1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
|
Network Working Group I. Bryskin
Request for Comments: 4397 Independent Consultant
Category: Informational A. Farrel
Old Dog Consulting
February 2006
A Lexicography for the Interpretation of Generalized Multiprotocol
Label Switching (GMPLS) Terminology within the Context of the
ITU-T's Automatically Switched Optical Network (ASON) Architecture
Status of This Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2006).
Abstract
Generalized Multiprotocol Label Switching (GMPLS) has been developed
by the IETF to facilitate the establishment of Label Switched Paths
(LSPs) in a variety of data plane technologies and across several
architectural models. The ITU-T has specified an architecture for
the control of Automatically Switched Optical Networks (ASON).
This document provides a lexicography for the interpretation of GMPLS
terminology within the context of the ASON architecture.
It is important to note that GMPLS is applicable in a wider set of
contexts than just ASON. The definitions presented in this document
do not provide exclusive or complete interpretations of GMPLS
concepts. This document simply allows the GMPLS terms to be applied
within the ASON context.
Bryskin & Farrel Informational [Page 1]
^L
RFC 4397 GMPLS ASON Lexicography February 2006
Table of Contents
1. Introduction ....................................................3
2. Terminology .....................................................3
2.1. GMPLS Terminology Sources ..................................3
2.2. ASON Terminology Sources ...................................4
2.3. Common Terminology Sources .................................4
3. Lexicography ....................................................4
3.1. Network Presences ..........................................4
3.2. Resources ..................................................5
3.3. Layers .....................................................6
3.4. Labels .....................................................7
3.5. Data Links .................................................7
3.6. Link Interfaces ............................................8
3.7. Connections ................................................9
3.8. Switching, Termination, and Adaptation Capabilities .......10
3.9. TE Links and FAs ..........................................11
3.10. TE Domains ...............................................13
3.11. Component Links and Bundles ..............................13
3.12. Regions ..................................................14
4. Guidance on the Application of this Lexicography ...............14
5. Management Considerations ......................................15
6. Security Considerations ........................................15
7. Acknowledgements ...............................................15
8. Normative References ...........................................16
9. Informative References .........................................16
Bryskin & Farrel Informational [Page 2]
^L
RFC 4397 GMPLS ASON Lexicography February 2006
1. Introduction
Generalized Multiprotocol Label Switching (GMPLS) has been developed
by the IETF to facilitate the establishment of Label Switched Paths
(LSPs) in a variety of data plane technologies such as Packet
Switching Capable (PSC), Layer Two Switching Capable (L2SC), Time
Division Multiplexing (TDM), Lambda Switching Capable (LSC), and
Fiber Switching Capable (FSC).
The ITU-T has specified an architecture for the control of
Automatically Switched Optical Networks (ASON). This architecture
forms the basis of many Recommendations within the ITU-T.
Because the GMPLS and ASON architectures were developed by different
people in different standards bodies, and because the architectures
have very different historic backgrounds (the Internet, and transport
networks respectively), the terminology used is different.
This document provides a lexicography for the interpretation of GMPLS
terminology within the context of the ASON architecture. This allows
GMPLS documents to be generally understood by those familiar with
ASON Recommendations. The definitions presented in this document do
not provide exclusive or complete interpretations of the GMPLS
concepts.
2. Terminology
Throughout this document, angle brackets ("<" and ">") are used to
indicate the context in which a term applies. For example, "<Data
Plane>" as part of a description of a term means that the term
applies within the data plane.
2.1. GMPLS Terminology Sources
GMPLS terminology is principally defined in [RFC3945]. Other
documents provide further key definitions including [RFC4201],
[RFC4202], [RFC4204], and [RFC4206].
The reader is recommended to become familiar with these other
documents before attempting to use this document to provide a more
general mapping between GMPLS and ASON.
For details of GMPLS signaling, please refer to [RFC3471] and
[RFC3473]. For details of GMPLS routing, please refer to [RFC4203]
and [RFC4205].
Bryskin & Farrel Informational [Page 3]
^L
RFC 4397 GMPLS ASON Lexicography February 2006
2.2. ASON Terminology Sources
The ASON architecture is specified in ITU-T Recommendation G.8080
[G-8080]. This is developed from generic functional architectures
and requirements specified in [G-805], [G-807], and [G-872]. The
ASON terminology is defined in several Recommendations in the ASON
family such as [G-8080], [G-8081], [G-7713], [G-7714], and [G-7715].
