1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
|
Network Working Group C. Kalbfleisch
Request for Comments: 4149 Consultant
Category: Standards Track R. Cole
JHU/APL
D. Romascanu
Avaya
August 2005
Definition of Managed Objects for Synthetic Sources for
Performance Monitoring Algorithms
Status of This Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2005).
Abstract
This memo defines a portion of the Management Information Base (MIB)
for use with network management protocols in the Internet community.
In particular, it describes objects for configuring Synthetic Sources
for Performance Monitoring (SSPM) algorithms.
Kalbfleisch, et al. Standards Track [Page 1]
^L
RFC 4149 SSPM-MIB August 2005
Table of Contents
1. Introduction ....................................................2
2. The Internet-Standard Management Framework ......................2
3. Overview ........................................................3
3.1. Terms ......................................................3
4. Relationship to Other MIB modules ...............................4
5. Relationship to Other Work ......................................4
5.1. IPPM .......................................................4
5.2. DISMAN .....................................................5
5.3. RMON .......................................................6
5.4. ApplMIB ....................................................6
5.5. SNMPCONF ...................................................7
5.6. RTFM .......................................................8
5.7. Relationship to Other Work: Summary ........................8
6. MIB Structure ...................................................9
6.1. General Information .......................................10
6.2. Source Configuration ......................................10
6.3. Sink Configuration ........................................10
7. Definitions ....................................................10
8. Security Considerations ........................................32
9. Acknowledgements ...............................................34
10. Normative References ..........................................34
11. Informative References ........................................36
1. Introduction
This memo defines a portion of the Management Information Base (MIB)
for use with network management protocols in the Internet community.
In particular, it defines a method of describing Synthetic Sources
for Performance Monitoring (SSPM). This is useful within the Remote
Monitoring (RMON) framework [RFC3577] for performance monitoring in
the cases where it is desirable to inject packets into the network
for the purpose of monitoring their performance with the other MIBs
in that framework.
This memo also includes a MIB module.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].
2. The Internet-Standard Management Framework
For a detailed overview of the documents that describe the current
Internet-Standard Management Framework, please refer to section 7 of
RFC 3410 [RFC3410].
Kalbfleisch, et al. Standards Track [Page 2]
^L
RFC 4149 SSPM-MIB August 2005
Managed objects are accessed via a virtual information store, termed
the Management Information Base or MIB. MIB objects are generally
accessed through the Simple Network Management Protocol (SNMP).
Objects in the MIB are defined using the mechanisms defined in the
Structure of Management Information (SMI). This memo specifies a MIB
module that is compliant to the SMIv2, which is described in STD 58,
RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580
[RFC2580].
3. Overview
This document defines a MIB module for the purpose of remotely
controlling synthetic sources (or 'active' probes) and sinks in order
to enhance remote performance monitoring capabilities within IP
networks and services. Much work within the IETF exists related to
performance monitoring. One interesting aspect of this body of work
is that it does not explicitly define an 'active' probe capability.
An active probe capability is complimentary to existing capabilities,
and this MIB module is developed to fill this void.
3.1. Terms
The following definitions apply throughout this document:
o 'Performance monitoring' is the act of monitoring traffic for
the purpose of evaluating a statistic of a metric related to the
performance of the system. A performance monitoring system is
comprised of a) traffic generators, b) measurement, c) data
reduction, and d) reporting. The traffic generators may be
natural sources, synthetic sources, or intrusive sources.
o A 'synthetic source' is a device or an embedded software
program that generates a data packet (or packets) and injects it
(or them) onto the path to a corresponding probe or existing
server solely in support of a performance monitoring function.
A synthetic source may talk intrusively to existing application
servers.
The design goals for this MIB module are:
o Complementing the overall performance management architecture
being defined within the RMONMIB WG; refer to the RMONMIB
framework document [RFC3577]. This MIB module is defined within
the context of the APM-MIB [RFC3729].
o Extensibility: the MIB module should be easily extended to
include a greater set of protocols and applications for
performance monitoring purposes.
Kalbfleisch, et al. Standards Track [Page 3]
^L
RFC 4149 SSPM-MIB August 2005
o Flexibility: the module should support both round-trip and one-
way measurements.
o Security: the control of the source and sink of traffic is
handled by a management application, and communication is
recommended via SNMPv3.
This document is organized as follows. The next section discusses
the relationship of this MIB module to others from the RMONMIB and
Distributed Management (DISMAN) working groups. Then the structure
of the MIB module is discussed. Finally, the MIB module definitions
are given.
4. Relationship to Other MIB modules
This MIB module is designed to be used in conjunction with the RMON
MIB Working Group's two other MIB modules for application performance
measurement: Application Performance Measurement MIB [RFC3729] and
Transport Performance Metrics MIB [RFC4150]. These MIB modules
define reporting capabilities for that framework. The intent of this
MIB module is to define a method for injecting packets into the
network utilizing probe capabilities defined in the base MIB modules
and measured with the reporting MIB modules. Other reporting MIB
modules may be used as well.
Specifically, this MIB module uses the AppLocalIndex as defined in
the APM-MIB to map measurement configuration information to
definition and reporting structures defined in the APM-MIB.
5. Relationship to Other Work
Much work has already been done within the IETF that has a direct
bearing on the development of active performance probe definitions.
This body of work has been addressed in various working groups over
the years. In this section, we focus on the work of a) the IP
Performance Metrics (IPPM) working group, b) the DISMAN working
group, c) the RMON working group, d) the Application MIB (ApplMIB)
working group, and e) the Realtime Traffic Flow Measurement (RTFM)
working group.
5.1. IPPM
The IPPM working group has defined in detail a set of performance
metrics, sampling techniques, and associated statistics for
transport-level or connectivity-level measurements. The IPPM
framework document [RFC2330] discusses numerous issues concerning
sampling techniques, clock accuracy, resolution and skew, wire time
versus host time, error analysis, etc. Many of these are
Kalbfleisch, et al. Standards Track [Page 4]
^L
RFC 4149 SSPM-MIB August 2005
considerations for configuration and implementation issues discussed
below. The IPPM working group has defined several metrics and their
associated statistics, including
+ a connectivity metric [RFC2678],
+ one-way delay metric [RFC2679],
+ one-way loss metric [RFC2680],
+ round-trip delay and loss metrics [RFC2681],
+ delay variation metric [RFC3393],
+ a streaming media metric [RFC3432],
+ a throughput metric [EBT] and [TBT], and
+ others are under development.
These (or a subset) could form the basis for a set of active,
connectivity-level, probe types designed for monitoring the quality
of transport services. A consideration of some of these metrics may
form a set of work activities and a set of early deliverables for a
group developing an active probe capability.
During the early development of the SSPM-MIB, it became apparent that
a one-way measurement protocol was required in order for the SSPM-MIB
to control a one-way measurement. This led to the current work with
the IPPM WG on the development of the One-Way Measurement Protocol
(OWDP) [ODP]. This work includes both the measurement protocol
itself, as well as the development of a separate control protocol.
This later control protocol is redundant with the current work on the
SSPM-MIB. The SSPM-MIB could be used as an alternative to the one-
way delay control protocol.
