1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
|
Network Working Group H. Schulzrinne
Request for Comments: 4123 Columbia University
Category: Informational C. Agboh
July 2005
Session Initiation Protocol (SIP)-H.323 Interworking Requirements
Status of this Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2005).
IESG Note
This RFC is not a candidate for any level of Internet Standard. The
IETF disclaims any knowledge of the fitness of this RFC for any
purpose, and in particular notes that the decision to publish is not
based on IETF review for such things as security, congestion control,
or inappropriate interaction with deployed protocols. The RFC Editor
has chosen to publish this document at its discretion. Readers of
this document should exercise caution in evaluating its value for
implementation and deployment. See [RFC3932] for more information.
Abstract
This document describes the requirements for the logical entity known
as the Session Initiation Protocol (SIP)-H.323 Interworking Function
(SIP-H.323 IWF) that will allow the interworking between SIP and
H.323.
Schulzrinne & Agboh Informational [Page 1]
^L
RFC 4123 SIP-H.323 Req. July 2005
Table of Contents
1. Introduction ....................................................3
2. Definitions .....................................................3
3. Functionality within the SIP-H.323 IWF ..........................4
4. Pre-Call Requirements ...........................................4
4.1. Registration with H.323 Gatekeeper .........................5
4.2. Registration with SIP Server ...............................5
5. General Interworking Requirements ...............................5
5.1. Basic Call Requirements ....................................5
5.1.1. General Requirements ................................5
5.1.2. Address Resolution ..................................6
5.1.3. Call with H.323 Gatekeeper ..........................6
5.1.4. Call with SIP Registrar .............................6
5.1.5. Capability Negotiation ..............................6
5.1.6. Opening of Logical Channels .........................7
5.2. IWF H.323 Features .........................................7
5.3. Overlapped Sending .........................................7
5.3.1. DTMF Support ........................................7
6. Transport .......................................................8
7. Mapping between SIP and H.323 ...................................8
7.1. General Requirements .......................................8
7.2. H.225.0 and SIP Call Signaling .............................8
7.3. Call Sequence ..............................................9
7.4. State Machine Requirements .................................9
8. Security Considerations ........................................10
9. Examples and Scenarios .........................................10
9.1. Introduction ..............................................10
9.2. IWF Configurations ........................................11
9.3. Call Flows ................................................11
9.3.1. Call from H.323 Terminal to SIP UA .................11
9.3.2. Call from SIP UA to H.323 Terminal .................12
10. Acknowledgments ...............................................12
11. Contributors ..................................................13
12. References ....................................................14
12.1. Normative References ....................................14
12.2. Informative References ..................................15
Schulzrinne & Agboh Informational [Page 2]
^L
RFC 4123 SIP-H.323 Req. July 2005
1. Introduction
The SIP-H.323 Interworking function (IWF) converts between SIP
(Session Initiation Protocol) [RFC3261] and the ITU Recommendation
H.323 protocol [H.323]. This document describes requirements for
this protocol conversion.
2. Definitions
H.323 gatekeeper (GK): An H.323 gatekeeper is an optional component
in an H.323 network. If it is present, it performs address
translation, bandwidth control, admission control, and zone
management.
H.323 network: In this document, we refer to the collection of all
H.323-speaking components as the H.323 network.
SIP network: In this document, we refer to the collection of all SIP
servers and user agents as the SIP network.
Interworking Function (IWF): This function performs interworking
between H.323 and SIP. It belongs to both the H.323 and SIP
networks.
SIP server: A SIP server can be a SIP proxy, redirect server, or
registrar server.
Endpoint: An endpoint can call and be called. An endpoint is an
entity from which the media such as voice, video, or fax
originates or terminates. An endpoint can be H.323 terminal,
H.323 Gateway, H.323 MCU [H.323], or SIP user agent (UA)
[RFC3261].
Media-Switching Fabric (MSF): This is an optional logical entity
within the IWF. The MSF switches media such as voice, video, or
fax from one network association to another.
Schulzrinne & Agboh Informational [Page 3]
^L
RFC 4123 SIP-H.323 Req. July 2005
3. Functionality within the SIP-H.323 IWF
This section summarizes the functional requirements of the SIP-H.323
interworking function (IWF).
A SIP-H.323 IWF may be integrated into an H.323 gatekeeper or SIP
server. Interworking should not require any optional components in
either the SIP or H.323 network, such as H.323 gatekeepers. IWF
redundancy in the network is beyond the scope of this document.