The reader must be familiar with these documents before attempting to
apply the lexicography set out in this document.
2.3. Common Terminology Sources
The work in this document builds on the shared view of ASON
requirements and requirements expressed in [RFC4139], [RFC4258], and
[RFC4394].
3. Lexicography
3.1. Network Presences
3.1.1. GMPLS Terms
Transport node <Data Plane> is a logical network device that is
capable of originating and/or terminating of a data flow and/or
switching it on the route to its destination.
Controller <Control Plane> is a logical entity that models all
control plane intelligence (routing, traffic engineering (TE), and
signaling protocols, path computation, etc.). A single controller
can manage one or more transport nodes. Separate functions (such
as routing and signaling) may be hosted at distinct sites and
hence could be considered as separate logical entities referred
to, for example, as the routing controller, the signaling
controller, etc.
Label Switching Router (LSR) <Control & Data Planes> is a logical
combination of a transport node and the controller that manages
the transport node. Many implementations of LSRs collocate all
control plane and data plane functions associated with a transport
node within a single physical presence making the term LSR
concrete rather than logical.
In some instances, the term LSR may be applied more loosely to
indicate just the transport node or just the controller function
dependent on the context.
Node <Control & Data Planes> is a synonym for an LSR.
Bryskin & Farrel Informational [Page 4]
^L
RFC 4397 GMPLS ASON Lexicography February 2006
Control plane network <Control Plane> is an IP network used for
delivery of control plane (protocol) messages exchanged by
controllers.
3.1.2. ASON Terms
A GMPLS transport node is an ASON network element.
A GMPLS controller is the set of ASON functional components
controlling a given ASON network element (or partition of a network
element). In ASON, this set of functional components may exist in
one place or multiple places.
A GMPLS node is the combination of an ASON network element (or
partition of a network element) and its associated control
components.
The GMPLS control plane network is the ASON Signaling Communication
Network (SCN). Note that both routing and signaling exchanges are
carried by the SCN.
3.2. Resources
3.2.1. GMPLS Terms
Non-packet-based resource <Data Plane> is a channel of a certain
bandwidth that could be allocated in a network data plane of a
particular technology for the purpose of user traffic delivery.
Examples of non-packet-based resources are timeslots, lambda
channels, etc.
Packet-based resource <Data Plane> is an abstraction hiding the means
related to the delivery of traffic with particular parameters
(most importantly, bandwidth) with particular quality of service
(QoS) over PSC media. Examples of packet-based resources are
forwarding queues, schedulers, etc.
Layer Resource (Resource) <Data Plane>. A non-packet-based data
plane technology may yield resources in different network layers
(see section 3.3). For example, some TDM devices can operate with
VC-12 timeslots, some with VC-4 timeslots, and some with VC4-4c
timeslots. There are also multiple layers of packet-based
resources (i.e., one per label in the label stack). Therefore, we
define layer resource (or simply resource) irrespective of the
underlying data plane technology as a basic data plane construct.
It is defined by a combination of a particular data encoding type
Bryskin & Farrel Informational [Page 5]
^L
RFC 4397 GMPLS ASON Lexicography February 2006
and a switching/terminating bandwidth granularity. Examples of
layer resources are: PSC1, PSC4, ATM VP, ATM VC, Ethernet, VC-12,
VC-4, Lambda 10G, and Lambda 40G.
These three definitions give rise to the concept of Resource Type.
Although not a formal term, this is useful shorthand to identify how
and where a resource can be used dependent on the switching type,
data encoding type, and switching/terminating bandwidth granularity
(see section 3.8).
All other descriptions provided in this memo are tightly bound to the
resource.
3.2.2. ASON Terms
ASON terms for resource:
- In the context of link discovery and resource management
(allocation, binding into cross-connects, etc.), a GMPLS resource
is one end of a link connection.
- In the context of routing, path computation, and signaling, a GMPLS
resource is a link connection or trail termination.
Resource type is identified by a client CI (Characteristics
Information) that could be carried by the resource.