5.2. DISMAN
The DISMAN working group has defined a set of 'active' tools for
remote management. Of relevance to this document are:
+ the pingMIB [RFC2925],
+ the DNS Lookup MIB [RFC2925],
+ the tracerouteMIB [RFC2925],
Kalbfleisch, et al. Standards Track [Page 5]
^L
RFC 4149 SSPM-MIB August 2005
+ the scriptMIB [RFC3165], and
+ the expressionMIB [RFC2982].
The pingMIB and tracerouteMIB define an active probe capability,
primarily for the remote determination of path and path connectivity.
There are some performance-related metrics collected from the
pingMIB, and one could conceivably use these measurements for the
evaluation of a limited set of performance statistics. But there is
a fundamental difference between determining connectivity and
determining the quality of that connectivity. However, in the
context of performance monitoring, a fault can be viewed as not
performing at all. Therefore, both should be monitored with the same
probes to reduce network traffic.
The DNS Lookup MIB also includes some probe-like capabilities and
performance time measurements for the DNS lookup. This could be used
to suggest details of a related session-level, active probe.
The scriptMIB allows a network management application to distribute
and manage scripts to remote devices. Conceivably, these scripts
could be designed to run a set of active probe monitors on remote
devices.
5.3. RMON
The RMON working group has developed an extensive, passive monitoring
capability defined in RFC 2819 [RFC2819] and RFC 2021 [RFC2021] as
well as additional MIB modules. Initially, the monitors collected
statistics at the MAC layer, but the capability has now been extended
to higher-layer statistics. Higher-layer statistics are identified
through the definition of a Protocol Directory [RFC2021]. See the
RMONMIB framework document [RFC3577] for an overview of the RMONMIB
capabilities.
Within this context, the development of an active traffic source for
performance monitoring fits well within the overall performance
monitoring architecture being defined within the RMON WG.
5.4. ApplMIB
The ApplMIB working group defined a series of MIB modules that
monitor various aspects of applications, processes, and services.
The System Application MIB [RFC2287] describes a basic set of managed
objects for fault, configuration, and performance management of
applications from a systems perspective. More specifically, the
managed objects it defines are restricted to information that can be
Kalbfleisch, et al. Standards Track [Page 6]
^L
RFC 4149 SSPM-MIB August 2005
determined from the system itself and that does not require special
instrumentation within the applications to make the information
available.
The Application MIB [RFC2564] complements the System Application MIB,
providing for the management of applications' common attributes,
which could not typically be observed without the cooperation of the
software being managed. There are attributes that provide
information on application and communication performance.
The WWW MIB [RFC2594] describes a set of objects for managing
networked services in the Internet Community, particularly World Wide
Web (WWW) services. Performance attributes are available for the
information about each WWW service, each type of request, each type
of response, and top-accessed documents.
In the development of synthetic application-level probes,
consideration should be given to the relationship of the application
MIB modules to the measurements being performed through a synthetic
application-level probe. Similar, cross-indexing issues arise within
the context of the RMON monitoring and synthetic application-level
active probes.
5.5. SNMPCONF
The Configuration Management with SNMP (SNMPCONF) working group has
created the informational RFC 3512 [RFC3512], which outlines the most
effective methods for using the SNMP Framework to accomplish
configuration management. This work includes recommendations for
device-specific as well as network-wide (Policy) configuration. The
group is also chartered to write any MIB modules necessary to
facilitate configuration management. Specifically, they will write a
MIB module that describes a network entity's capabilities and
capacities, which can be used by management entities making policy
decisions at a network level or device-specific level.
Currently, the SNMPCONF working group is focused on the SNMP
Configuration MIB for policy [RFC4011]. It is conceivable that one
would want to monitor the performance of newly configured policies as
they are implemented within networks. This would require correlation
of the implemented policy and a related performance monitoring policy
that would specify synthetic probe definitions. For synthetic
probes, there would be a need for a configuration of a) a single
probe, b) several probes, c) source and destination probes, and d)
intermediate probes. In addition, it may be necessary to configure
any or all of these combinations simultaneously. It is hoped that
the work of SNMPCONF will suffice. The scripting language defined by
the SNMP Configuration MIB could allow for active monitoring to be
Kalbfleisch, et al. Standards Track [Page 7]
^L
RFC 4149 SSPM-MIB August 2005
activated and configured from a policy management script. Further,
the results of active monitoring could become arguments in further
policy decisions. This notion is reflected in the decision flow
outlined in Figure 1 below.
5.6. RTFM
The Realtime Traffic Flow Measurement (RTFM) working group is
concerned with issues relating to traffic flow measurements and usage
reporting for network traffic and Internet accounting. Various
documents exist that describe requirements [RFC1272], traffic flow
measurement architectures [RFC2722], and a traffic flow MIB
[RFC2720]. The work in this group is focused on passive measurements
of user traffic. As such, its work is related to the monitoring work
within the RMON WG. Fundamentally, their attention has not been
concerned with methods of active traffic generation.
5.7. Relationship to Other Work: Summary
In summary, the development of an active traffic generation
capability (primarily for the purpose of performance monitoring)
should draw upon various activities, both past and present, within
the IETF. Figure 1 shows the relationship of the various work
activities briefly touched upon in this section.
Horizontally, across the top of the figure are overall control
functions, which would coordinate the various aspects of the
performance monitoring systems. Vertically at the bottom of the
figure are the functions which comprise the minimum performance
monitoring capability; i.e., traffic generation, monitoring and
measurements, and data reduction. Traffic generation is addressed in
this MIB module. Monitoring and measurement is addressed in the
APM-MIB [RFC3729] and TPM-MIB [RFC4150] modules. Data reduction is
not yet addressed within the IETF. But data reduction could include
both spatial and temporal aggregations at different levels of
reduction. This is indicated in the figure by the arrow labeled
"Various levels and span".
Kalbfleisch, et al. Standards Track [Page 8]
^L
RFC 4149 SSPM-MIB August 2005
+-----------------------------------+
| |
V |
+------------------------------------------+ |
+------| Application [script], [expr], [snmpconf],|---+ |
| | [apmmib] | | |
| +------------------------------------------+ | |
| | | |
+--------------------------------+ | |
| Synchronization Control | | |
+--------------------------------+ | |
| | | |
V V V |
+----------------+ +----------------------+ +-------------------+ |
| Traffic | |Monitoring Metrics | |Data Reduction | |
| Generation | |Control [rmon],[ippm],| |Control [applmib], | |
| Control [sspm]| | [applmib] | |[wwwservmib],[expr]| |
+----------------+ +----------------------+ +-------------------+ |
| | | |
| | | |
V V V |
+------------------+ +-------------------+ +----------------+ |
|Traffic Generation| |Monitoring Metrics | |Data Reduction | |
| Instrumentation| | Instrumentation | +-->| Instrumentation| |
+------------------+ +-------------------+ | +----------------+ |
| | |
| | |
Various levels | | |
and span +--------------| |
| |
| |
V |
Reports ---+
Figure 1: Coverage for an overall performance monitoring system
6. MIB Structure
This section presents the structure of the MIB module. The objects
are arranged into the following groups:
o general information
o source configuration
o sink configuration
Kalbfleisch, et al. Standards Track [Page 9]
^L
RFC 4149 SSPM-MIB August 2005
6.1. General Information
This section provides general information about the capabilities of
the probe. Currently, this information is related to the resolution
of the probe clock and its source.
