summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc4465.txt
blob: 1ec31bbb0ed092d9b94db3daba374efd1331a688 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
Network Working Group                                         A. Surtees
Request for Comments: 4465                                       M. West
Category: Informational                      Siemens/Roke Manor Research
                                                               June 2006


             Signaling Compression (SigComp) Torture Tests

Status of This Memo

   This memo provides information for the Internet community.  It does
   not specify an Internet standard of any kind.  Distribution of this
   memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2006).

Abstract

   This document provides a set of "torture tests" for implementers of
   the Signaling Compression (SigComp) protocol.  The torture tests
   check each of the SigComp Universal Decompressor Virtual Machine
   instructions in turn, focusing in particular on the boundary and
   error cases that are not generally encountered when running
   well-behaved compression algorithms.  Tests are also provided for
   other SigComp entities such as the dispatcher and the state handler.
























Surtees & West               Informational                      [Page 1]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


Table of Contents

   1. Introduction ....................................................3
   2. Torture Tests for UDVM ..........................................4
      2.1. Bit Manipulation ...........................................4
      2.2. Arithmetic .................................................5
      2.3. Sorting ....................................................7
      2.4. SHA-1 ......................................................8
      2.5. LOAD and MULTILOAD .........................................9
      2.6. COPY ......................................................11
      2.7. COPY-LITERAL and COPY-OFFSET ..............................12
      2.8. MEMSET ....................................................14
      2.9. CRC .......................................................15
      2.10. INPUT-BITS ...............................................16
      2.11. INPUT-HUFFMAN ............................................17
      2.12. INPUT-BYTES ..............................................19
      2.13. Stack Manipulation .......................................20
      2.14. Program Flow .............................................22
      2.15. State Creation ...........................................23
      2.16. STATE-ACCESS .............................................26
   3. Torture Tests for Dispatcher ...................................28
      3.1. Useful Values .............................................28
      3.2. Cycles Checking ...........................................31
      3.3. Message-based Transport ...................................32
      3.4. Stream-based Transport ....................................34
      3.5. Input Past the End of a Message ...........................36
   4. Torture Tests for State Handler ................................38
      4.1. SigComp Feedback Mechanism ................................38
      4.2. State Memory Management ...................................41
      4.3. Multiple Compartments .....................................44
      4.4. Accessing RFC 3485 State ..................................49
      4.5. Bytecode State Creation ...................................50
   5. Security Considerations ........................................53
   6. Acknowledgements ...............................................53
   7. Normative References ...........................................53
   Appendix A.  UDVM Bytecode for the Torture Tests ..................54
      A.1. Instructions ..............................................54
           A.1.1. Bit Manipulation ...................................54
           A.1.2. Arithmetic .........................................55
           A.1.3. Sorting ............................................55
           A.1.4. SHA-1 ..............................................56
           A.1.5. LOAD and MULTILOAD .................................56
           A.1.6. COPY ...............................................56
           A.1.7. COPY-LITERAL and COPY-OFFSET .......................57
           A.1.8. MEMSET .............................................57
           A.1.9. CRC ................................................57
           A.1.10. INPUT-BITS ........................................57
           A.1.11. INPUT-HUFFMAN .....................................58



Surtees & West               Informational                      [Page 2]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


           A.1.12. INPUT-BYTES .......................................58
           A.1.13. Stack Manipulation ................................58
           A.1.14. Program Flow ......................................59
           A.1.15. State Creation ....................................59
           A.1.16. STATE-ACCESS ......................................60
      A.2. Dispatcher Tests ..........................................61
           A.2.1. Useful Values ......................................61
           A.2.2. Cycles Checking  ...................................62
           A.2.3. Message-based Transport ............................62
           A.2.4. Stream-based Transport .............................62
           A.2.5. Input Past the End of a Message ....................63
      A.3. State Handler Tests .......................................64
           A.3.1. SigComp Feedback Mechanism .........................64
           A.3.2. State Memory Management ............................64
           A.3.3. Multiple Compartments ..............................65
           A.3.4. Accessing RFC 3485 State ...........................66
           A.3.5. Bytecode State Creation ............................66

1.  Introduction

   This document provides a set of "torture tests" for implementers of
   the SigComp protocol, RFC 3320 [2].  The idea behind SigComp is to
   standardize a Universal Decompressor Virtual Machine (UDVM) that can
   be programmed to understand the output of many well-known compressors
   including DEFLATE and LZW.  The bytecode for the chosen decompressor
   is uploaded to the UDVM as part of the SigComp message flow.

   The SigComp User's Guide [1] gives examples of a number of different
   algorithms that can be used by the SigComp protocol.  However, the
   bytecode for the corresponding decompressors is relatively well
   behaved and does not test the boundary and error cases that may
   potentially be exploited by malicious SigComp messages.

   This document is divided into a number of sections, each containing a
   piece of code designed to test a particular function of one of the
   SigComp entities (UDVM, dispatcher, and state handler).  The specific
   boundary and error cases tested by the bytecode are also listed, as
   are the output the code should produce and the number of UDVM cycles
   that should be used.

   Each test runs in the SigComp minimum decompression memory size (that
   is, 2K), within the minimum number of cycles per bit (that is, 16)
   and in tests where state is stored 2K state memory size is needed.








Surtees & West               Informational                      [Page 3]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


2.  Torture Tests for UDVM

   The following sections each provide code to test one or more UDVM
   instructions.  In the interests of readability, the code is given
   using the SigComp assembly language: a description of how to convert
   this assembly code into UDVM bytecode can be found in the SigComp
   User's Guide [1].

   The raw UDVM bytecode for each torture test is given in Appendix A.

   Each section also lists the number of UDVM cycles required to execute
   the code.  Note that this figure only takes into account the cost of
   executing each UDVM instruction (in particular, it ignores the fact
   that the UDVM can gain extra cycles as a result of inputting more
   data).

2.1.  Bit Manipulation

   This section gives assembly code to test the AND, OR, NOT, LSHIFT,
   and RSHIFT instructions.  When the instructions have a multitype
   operand, the code tests the case where the multitype contains a fixed
   integer value, and the case where it contains a memory address at
   which the 2-byte operand value can be found.  In addition, the code
   is designed to test that the following boundary cases have been
   correctly implemented:

   1.  The instructions overwrite themselves with the result of the bit
       manipulation operation, in which case execution continues
       normally.

   2.  The LSHIFT or RSHIFT instructions shift bits beyond the 2-byte
       boundary, in which case the bits must be discarded.

   3.  The UDVM registers byte_copy_left and byte_copy_right are used to
       store the results of the bit manipulation operations.  Since no
       byte copying is taking place, these registers should behave in
       exactly the same manner as ordinary UDVM memory addresses.














Surtees & West               Informational                      [Page 4]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   at (64)

   :a                              pad (2)
   :b                              pad (2)

   at (128)

   JUMP (start)            ; Jump to address 255

   at (255)

   :start

   ; The multitypes are values
                           ; $start = 448 (first 2 bytes of AND instr)
   AND ($start, 21845)     ; 448 & 21845 = 320 = 0x0140
   OR ($a, 42)             ; 0 | 42 = 42 = 0x002a
   NOT ($b)                ; ~0 = 65535 = 0xffff
   LSHIFT ($a, 3)          ; 42 << 3 = 336 = 0x0150
   RSHIFT ($b, 65535)      ; 65535 >> 65535 = 0 = 0x0000

   OUTPUT (64, 4)          ; Output 0x0150 0000

   ; The multitypes are references

   AND ($a, $start)        ; 336 & 320 = 320 = 0x0140
   OR ($a, $a)             ; 320 | 320 = 320 = 0x0140
   NOT ($a)                ; ~320 = 65215 = 0xfebf
   LSHIFT ($b, $a)         ; 0 << 65215 = 0 = 0x0000
   RSHIFT ($a, $b)         ; 65215 >> 0 = 65215 = 0xfebf

   OUTPUT (64, 4)          ; Output 0xfebf 0000

   END-MESSAGE (0, 0, 0, 0, 0, 0, 0)

   The output of the code is 0x0150 0000 febf 0000.  Executing the code
   costs a total of 22 UDVM cycles.