An IWF contains functions from the following list, inter alia:
o Mapping of the call setup and teardown sequences;
o Registering H.323 and SIP endpoints with SIP registrars and H.323
gatekeepers;
o Resolving H.323 and SIP addresses;
o Maintaining the H.323 and SIP state machines;
o Negotiating terminal capabilities;
o Opening and closing media channels;
o Mapping media-coding algorithms for H.323 and SIP networks;
o Reserving and releasing call-related resources;
o Processing of mid-call signaling messages;
o Handling of services and features.
The IWF should not process media. We assume that the same media
transport protocols, such as RTP, are used in both the SIP and H.323
networks. Thus, media packets are exchanged directly between the
endpoints. If a particular service requires the IWF to handle media,
we assume that the IWF simply forwards media packets without
modification from one network to the other, using a media-switching
fabric (MSF). The conversion of media from one encoding or format to
another is out of scope for SIP-H.323 protocol translation.
4. Pre-Call Requirements
The IWF function may use a translation table to resolve the H.323 and
SIP addresses to IP addresses. This translation table can be updated
by using an H.323 gatekeeper, a SIP proxy server, or a locally-
maintained database.
Schulzrinne & Agboh Informational [Page 4]
^L
RFC 4123 SIP-H.323 Req. July 2005
4.1. Registration with H.323 Gatekeeper
An IWF may provide and update the H.323 gatekeeper with the addresses
of SIP UAs. A SIP user agent can make itself known to the H.323
network by registering with an IWF serving as a registrar. The IWF
creates an H.323 alias address and registers this alias, together
with its own network address, with the appropriate GK.
The gatekeeper can then use this information to route calls to SIP
UAs via the IWF, without being aware that the endpoint is not a
"native" H.323 endpoint.
The IWF can register SIP UAs with one or more H.323 gatekeepers.
4.2. Registration with SIP Server
The IWF can provide information about H.323 endpoints to a SIP
registrar. This allows the SIP proxy using this SIP registrar to
direct calls to the H.323 endpoints via the IWF.
The IWF can easily obtain information about H.323 endpoints if it
also serves as a gatekeeper. Other architectures require further
study.
If the H.323 endpoints are known through E.164 (telephone number)
addresses, the IWF can use IGREP [TGREP] or SLP [GWLOC] to inform the
SIP proxy server of these endpoints.
The IWF only needs to register with multiple SIP registrars if the
H.323 terminal is to appear under multiple, different addresses-of-
record.
5. General Interworking Requirements
The IWF should use H.323 Version 2 or later and SIP according to RFC
3261 [RFC3261]. The protocol translation function must not require
modifications or additions to either H.323 or SIP. However, it may
not be possible to support certain features of each protocol across
the IWF.
5.1. Basic Call Requirements
5.1.1. General Requirements
The IWF should provide default settings for translation parameters.
The IWF specification must identify these defaults.
Schulzrinne & Agboh Informational [Page 5]
^L
RFC 4123 SIP-H.323 Req. July 2005
The IWF must release any call-related resource at the end of a call.
SIP session timers [RFC4028] may be used on the SIP side.
5.1.2. Address Resolution
The IWF should support all the addressing schemes in H.323, including
the H.323 URI [RFC3508], and the "sip", "sips", and "tel" URI schemes
in SIP. It should support the DNS-based SIP server location
mechanisms described in [RFC3263] and H.323 Annex O, which details
how H.323 uses DNS and, in particular, DNS SRV records.
The IWF should register with the H.323 Gatekeeper and the SIP
registrar when available.
The IWF may use any means to translate between SIP and H.323
addresses. Examples include translation tables populated by the
gatekeeper, SIP registrar or other database, LDAP, DNS or TRIP.
5.1.3. Call with H.323 Gatekeeper
When an H.323 GK is present in the network, the IWF should resolve
addresses with the help of the GK.
5.1.4. Call with SIP Registrar
The IWF applies normal SIP call routing and does not need to be aware
whether there is a proxy server.
5.1.5. Capability Negotiation
The IWF should not make any assumptions about the capabilities of
either the SIP user agent or the H.323 terminal. However, it may
indicate a guaranteed-to-be-supported list of codecs of the H.323
terminal or SIP user agent before exchanging capabilities with H.323
(using H.245) and SIP (using SDP [RFC2327]). H.323 defines mandatory
capabilities, whereas SIP currently does not. For example, the G.711
audio codec is mandatory for higher bandwidth H.323 networks.