6.2. Source Configuration
The source is configured with a pair of tables. The first,
sspmSourceProfileTable, defines a set of profiles for monitoring.
These profiles are then used by the second table,
sspmSourceControlTable, to instantiate a specific measurement. This
MIB module takes an IP-centric view of the configuration of the
measurement.
6.3. Sink Configuration
Configures the sink for measurements. If the test is round-trip,
then this table is on the same probe as the source configuration. If
the test is one-way, then the table is on a different probe. The
sspmSinkInstance is a unique identifier for the entry per probe.
Additional attributes are provided for test type and test source to
identify entries in the table uniquely.
7. Definitions
SSPM-MIB DEFINITIONS ::= BEGIN
IMPORTS
MODULE-IDENTITY, OBJECT-TYPE,
Counter32, Integer32, Unsigned32
FROM SNMPv2-SMI --[RFC2578]
TEXTUAL-CONVENTION, StorageType,
TruthValue, RowStatus
FROM SNMPv2-TC --[RFC2579]
MODULE-COMPLIANCE, OBJECT-GROUP
FROM SNMPv2-CONF --[RFC2578,
-- RFC2579,
-- RFC2580]
OwnerString, rmon
FROM RMON-MIB --[RFC2819]
InetAddressType, InetAddress
FROM INET-ADDRESS-MIB --[RFC3291]
Kalbfleisch, et al. Standards Track [Page 10]
^L
RFC 4149 SSPM-MIB August 2005
InterfaceIndexOrZero
FROM IF-MIB --[RFC2863]
AppLocalIndex
FROM APM-MIB --[RFC3729]
Utf8String
FROM SYSAPPL-MIB; --[RFC2287]
sspmMIB MODULE-IDENTITY
LAST-UPDATED "200507280000Z" -- July 28, 2005
ORGANIZATION "IETF RMON MIB working group"
CONTACT-INFO
" Carl W. Kalbfleisch
Consultant
E-mail: ietf@kalbfleisch.us
Working group mailing list: rmonmib@ietf.org
To subscribe send email to rmonmib-request@ietf.org"
DESCRIPTION
"This SSPM MIB module is applicable to probes
implementing Synthetic Source for Performance
Monitoring functions.
Copyright (C) The Internet Society (2005). This version
of this MIB module is part of RFC 4149; see the RFC
itself for full legal notices."
-- revision history
REVISION "200507280000Z" -- July 28, 2005
DESCRIPTION
"The original version of this MIB module,
was published as RFC4149."
::= { rmon 28 }
--
-- Object Identifier Assignments
--
sspmMIBObjects OBJECT IDENTIFIER ::= { sspmMIB 1 }
sspmMIBNotifications OBJECT IDENTIFIER ::= { sspmMIB 2 }
sspmMIBConformance OBJECT IDENTIFIER ::= { sspmMIB 3 }
--
-- Textual Conventions
--
Kalbfleisch, et al. Standards Track [Page 11]
^L
RFC 4149 SSPM-MIB August 2005
SspmMicroSeconds ::= TEXTUAL-CONVENTION
DISPLAY-HINT "d"
STATUS current
DESCRIPTION
"A unit of time with resolution of MicroSeconds."
SYNTAX Unsigned32
SspmClockSource ::= TEXTUAL-CONVENTION
DISPLAY-HINT "d"
STATUS current
DESCRIPTION
"An indication of the source of the clock as defined by the
NTP specification RFC1305 [RFC1305] definition of stratum:
Stratum (sys.stratum, peer.stratum, pkt.stratum): This is
an integer indicating the stratum of the local clock,
with values defined as follows:
0 unspecified
1 primary reference (e.g., calibrated atomic clock,
radio clock)
2-255 secondary reference (via NTP)."
REFERENCE
"RFC1305."
SYNTAX Integer32 (0..255)
SspmClockMaxSkew ::= TEXTUAL-CONVENTION
DISPLAY-HINT "d"
STATUS current
-- UNITS "Seconds"
DESCRIPTION
"An indication of the accuracy of the clock as defined by
RFC1305. This variable indicates the maximum offset
error due to skew of the local clock over the
time interval 86400 seconds, in seconds."
REFERENCE
"RFC1305."
SYNTAX Integer32 (1..65535)
--
-- sspmGeneral
--
sspmGeneral OBJECT IDENTIFIER ::= { sspmMIBObjects 1 }
sspmGeneralClockResolution OBJECT-TYPE
SYNTAX SspmMicroSeconds
MAX-ACCESS read-only
Kalbfleisch, et al. Standards Track [Page 12]
^L
RFC 4149 SSPM-MIB August 2005
STATUS current
-- UNITS Microseconds
DESCRIPTION
"A read-only variable indicating the resolution
of the measurements possible by this device."
::= { sspmGeneral 1 }
sspmGeneralClockMaxSkew OBJECT-TYPE
SYNTAX SspmClockMaxSkew
MAX-ACCESS read-only
STATUS current
-- UNITS Seconds
DESCRIPTION
"A read-only variable indicating the maximum offset
error due to skew of the local clock over the
time interval 86400 seconds, in seconds."
::= { sspmGeneral 2 }
sspmGeneralClockSource OBJECT-TYPE
SYNTAX SspmClockSource
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A read-only variable indicating the source of the clock.
This is provided to allow a user to determine how accurate
the timing mechanism is compared with other devices. This
is needed for the coordination of time values
between probes for one-way measurements."
::= { sspmGeneral 3 }
sspmGeneralMinFrequency OBJECT-TYPE
SYNTAX SspmMicroSeconds
MAX-ACCESS read-only
-- units MicroSeconds
STATUS current
DESCRIPTION
"A read-only variable that indicates the devices'
capability for the minimum supported
sspmSourceFrequency. If sspmSourceFrequency is
set to a value lower than the value reported
by this attribute, then the set of sspmSourceFrequency
will fail with an inconsistent value error."
::= { sspmGeneral 4 }
--
-- sspmCapabilities
--
Kalbfleisch, et al. Standards Track [Page 13]
^L
RFC 4149 SSPM-MIB August 2005
-- Describes the capabilities of the SSPM device.
--
sspmCapabilitiesTable OBJECT-TYPE
SYNTAX SEQUENCE OF SspmCapabilitiesEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The table of SSPM capabilities."
::= { sspmGeneral 5 }
sspmCapabilitiesEntry OBJECT-TYPE
SYNTAX SspmCapabilitiesEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Details about a particular SSPM capability."
INDEX { sspmCapabilitiesInstance }
::= { sspmCapabilitiesTable 1 }
SspmCapabilitiesEntry ::= SEQUENCE {
sspmCapabilitiesInstance AppLocalIndex
}
sspmCapabilitiesInstance OBJECT-TYPE
SYNTAX AppLocalIndex
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Indicates whether SSPM configuration of the corresponding
AppLocalIndex is supported by this device. Generally,
entries in this table are only made by the device when the
configuration of the measurement is available."
