsPer- | n       | n        | n      | n       | n      | n      |
| Strip    |         |          |        |         |        |        |
+----------+---------+----------+--------+---------+--------+--------+
| Samples- | 1       | 1        | 1      | 1, 3    | 1, 3, 4| 1, 3, 4|
| PerPixel |         |          |        |         |        |        |
+----------+---------+----------+--------+---------+--------+--------+
| Software |         | {ASCII}  | {ASCII}| {ASCII} | {ASCII}| {ASCII}|
+----------+---------+----------+--------+---------+--------+--------+
| Strip-   | n       | <n>      | <n>    | <n>     | <n>    | <n>    |
| Byte-    |         |          |        |         |        |        |
| Counts   |         |          |        |         |        |        |
+----------+---------+----------+--------+---------+--------+--------+
| Strip-   | n       | <n>      | <n>    | <n>     | <n>    | <n>    |
| Offsets  |         |          |        |         |        |        |
+----------+---------+----------+--------+---------+--------+--------+
| XResolu- | 204     | 200, 204, 300     |    100, 200, 300, 400     |
| tion     | 200     | 400, 408          |                           |
+----------+---------+----------+--------+---------+--------+--------+
| YResolu- | 98, 196 | 98, 196, 100, 200 |    100, 200, 300, 400     |
| tion     | 100,200 | 300, 391, 400     |                           |
+----------+---------+----------+--------+---------+--------+--------+



Buckley, et al.             Standards Track                    [Page 78]
^L
RFC 3949              File Format for Internet Fax         February 2005


   Table A.2  TIFF Extension Fields

           +---------------------------------------------------------+
           |                       Fax Profile                       |
           +---------------------------------------------------------|
           | Minimal | Extended |  JBIG  |  Lossy  |Lossless| Mixed  |
+----------|   B&W   |    B&W   |  B&W   |  Color  | Color  | Raster |
|   TIFF   |         |          |        |         |        | Content|
|  Field   |    S    |     F    |   J    |    C    |   L    |   M    |
+----------+---------+----------+--------+---------+--------+--------+
| Chroma-  |         |          |        | 1       |        | 1      |
| Position-|         |          |        |         |        |        |
| ing      |         |          |        |         |        |        |
+----------+---------+----------+--------+---------+--------+--------+
| Chroma-  |         |          |        | <1, 1>  |        | <1, 1> |
| SubSampl-|         |          |        | <2, 2>  |        | <2, 2> |
| ing      |         |          |        |         |        |        |
+----------+---------+----------+--------+---------+--------+--------+
| Document-|         | {ASCII}  | {ASCII}| {ASCII} | {ASCII}| {ASCII}|
| Name     |         |          |        |         |        |        |
+----------+---------+----------+--------+---------+--------+--------+
| Indexed  |         |          |        |         | 0,1    | 0,1    |
+----------+---------+----------+--------+---------+--------+--------+
| Page-    | n, m    | n, m     | n, m   | n, m    | n, m   | n, m   |
| Number   |         |          |        |         |        |        |
+----------+---------+----------+--------+---------+--------+--------+
| SubIFDs  |         |          |        |         |        | <IFD>  |
+----------+---------+----------+--------+---------+--------+--------+
| T4Options| 0, 4    | 0, 1,    |        |         |        | 0, 1,  |
|          |         | 4, 5     |        |         |        | 4, 5   |
+----------+---------+----------+--------+---------+--------+--------+
| T6Options|         | 0        |        |         |        | 0      |
+----------+---------+----------+--------+---------+--------+--------+
| XPosition|         |          |        |         |        | r      |
+----------+---------+----------+--------+---------+--------+--------+
| YPosition|         |          |        |         |        | r      |
+----------+---------+----------+--------+---------+--------+--------+














Buckley, et al.             Standards Track                    [Page 79]
^L
RFC 3949              File Format for Internet Fax         February 2005