2.2.  Arithmetic

   This section gives assembly code to test the ADD, SUBTRACT, MULTIPLY,
   DIVIDE, and REMAINDER instructions.  The code is designed to test
   that the following boundary cases have been correctly implemented:

   1.  The instructions overwrite themselves with the result of the
       arithmetic operation, resulting in continuation as if the bytes
       were not bytecode.




Surtees & West               Informational                      [Page 5]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   2.  The result does not lie between 0 and 2^16 - 1 inclusive, in
       which case it must be taken modulo 2^16.

   3.  The divisor in the DIVIDE or REMAINDER instructions is 0 (in
       which case decompression failure must occur).

   at (64)

   :a                              pad (2)
   :b                              pad (2)
   :type                           pad (1)
   :type_lsb                       pad (1)

   at (128)

   INPUT-BYTES (1, type_lsb, decomp_failure)
   SUBTRACT ($type, 1)
   JUMP (start)
   :decomp_failure
   DECOMPRESSION-FAILURE

   ; Now the value in $type should be 0xffff, 0x0000, or 0x0001
   ; according to whether the input was 0x00, 0x01, or 0x02.

   at (255)

   :start

   ; The multitypes are values
                           ; For all three messages
                           ; $start = 1728 (first 2 bytes of ADD instr)
   ADD ($start, 63809)     ; 1728 + 63809 = 1 = 0x0001
   SUBTRACT ($a, 1)        ; 0 - 1 = 65535 = 0xffff
   MULTIPLY ($a, 1001)     ; 65535 * 1001 = 64535 = 0xfc17
   DIVIDE ($a, 101)        ; 64535 / 101 = 638 = 0x027e
   REMAINDER ($a, 11)      ; 638 % 11 = 0 = 0x0000

   OUTPUT (64, 4)          ; output 0x0000 0000

   ; The multitypes are references
   ADD ($b, $start)        ; 0 + 1 = 1 = 0x0001
                           ; If the message is 0x00
   SUBTRACT ($b, $type)    ; 1 - 65535 = 2 = 0x0002
   MULTIPLY ($b, $b)       ; 2 * 2 = 4 = 0x0004
   DIVIDE ($a, $b)         ; 0 / 4 = 0 = 0x0000
   REMAINDER ($b, $type)   ; 4 % 65535 = 4 = 0x0004





Surtees & West               Informational                      [Page 6]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   OUTPUT (64, 4)          ; output 0x0000 0004

                           ; If the message is 0x01, $type = 0
                           ; so decompression failure occurs at
                           ; REMAINDER ($b, $type)

                           ; If the message is 0x02, $type = 1 so
                           ; $b becomes 0 and decompression failure
                           ; occurs at DIVIDE ($a, $b)

   END-MESSAGE (0, 0, 0, 0, 0, 0, 0)

   If the compressed message is 0x00, then the output of the code is
   0x0000 0000 0000 0004 and the execution cost should be 25 UDVM
   cycles.  However, if the compressed message is 0x01 or 0x02, then
   decompression failure occurs.

2.3.  Sorting

   This section gives assembly code to test the SORT-ASCENDING and SORT-
   DESCENDING instructions.  The code is designed to test that the
   following boundary cases have been correctly implemented:

   1.  The sorting instructions sort integers with the same value, in
       which case the original ordering of the integers must be
       preserved.

   at (128)

   SORT-DESCENDING (256, 2, 23)
   SORT-ASCENDING (256, 2, 23)

   OUTPUT (302, 45)
   END-MESSAGE (0, 0, 0, 0, 0, 0, 0)

   at (256)

   word (10, 10, 17, 7, 22, 3, 3, 3, 19, 1, 16, 14, 8, 2, 13, 20, 18,
   23, 15, 21, 12, 6, 9)

   word (28263, 8297, 30057, 8308, 26996, 11296, 31087, 29991, 8275,
   18031, 28263, 24864, 30066, 29284, 28448, 29807, 28206, 11776, 28773,
   28704, 28276, 29285, 28265)

   The output of the code is 0x466f 7264 2c20 796f 7527 7265 2074 7572
   6e69 6e67 2069 6e74 6f20 6120 7065 6e67 7569 6e2e 2053 746f 7020 6974
   2e, and the number of cycles required is 371.




Surtees & West               Informational                      [Page 7]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


2.4.  SHA-1

   This section gives assembly code to test the SHA-1 instruction.  The
   code performs four tests on the SHA-1 algorithm itself and, in
   addition, checks the following boundary cases specific to the UDVM:

   1.  The input string for the SHA-1 hash is obtained by byte copying
       over an area of the UDVM memory.

   2.  The SHA-1 hash overwrites its own input string.

   at (64)

   :byte_copy_left                 pad (2)
   :byte_copy_right                pad (2)
   :hash_value                     pad (20)

   at (128)

   SHA-1 (test_one, 3, hash_value)
   OUTPUT (hash_value, 20)

   SHA-1 (test_two, 56, hash_value)
   OUTPUT (hash_value, 20)

   ; Set up a 1-byte buffer
   LOAD (byte_copy_left, test_three)
   LOAD (byte_copy_right, test_four)

   ; Perform SHA-1 over 16384 bytes in a 1-byte buffer
   SHA-1 (test_three, 16384, hash_value)
   OUTPUT (hash_value, 20)

   ; Set up an 8-byte buffer
   LOAD (byte_copy_left, test_four)
   LOAD (byte_copy_right, test_end)

   ; Perform SHA-1 over 640 bytes in an 8-byte buffer
   SHA-1 (test_four, 640, test_four)
   OUTPUT (test_four, 20)

   END-MESSAGE (0, 0, 0, 0, 0, 0, 0)

   :test_one

   byte (97, 98, 99)

   :test_two



Surtees & West               Informational                      [Page 8]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   byte (97, 98, 99, 100, 98, 99, 100, 101, 99, 100, 101, 102, 100, 101,
   102, 103, 101, 102, 103, 104, 102, 103, 104, 105, 103, 104, 105, 106,
   104, 105, 106, 107, 105, 106, 107, 108, 106, 107, 108, 109, 107, 108,
   109, 110, 108, 109, 110, 111, 109, 110, 111, 112, 110, 111, 112, 113)

   :test_three

   byte (97)

   :test_four

   byte (48, 49, 50, 51, 52, 53, 54, 55)

   :test_end

   The output of the code is as follows:

   0xa999 3e36 4706 816a ba3e 2571 7850 c26c 9cd0 d89d
   0x8498 3e44 1c3b d26e baae 4aa1 f951 29e5 e546 70f1
   0x12ff 347b 4f27 d69e 1f32 8e6f 4b55 73e3 666e 122f
   0x4f46 0452 ebb5 6393 4f46 0452 ebb5 6393 4f46 0452

   Executing the code costs a total of 17176 UDVM cycles.