::= { sspmCapabilitiesEntry 1 }
--
-- sspmSource
--
-- Contains the details of the source of the
-- Synthetic Sources for Performance Monitoring algorithms.
-- This information is split into two tables. The first defines
-- profiles that can be applied to specific sources in the
-- control table.
--
sspmSource OBJECT IDENTIFIER ::= { sspmMIBObjects 2 }
--
-- sspmSourceProfileTable
-- Defines template profiles for measurements.
Kalbfleisch, et al. Standards Track [Page 14]
^L
RFC 4149 SSPM-MIB August 2005
--
sspmSourceProfileTable OBJECT-TYPE
SYNTAX SEQUENCE OF SspmSourceProfileEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The table of SSPM Source Profiles configured."
::= { sspmSource 1 }
sspmSourceProfileEntry OBJECT-TYPE
SYNTAX SspmSourceProfileEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Details about a particular SSPM Source Profile
configuration. Entries must exist in this table
in order to be referenced by rows in the
sspmSourceControlTable."
INDEX { sspmSourceProfileInstance }
::= { sspmSourceProfileTable 1 }
SspmSourceProfileEntry ::= SEQUENCE {
sspmSourceProfileInstance Unsigned32,
sspmSourceProfileType AppLocalIndex,
sspmSourceProfilePacketSize Unsigned32,
sspmSourceProfilePacketFillType INTEGER,
sspmSourceProfilePacketFillValue OCTET STRING,
sspmSourceProfileTOS Integer32,
sspmSourceProfileFlowLabel Integer32,
sspmSourceProfileLooseSrcRteFill OCTET STRING,
sspmSourceProfileLooseSrcRteLen Integer32,
sspmSourceProfileTTL Integer32,
sspmSourceProfileNoFrag TruthValue,
sspmSourceProfile8021Tagging Integer32,
sspmSourceProfileUsername Utf8String,
sspmSourceProfilePassword Utf8String,
sspmSourceProfileParameter OCTET STRING,
sspmSourceProfileOwner OwnerString,
sspmSourceProfileStorageType StorageType,
sspmSourceProfileStatus RowStatus
}
sspmSourceProfileInstance OBJECT-TYPE
SYNTAX Unsigned32 (1..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An arbitrary index."
Kalbfleisch, et al. Standards Track [Page 15]
^L
RFC 4149 SSPM-MIB August 2005
::= { sspmSourceProfileEntry 1 }
sspmSourceProfileType OBJECT-TYPE
SYNTAX AppLocalIndex
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The AppLocalIndex value that uniquely identifies the
measurement per the APM-MIB. In order to create a row
in this table, there must be a corresponding row in the
sspmCapabilitiesTable.
When attempting to set this object, if no
corresponding row exists in the sspmCapabilitiesTable,
then the agent should return a 'badValue' error."
::= { sspmSourceProfileEntry 2}
sspmSourceProfilePacketSize OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The size of packet to be transmitted in bytes. The
size accounts for all data within the IPv4 or IPv6
payloads, excluding the IP headers, IP header options
and link-level protocol headers.
If the size is set smaller than the minimum allowed
packet size or greater than the maximum allowed
packet size, then the set should fail, and the agent
should return a 'badValue' error."
::= { sspmSourceProfileEntry 3 }
sspmSourceProfilePacketFillType OBJECT-TYPE
SYNTAX INTEGER {
random (1),
pattern (2),
url(3)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Indicates how the packet is filled.
'random' indicates that the packet contains random
data patterns. This is probe and implementation
dependent.
Kalbfleisch, et al. Standards Track [Page 16]
^L
RFC 4149 SSPM-MIB August 2005
'pattern' indicates that the pattern defined in the
sspmSourceProfilePacketFillValue attribute is used to
fill the packet.
'url' indicates that the value of
sspmSourceProfilePacketFillValue should
contain a URL. The contents of the document
at that URL are retrieved when sspmSourceStatus becomes
active and utilized in the packet. If the attempt to
access that URL fails, then the row status is set to
'notReady', and the set should fail with
'inconsistentValue'. This value must contain a
dereferencable URL of the type 'http:', 'https:', or
'ftp:' only."
::= { sspmSourceProfileEntry 4 }
sspmSourceProfilePacketFillValue OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..255))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The string value with which to fill the packet. If
sspmSourceProfilePacketFillType is set to 'pattern',
then this pattern is repeated until the packet is
sspmSourcePacketSize in bytes. Note that if the
length of the octet string specified for this
value does not divide evenly into the packet
size, then an incomplete last copy of this data
may be copied into the packet. If the value of
sspmSourceProfilePacketFillType is set to 'random', then
this attribute is unused. If the value of the
sspmSourceProfilePacketFillType is set to 'url', then
the URL specified in this attribute is retrieved
and used by the probe. In the case of a URL, this value
must contain a dereferencable URL of the type
'http:', 'https:', or 'ftp:' only."
::= { sspmSourceProfileEntry 5 }
sspmSourceProfileTOS OBJECT-TYPE
SYNTAX Integer32 (0..255)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Represents the TOS field in the IP packet header. The
value of this object defaults to zero if not set."
DEFVAL { 0 }
::= { sspmSourceProfileEntry 6 }
Kalbfleisch, et al. Standards Track [Page 17]
^L
RFC 4149 SSPM-MIB August 2005
sspmSourceProfileFlowLabel OBJECT-TYPE
SYNTAX Integer32 (0..1048575) -- 20-bit range (0 to 0xfffff)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object is used to specify the Flow Label in a IPv6
packet (RFC 2460) to force special handling by the IPv6
routers; e.g., non-default quality-of-service handling.
This object is meaningful only when the object
sspmSourceDestAddressType is IPv6(2).
The value of this object defaults to zero if not set."
DEFVAL { 0 }
::= { sspmSourceProfileEntry 7 }
sspmSourceProfileLooseSrcRteFill OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..240))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"In the event that the test should run over a
specific route, the intent is to force the route using the
Loose Source Route option in IPv4 [RFC791] and
IPv6 [RFC2460]. This object contains a
series of IP addresses along the path that would be
put into the loose source route option in the IP header.
The IPv4 addresses are to be listed as 32-bit
address values, and the IPv6 addresses are to be
listed as a string of 128-bit addresses. The
maximum length allowed within the IPv4 source route
option is 63 addresses. To simply account for
IPv6 addresses as well, the maximum length of the
octet string is 240. This allows up to 60
IPv4 addresses or up to 15 IPv6 addresses in the
string."
::= { sspmSourceProfileEntry 8 }
sspmSourceProfileLooseSrcRteLen OBJECT-TYPE
SYNTAX Integer32(0..240)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"In the event that the test should run over a
specific route, the intent is to force the route.
This attribute specifies the length of data to
be copied from the sspmSourceProfileLooseSrcRteFill
into the route data fields of the loose source route
Kalbfleisch, et al. Standards Track [Page 18]
^L
RFC 4149 SSPM-MIB August 2005
options in the IPv4 or IPv6 headers."
::= { sspmSourceProfileEntry 9 }
sspmSourceProfileTTL OBJECT-TYPE
SYNTAX Integer32(1..255)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"If non-zero, this specifies the value to place into
the TTL field on transmission."