The IWF should attempt to map the capability descriptors of H.323 and
SDP in the best possible fashion. The algorithm for finding the best
mapping between H.245 capability descriptors and the corresponding
SDP is left for further study.
The IWF should be able to map the common audio, video, and
application format names supported in H.323 to and from the
equivalent RTP/AVP [RFC3550] names.
Schulzrinne & Agboh Informational [Page 6]
^L
RFC 4123 SIP-H.323 Req. July 2005
The IWF may use the SIP OPTIONS message to derive SIP UA
capabilities. It may support mid-call renegotiation of media
capabilities.
5.1.6. Opening of Logical Channels
The IWF should support the seamless exchange of messages for opening,
reopening, changing, and closing of media channels during a call.
The procedures for opening, reopening, closing, and changing the
existing media sessions during a call are for further study.
The IWF should open media channels between the endpoints whenever
possible. If this is not possible, then the channel can be opened at
the MSF of the IWF.
The IWF should support unidirectional, symmetric bi-directional, and
asymmetric bi-directional opening of channels.
The IWF may respond to the mode request and to the request for
reopening and changing an existing logical channel and may support
the flow control mechanism in H.323.
5.2. IWF H.323 Features
The IWF should support Fast Connect; i.e., H.245 tunneling in H.323
Setup messages. If IWF and GK are the same device, pre-granted ARQ
should be supported. If pre-granted ARQ is supported, the IWF may
perform the address resolution from H.323 GK using the LRQ/LCF
exchange.
5.3. Overlapped Sending
An IWF should follow the recommendations outlined in [RFC3578] when
receiving overlapped digits from the H.323 side. If the IWF receives
overlapped dialed digits from the SIP network, it may use the Q.931
Setup, Setup Ack, and Information Message in H.323.
The IWF may support the transfer of digits during a call by using the
appropriate SIP mechanism and UserInputIndication in H.245 (H.323).
5.3.1. DTMF Support
An IWF should support the mapping between DTMF and possibly other
telephony tones carried in signaling messages.
Schulzrinne & Agboh Informational [Page 7]
^L
RFC 4123 SIP-H.323 Req. July 2005
6. Transport
The H.323 and SIP systems do not have to be in close proximity. The
IP networks hosting the H.323 and SIP systems do not need to assure
quality of service (QoS). In particular, the IWF should not assume
that signaling messages have priority over packets from other
applications. H.323 signaling over UDP (H.323 Annex E) is optional.
7. Mapping between SIP and H.323
7.1. General Requirements
o The call message sequence of both protocols must be maintained.
o The IWF must not set up or tear down calls on its own.
o Signaling messages that do not have a match for the destination
protocol should be terminated on the IWF, with the IWF taking the
appropriate action for them. For example, SIP allows a SIP UA to
discard an ACK request silently for a non-existent call leg.
o If the IWF is required to generate a message on its own, IWF
should use pre-configured default values for the message
parameters.
o The information elements and header fields of the respective
messages are to be converted as follows:
* The contents of connection-specific information elements, such
as Call Reference Value for H.323, are converted to similar
information required by SIP or SDP, such as the SDP session ID
and the SIP 'Call-ID'.
* The IWF generates protocol elements that are not available from
the other side.
7.2. H.225.0 and SIP Call Signaling
o The IWF must conform to the call signaling procedures recommended
for the SIP side regardless of the behavior of the H.323 elements.
o The IWF must conform to the call signaling procedures recommended
for the H.323 side regardless of the behavior of the SIP elements.
Schulzrinne & Agboh Informational [Page 8]
^L
RFC 4123 SIP-H.323 Req. July 2005
o The IWF serves as the endpoint for the Q.931 Call Signaling
Channel to either an H.323 endpoint or H.323 Gatekeeper (in case
of GK routed signaling). The IWF also acts as a SIP user agent
client and server.
o The IWF also establishes a Registration, Admission, Status (RAS)
Channel to the H.323 GK, if available.
o The IWF should process messages for H.323 supplementary services
(FACILITY, NOTIFY, and the INFORMATION messages) only if the
service itself is supported.
7.3. Call Sequence
The call sequence on both sides should be maintained in such a way
that neither the H.323 terminal nor the SIP UA is aware of presence
of the IWF.
7.4. State Machine Requirements
The state machine for IWF will follow the following general
guidelines:
o Unexpected messages in a particular state shall be treated as
"error" messages.
o All messages that do not change the state shall be treated as
"non-triggering" or informational messages.
o All messages that expect a change in state shall be treated as
"triggering" messages.