3.3. Layers
3.3.1. GMPLS Terms
Layer <Data Plane> is a set of resources of the same type that could
be used for establishing a connection or used for connectionless
data delivery.
Note. In GMPLS, the existence of non-blocking switching function in
a transport node in a particular layer is modeled explicitly as one
of the functions of the link interfaces connecting the transport node
to its data links.
A GMPLS layer is not the same as a GMPLS region. See section 3.12.
3.3.2. ASON Terms
A GMPLS layer is an ASON layer network.
Bryskin & Farrel Informational [Page 6]
^L
RFC 4397 GMPLS ASON Lexicography February 2006
3.4. Labels
3.4.1. GMPLS Terms
Label <Control Plane> is an abstraction that provides an identifier
for use in the control plane in order to identify a transport
plane resource.
3.4.2. ASON Terms
A GMPLS label is the portion of an ASON SNP name that follows the
SNPP name.
3.5. Data Links
3.5.1. GMPLS Terms
Unidirectional data link end <Data Plane> is a set of resources that
belong to the same layer and that could be allocated for the
transfer of traffic in that layer from a particular transport node
to the same neighboring transport node in the same direction. A
unidirectional data link end is connected to a transport node by
one or more link interfaces (see section 3.6).
Bidirectional data link end <Data Plane> is an association of two
unidirectional data link ends that exist in the same layer and
that could be used for the transfer of traffic in that layer
between a particular transport node and the same neighbor in both
directions. A bidirectional data link end is connected to a
transport node by one or more link interfaces (see section 3.6).
Unidirectional data link <Data Plane> is an association of two
unidirectional data link ends that exist in the same layer, that
are connected to two transport nodes adjacent in that layer, and
that could be used for the transfer of traffic between the two
transport nodes in one direction.
Bidirectional data link <Data Plane> is an association of two
bidirectional data link ends that exist in the same layer, that
are connected to two transport nodes adjacent in that layer, and
that could be used for the transfer of traffic between the two
transport nodes in both directions.
Bryskin & Farrel Informational [Page 7]
^L
RFC 4397 GMPLS ASON Lexicography February 2006
3.5.2. ASON Terms
A GMPLS unidirectional data link end is a collection of connection
points from the same client layer that are supported by a single
trail termination (access point).
A GMPLS data link is an ASON link supported by a single server trail.
3.6. Link Interfaces
3.6.1. GMPLS Terms
Unidirectional link interface <Data Plane> is an abstraction that
connects a transport node to a unidirectional data link end and
represents (hides) the data plane intelligence like switching,
termination, and adaptation in one direction. In GMPLS, link
interfaces are often referred to as "GMPLS interfaces" and it
should be understood that these are data plane interfaces and the
term does not refer to the ability of a control plane interface to
handle GMPLS protocols.
A single unidirectional data link end could be connected to a
transport node by multiple link interfaces with one of them, for
example, realizing switching function, while others realize the
function of termination/adaptation.
Bidirectional link interface <Data Plane> is an association of two or
more unidirectional link interfaces that connects a transport node
to a bidirectional data link end and represents the data plane
intelligence like switching, termination, and adaptation in both
directions.
Link interface type <Data Plane> is identified by the function the
interface provides. There are three distinct functions --
switching, termination, and adaptation; hence, there are three
types of link interface. Thus, when a Wavelength Division
Multiplexing (WDM) link can do switching for some lambda channels,
and termination and TDM OC48 adaptation for some other lambda
channels, we say that the link is connected to the transport node
by three interfaces each of a separate type: switching,
termination, and adaptation.
3.6.2. ASON Terms
A GMPLS interface is the set of trail termination and adaptation
functions between one or more server layer trails and a specific
client layer subnetwork (which commonly is a matrix in a network
element).
Bryskin & Farrel Informational [Page 8]
^L
RFC 4397 GMPLS ASON Lexicography February 2006
The GMPLS interface type may be identified by the ASON adapted client
layer, or by the terminated server layer, or a combination of the
two, depending on the context. In some cases, a GMPLS interface
comprises a set of ASON trail termination/adaptation functions, for
which some connection points are bound to trail terminations and
others to matrices.
3.7. Connections
3.7.1. GMPLS Terms
In GMPLS a connection is known as a Label Switched Path (LSP).