::= { sspmSourceProfileEntry 10 }
sspmSourceProfileNoFrag OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"When true, the 'Don't Fragment Bit' should be set
on the packet header."
::= { sspmSourceProfileEntry 11 }
sspmSourceProfile8021Tagging OBJECT-TYPE
SYNTAX Integer32 (-1..65535)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"IEEE 802.1Q tagging used in IEEE 802.1D bridged
environments.
A value of -1 indicates that the packets are untagged.
A value of 0 to 65535 is the value of the tag to be
inserted in the tagged packets.
Note that according to IEEE 802.1Q, VLAN-ID tags with
a value of 4095 shall not be transmitted on the wire.
As the VLAN-ID is encoded in the 12 least significant
bits on the tag, values that translate in a binary
representation of all 1's in the last 12 bits
SHALL NOT be configured. In this case, the set should
fail, and return an error-status of 'inconsistentValue'."
::= { sspmSourceProfileEntry 12 }
sspmSourceProfileUsername OBJECT-TYPE
SYNTAX Utf8String
MAX-ACCESS read-create
STATUS current
DESCRIPTION
Kalbfleisch, et al. Standards Track [Page 19]
^L
RFC 4149 SSPM-MIB August 2005
"An optional username used by the application protocol."
::= { sspmSourceProfileEntry 13 }
sspmSourceProfilePassword OBJECT-TYPE
SYNTAX Utf8String
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"An optional password used by the application protocol."
::= { sspmSourceProfileEntry 14 }
sspmSourceProfileParameter OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..65535))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"An optional parameter used by the application protocol.
For DNS, this would be the hostname or IP. For HTTP,
this would be the URL. For nntp, this would be the
news group. For TCP, this would be the port number.
For SMTP, this would be the recipient (and could
assume the message is predefined)."
::= { sspmSourceProfileEntry 15 }
sspmSourceProfileOwner OBJECT-TYPE
SYNTAX OwnerString
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Name of the management station/application that
set up the profile."
::= { sspmSourceProfileEntry 16 }
sspmSourceProfileStorageType OBJECT-TYPE
SYNTAX StorageType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The storage type of this sspmSourceProfileEntry. If the
value of this object is 'permanent', no objects in this row
need to be writable."
::= { sspmSourceProfileEntry 17 }
sspmSourceProfileStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
Kalbfleisch, et al. Standards Track [Page 20]
^L
RFC 4149 SSPM-MIB August 2005
"Status of this profile.
An entry may not exist in the active state unless all
objects in the entry have an appropriate value.
Once this object is set to active(1), no objects in the
sspmSourceProfileTable can be changed."
::= { sspmSourceProfileEntry 18 }
--
-- sspmSourceControlTable
-- Defines specific measurement instances based on template
-- profiles in the sspmSourceProfileTable which must be
-- pre-configured.
--
sspmSourceControlTable OBJECT-TYPE
SYNTAX SEQUENCE OF SspmSourceControlEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The table of SSPM measurements configured."
::= { sspmSource 2 }
sspmSourceControlEntry OBJECT-TYPE
SYNTAX SspmSourceControlEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Details about a particular SSPM configuration."
INDEX { sspmSourceControlInstance }
::= { sspmSourceControlTable 1 }
SspmSourceControlEntry ::= SEQUENCE {
sspmSourceControlInstance Unsigned32,
sspmSourceControlProfile Integer32,
sspmSourceControlSrc InterfaceIndexOrZero,
sspmSourceControlDestAddrType InetAddressType,
sspmSourceControlDestAddr InetAddress,
sspmSourceControlEnabled TruthValue,
sspmSourceControlTimeOut SspmMicroSeconds,
sspmSourceControlSamplingDist INTEGER,
sspmSourceControlFrequency SspmMicroSeconds,
sspmSourceControlFirstSeqNum Unsigned32,
sspmSourceControlLastSeqNum Unsigned32,
sspmSourceControlOwner OwnerString,
sspmSourceControlStorageType StorageType,
sspmSourceControlStatus RowStatus
Kalbfleisch, et al. Standards Track [Page 21]
^L
RFC 4149 SSPM-MIB August 2005
}
sspmSourceControlInstance OBJECT-TYPE
SYNTAX Unsigned32 (1..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An arbitrary index."
::= { sspmSourceControlEntry 1 }
sspmSourceControlProfile OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"A pointer to the profile (sspmSourceProfileEntry) that
this control entry uses to define the test being
performed."
::= { sspmSourceControlEntry 2 }
sspmSourceControlSrc OBJECT-TYPE
SYNTAX InterfaceIndexOrZero
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The ifIndex where the packet should originate from the
probe (if it matters). A value of zero indicates that
it does not matter and that the device decides."
::= { sspmSourceControlEntry 3 }
sspmSourceControlDestAddrType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The type of Internet address by which the destination
is accessed."
::= { sspmSourceControlEntry 4 }
sspmSourceControlDestAddr OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The Internet address for the destination. The formatting
of this object is controlled by the
sspmSourceControlDestAddrType object above.
Kalbfleisch, et al. Standards Track [Page 22]
^L
RFC 4149 SSPM-MIB August 2005
When this object contains a DNS name, then the name is
resolved to an address each time measurement is to be made.
Further, the agent should not cache this address,
but instead should perform the resolution prior to each
measurement."
::= { sspmSourceControlEntry 5 }
sspmSourceControlEnabled OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"When set to 'true', this test is enabled. When set to
'false', it is disabled."
::= { sspmSourceControlEntry 6 }
sspmSourceControlTimeOut OBJECT-TYPE
SYNTAX SspmMicroSeconds
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Timeout value for the measurement response. If no
response is received in the time specified, then
the test fails."
::= { sspmSourceControlEntry 7 }
sspmSourceControlSamplingDist OBJECT-TYPE
SYNTAX INTEGER {
deterministic(1),
poisson(2)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"When this attribute is set to 'deterministic', then
packets are generated at with a fixed inter-packet
injection time specified by sspmSourceFrequency.
When this attribute is set to 'Poisson', then packets
are generated with inter-packet injection times sampled
from an exponential distribution with the single
distributional parameter determined by the inverse
frequency)."
::= { sspmSourceControlEntry 8 }
sspmSourceControlFrequency OBJECT-TYPE
SYNTAX SspmMicroSeconds
MAX-ACCESS read-create
Kalbfleisch, et al. Standards Track [Page 23]
^L
RFC 4149 SSPM-MIB August 2005
STATUS current
DESCRIPTION
"The inverse of this value is the rate at which packets
are generated. Refer to sspmSourceSamplingDistribution.
If the value set is less than the value of
sspmGeneralMinFrequency, then the set will fail with an
error-status of 'inconsistentValue'."
::= { sspmSourceControlEntry 9 }
sspmSourceControlFirstSeqNum OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The first sequence number of packets to be transmitted."
::= { sspmSourceControlEntry 10 }
sspmSourceControlLastSeqNum OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The last sequence number transmitted. This value is updated
by the agent after packet generation."
::= { sspmSourceControlEntry 11 }
sspmSourceControlOwner OBJECT-TYPE
SYNTAX OwnerString
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Name of the management station/application that set
up the test."