2.5.  LOAD and MULTILOAD

   This section gives assembly code to test the LOAD and MULTILOAD
   instructions.  The code is designed to test the following boundary
   cases:

   1.  The MULTILOAD instruction overwrites itself or any of its
       operands, in which case decompression failure occurs.

   2.  The memory references of MULTILOAD instruction operands are
       evaluated step-by-step rather than all at once before starting to
       copy data.

   at (64)

   :start                          pad (1)
   :start_lsb                      pad (1)

   at (128)

   set (location_a, 128)
   set (location_b, 132)





Surtees & West               Informational                      [Page 9]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   LOAD (128, 132)                 ; address 128 contains 132 = 0x0084
   LOAD (130, $location_a)         ; address 130 contains 132 = 0x0084
   LOAD ($location_a, 134)         ; address 132 contains 134 = 0x0086
   LOAD ($location_b, $location_b) ; address 134 contains 134 = 0x0086
   OUTPUT (128, 8)                 ; output 0x0084 0084 0086 0086

   INPUT-BYTES (1, start_lsb, decompression_failure)
   MULTIPLY ($start, 2)
   ADD ($start, 60)
   MULTILOAD ($start, 3, overlap_start, overlap_end, 128)

   :position

   set (overlap_start, (position - 7))

   MULTILOAD ($start, 4, 42, 128, $location_a, $location_b)

   :end

   set (overlap_end, (end - 1))

   OUTPUT (128, 8)
   END-MESSAGE (0, 0, 0, 0, 0, 0, 0)

   :decompression_failure
   DECOMPRESSION-FAILURE

   The INPUT-BYTES, MULTIPLY, and ADD instructions give the following
   values for $start = $64 just before the MULTILOADs begin:

   Input     $start before 1st MULTILOAD
   0x00            60
   0x01            62
   0x02            64

   Consequently, after the first MULTILOAD the values of $start are the
   following:

   Input     $start before 2nd MULTILOAD
   0x00      128
   0x01      overlap_end = 177 = last byte of 2nd MULTILOAD instruction
   0x02      overlap_start = 162 = 7 bytes before 2nd MULTILOAD
             instruction








Surtees & West               Informational                     [Page 10]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   Consequently, execution of the 2nd MULTILOAD (and any remaining code)
   gives the following:

   Input   Outcome
   0x00    MULTILOAD reads and writes operand by operand.  The output is
           0x0084 0084 0086 0086 002a 0080 002a 002a, and the cost of
           executing the code is 36 UDVM cycles.

   0x01    The first write of the MULTILOAD instruction would overwrite
           the last byte of the final MULTILOAD operand, so
           decompression failure occurs.

   0x02    The last write of the MULTILOAD would overwrite the MULTILOAD
           opcode, so decompression failure occurs.

2.6.  COPY

   This section gives assembly code to test the COPY instruction.  The
   code is designed to test that the following boundary cases have been
   correctly implemented:

   1.  The COPY instruction copies data from both outside the circular
       buffer and inside the circular buffer within the same operation.

   2.  The COPY instruction performs byte-by-byte copying (i.e., some of
       the later bytes to be copied are themselves written into the UDVM
       memory by the COPY instruction currently being executed).

   3.  The COPY instruction overwrites itself and continues executing.

   4.  The COPY instruction overwrites the UDVM registers byte_copy_left
       and byte_copy_right.

   5.  The COPY instruction writes to and reads from the right of the
       buffer beginning at byte_copy_right.

   6.  The COPY instruction implements byte copying rules when the
       destination wraps around the buffer.

   at (64)

   :byte_copy_left                 pad (2)
   :byte_copy_right                pad (2)








Surtees & West               Informational                     [Page 11]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   at (128)
                           ; Set up buffer between addresses 64 & 128
   LOAD (32, 16384)
   LOAD (byte_copy_left, 64)
   LOAD (byte_copy_right, 128)

   COPY (32, 128, 33)      ; Copy byte by byte starting to the left of
                           ; the buffer, into the buffer and wrapping
                           ; the buffer (inc overwriting the
                           ; boundaries)

   LOAD (64, 16640)        ; Change the start of the buffer to be
                           ; beyond bytecode

   COPY (64, 85, 65)       ; Copy to the left of the buffer,
                           ; overwriting this instruction

   OUTPUT (32, 119)        ; Output 32 * 0x40 + 86 * 0x41 + 0x55,
                           ; which is 32 * '@' + 86 'A' + 'U'

                           ; Set a new small buffer
   LOAD (byte_copy_left, 32)
   LOAD (byte_copy_right, 48)

   MEMSET (32, 4, 65, 1)   ; Set first 4 bytes of the buffer to be
                           ; 'ABCD'
   COPY (32, 4, 48)        ; Copy from byte_copy_right (i.e., not
                           ; in buffer)

   OUTPUT (48, 4)          ; Output 0x4142 4344, which is 'ABCD'

   COPY (48, 4, 46)        ; Copy from two before byte_copy_right to
                           ; wrap around the buffer
   OUTPUT (32, 2)          ; Output 0x4344, which is 'CD'

   END-MESSAGE (0, 0, 0, 0, 0, 0, 0)

   The output is above, and executing the code costs a total of 365 UDVM
   cycles.

2.7.  COPY-LITERAL and COPY-OFFSET

   This section gives assembly code to test the COPY-LITERAL and COPY-
   OFFSET instructions.  The code is designed to test similar boundary
   cases to the code for the COPY instruction, as well as the following
   condition specific to COPY-LITERAL and COPY-OFFSET:





Surtees & West               Informational                     [Page 12]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   1.  The COPY-LITERAL or COPY-OFFSET instruction overwrites the value
       of its destination.

   2.  The COPY-OFFSET instruction reads from an offset that wraps
       around the buffer (i.e., the offset is larger than the distance
       between byte_copy_left and the destination).

   at (64)

   :byte_copy_left                 pad (2)
   :byte_copy_right                pad (2)
   :destination                    pad (2)
   :offset                         pad (2)

   at (128)
                                   ; Set up circular buffer, source, and
                                   ; destination
   LOAD (32, 16640)
   LOAD (byte_copy_left, 64)
   LOAD (byte_copy_right, 128)
   LOAD (destination, 33)

   COPY-LITERAL (32, 128, $destination)    ; Copy from the left of the
                           ; buffer overwriting bcl, bcr, and
                           ; destination wrapping around the buffer
   OUTPUT (64, 8)          ; Check destination has been updated
                           ; Output 0x4141 4141 0061 4141

   LOAD (destination, copy)

   :copy                   ; Overwrite the copy instruction
   COPY-LITERAL (32, 2, $destination)
   OUTPUT (copy, 2)        ; Output 0x4141

   LOAD (byte_copy_left, 72)       ; Set up new circular buffer
   LOAD (byte_copy_right, 82)
   LOAD (destination, 82)          ; Set destination to byte_copy_right

   MEMSET (72, 10, 65, 1)          ; Fill the buffer with 0x41 - 4A

   COPY-OFFSET (2, 6, $destination)    ; Copy from within circular
                                       ; buffer to outside buffer

   LOAD (offset, 6)
   COPY-OFFSET ($offset, 4, $destination)
                                   ; Copy from byte_copy_right
                                   ; so reading outside buffer




Surtees & West               Informational                     [Page 13]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   OUTPUT ($byte_copy_right, 10)   ; Output 0x494A 4142 4344 494A 4142,
                                   ; which is 'IJABCDIJAB'
   LOAD (destination, 80)              ; Put destination within the
                                       ; buffer
   COPY-OFFSET (4, 4, $destination)    ; Copy where destination wraps
   OUTPUT (destination, 2)             ; Output 0x004A

   COPY-OFFSET (5, 4, $destination)    ; Copy where offset wraps from
                                       ; left back around to the right
   OUTPUT (destination, 2)             ; Output 0x004E
   OUTPUT ($byte_copy_left, 10)        ; Output the circular buffer
                                       ; 0x4748 4845 4647 4748 4546,
                                       ; which is 'GHHEFGGHEF'

   END-MESSAGE (0, 0, 0, 0, 0, 0, 0)

   The output of the code is above, and the cost of execution is 216
   UDVM cycles.