   Table A.3   New Fields

           +---------------------------------------------------------+
           |                       Fax Profile                       |
           +---------------------------------------------------------|
           | Minimal | Extended |  JBIG  |  Lossy  |Lossless| Mixed  |
+----------|   B&W   |    B&W   |  B&W   |  Color  | Color  | Raster |
|   TIFF   |         |          |        |         |        | Content|
|  Field   |    S    |     F    |   J    |    C    |   L    |   M    |
+----------+---------+----------+--------+---------+--------+--------+
| BadFax-  |         | n        |        |         |        |        |
| Lines    |         |          |        |         |        |        |
+----------+---------+----------+--------+---------+--------+--------+
| CleanFax-|         | 0, 1, 2  |        |         |        |        |
| Data     |         |          |        |         |        |        |
+----------+---------+----------+--------+---------+--------+--------+
| Coding-  |         |          | n      | n       | n      | n      |
| Method   |         |          |        |         |        |        |
+----------+---------+----------+--------+---------+--------+--------+
| Consecu- |         | n        |        |         |        |        |
| tiveBad- |         |          |        |         |        |        |
| FaxLines |         |          |        |         |        |        |
+----------+---------+----------+--------+---------+--------+--------+
| Decode   |         |          |        | <r>     | <r>    | <r>    |
+----------+---------+----------+--------+---------+--------+--------+
| Fax-     |         |          | n      | n       | n      | n      |
| Profile  |         |          |        |         |        |        |
+----------+---------+----------+--------+---------+--------+--------+
| Global-  |         | IFD      | IFD    | IFD     | IFD    | IFD    |
| Parame-  |         |          |        |         |        |        |
| tersIFD  |         |          |        |         |        |        |
+----------+---------+----------+--------+---------+--------+--------+
| Image-   |         |          |        |         |        | n, m   |
| Layer    |         |          |        |         |        |        |
+----------+---------+----------+--------+---------+--------+--------+
| T82-     |         |          | n      |         |        | n      |
| Options  |         |          |        |         |        |        |
+----------+---------+----------+--------+---------+--------+--------+
| Image-   |         |          |        |         |        | <n>    |
| BaseColor|         |          |        |         |        |        |
+----------+---------+----------+--------+---------+--------+--------+
| Mode-    |         |          |        |         |        | n      |
| Number   |         |          |        |         |        |        |
+----------+---------+----------+--------+---------+--------+--------|
| Profile- |         |          | n      | n       | n      | n      |
| Type     |         |          |        |         |        |        |
+--------------------------------------------------------------------+




Buckley, et al.             Standards Track                    [Page 80]
^L
RFC 3949              File Format for Internet Fax         February 2005


+----------+---------+----------+--------+---------+--------+--------+
| Strip-   |         |          |        |         |        | <n>    |
| RowCounts|         |          |        |         |        |        |
+----------+---------+----------+--------+---------+--------+--------+
| Version- |         |          |        | <b>     |<b>     |        |
| Year     |         |          |        |         |        |        |
+----------+---------+----------+--------+---------+--------+--------+

Annex B: List of technical edits to RFC2301

   This Annex lists technical differences between this document and
   RFC 2301, the Proposed Standard File Format for Internet Fax.