Unidirectional LSP (connection) <Data Plane> is a single resource or
a set of cross-connected resources of a particular layer that
could deliver traffic in that layer between a pair of transport
nodes in one direction.
Unidirectional LSP (connection) <Control Plane> is the signaling
state necessary to maintain a unidirectional data plane LSP.
Bidirectional LSP (connection) <Data Plane> is an association of two
unidirectional LSPs (connections) that could simultaneously
deliver traffic in a particular layer between a pair of transport
nodes in opposite directions.
In the context of GMPLS, both unidirectional constituents of a
bidirectional LSP (connection) take identical paths in terms of
data links, are provisioned concurrently, and require a single
(shared) control state.
Bidirectional LSP (connection) <Control Plane> is the signaling state
necessary to maintain a bidirectional data plane LSP.
LSP (connection) segment <Data Plane> is a single resource or a set
of cross-connected resources that constitutes a segment of an LSP
(connection).
3.7.2. ASON Terms
A GMPLS LSP (connection) is an ASON network connection.
A GMPLS LSP segment is an ASON serial compound link connection.
Bryskin & Farrel Informational [Page 9]
^L
RFC 4397 GMPLS ASON Lexicography February 2006
3.8. Switching, Termination, and Adaptation Capabilities
3.8.1. GMPLS Terms
Switching capability <Data Plane> is a property (and defines a type)
of a link interface that connects a particular data link to a
transport node. This property/type characterizes the interface's
ability to cooperate with other link interfaces connecting data
links within the same layer to the same transport node for the
purpose of binding resources into cross-connects. Switching
capability is advertised as an attribute of the TE link local end
associated with the link interface.
Termination capability <Data Plane> is a property of a link interface
that connects a particular data link to a transport node. This
property characterizes the interface's ability to terminate
connections within the layer that the data link belongs to.
Adaptation capability <Data Plane> is a property of a link interface
that connects a particular data link to a transport node. This
property characterizes the interface's ability to perform a
nesting function -- to use a locally terminated connection that
belongs to one layer as a data link for some other layer.
The need for advertisement of adaptation and termination capabilities
within GMPLS has been recognized, and work is in progress to
determine how these will be advertised. It is likely that they will
be advertised as a single combined attribute, or as separate
attributes of the TE link local end associated with the link
interface.
3.8.2. ASON Terms
In ASON applications:
The GMPLS switching capability is a property of an ASON link end
representing its association with a matrix.
The GMPLS termination capability is a property of an ASON link end
representing potential binding to a termination point.
The GMPLS adaptation capability is a property of an ASON link end
representing potential adaptation to/from a client layer network.
Bryskin & Farrel Informational [Page 10]
^L
RFC 4397 GMPLS ASON Lexicography February 2006
3.9. TE Links and FAs
3.9.1. GMPLS Terms
TE link end <Control Plane> is a grouping for the purpose of
advertising and routing of resources of a particular layer.
Such a grouping allows for decoupling of path selection from
resource assignment. Specifically, a path could be selected in a
centralized way in terms of TE link ends, while the resource
assignment (resource reservation and label allocation) could be
performed in a distributed way during the connection setup. A TE
link end may reflect zero, one or more data link ends in the data
plane. A TE link end is associated with exactly one layer.
TE link <Control Plane> is a grouping of two TE link ends associated
with two neighboring transport nodes in a particular layer.
In contrast to a data link, which provides network flexibility in
a particular layer and, therefore, is a "real" topological
element, a TE link is a logical routing element. For example, an
LSP path is computed in terms of TE links (or more precisely, in
terms of TE link ends), while the LSP is provisioned over (that
is, resources are allocated from) data links.
Virtual TE link is a TE link associated with zero data links.