2.8.  MEMSET

   This section gives assembly code to test the MEMSET instruction.  The
   code is designed to test that the following boundary cases have been
   correctly implemented:

   1.  The MEMSET instruction overwrites the registers byte_copy_left
       and byte_copy_right.

   2.  The output values of the MEMSET instruction do not lie between 0
       and 255 inclusive (in which case they must be taken modulo 2^8).

   at (64)

   :byte_copy_left                 pad (2)
   :byte_copy_right                pad (2)

   at (128)

   LOAD (byte_copy_left, 128)  ; sets up a circular buffer
   LOAD (byte_copy_right, 129) ; of 1 byte between 0x0080 and 0x0081

   MEMSET (64, 129, 0, 1)  ; fills up the memory in the range
                        ; 0x0040-0x007f with 0x00, ... 0x3f;
                        ; then it writes successively at
                        ; 0x0080 the following values 0x40, ... 0x80
                        ; as a side effect, the values of
                        ; bcl and bcr are modified.




Surtees & West               Informational                     [Page 14]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


                        ; before and during the MEMSET:
                        ; byte_copy_left: 0x0080 byte_copy_right: 0x0081
                        ; after the MEMSET:
                        ; byte_copy_left: 0x0001 byte_copy_right: 0x0203

   MEMSET (129, 15, 64, 15)     ; fills the memory range 0x0080-0x008f
                         ; with values 0x40, 0x4f, ... 0xf4, 0x03, 0x12.
                         ; as a side effect, it overwrites a
                         ; part of the code including itself

   OUTPUT (128, 16)      ; outputs 0x8040 4f5e 6d7c 8b9a
                         ; a9b8 c7d6 e5f4 0312

   END-MESSAGE (0, 0, 0, 0, 0, 0, 0)

   The output of the code is 0x8040 4f5e 6d7c 8b9a a9b8 c7d6 e5f4 0312.
   Executing the code costs 166 UDVM cycles.

2.9.  CRC

   This section gives assembly code to test the CRC instruction.  The
   code does not test any specific boundary cases (as there do not
   appear to be any) but focuses instead on verifying the CRC algorithm.

   at (64)

   :byte_copy_left                 pad (2)
   :byte_copy_right                pad (2)
   :crc_value                      pad (2)
   :crc_string_a                   pad (24)
   :crc_string_b                   pad (20)

   at (128)

   MEMSET (crc_string_a, 24, 1, 1)  ; sets up between 0x0046 and 0x005d
                                    ; a byte string containing 0x01,
                                    ; 0x02, ... 0x18

   MEMSET (crc_string_b, 20, 128, 1) ; sets up between 0x005e and 0x0071
                                     ; a byte string containing 0x80,
                                     ; 0x81, ... 0x93

   INPUT-BYTES (2, crc_value, decompression_failure)
                                    ; reads in 2 bytes representing
                                    ; the CRC value of the byte string
                                    ; of 44 bytes starting at 0x0046





Surtees & West               Informational                     [Page 15]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   CRC ($crc_value, crc_string_a, 44, decompression_failure)
                                      ; computes the CRC value of the
                                      ; byte string crc_string_a
                                      ; concatenated with byte string
                                      ; crc_string_b (with a total
                                      ; length of 44 bytes).
                                      ; if the computed value does
                                      ; not match the 2-byte value read
                                      ; previously, the program ends
                                      ; with DECOMPRESSION-FAILURE.
   END-MESSAGE (0, 0, 0, 0, 0, 0, 0)

   :decompression_failure
   DECOMPRESSION-FAILURE

   If the compressed message is 0x62cb, then the code should
   successfully terminate with no output, and with a total execution
   cost of 95 UDVM cycles.  For different 2-byte compressed messages,
   the code should terminate with a decompression failure.

2.10.  INPUT-BITS

   This section gives assembly code to test the INPUT-BITS instruction.
   The code is designed to test that the following boundary cases have
   been correctly implemented:

   1.  The INPUT-BITS instruction changes between any of the four
       possible bit orderings defined by the input_bit_order register.

   2.  The INPUT-BITS instruction inputs 0 bits.

   3.  The INPUT-BITS instruction requests data that lies beyond the end
       of the compressed message.

   at (64)

   :byte_copy_left                 pad (2)
   :byte_copy_right                pad (2)
   :input_bit_order                pad (2)
   :result                         pad (2)











Surtees & West               Informational                     [Page 16]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   at (128)

   :start

   INPUT-BITS ($input_bit_order, result, end_of_message) ; reads in
                                 ; exactly as many bits as the 2-byte
                                 ; value written in the input_bit_order
                                 ; register, get out of the loop when
                                 ; no more bits are available at input.

   OUTPUT (result, 2) ; outputs as a 2-byte integer
                      ; the previously read bits

   ADD ($input_bit_order, 1)      ; if at the beginning of this loop the
                                  ; register input_bit_order is 0,
   REMAINDER ($input_bit_order, 7) ; then its value varies periodically
                                  ; like this: 2, 4, 6, 1, 3, 5, 7.
   ADD ($input_bit_order, 1)      ; that gives for the FHP bits: 010,
                                  ; 100, 110, 001, 011, 101, 111

   JUMP (start)                    ; run the loop once more

   :end_of_message

   END-MESSAGE (0, 0, 0, 0, 0, 0, 0)

   An example of a compressed message is 0x932e ac71, which decompresses
   to give the output 0x0000 0002 0002 0013 0000 0003 001a 0038.
   Executing the code costs 66 UDVM cycles.

2.11.  INPUT-HUFFMAN

   This section gives assembly code to test the INPUT-HUFFMAN
   instruction.  The code is designed to test that the following
   boundary cases have been correctly implemented:

   1.  The INPUT-HUFFMAN instruction changes between any of the four
       possible bit orderings defined by the input_bit_order register.

   2.  The INPUT-HUFFMAN instruction inputs 0 bits.

   3.  The INPUT-HUFFMAN instruction requests data that lies beyond the
       end of the compressed message.








Surtees & West               Informational                     [Page 17]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   at (64)

   :byte_copy_left                 pad (2)
   :byte_copy_right                pad (2)
   :input_bit_order                pad (2)
   :result                         pad (2)

   at (128)

   :start

   INPUT-HUFFMAN (result, end_of_message, 2, $input_bit_order, 0,
   $input_bit_order, $input_bit_order, $input_bit_order, 0, 65535, 0)
   OUTPUT (result, 2)

   ADD ($input_bit_order, 1)
   REMAINDER ($input_bit_order, 7)
   ADD ($input_bit_order, 1)

   JUMP (start)

   :end_of_message

   END-MESSAGE (0, 0, 0, 0, 0, 0, 0)

   An example of a compressed message is 0x932e ac71 66d8 6f, which
   decompresses to give the output 0x0000 0003 0008 04d7 0002 0003 0399
   30fe.  Executing the code costs 84 UDVM cycles.