+----+---------+-------------------------------------------------+
| No.| Section |             Technical Edit                      |
+----+---------+-------------------------------------------------+
| 1. | 5.2.1   | Added FillOrder=1 to Profile J                  |
+----+---------+-------------------------------------------------+
| 2. | 6.2.1   | Constrained ResolutionUnit to 2 (i.e., inch) for|
|    | 7.2.1   | all color profiles, per ITU-T Recommendations   |
|    | 8.2.1   |                                                 |
+----+---------+-------------------------------------------------+
| 3. | 7.2.1   | Deleted ColorMap field; it re-encoded the color |
|    | 7.4     | palette already in the T.43 data stream         |
+----+---------+-------------------------------------------------+
| 4. | 7.2.2   | Changed TAG value of Indexed field from 364 to  |
|    |         | 346 to agree with Section 8.2.2 and Ref. [TTN1] |
+----+---------+-------------------------------------------------+
| 5. | 8.2.1   | Added text clarifying the use of ImageWidth     |
|    |         | when Background or Foreground layer is Primary  |
|    |         | IFD                                             |
+----+---------+-------------------------------------------------+
| 6. | 8.2.3   | Changed field name from DefaultImageColor to    |
|    |         | ImageBaseColor;                                 |
+----+---------+-------------------------------------------------+
| 7. | 8.2.1   | Added Compression=1 for ImageBaseColor IFDs     |
+----+---------+-------------------------------------------------+
| 8. | 5.2.1   | Redefined compression = 9 to be T.82 (JBIG);    |
|    | 5.2.3   | added T82Options field, with a default value (0)|
|    |         | corresponding to the T.85 application profile   |
+----+---------+-------------------------------------------------+
| 9. | 4.3.3   | Added GlobalParametersIFD, ProfileType,         |
|    | 4.7     | FaxProfile and CodingMethod to the New Fields   |
|    |         | portion of Profile F, per Sec. 2.2.4            |
+----+---------+-------------------------------------------------+






Buckley, et al.             Standards Track                    [Page 81]
^L
RFC 3949              File Format for Internet Fax         February 2005


+----+---------+-------------------------------------------------+
| 10.|  6.2.1  | Deleted BitsPerSample=12 as an option when      |
|    |6.2.3,6.4| Compression=7 due to lack of interop testing.   |
|    |Table A.1|                                                 |
+----+---------+-------------------------------------------------+
| 11.|8.2.1,8.4| Deleted PhotometricInterpretation=5 in Profile M|
|    |Table A.1| due to insufficient interop testing.            |
+----+---------+-------------------------------------------------+
| 12.|7.2.1,7.4| Deleted BitsPerSample=13-16 for Palette-color   |
|    |8.2.1,8.5| due to lack of interop testing.                 |
|    |Table A.1|                                                 |
+----+---------+-------------------------------------------------+
| 13.| Annex B | Deleted Annex B due to discontinued use of      |
|    |         | application parameter; Annex C renamed Annex B  |
+----+---------+-------------------------------------------------+

Authors' Addresses

   Robert Buckley
   Xerox Corporation
   Mailstop 0128-30E
   800 Phillips Road
   Webster, NY 14580, USA

   Phone: +1-585-422-1282
   Fax:   +1-585-422-2636
   EMail: rbuckley@crt.xerox.com


   Dennis Venable
   Xerox Corporation
   Mailstop 0128-27E
   800 Phillips Road
   Webster, NY 14580, USA

   Phone: +1-585-422-3138
   Fax:   +1-585-422-6117
   EMail: dvenable@crt.xerox.com













Buckley, et al.             Standards Track                    [Page 82]
^L
RFC 3949              File Format for Internet Fax         February 2005


   Lloyd McIntyre
   10328 S. Stelling Road
   Cupertino, CA 95014 USA

   Phone: +1-408-725-1624
   EMail: lloyd10328@pacbell.net or
          Lloyd_McIntyre@Dell.com


   Glenn W. Parsons
   Nortel Networks
   P.O. Box 3511, Station C
   Ottawa, ON K1Y 4H7, Canada

   Phone: +1-613-763-7582
   Fax:   +1-613-967-5060
   EMail: gparsons@nortel.com


   James Rafferty
   Brooktrout Technology
   410 First Avenue
   Needham, MA 02494 USA

   Phone: +1-781-433-9462
   Fax:   +1-781-433-9268
   EMail: jraff@brooktrout.com
























Buckley, et al.             Standards Track                    [Page 83]
^L
RFC 3949              File Format for Internet Fax         February 2005


Full Copyright Statement

   Copyright (C) The Internet Society (2005).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the IETF's procedures with respect to rights in IETF Documents can
   be found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at ietf-
   ipr@ietf.org.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.







Buckley, et al.             Standards Track                    [Page 84]
^L