TE link end advertising <Control Plane>. A controller managing a
particular transport node advertises local TE link ends. Any
controller in the TE domain makes a TE link available for its
local path computation if it receives consistent advertisements of
both TE link ends. Strictly speaking, there is no such thing as
TE link advertising -- only TE link end advertising. TE link end
advertising may contain information about multiple switching
capabilities. This, however, should not be interpreted as
advertising of a multi-layer TE link end, but rather as joint
advertisement of ends of multiple parallel TE links, each
representing resources in a separate layer. The advertisement may
contain attributes shared by all TE links in the group (for
example, protection capabilities, Shared Risk Link Groups (SRLGs),
etc.), separate information related to each TE link (for example,
switching capability, data encoding, unreserved bandwidth, etc.)
as well as information related to inter-layer relationships of the
advertised resources (for example, termination and adaptation
capabilities) should the control plane decide to use them as the
termination points of higher-layer data links. These higher-layer
data links, however, are not real yet -- they are abstract until
the underlying connections are established in the lower layers.
Bryskin & Farrel Informational [Page 11]
^L
RFC 4397 GMPLS ASON Lexicography February 2006
LSPs created in lower layers for the purpose of providing data
links (extra network flexibility) in higher layers are called
hierarchical connections or LSPs (H-LSPs), or simply hierarchies.
LSPs created for the purpose of providing data links in the same
layer are called stitching segments. H-LSPs and stitching
segments could, but do not have to, be advertised as TE links.
Naturally, if they are advertised as TE links (LSPs advertised as
TE links are often referred to as TE-LSPs), they are made
available for path computations performed on any controller within
the TE domain into which they are advertised. H-LSPs and
stitching segments could be advertised either individually or in
TE bundles. An H-LSP or a stitching segment could be advertised
as a TE link either into the same or a separate TE domain compared
to the one within which it was provisioned.
A set of H-LSPs that is created (or could be created) in a
particular layer to provide network flexibility (data links) in
other layers is called a Virtual Network Topology (VNT). A single
H-LSP could provide several (more than one) data links (each in a
different layer).
Forwarding Adjacency (FA) <Control Plane> is a TE link that does not
require a direct routing adjacency (peering) between the
controllers managing its ends in order to guarantee control plane
connectivity (a control channel) between the controllers. An
example of an FA is an H-LSP or stitching segment advertised as a
TE link into the same TE domain within which it was dynamically
provisioned. In such cases, the control plane connectivity
between the controllers at the ends of the H-LSP/stitching segment
is guaranteed by the concatenation of control channels
interconnecting the ends of each of its constituents. In
contrast, an H-LSP or stitching segment advertised as a TE link
into a TE domain (different than one where it was provisioned)
generally requires a direct routing adjacency to be established
within the TE domain where the TE link is advertised in order to
guarantee control plane connectivity between the TE link ends.
Therefore, is not an FA.
3.9.2. ASON Terms
The ITU term for a TE link end is Subnetwork Point (SNP) pool (SNPP).
The ITU term for a TE link is SNPP link.
The ITU term for an H-LSP is trail.
Bryskin & Farrel Informational [Page 12]
^L
RFC 4397 GMPLS ASON Lexicography February 2006
3.10. TE Domains
3.10.1 GMPLS Terms
TE link attribute is a parameter of the set of resources associated
with a TE link end that is significant in the context of path
computation.
Full TE visibility is a situation when a controller receives all
unmodified TE advertisements from every other controller in a
particular set of controllers.
Limited TE visibility is a situation when a controller receives
summarized TE information, or does not receive TE advertisements
from at least one of a particular set of controllers.
TE domain is a set of controllers each of which has full TE
visibility within the set.
TE database (TED) is a memory structure within a controller that
contains all TE advertisements generated by all controllers within
a particular TE domain.
Vertical network integration is a set of control plane mechanisms and
coordinated data plane mechanisms that span multiple layers. The
control plane mechanisms exist on one or more controllers and
operate either within a single control plane instance or between
control plane instances. The data plane mechanisms consist of
collaboration and adaptation between layers within a single
transport node.
Horizontal network integration is a set of control plane mechanisms
and coordinated data plane mechanisms that span multiple TE
domains within the same layer. The control plane mechanisms exist
on one or more controllers and operate either within a single
control plane instance or between control plane instances. The
data plane mechanisms consist of collaboration between TE domains.
3.11. Component Links and Bundles
3.11.1. GMPLS Terms
Component link end <Control Plane> is a grouping of resources of a
particular layer that is not advertised as an individual TE link
end. A component link end could represent one or more data link
ends or any subset of resources that belong to one or more data
link ends.