::= { sspmSourceControlEntry 12 }
sspmSourceControlStorageType OBJECT-TYPE
SYNTAX StorageType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The storage type of this sspmSourceControlEntry. If the
value of this object is 'permanent', no objects in this row
need to be writable."
::= { sspmSourceControlEntry 13 }
sspmSourceControlStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
Kalbfleisch, et al. Standards Track [Page 24]
^L
RFC 4149 SSPM-MIB August 2005
STATUS current
DESCRIPTION
"Status of this source control entry.
An entry may not exist in the active state unless all
objects in the entry have an appropriate value.
When this attribute has the value of
'active', none of the read-write or read-create attributes
in this table may be modified, with the exception of
sspmSourceControlEnabled."
::= { sspmSourceControlEntry 14 }
--
-- sspmSinkTable
--
-- Contains attributes for configuration of Synthetic
-- Sources for Performance Monitoring sinks, i.e.,
-- sinks for receipt of one-way delay measurements.
--
sspmSink OBJECT IDENTIFIER ::= { sspmMIBObjects 5 }
sspmSinkTable OBJECT-TYPE
SYNTAX SEQUENCE OF SspmSinkEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table configuring the sink for measurements."
::= { sspmSink 1 }
sspmSinkEntry OBJECT-TYPE
SYNTAX SspmSinkEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The details of a particular sink entry. If the measurement
is a round-trip type, then the sink entry will be on the
same probe as the corresponding sspmSourceEntry. If the
measurement is a one-way, type then the sink entry will be
on a different probe."
INDEX { sspmSinkInstance }
::= { sspmSinkTable 1}
SspmSinkEntry ::= SEQUENCE {
sspmSinkInstance Unsigned32,
sspmSinkType AppLocalIndex,
sspmSinkSourceAddressType InetAddressType,
sspmSinkSourceAddress InetAddress,
Kalbfleisch, et al. Standards Track [Page 25]
^L
RFC 4149 SSPM-MIB August 2005
sspmSinkExpectedRate SspmMicroSeconds,
sspmSinkEnable TruthValue,
sspmSinkExpectedFirstSequenceNum Unsigned32,
sspmSinkLastSequenceNumber Unsigned32,
sspmSinkLastSequenceInvalid Counter32,
sspmSinkStorageType StorageType,
sspmSinkStatus RowStatus
}
sspmSinkInstance OBJECT-TYPE
SYNTAX Unsigned32 (1..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An index. When the measurement is for a round-trip
measurement, then this table entry is on the same probe as
the corresponding sspmSourceEntry, and the value of this
attribute should correspond to the value of
sspmSourceInstance. Management applications configuring
sinks for one-way measurements could define some
scheme whereby the sspmSinkInstance is unique across
all probes. Note that the unique key to this entry is
also constructed with sspmSinkType,
sspmSinkSourceAddressType, and sspmSinkSourceAddress.
To make the implementation simpler, those other
attributes are not included in the index but uniqueness
is still needed to receive all the packets."
::= { sspmSinkEntry 1 }
sspmSinkType OBJECT-TYPE
SYNTAX AppLocalIndex
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The AppLocalIndex value that uniquely identifies the
measurement per the APM-MIB. In order to create a row
in this table, there must be a corresponding row in the
sspmCapabilitiesTable. If there is no corresponding
row in the sspmCapabilitiestable, then the agent will
return an error-status of 'inconsistentValue'."
::= { sspmSinkEntry 2}
sspmSinkSourceAddressType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The type of Internet address of the source."
Kalbfleisch, et al. Standards Track [Page 26]
^L
RFC 4149 SSPM-MIB August 2005
::= { sspmSinkEntry 3 }
sspmSinkSourceAddress OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The Internet address of the source. The formatting
of this object is controlled by the sspmSinkSourceAddressType
object above.
This object should be set only to a valid device address
that has been administratively configured into the
device. If a set attempts to set this object to an
address that does not belong (i.e., is not administratively
configured into the device), the set should fail, and the
agent should return a error-status of 'inconsistentValue'."
::= { sspmSinkEntry 4 }
sspmSinkExpectedRate OBJECT-TYPE
SYNTAX SspmMicroSeconds
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The expected rate at which packets will arrive."
::= { sspmSinkEntry 5 }
sspmSinkEnable OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Indicates if the sink is enabled or not."
::= { sspmSinkEntry 6 }
sspmSinkExpectedFirstSequenceNum OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The expected first sequence number of packets.
This is used by the sink to determine if packets
were lost at the initiation of the test."
::= { sspmSinkEntry 7 }
sspmSinkLastSequenceNumber OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-only
Kalbfleisch, et al. Standards Track [Page 27]
^L
RFC 4149 SSPM-MIB August 2005
STATUS current
DESCRIPTION
"The last sequence number received."
::= { sspmSinkEntry 8 }
sspmSinkLastSequenceInvalid OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of packets that arrived whose
sequence number was not one plus the value of
sspmSinkLastSequenceNumber."
::= { sspmSinkEntry 9 }
sspmSinkStorageType OBJECT-TYPE
SYNTAX StorageType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The storage type of this sspmSinkEntry. If the value
of this object is 'permanent', no objects in this row
need to be writable."
::= { sspmSinkEntry 10 }
sspmSinkStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Status of this conceptual row.
An entry may not exist in the active state unless all
objects in the entry have an appropriate value.
Once this object is set to active(1), no objects with
MAX-ACCESS of read-create in the sspmSinkTable can
be changed."
::= { sspmSinkEntry 11 }
--
-- Notifications
--
--
-- Conformance information
--
sspmCompliances OBJECT IDENTIFIER ::= { sspmMIBConformance 1 }
sspmGroups OBJECT IDENTIFIER ::= { sspmMIBConformance 2 }
Kalbfleisch, et al. Standards Track [Page 28]
^L
RFC 4149 SSPM-MIB August 2005
-- Compliance Statements
sspmGeneralCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"A general compliance that allows all things to be optional."
MODULE -- this module
MANDATORY-GROUPS { sspmGeneralGroup }
GROUP sspmSourceGroup
DESCRIPTION
"The SSPM Source Group is optional."
GROUP sspmSinkGroup
DESCRIPTION
"The SSPM Sink Group is optional."
GROUP sspmUserPassGroup
DESCRIPTION
"The SSPM User Pass Group is optional."
::= { sspmCompliances 1 }
--
-- SSPM Source Compliance
--
sspmSourceFullCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"A source compliance. Use this compliance when implementing
a traffic-source-only device. This is useful for implementing
devices that probe other devices for intrusive application
monitoring. It is also useful for implementing the source
of one-way tests used with a sink-only device."
MODULE -- this module
MANDATORY-GROUPS { sspmGeneralGroup, sspmSourceGroup }
GROUP sspmUserPassGroup
DESCRIPTION
"The SSPM User Pass Group is optional."
::= { sspmCompliances 2 }
--
-- SSPM Sink Compliance
--
sspmSinkFullCompliance MODULE-COMPLIANCE
STATUS current
Kalbfleisch, et al. Standards Track [Page 29]
^L
RFC 4149 SSPM-MIB August 2005
DESCRIPTION
"A sink-only compliance. Use this compliance when implementing a
sink-only device. This is useful for devices to receive one-way
measurements."