   As the code is run, the input_bit_order changes through all possible
   values to check usage of the H and P bits.  The number of bits to
   input each time is taken from the value of input_bit_order.  The
   sequence is the following:

   Input_bit_order (bin)   Total bits input by Huffman             Value
   000                     0                                       0
   010                     2                                       3
   100                     4                                       8
   110                     12                                      1239
   001
   P-bit changed, throw away 6 bits
   001                     1                                       2
   011                     3                                       3
   101                     10                                      921
   111                     14                                      12542
   010
   P-bit changed, throw away 4 bits
   010                     0 - not enough bits so terminate



Surtees & West               Informational                     [Page 18]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


2.12.  INPUT-BYTES

   This section gives assembly code to test the INPUT-BYTES instruction.
   The code is designed to test that the following boundary cases have
   been correctly implemented:

   1.  The INPUT-BYTES instruction inputs 0 bytes.

   2.  The INPUT-BYTES instruction requests data that lies beyond the
       end of the compressed message.

   3.  The INPUT-BYTES instruction is used after part of a byte has been
       input (e.g., by the INPUT-BITS instruction).

   at (64)

   :byte_copy_left                 pad (2)
   :byte_copy_right                pad (2)
   :input_bit_order                pad (2)
   :result                         pad (2)
   :output_start                   pad (4)
   :output_end

   at (128)

   LOAD (byte_copy_left, output_start)
   LOAD (byte_copy_right, output_end)

   :start

   INPUT-BITS ($input_bit_order, result, end_of_message)
   OUTPUT (result, 2)

   ADD ($input_bit_order, 2)
   REMAINDER ($input_bit_order, 7)

   INPUT-BYTES ($input_bit_order, output_start, end_of_message)
   OUTPUT (output_start, $input_bit_order)

   ADD ($input_bit_order, 1)
   JUMP (start)

   :end_of_message

   END-MESSAGE (0, 0, 0, 0, 0, 0, 0)






Surtees & West               Informational                     [Page 19]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   An example of a compressed message is 0x932e ac71 66d8 6fb1 592b dc9a
   9734 d847 a733 874e 1bcb cd51 b5dc 9659 9d6a, which decompresses to
   give the output 0x0000 932e 0001 b166 d86f b100 1a2b 0003 9a97 34d8
   0007 0001 3387 4e00 08dc 9651 b5dc 9600 599d 6a.  Executing the code
   costs 130 UDVM cycles.

   As the code is run, the input_bit_order changes through all possible
   values to check usage of the F and P bits.  The number of bits or
   bytes to input each time is taken from the value of input_bit_order.
   For each INPUT-BYTES instruction, the remaining bits of the byte are
   thrown away.  The P-bit always changes on the byte boundary so no
   bits are thrown away.  The sequence is the following:

   Input_bit_order (bin)   Input bits  Input bytes   Output
   000                     0                         0x0000
   010                                 2             0x932e
   011                     3                         0x0001
   101                                 5             0xb166 d866 b1
   110                     6                         0x001a
   001                                 1             0x2b
   010                     2                         0x0003
   100                                 4             0x9a97 34d8
   101                     5                         0x0007
   000                                 0
   001                     1                         0x0001
   011                                 3             0x3384 4e
   100                     4                         0x0008
   110                                 6             0xdc96 51b5 dc96
   111                     7                         0x0059
   010                                 2             0x9d6a
   011                     3 - no bits left so terminate

2.13.  Stack Manipulation

   This section gives assembly code to test the PUSH, POP, CALL, and
   RETURN instructions.  The code is designed to test that the following
   boundary cases have been correctly implemented:

   1.  The stack manipulation instructions overwrite the UDVM register
       stack_location.

   2.  The CALL instruction specifies a reference operand rather than an
       absolute value.

   3.  The PUSH instruction pushes the value contained in stack_fill
       onto the stack.

   4.  The stack_location register contains an odd integer.



Surtees & West               Informational                     [Page 20]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   at (64)

   :byte_copy_left                 pad (2)
   :byte_copy_right                pad (2)
   :input_bit_order                pad (2)
   :stack_location                 pad (2)
   :next_address                   pad (2)

   at (128)

   LOAD (stack_location, 64)
   PUSH (2)
   PUSH ($64)
   PUSH (66)               ; Stack now contains 2, 1, 66
                           ; so $stack_location = 66

   OUTPUT (64, 8)          ; Output 0x0003 0002 0001 0042

   POP (64)                ; Pop value 66 from address 70 to address 64
   POP ($stack_location)   ; Pop value 1 from address 68 to address 66
                           ; so stack_fill is overwritten to be 1
   POP (stack_location)    ; Pop value 1 from address 68 to address 70

   OUTPUT (64, 8)          ; Output 0x0042 0000 0001 0001
   JUMP (address_a)

   at (192)

   :address_a

   LOAD (stack_location, 32)
   LOAD (next_address, address_c)
   SUBTRACT ($next_address, address_b)  ; next_address = 64
   CALL (address_b)                     ; push 204 on stack

   at (256)

   :address_b

   CALL ($next_address)                 ; push 256 on stack

   at (320)

   :address_c

   LOAD (stack_location, 383)
   LOAD (383, 26)                   ; overwrite $stack_location with 26
   MULTILOAD (432, 3, 1, 49153, 32768)



Surtees & West               Informational                     [Page 21]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


                                    ; write bytes so that 433 and 434
                                    ; contain 0x01c0 = 448 and
                                    ; 435 and 436 contain 0x0180 = 384

   RETURN                           ; pop 383 from the stack and jump
                                    ; there = 384, which is lsb of
                                    ; stack_fill, which now contains 25,
                                    ; which is UDVM instruction RETURN
                                    ; pop 448 from the stack and jump
                                    ; there
   at (448)

   END-MESSAGE (0, 0, 0, 0, 0, 0, 0)

   The output of the code is 0x0003 0002 0001 0042 0042 0000 0001 0001,
   and a total of 40 UDVM cycles are used.

2.14.  Program Flow

   This section gives assembly code to test the JUMP, COMPARE, and
   SWITCH instructions.  The code is designed to test that the following
   boundary cases have been correctly implemented:

   1.  The address operands are specified as references to memory
       addresses rather than as absolute values.

   at (64)

   :next_address                   pad (2)
   :counter                        pad (1)
   :counter_lsb                    pad (1)
   :switch_counter                 pad (2)

   at (128)

   LOAD (switch_counter, 4)

   :address_a

   LOAD (next_address, address_c)
   SUBTRACT ($next_address, address_b)     ; address_c - address_b
   OUTPUT (counter_lsb, 1)

   :address_b

   JUMP ($next_address)                    ; Jump to address_c

   :address_c



Surtees & West               Informational                     [Page 22]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   ADD ($counter, 1)
   LOAD (next_address, address_a)
   SUBTRACT ($next_address, address_d)     ; address_a - address_d
   OUTPUT (counter_lsb, 1)

   :address_d

   COMPARE ($counter, 6, $next_address, address_c, address_e)
                                   ; counter < 6, $next_address gives
                                   ; jump to address_a

   :address_e

   SUBTRACT ($switch_counter, 1)           ; switch_counter = 3
   LOAD (next_address, address_a)
   SUBTRACT ($next_address, address_f)     ; address_a - address_f
   OUTPUT (counter_lsb, 1)

   :address_f

   SWITCH (4, $switch_counter, address_g, $next_address, address_c,
   address_e)
                                   ; when $switch_counter = 1,
                                   ; $next_address gives jump to
                                   ; address_a

   :address_g

   END-MESSAGE (0, 0, 0, 0, 0, 0, 0)

   The output of the code is 0x0001 0102 0203 0304 0405 0506 0707 0708
   0808 0909, and a total of 131 UDVM cycles are used.