Bryskin & Farrel Informational [Page 13]
^L
RFC 4397 GMPLS ASON Lexicography February 2006
Component link <Control Plane> is a grouping of two or more component
link ends associated with neighboring transport nodes (that is,
directly interconnected by one or more data links) in a particular
layer. Component links are equivalent to TE links except that the
component link ends are not advertised separately.
TE bundle <Control Plane> is an association of several parallel (that
is, connecting the same pair of transport nodes) component links
whose attributes are identical or whose differences are
sufficiently negligible that the TE domain can view the entire
association as a single TE link. A TE bundle is advertised in the
same way as a TE link, that is, by representing the associated
component link ends as a single TE link end (TE bundle end) which
is advertised.
3.12. Regions
3.12.1. GMPLS Terms
TE region <Control Plane> is a set of one or more layers that are
associated with the same type of data plane technology. A TE
region is sometimes called an LSP region or just a region.
Examples of regions are: IP, ATM, TDM, photonic, fiber switching,
etc. Regions and region boundaries are significant for the
signaling sub-system of the control plane because LSPs are
signaled substantially differently (i.e., use different signaling
object formats and semantics) in different regions. Furthermore,
advertising, routing, and path computation could be performed
differently in different regions. For example, computation of
paths across photonic regions requires a wider set of constraints
(e.g., optical impairments, wavelength continuity, etc) and needs
to be performed in different terms (e.g., in terms of individual
resources -- lambda channels, rather than in terms of TE links)
compared to path computation in other regions like IP or TDM.
4. Guidance on the Application of this Lexicography
As discussed in the introduction to this document, this lexicography
is intended to bring the concepts and terms associated with GMPLS
into the context of the ITU-T's ASON architecture. Thus, it should
help those familiar with ASON to see how they may use the features
and functions of GMPLS in order to meet the requirements of an ASON.
For example, service providers wishing to establish a protected end-
to-end service might read [SEG-PROT] and [E2E-PROT] and wish to
understand how the GMPLS terms used relate to the ASON architecture
so that they can confirm that they will satisfy their requirements.
Bryskin & Farrel Informational [Page 14]
^L
RFC 4397 GMPLS ASON Lexicography February 2006
This lexicography should not be used in order to obtain or derive
definitive definitions of GMPLS terms. To obtain definitions of
GMPLS terms that are applicable across all GMPLS architectural
models, the reader should refer to the RFCs listed in the references
sections of this document. [RFC3945] provides an overview of the
GMPLS architecture and should be read first.
5. Management Considerations
Both GMPLS and ASON networks require management. Both GMPLS and ASON
specifications include considerable efforts to provide operator
control and monitoring, as well as Operations and Management (OAM)
functionality.
These concepts are, however, out of scope of this document.
6. Security Considerations
Security is also a significant requirement of both GMPLS and ASON
architectures.
Again, however, this informational document is intended only to
provide a lexicography, and the security concerns are, therefore, out
of scope.
7. Acknowledgements
The authors would like to thank participants in the IETF's CCAMP
working group and the ITU-T's Study Group 15 for their help in
producing this document. In particular, all those who attended the
Study Group 15 Question 14 Interim Meeting in Holmdel, New Jersey
during January 2005. Further thanks to all participants of Study
Group 15 Questions 12 and 14 who have provided valuable discussion,
feedback and suggested text.
Many thanks to Ichiro Inoue for his useful review and input, and to
Scott Brim and Dimitri Papadimitriou for lengthy and constructive
discussions. Ben Mack-Crane and Jonathan Sadler provided very
helpful reviews and discussions of ASON terms. Thanks to Deborah
Brungard and Kohei Shiomoto for additional review comments.
Bryskin & Farrel Informational [Page 15]
^L
RFC 4397 GMPLS ASON Lexicography February 2006
8. Normative References
[RFC3945] Mannie, E., Ed., "Generalized Multi-Protocol Label
Switching (GMPLS) Architecture", RFC 3945, October
2004.
[RFC4201] Kompella, K., Rekhter, Y., and L. Berger, "Link
Bundling in MPLS Traffic Engineering (TE)", RFC
4201, October 2005.
[RFC4202] Kompella, K. and Y. Rekhter, "Routing Extensions in
Support of Generalized Multi-Protocol Label
Switching (GMPLS)", RFC 4202, October 2005.