MODULE -- this module
MANDATORY-GROUPS { sspmGeneralGroup, sspmSinkGroup }
::= { sspmCompliances 3 }
--
-- Groups
--
sspmGeneralGroup OBJECT-GROUP
OBJECTS {
sspmGeneralClockResolution,
sspmGeneralClockMaxSkew,
sspmGeneralClockSource,
sspmGeneralMinFrequency,
sspmCapabilitiesInstance
}
STATUS current
DESCRIPTION
"The objects in the SSPM General Group."
::= { sspmGroups 1 }
sspmSourceGroup OBJECT-GROUP
OBJECTS {
sspmSourceProfileType,
sspmSourceProfilePacketSize,
sspmSourceProfilePacketFillType,
sspmSourceProfilePacketFillValue,
sspmSourceProfileTOS,
sspmSourceProfileFlowLabel,
sspmSourceProfileLooseSrcRteFill,
sspmSourceProfileLooseSrcRteLen,
sspmSourceProfileTTL,
sspmSourceProfileNoFrag,
sspmSourceProfile8021Tagging,
sspmSourceProfileUsername,
sspmSourceProfilePassword,
sspmSourceProfileParameter,
sspmSourceProfileOwner,
sspmSourceProfileStorageType,
sspmSourceProfileStatus,
sspmSourceControlProfile,
sspmSourceControlSrc,
sspmSourceControlDestAddrType,
Kalbfleisch, et al. Standards Track [Page 30]
^L
RFC 4149 SSPM-MIB August 2005
sspmSourceControlDestAddr,
sspmSourceControlEnabled,
sspmSourceControlTimeOut,
sspmSourceControlSamplingDist,
sspmSourceControlFrequency,
sspmSourceControlFirstSeqNum,
sspmSourceControlLastSeqNum,
sspmSourceControlOwner,
sspmSourceControlStorageType,
sspmSourceControlStatus
}
STATUS current
DESCRIPTION
"The objects in the SSPM Source Group."
::= { sspmGroups 2 }
sspmUserPassGroup OBJECT-GROUP
OBJECTS {
sspmSourceProfileUsername,
sspmSourceProfilePassword
}
STATUS current
DESCRIPTION
"The objects in the SSPM Username and password group."
::= { sspmGroups 3 }
sspmSinkGroup OBJECT-GROUP
OBJECTS {
sspmSinkType,
sspmSinkSourceAddressType,
sspmSinkSourceAddress,
sspmSinkExpectedRate,
sspmSinkEnable,
sspmSinkExpectedFirstSequenceNum,
sspmSinkLastSequenceNumber,
sspmSinkLastSequenceInvalid,
sspmSinkStorageType,
sspmSinkStatus
}
STATUS current
DESCRIPTION
"The objects in the SSPM Sink Group."
::= { sspmGroups 4 }
END
Kalbfleisch, et al. Standards Track [Page 31]
^L
RFC 4149 SSPM-MIB August 2005
8. Security Considerations
This MIB module defines objects that allow packets to be injected
into the network for the purpose of measuring some performance
characteristics. As such, the MIB module may contain sensitive
network and application data; e.g., user IDs and passwords. Further,
if security is compromised, this MIB module could provide a source
for denial-of-service, and potential other, attacks. These issues
will be addressed within this section.
There are a number of management objects defined in this MIB module
that have a MAX-ACCESS clause of read-write and/or read-create. Such
objects may be considered sensitive or vulnerable in some network
environments. The support for SET operations in a non-secure
environment without proper protection can have a negative effect on
network operations. These are the tables and objects and their
sensitivity/vulnerability:
+ The sspmSourceProfileTable contains objects that configure link-
level, IP, and application-level data used within test suites.
These objects with a MAX-ACCESS clause of read-write and/or
read- create are:
o sspmSourcePacketSize - configures the overall size of the
test packets,
o sspmSourceProfileTOS - sets the TOS field in the IPv4 and
IPv6 headers,
o sspmSourceProfileLooseSrcRteFill and
sspmSourceProfileLooseSrcRteLen - give a list of IPv4 or IPv6
addresses for the loose source route options in the IP
headers,
o sspmSourceProfileFlowLabel - sets the Flow Label in the IPv6
header,
o sspmSourceProfileTTL - sets the TTL field in the packet
headers,
o sspmSourceProfileNoFrag - sets the No Fragment bit in the
packet headers,
o sspmSourceProfile8021Tagging - sets the Tag field in the
802.1 headers, and
Kalbfleisch, et al. Standards Track [Page 32]
^L
RFC 4149 SSPM-MIB August 2005
o sspmSourceProfileUsername and sspmSourceProfilePassword -
these hold the ID and passwords specific to an application
test profile.,
+ The sspmSourceControlTable contains objects that configure IP
and application-level data used within a given test. These
objects with a MAX-ACCESS clause of read-write and/or read-
create are:
o sspmSourceControlSrc - controls the source IP address used on
the test packets,
o sspmSourceControlDestAddr - holds the destination address for
the specific test packet,
o sspmSourceControlTimeout, sspmSourceControlSamplingDist, and
sspmSourceControlFrequency - control the nature and frequency
of the test packet injection onto the network, and
o sspmSourceControlFirstSeqNum and sspmSourceControlLastSeqNum
- set the first and last sequence numbers for the specific
test.
+ The sspmSinkTable contains objects that configure the recipient
of the test packets. As such, the objects in this table have no
security issues related to them.
Some attributes configure username and password information for some
application-level protocols as indicated above. Access to these
attributes may provide unauthorized use of resources. These
attributes are: sspmSourceProfileUsername and
sspmSourceProfilePassword.
Some attributes configure the size and rate of traffic flows for the
purpose of performance measurements. Access to these attributes may
exacerbate the use of this MIB module in denial-of-service attacks.
It is possible to define a maximum packet rate on the device and to
indicate this rate through the sspmSourceFrequency object. This
object reflects the maximum acceptable packet rate that a device
supporting this MIB module is willing to generate. This places a
bound on setting the test packet rate through the
sspmSourceControlFrequency object. Other objects that control
aspects of the test packets related to packet size and rate are
sspmSourceControlTimeOut, sspmSourceControlSamplingDist and
sspmSourceControlFrequency.
Kalbfleisch, et al. Standards Track [Page 33]
^L
RFC 4149 SSPM-MIB August 2005
The objects sspmSourceControlSrc, sspmSourceControlDestAddr,
sspmSourceControlLooseSrcRteFill, and sspmSourceControlLooseSrcRteLen
control the setting of the source and destination addresses on the
packet headers and the routing of the packets. The device should not
allow the setting of source addresses on the test packets other than
those that are administratively configured onto the device. This is
controlled by using the syntax InterfaceIndexOrZero for the control
of the source address through the sspmSourceControlSrc object.
It is thus important to control even GET access to these objects and
possibly to even encrypt the values of these object when sending them
over the network via SNMP. Not all versions of SNMP provide features
for such a secure environment.
SNMP versions prior to SNMPv3 did not include adequate security.
Even if the network itself is secure (for example by using IPSec),
even then, there is no control as to who on the secure network is
allowed to access and GET/SET (read/change/create/delete) the objects
in this MIB module.