2.15.  State Creation

   This section gives assembly code to test the STATE-CREATE and STATE-
   FREE instructions.  The code is designed to test that the following
   boundary cases have been correctly implemented:

   1.  An item of state is created that duplicates an existing state
       item.

   2.  An item of state is freed when the state has not been created.

   3.  An item of state is created and then freed by the same message.

   4.  The STATE-FREE instruction frees a state item by sending fewer
       bytes of the state_identifier than the minimum_access_length.



Surtees & West               Informational                     [Page 23]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   5.  The STATE-FREE instruction has partial_identifier_length operand
       shorter than 6 or longer than 20.

   6.  The STATE-FREE instruction specifies a partial_identifier that
       matches with two state items in the compartment.

   7.  The bytes of the identifier are written to the position specified
       in the STATE-FREE instruction after the STATE-FREE instruction
       has been run (and before END-MESSAGE).

   at (64)

   :byte_copy_left                 pad (2)
   :byte_copy_right                pad (2)
   :states                         pad (1)
   :states_lsb                     pad (1)
   :min_len                        pad (1)
   :min_len_lsb                    pad (1)

   :state_identifier       pad (20)

   set (state_length, 10)

   at (127)
   :decompression_failure
   at (128)

   INPUT-BYTES (1, states_lsb, decompression_failure)

   :test_one
   LSHIFT ($states, 11)
   COMPARE ($states, 32768, test_two, create_state_a2, create_state_a2)

   :create_state_a2
   STATE-CREATE (state_length, state_address2, 0, 20, 0)

   :test_two
   LSHIFT ($states, 1)
   COMPARE ($states, 32768, test_three, create_state_a, create_state_a)

   :create_state_a
   STATE-CREATE (state_length, state_address, 0, 20, 0)

   :test_three
   LSHIFT ($states, 1)
   COMPARE ($states, 32768, test_four, free_state, free_state)





Surtees & West               Informational                     [Page 24]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   :free_state
   INPUT-BYTES (1, min_len_lsb, decompression_failure)
   STATE-FREE (state_identifier, $min_len)
   COPY (identifier1, $min_len, state_identifier)

   :test_four

   LSHIFT ($states, 1)
   COMPARE ($states, 32768, test_five, free_state2, free_state2)

   :free_state2
   STATE-FREE (identifier1, 6)

   :test_five
   LSHIFT ($states, 1)
   COMPARE ($states, 32768, end, create_state_b, create_state_b)

   :create_state_b
   END-MESSAGE (0, 0, state_length, state_address, 0, 20, 0)

   :end
   END-MESSAGE (0, 0, 0, 0, 0, 0, 0)

   :identifier1
   byte (67, 122, 232, 10, 15, 220, 30, 106, 135, 193, 182, 42, 118,
   118, 185, 115, 49, 140, 14, 245)

   at (256)
   :state_address
   byte (192, 204, 63, 238, 121, 188, 252, 143, 209, 8)

   :state_address2
   byte (101, 232, 3, 82, 238, 41, 119, 23, 223, 87)

   Upon reaching the END-MESSAGE instruction, the UDVM does not output
   any decompressed data, but instead may make one or more state
   creation or state free requests to the state handler.  Assuming that
   the application does not veto the state creation request (and that
   sufficient state memory is available) the code results in 0, 1, or 2
   state items being present in the compartment.

   The following table lists ten different compressed messages, the
   states created and freed by each, the number of states left after
   each message, and the number of UDVM cycles used.  There are 3 state
   creation instructions:

      create state_a, which has hash identifier1
      create state_b (in END-MESSAGE), which is identical to state_a



Surtees & West               Informational                     [Page 25]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


      create state_a2, which has a different identifier, but the first 6
      bytes are the same as those of identifier1.

   Message:   Effect:                           # state items:  #cycles:
   0x01       create state_b                             1           23
   0x02       free (id1, 6) = state_b                    0           14
   0x03       free (id1, 6) = state_b; create state_b    1           24

   0x0405     free (id1, 5)                       Decompression failure
   0x0415     free (id1, 21)                      Decompression failure

   0x0406     free (id1, 6) = state_b                    0           23

   0x09       create state_a; create state_b             1           34

   0x1e06     create state_a2; create state_a;
              free (id1, 6) = matches both so no free;
              free (id1, 6) = matches both so no free;   2           46

   0x1e07     create state_a2; create state_a;
              free (id1, 7) = state_a;
              free (id1, 6) = state_a2                   0           47

   0x1e14     create state_a2; create state_a;
              free (id1, 20) = state_a;
              free (id1, 6) = state_a2                   0           60

2.16.  STATE-ACCESS

   This section gives assembly code to test the STATE-ACCESS
   instruction.  The code is designed to test that the following
   boundary cases have been correctly implemented:

   1.  A subset of the bytes contained in a state item is copied to the
       UDVM memory.

   2.  Bytes are copied from beyond the end of the state value.

   3.  The state_instruction operand is set to 0.

   4.  The state cannot be accessed because the partial state identifier
       is too short.

   5.  The state identifier is overwritten by the state item being
       accessed.

   The following bytecode needs to be run first to set up the state for
   the rest of the test.



Surtees & West               Informational                     [Page 26]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   at (128)

   END-MESSAGE (0, 0, state_length, state_start, 0, 20, 0)

   ; The bytes between state_start and state_end are derived from
   ; translation of the following mnemonic code:
   ;
   ; at (512)
   ; OUTPUT (data, 4)
   ; END-MESSAGE (0,0,0,0,0,0,0)
   ; :data
   ; byte (116, 101, 115, 116)

   at (512)
   :state_start
   byte (34, 162, 12,4, 35, 0, 0, 0, 0, 0, 0, 0, 116, 101, 115, 116)
   :state_end

   set (state_length, (state_end - state_start))

   This is the bytecode for the rest of the test.

   at (64)

   :byte_copy_left                 pad (2)
   :byte_copy_right                pad (2)
   :type                           pad (1)
   :type_lsb                       pad (1)
   :state_value                    pad (4)

   at (127)
   :decompression_failure
   at (128)

   INPUT-BYTES (1, type_lsb, decompression_failure)
   COMPARE ($type, 1, execute_state, extract_state, error_conditions)

   :execute_state

   STATE-ACCESS (state_identifier, 20, 0, 0, 0, 512)

   :extract_state

   STATE-ACCESS (state_identifier, 20, 12, 4, state_value, 0)
   OUTPUT (state_value, 4)
   JUMP (end)

   :error_conditions



Surtees & West               Informational                     [Page 27]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   COMPARE ($type, 3, state_not_found, id_too_short, state_too_short)

   :state_not_found

   STATE-ACCESS (128, 20, 0, 0, 0, 0)
   JUMP (end)

   :id_too_short

   STATE-ACCESS (state_identifier, 19, 6, 4, state_value, 0)
   JUMP (end)

   :state_too_short

   STATE-ACCESS (state_identifier, 20, 12, 5, state_value, 0)
   JUMP (end)

   at (484)

   :end

   END-MESSAGE (0, 0, 0, 0, 0, 0, 0)

   at (512)

   :state_identifier

   byte (0x5d, 0xf8, 0xbc, 0x3e, 0x20, 0x93, 0xb5, 0xab, 0xe1, 0xf1,
   0x70, 0x13, 0x42, 0x4c, 0xe7, 0xfe, 0x05, 0xe0, 0x69, 0x39)

   If the compressed message is 0x00, then the output of the code is
   0x7465 7374, and a total of 26 UDVM cycles are used.  If the
   compressed message is 0x01, then the output of the code is also
   0x7465 7374 but in this case using a total of 15 UDVM cycles.  If the
   compressed message is 0x02, 0x03, or 0x04, then decompression failure
   occurs.