For each state, an IWF specification must classify all possible
protocol messages into the above three categories. It must specify
the actions taken on the content of the message and the resulting
state. Below is an example of such a table:
State: Idle
Possible Messages Message Category Action Next state
-------------------------------------------------------------------
All RAS msg. Triggering Add Reg.Info. WaitForSetup
All H.245 msg. Error Send 4xx Idle
SIP OPTIONS Non Triggering Return cap. Idle
SIP INVITE Triggering Send SETUP WaitForConnect
Schulzrinne & Agboh Informational [Page 9]
^L
RFC 4123 SIP-H.323 Req. July 2005
8. Security Considerations
Because the IWF whose requirements have been described in this
document combines both SIP and H.323 functionality, security
considerations for both of these protocols apply.
The eventual security solution for interworking must rely on the
standard mechanisms in RFC3261 [RFC3261] and H.323, without extending
them for the interworking function. Signaling security for H.323 is
described in H.235 [H.235].
Because all data elements in SIP or H.323 have to terminate at the
IWF, the resulting security cannot be expected to be end-to-end.
Thus, the IWF terminates not only the signalling protocols but also
the security in each domain. Therefore, users at the SIP or H.323
endpoint have to trust the IWF, like they would any other gateway, to
authenticate the other side correctly. Similarly, they have to trust
the gateway to respect the integrity of data elements and to apply
appropriate security mechanisms on the other side of the IWF.
The IWF must not indicate the identity of a user on one side without
first performing authentication. For example, if the SIP user was
not authenticated, it would be inappropriate to use mechanisms on the
H.323 side, such as H.323 Annex D, to indicate that the user identity
had been authenticated.
An IWF must not accept 'sips' requests unless it can guarantee that
the H.323 side uses equivalent H.235 [H.235] security mechanisms.
Similarly, the IWF must not accept H.235 sessions unless it succeeds
in using SIP-over-TLS (sips) on the SIP side of the IWF.
9. Examples and Scenarios
9.1. Introduction
We present some examples of call scenarios that will show the
signaling messages received and transmitted. The following
situations can occur:
o Some signaling messages can be translated one-to-one.
o In some cases, parameters on one side do not match those on the
other side.
o Some signaling messages do not have an equivalent message on the
other side. In some cases, the IWF can gather further information
and the signal on the other side. In some cases, only an error
indication can be provided.
Schulzrinne & Agboh Informational [Page 10]
^L
RFC 4123 SIP-H.323 Req. July 2005
9.2. IWF Configurations
Below are some common architectures involving an IWF:
Basic Configuration: H.323 EP -- IWF -- SIP UA
Calls using H.323 GK: H.323 EP -- H.323 GK -- IWF -- SIP UA
Calls using SIP proxies: H.323 EP -- IWF -- SIP proxies -- SIP UA
Calls using both H.323 GK and SIP proxy: H.323 EP -- H.323 GK -- IWF
-- SIP proxies -- SIP UA
SIP trunking between H.323 networks: H.323 EP -- IWF -- SIP network
-- IWF -- H.323 EP
H.323 trunking between SIP networks: SIP EP -- IWF -- H.323 network
-- IWF -- SIP UA
9.3. Call Flows
Some call flow examples for two different configurations and call
scenarios are given below.
9.3.1. Call from H.323 Terminal to SIP UA
H.323 SIP
EP Setup IWF UA
|------------>| INVITE |
| |------------>|
| | 180 RINGING |
| Alerting |<------------|
|<------------| 200 OK |
| Connect |<------------|
|<------------| |
| H.245 | |
|<----------->| ACK |
| |------------>|
| RTP |
|<.........................>|
Schulzrinne & Agboh Informational [Page 11]
^L
RFC 4123 SIP-H.323 Req. July 2005
9.3.2. Call from SIP UA to H.323 Terminal
SIP H.323
UA IWF EP
| | |
| INVITE | |
|------------>| Setup |
| |------------>|
| | Alerting |
| 180 RINGING |<------------|
|<------------| Connect |
| |<------------|
| | H.245 |
| 200 OK |<----------->|
|<------------| |
| ACK | |
|------------>| |
| RTP |
|<.........................>|
10. Acknowledgments
The authors would like to acknowledge the many contributors who
discussed the SIP-H.323 interworking architecture and requirements on
the IETF, SIP, and SG16 mailing lists. In particular, we would like
to thank Joon Maeng, Dave Walker, and Jean-Francois Mule.