It is RECOMMENDED that implementers consider the security features as
provided by the SNMPv3 framework (see [RFC3410], section 8),
including full support for the SNMPv3 cryptographic mechanisms (for
authentication and privacy).
Further, deployment of SNMP versions prior to SNMPv3 is NOT
RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to
enable cryptographic security. It is then a customer/operator
responsibility to ensure that the SNMP entity giving access to an
instance of this MIB module is properly configured to give access to
the objects only to those principals (users) that have legitimate
rights to indeed GET or SET (change/create/delete) them.
9. Acknowledgements
This document was produced by the IETF Remote Network Monitoring
Working Group. The editors gratefully acknowledge the comments of
the following individuals: Andy Bierman, Lester D'Souza, Jim McQuaid,
and Steven Waldbusser.
10. Normative References
[RFC791] Postel, J., "Internet Protocol", STD 5, RFC 791,
September 1981.
[RFC1305] Mills, D., "Network Time Protocol (Version 3)
Specification, Implementation and Analysis", RFC 1305,
March 1992.
Kalbfleisch, et al. Standards Track [Page 34]
^L
RFC 4149 SSPM-MIB August 2005
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2287] Krupczak, C. and J. Saperia, "Definitions of System-Level
Managed Objects for Applications", RFC 2287, February
1998.
[RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
(IPv6) Specification", RFC 2460, December 1998.
[RFC2578] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
Rose, M., and S. Waldbusser, "Structure of Management
Information Version 2 (SMIv2)", STD 58, RFC 2578, April
1999.
[RFC2579] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
Rose, M., and S. Waldbusser, "Textual Conventions for
SMIv2", STD 58, RFC 2579, April 1999.
[RFC2580] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
Rose, M., and S. Waldbusser, "Conformance Statements for
SMIv2", STD 58, RFC 2580, April 1999.
[RFC2680] Almes, G., Kalidindi, S., and M. Zekauskas, "A One-Way
Packet Loss Metric for IPPM" RFC 2680, September 1999.
[RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group
MIB", RFC 2863, June 2000.
[RFC3291] Daniele, M., Haberman, B., Routhier, S., and J.
Schoenwaelder, "Textual Conventions for Internet Network
Addresses ", RFC 3291, May 2002.
[RFC3393] Demichelis, C. and P. Chimento, "IP Packet Delay
Variation Metric for IP Performance Metrics (IPPM)", RFC
3393, November 2002.
[RFC3432] Raisanen, V., Grotefeld, G., and A. Morton, "Network
Performance Measurement with Periodic Streams", RFC 3432,
November 2002.
[RFC3577] Waldbusser, S., Cole, R.G., Kalbfleisch, C., and D.
Romascanu, "Introduction to the Remote Monitoring (RMON)
Family of MIB Modules", RFC 3577, August 2003.
[RFC3729] Waldbusser, S., "Application Performance Measurement
MIB", RFC 3729, March 2004.
Kalbfleisch, et al. Standards Track [Page 35]
^L
RFC 4149 SSPM-MIB August 2005
[RFC4150] Dietz, R. and R. Cole, "Transport Performance Metrics
MIB", RFC 4150, August 2005.
11. Informative References
[RFC1272] Mills, C., Hirsch, G., and G. Ruth, "Internet Accounting
Background", RFC 1272, November 1991.
[RFC2021] Waldbusser, S., "Remote Network Monitoring Management
Information Base Version 2 using SMIv2", RFC 2021,
January 1997.
[RFC2722] Browlee, N., Mills, C., and G. Ruth, "Traffic Flow
Measurement: Architecture", RFC 2722, October 1999.
[RFC2720] Brownlee, N. "Traffic Flow Measurement: Meter MIB", RFC
2720, October 1999.
[RFC2330] Paxson, V., Almes, G., Mahdavi, J., and M. Mathis,
"Framework for IP Performance Metrics", RFC 2330, May
1998.
[RFC2564] Kalbfleisch, C., Krupczak, C., Presuhn, R., and J.
Saperia, "Application Management MIB", RFC 2564, May
1999.
[RFC2594] Hazewinkel, H., Kalbfleisch, C., and J. Schoenwaelder,
"Definitions of Managed Objects for WWW Services", RFC
2594, May 1999.
[RFC3165] Levi, D. and J. Schoenwaelder, "Definitions of Managed
Objects for the Delegation of Management Scripts", RFC
3165, August 2001.
[RFC2678] Mahdavi, J. and V. Paxson, "IPPM metrics for Measuring
Connectivity", RFC 2678, September 1999.
[RFC2679] Almes, G., Kalidindi, S., and M. Zekauskas, "A One-way
Delay Metric for IPPM", RFC 2679, September 1999.
[RFC2681] Almes, G., Kalidindi, S., and M. Zekauskas, "A Round-Trip
Delay Metric for IPPM", RFC 2681, September 1999.
[RFC2819] Waldbusser, S., "Remote Network Monitoring Management
Information Base", STD 59, RFC 2819, February 1995.
Kalbfleisch, et al. Standards Track [Page 36]
^L
RFC 4149 SSPM-MIB August 2005
[RFC2925] White, K., "Definitions of Managed Objects for Remote
Ping, Traceroute, and Lookup Operations", RFC 2925,
September 2000.
[RFC2982] Kavasseri, R., "Distributed Management Expression MIB",
RFC 2982, October 2000.
[RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart,
"Introduction and Applicability Statements for Internet-
Standard Management Framework", RFC 3410, December 2002.
[RFC3512] MacFaden, M., Partain, D., Saperia, J., and W. Tackabury,
"Configuring Networks and Devices with Simple Network
Management Protocol (SNMP)", RFC 3512, April 2003.
[EBT] Mathis, M. and M. Allman, "Empirical Bulk Transfer
Capacity", Work in Progress, October 1999.
[ODP] Shalunov, S., Teitelbaum, B., and M. Zekauskas, "A One-
Way Delay Protocol for IP Performance Measurements", Work
in Progress, December 2000.
[RFC4011] Waldbusser, S., Saperia, J., and T. Hongal, "Policy Based
Management MIB", RFC 4011, March 2005.
[TBT] Mathis, M., "TReno Bulk transfer Capacity", Work in
Progress, February 1999.
Kalbfleisch, et al. Standards Track [Page 37]
^L
RFC 4149 SSPM-MIB August 2005
Authors' Addresses
Carl W. Kalbfleisch
Consultant
EMail: ietf@kalbfleisch.us
Robert G. Cole
Johns Hopkins University Applied Physics Laboratory
MP2-170
11100 Johns Hopkins Road
Laurel, MD 20723-6099
USA
Tel: +1 443-778-6951
EMail: robert.cole@jhuapl.edu
Dan Romascanu
Avaya
Atidim Technology Park, Bldg. #3
Tel Aviv, 61131
Israel
Tel: +972-3-645-8414
EMail: dromasca@avaya.com
Kalbfleisch, et al. Standards Track [Page 38]
^L
RFC 4149 SSPM-MIB August 2005
Full Copyright Statement
Copyright (C) The Internet Society (2005).
This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at ietf-
ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Kalbfleisch, et al. Standards Track [Page 39]
^L
|