3.  Torture Tests for Dispatcher

   The following sections give code to test the various functions of the
   SigComp dispatcher.

3.1.  Useful Values

   This section gives assembly code to test that the SigComp "Useful
   Values" are correctly initialized in the UDVM memory.  It also tests
   that the UDVM is correctly terminated if the bytecode uses too many
   UDVM cycles or tries to write beyond the end of the available memory.



Surtees & West               Informational                     [Page 28]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   The code tests that the following boundary cases have been correctly
   implemented:

   1.  The bytecode uses exactly as many UDVM cycles as are available
       (in which case no problems should arise) or one cycle too many
       (in which case decompression failure should occur).  A liberal
       implementation could allow more cycles to be used than are
       strictly available, in which case decompression failure will not
       occur.  This is an implementation choice.  If this choice is
       made, the implementer must be sure that the cycles are checked
       eventually and that decompression failure does occur when
       bytecode uses an excessive number of cycles.  This is tested in
       Section 3.2.

   2.  The bytecode writes to the highest memory address available (in
       which case no problems should arise) or to the memory address
       immediately following the highest available address (in which
       case decompression failure must occur).

   :udvm_memory_size               pad (2)
   :cycles_per_bit                 pad (2)
   :sigcomp_version                pad (2)
   :partial_state_id_length        pad (2)
   :state_length                   pad (2)

   at (64)

   :byte_copy_left                 pad (2)
   :byte_copy_right                pad (2)
   :remaining_cycles               pad (2)
   :check_memory                   pad (1)
   :check_memory_lsb               pad (1)
   :check_cycles                   pad (1)
   :check_cycles_lsb               pad (1)

   at (127)
   :decompression_failure
   at (128)
                               ; Set up a 1-byte buffer
   LOAD (byte_copy_left, 32)
   LOAD (byte_copy_right, 33)

   :test_version

   ; Input a byte containing the version of SigComp being run
   INPUT-BYTES (1, check_memory_lsb, decompression_failure)
   COMPARE ($sigcomp_version, $check_memory, decompression_failure,
   test_state_access, decompression_failure)



Surtees & West               Informational                     [Page 29]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   :test_state_access

   COMPARE ($partial_state_id_length, 0, decompression_failure,
   test_length_equals_zero, test_state_length)

   :test_length_equals_zero
                               ; No state was accessed so state_length
                               ; should be zero (first message)
   COMPARE ($state_length, 0, decompression_failure, end,
   decompression_failure)

   :test_state_length
                               ; State was accessed so state_length
                               ; should be 960
   COMPARE ($state_length, 960, decompression_failure, test_udvm_memory,
   decompression_failure)

   :test_udvm_memory
                               ; Copy one byte to
                               ; udvm_memory_size + input - 1
                               ; Succeed when input byte is 0x00
                               ; Fail when input byte is 0x01

   INPUT-BYTES (1, check_memory_lsb, decompression_failure)
   ADD ($check_memory, $udvm_memory_size)
   SUBTRACT ($check_memory, 1)
   COPY (32, 1, $check_memory)

   :test_udvm_cycles

   INPUT-BYTES (1, check_cycles_lsb, decompression_failure)

   ; Work out the total number of cycles available to the UDVM
   ; total_UDVM_cycles = cycles_per_bit * (8 * message_size + 1000)
   ;
   ;       = cycles_per_bit * (8 * (partial_state_id_length + 3) + 1000)

   LOAD (remaining_cycles, $partial_state_id_length)
   ADD ($remaining_cycles, 3)
   MULTIPLY ($remaining_cycles, 8)
   ADD ($remaining_cycles, 1000)

   MULTIPLY ($remaining_cycles, $cycles_per_bit)

   ADD ($remaining_cycles, $check_cycles)

   set (cycles_used_by_bytecode, 856)




Surtees & West               Informational                     [Page 30]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   SUBTRACT ($remaining_cycles, cycles_used_by_bytecode)
   COPY (32, $remaining_cycles, 32)
                   ; Copy to use up all cycles available + input byte
                   ; Succeeds when input byte = 0x00
                   ; Fail when input byte = 0x01

   :end
                               ; Create 960 bytes of state for future
                               ; reference
   END-MESSAGE (0, 0, 960, 64, 128, 6, 0)

   The bytecode must be executed a total of four times in order to fully
   test the SigComp Useful Values.  In the first case, the bytecode is
   uploaded as part of the SigComp message with a 1-byte compressed
   message corresponding to the version of SigComp being run.  This
   causes the UDVM to request creation of a new state item and uses a
   total of 968 UDVM cycles.

   Subsequent tests access this state by uploading the state identifier
   as part of the SigComp message.  Note that the SigComp message should
   not contain a returned feedback item (as this would cause the
   bytecode to calculate the total number of available UDVM cycles
   incorrectly).

   A 3-byte compressed message is required for the second and subsequent
   cases, the first byte of which is the version of SigComp in use,
   0xnn.  If the message is 0xnn0000, then the UDVM should successfully
   terminate using exactly the number of available UDVM cycles.
   However, if the message is 0xnn0001, then the UDVM should use too
   many cycles and hence terminate with decompression failure.
   Furthermore, if the message is 0xnn0100, then decompression failure
   must occur because the UDVM attempts to write beyond its available
   memory.

3.2.  Cycles Checking

   As discussed in Section 3.1, it is possible to write an
   implementation that takes a liberal approach to checking the cycles
   used and allows some extra cycles.  The implementer must be sure that
   decompression failure does not occur too early and that in the case
   of excessive use of cycles, decompression failure does eventually
   occur.  This test checks that:

   1.  Decompression failure occurs eventually when there is an infinite
       loop.






Surtees & West               Informational                     [Page 31]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   at (64)
   :byte_copy_left           pad (2)
   :byte_copy_right          pad (2)
   :value                    pad (2)
   :copy_next                pad (2)

   at(128)
   MULTILOAD (byte_copy_left, 4, 32, 41, 0, 34)
                                   ; Set up a 10-byte buffer

                                   ; Set the value to copy
                                   ; Copy it 100 times,
                                   ; output the value,
                                   ; increment the counter
   :loop
   COPY (value, 2, $byte_copy_left)
   COPY-OFFSET (2, 100, $copy_next)
   OUTPUT (value, 2)
   ADD ($value, 1)
   JUMP (loop)


   If the cycles are counted exactly and cycles per bit (cpb) = 16, then
   decompression failure will occur at COPY-OFFSET when value = 180 =
   0xB4.  If cpb = 32, then decompression failure will occur when value
   = 361 = 0x0169.  If they are not counted exactly, then decompression
   failure MUST occur eventually.