Contributions to this document have also been made by members of the
H.323, aHIT!, TIPHON, and SG16 forums.
Schulzrinne & Agboh Informational [Page 12]
^L
RFC 4123 SIP-H.323 Req. July 2005
11. Contributors
In addition to the editors, the following people provided substantial
technical and written contributions to this document. They are
listed alphabetically.
Hemant Agrawal
Telverse Communications
1010 Stewart Drive
Sunnyale, CA 94085
USA
EMail: hagrawal@telverse.com
Alan Johnston
MCI WorldCom
100 South Fourth Street
St. Louis, MO 63102
USA
EMail: alan.johnston@wcom.com
Vipin Palawat
Cisco Systems Inc.
900 Chelmsford Street
Lowell, MA 01851
USA
EMail: vpalawat@cisco.com
Radhika R. Roy
AT&T
Room C1-2B03
200 Laurel Avenue S.
Middletown, NJ 07748
USA
EMail: rrroy@att.com
Schulzrinne & Agboh Informational [Page 13]
^L
RFC 4123 SIP-H.323 Req. July 2005
Kundan Singh
Dept. of Computer Science
Columbia University
1214 Amsterdam Avenue, MC 0401
New York, NY 10027
USA
EMail: kns10@cs.columbia.edu
David Wang
Nuera Communications Inc.
10445 Pacific Center Court
San Diego, CA 92121
USA
EMail: dwang@nuera.com
12. References
12.1. Normative References
[H.235] International Telecommunication Union, "Security and
encryption for H-Series (H.323 and other H.245-based)
multimedia terminals", Recommendation H.235,
February 1998.
[H.323] International Telecommunication Union, "Packet based
multimedia communication systems", Recommendation H.323,
July 2003.
[RFC2327] Handley, M. and V. Jacobson, "SDP: Session Description
Protocol", RFC 2327, April 1998.
[RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
A., Peterson, J., Sparks, R., Handley, M., and E.
Schooler, "SIP: Session Initiation Protocol", RFC 3261,
June 2002.
[RFC3263] Rosenberg, J. and H. Schulzrinne, "Session Initiation
Protocol (SIP): Locating SIP Servers", RFC 3263,
June 2002.
[RFC3508] Levin, O., "H.323 Uniform Resource Locator (URL) Scheme
Registration", RFC 3508, April 2003.
Schulzrinne & Agboh Informational [Page 14]
^L
RFC 4123 SIP-H.323 Req. July 2005
[RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
Jacobson, "RTP: A Transport Protocol for Real-Time
Applications", STD 64, RFC 3550, July 2003.
12.2. Informative References
[GWLOC] Zhao, W. and H. Schulzrinne, "Locating IP-to-Public
Switched Telephone Network (PSTN) Telephony Gateways via
SLP", work in progress, February 2004.
[RFC3578] Camarillo, G., Roach, A., Peterson, J., and L. Ong,
"Mapping of Integrated Services Digital Network (ISDN)
User Part (ISUP) Overlap Signalling to the Session
Initiation Protocol (SIP)", RFC 3578, August 2003.
[RFC3932] Alvestrand, H., "The IESG and RFC Editor Documents:
Procedures", BCP 92, RFC 3932, October 2004.
[RFC4028] Donovan, S. and J. Rosenberg, "Session Timers in the
Session Initiation Protocol (SIP)", RFC 4028, April 2005.
[TGREP] Bangalore, M., "A Telephony Gateway REgistration Protocol
(TGREP)", work in progress, March 2004.
Authors' Addresses
Henning Schulzrinne
Columbia University
Department of Computer Science
450 Computer Science Building
New York, NY 10027
US
Phone: +1 212 939 7042
EMail: hgs@cs.columbia.edu
URI: http://www.cs.columbia.edu
Charles Agboh
61 Bos Straat
3540 Herk-de-Stad
Belgium
Phone: +32479736250
EMail: charles.agboh@packetizer.com
Schulzrinne & Agboh Informational [Page 15]
^L
RFC 4123 SIP-H.323 Req. July 2005
Full Copyright Statement
Copyright (C) The Internet Society (2005).
This document is subject to the rights, licenses and restrictions
contained in BCP 78 and at www.rfc-editor.org/copyright.html, and
except as set forth therein, the authors retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at ietf-
ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Schulzrinne & Agboh Informational [Page 16]
^L
|