[RFC4204] Lang, J., Ed., "Link Management Protocol (LMP)", RFC
4204, October 2005.
[RFC4206] Kompella, K. and Y. Rekhter, "Label Switched Paths
(LSP) Hierarchy with Generalized Multi-Protocol
Label Switching (GMPLS) Traffic Engineering (TE)",
RFC 4206, October 2005.
9. Informative References
[RFC3471] Berger, L., Ed., "Generalized Multi-Protocol Label
Switching (GMPLS) Signaling Functional Description",
RFC 3471, January 2003.
[RFC3473] Berger, L., Ed., "Generalized Multi-Protocol Label
Switching (GMPLS) Signaling Functional Description",
RFC 3471, January 2003.
[RFC4139] Papadimitriou, D., Drake, J., Ash, J., Farrel, A.,
and L. Ong, "Requirements for Generalized MPLS
(GMPLS) Signaling Usage and Extensions for
Automatically Switched Optical Network (ASON)", RFC
4139, July 2005.
[RFC4203] Kompella, K., Ed. and Y. Rekhter, Ed., "OSPF
Extensions in Support of Generalized Multi-Protocol
Label Switching (GMPLS)", RFC 4203, October 2005.
[RFC4205] Kompella, K., Ed. and Y. Rekhter, Ed., "Intermediate
System to Intermediate System (IS-IS) Extensions in
Support of Generalized Multi-Protocol Label
Switching (GMPLS)", RFC 4205, October 2005.
Bryskin & Farrel Informational [Page 16]
^L
RFC 4397 GMPLS ASON Lexicography February 2006
[RFC4258] Brungard, D., Ed., "Requirements for Generalized
Multi-Protocol Label Switching (GMPLS) Routing for
the Automatically Switched Optical Network (ASON)",
RFC 4258, November 2005.
[RFC4394] Fedyk, D., Aboul-Magd, O., Brungard, D., Lang, J.,
and D. Papadimitriou, "A Transport Network View of
the Link Management Protocol (LMP)", RFC 4394,
February 2006.
[E2E-PROT] Lang, J., Ed., Rekhter, Y., Ed., and D.
Papadimitriou, D., Ed., "RSVP-TE Extensions in
support of End-to-End Generalized Multi-Protocol
Label Switching (GMPLS)-based Recovery", Work in
Progress, April 2005.
[SEG-PROT] Berger, L., Bryskin, I., Papadimitriou, D., and A.
Farrel, "GMPLS Based Segment Recovery", Work in
Progress, May 2005.
For information on the availability of the following documents,
please see http://www.itu.int.
[G-8080] ITU-T Recommendation G.8080/Y.1304, Architecture for
the automatically switched optical network (ASON).
[G-805] ITU-T Recommendation G.805 (2000), Generic
functional architecture of transport networks.
[G-807] ITU-T Recommendation G.807/Y.1302 (2001),
Requirements for the automatic switched transport
network (ASTN).
[G-872] ITU-T Recommendation G.872 (2001), Architecture of
optical transport networks.
[G-8081] ITU-T Recommendation G.8081 (2004), Terms and
definitions for Automatically Switched Optical
Networks (ASON).
[G-7713] ITU-T Recommendation G.7713 (2001), Distributed Call
and Connection Management.
[G-7714] ITU-T Recommendation G.7714 Revision (2005),
Generalized automatic discovery techniques.
Bryskin & Farrel Informational [Page 17]
^L
RFC 4397 GMPLS ASON Lexicography February 2006
[G-7715] ITU-T Recommendation G.7715 (2002), Architecture and
Requirements for the Automatically Switched Optical
Network (ASON).
Authors' Addresses
Igor Bryskin
Independent Consultant
EMail: i_bryskin@yahoo.com
Adrian Farrel
Old Dog Consulting
Phone: +44 (0) 1978 860944
EMail: adrian@olddog.co.uk
Bryskin & Farrel Informational [Page 18]
^L
RFC 4397 GMPLS ASON Lexicography February 2006
Full Copyright Statement
Copyright (C) The Internet Society (2006).
This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is provided by the IETF
Administrative Support Activity (IASA).
Bryskin & Farrel Informational [Page 19]
^L
|