3.3.  Message-based Transport

   This section provides a set of messages to test the SigComp header
   over a message-based transport such as UDP.  The messages test that
   the following boundary cases have been correctly implemented:

   1.  The UDVM bytecode is copied to different areas of the UDVM
       memory.

   2.  The decompression memory size is set to an incorrect value.

   3.  The SigComp message is too short.

   4.  The destination address is invalid.

   The basic version of the code used in the test is given below.  Note
   that the code is designed to calculate the decompression memory size
   based on the Useful Values provided to the UDVM:





Surtees & West               Informational                     [Page 32]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   :udvm_memory_size               pad (2)
   :cycles_per_bit                 pad (2)
   :sigcomp_version                pad (2)
   :partial_state_id_length        pad (2)
   :state_length                   pad (2)

   at (128)

   :code_start

   ; udvm_memory_size for message-based transport
   ;    = DMS - total_message_size

   ADD ($udvm_memory_size, total_message_size)
   OUTPUT (udvm_memory_size, 2)
   END-MESSAGE (0, 0, 0, 0, 0, 0, 1)

   :code_end

   set (header_size, 3)
   set (code_size, (code_end - code_start))
   set (total_message_size, (header_size + code_size))

   A number of complete SigComp messages are given below, each
   containing some or all of the above code.  In each case, it is
   indicated whether the message will successfully output the
   decompression memory size or whether it will cause a decompression
   failure to occur (together with the reason for the failure):

   SigComp message:                Effect:

   0xf8                            Fails (message too short)

   0xf800                          Fails (message too short)

   0xf800 e106 0011 2200 0223      Outputs the decompression_memory_size
   0x0000 0000 0000 01

   0xf800 f106 0011 2200 0223      Fails (message too short)
   0x0000 0000 0000 01

   0xf800 e006 0011 2200 0223      Fails (invalid destination address)
   0x0000 0000 0000 01

   0xf800 ee06 0011 2200 0223      Outputs the decompression_memory_size
   0x0000 0000 0000 01





Surtees & West               Informational                     [Page 33]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   The messages should be decompressed in the order given to check that
   an error in one message does not interfere with the successful
   decompression of subsequent messages.

   The two messages that successfully decompress each use a total of 5
   UDVM cycles.

3.4.  Stream-based Transport

   This section provides a byte stream to test the SigComp header and
   delimiters over a stream-based transport such as TCP.  The byte
   stream tests all of the boundary cases covered in Section 3.2, as
   well as the following cases specific to stream-based transports:

   1.  Quoted bytes are used by the record marking scheme.

   2.  Multiple delimiters are used between the same pair of messages.

   3.  Unnecessary delimiters are included at the start of the stream.

   The basic version of the code used in the test is given below.  Note
   that the code is designed to calculate the decompression memory size
   based on the Useful Values provided to the UDVM:

   :udvm_memory_size               pad (2)
   :cycles_per_bit                 pad (2)
   :sigcomp_version                pad (2)
   :partial_state_id_length        pad (2)
   :state_length                   pad (2)

   at (128)

   ; udvm_memory_size for stream based transport = DMS / 2

   MULTIPLY ($udvm_memory_size, 2)
   OUTPUT (udvm_memory_size, 2)
   OUTPUT (test_record_marking, 5)
   END-MESSAGE (0, 0, 0, 0, 0, 0, 0)

   :test_record_marking

   byte (255, 255, 255, 255, 255)









Surtees & West               Informational                     [Page 34]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   The above assembly code has been compiled and used to generate the
   following byte stream:

   0xffff f801 7108 0002 2200 0222 a092 0523 0000 0000 0000 00ff 00ff
   0x03ff ffff ffff ffff f801 7e08 0002 2200 0222 a3d2 0523 0000 0000
   0x0000 00ff 04ff ffff ffff ffff ffff ff

   Note that this byte stream can be divided into five distinct portions
   (two SigComp messages and three sets of delimiters) as illustrated
   below:

   Portion of byte stream:                                Meaning:

   0xffff                                                 Delimiter

   0xf801 7108 0002 2200 0222 a092 0523                   First message
   0x0000 0000 0000 00ff 00ff 03ff ffff

   0xffff ffff                                            Delimiter

   0xf801 7e08 0002 2200 0222 a3d2 0523                   Second message
   0x0000 0000 0000 00ff 04ff ffff ff

   0xffff ffff ffff                                       Delimiter

   When the complete byte stream is supplied to the decompressor
   dispatcher, the record marking scheme must use the delimiters to
   partition the stream into two distinct SigComp messages.  Both of
   these messages successfully output the decompression memory size (as
   a 2-byte value), followed by 5 consecutive 0xff bytes to test that
   the record marking scheme is working correctly.  A total of 11 UDVM
   cycles are used in each case.

   It must also be checked that the dispatcher can handle the same error
   cases as covered in Section 3.2.  Each of the following byte streams
   should cause a decompression failure to occur for the reason stated:

   Byte stream:                                      Reason for failure:

   0xf8ff ff                                         Message too short

   0xf800 ffff                                       Message too short

   0xf801 8108 0002 2200 0222 a092 0523 ffff         Message too short
   0x0000 0000 0000 00ff 00ff 03ff ffff

   0xf801 7008 0002 2200 0222 a092 0523 ffff         Invalid destination
   0x0000 0000 0000 00ff 04ff ffff ff



Surtees & West               Informational                     [Page 35]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


3.5.  Input Past the End of a Message

   This section gives assembly code to test that the implementation
   correctly handles input past the end of a SigComp message.  The code
   is designed to test that the following boundary cases have been
   correctly implemented:

   1.  An INPUT instruction requests data that lies beyond the end of
       the message.  In this case, the dispatcher should not return any
       data to the UDVM.  Moreover, the message bytes held by the
       dispatcher should still be available for retrieval by subsequent
       INPUT instructions.

   2.  The INPUT-BYTES instruction is used after part of a byte has been
       input (e.g., by the INPUT-BITS instruction).  In this case, the
       remaining partial byte must be discarded, even if the INPUT-BYTES
       instruction requests data that lies beyond the end of the
       message.

   at (64)

   :byte_copy_left                 pad (2)
   :byte_copy_right                pad (2)
   :input_bit_order                pad (2)
   :result                         pad (1)
   :result_lsb                     pad (6)
   :right

   at (128)

   LOAD (byte_copy_left, result)
   LOAD (byte_copy_right, right)

   :start

   ; Input bits to ensure that the remaining message is not byte aligned

   INPUT-BITS (9, result, decompression_failure1) ; Input 0x1FF (9 bits)

   ; Attempt to read 7 bytes











Surtees & West               Informational                     [Page 36]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   INPUT-BYTES (7, result, next_bytes) ; This should fail, throw away
                                       ; 7 bits with value Ox7a and
                                       ; jump to next_bytes

   :decompression_failure1
   DECOMPRESSION-FAILURE               ; This instruction is never
                                       ; executed but is used to
                                       ; separate success and failure
                                       ; to input bytes.

   :next_bytes

   ; Read 7 bits - this removes the byte alignment of the message

   ; If the bits have not been thrown away where they should be, then
   ; the message will be 1 byte longer than necessary and the output
   ; will be incorrect.

   INPUT-BITS (7, result, decompression_failure1) ; Input 0x00 (7 bits)

   ; Read 2 bytes

   INPUT-BYTES (2, result, decompression_failure1)
                                       ; Throw away 1 bit value 0
                                       ; Input 0x6869
   OUTPUT (result, 2)                  ; Output 0x6869

                                       ; Attempt to read more bits than
   INPUT-BITS (16, result, bits)       ; there are to ensure they
                                       ; remain available

   :decompression_failure2
   DECOMPRESSION-FAILURE               ; This instruction is never
                                       ; executed but is used to
                                       ; separate success and failure
                                       ; to input bits.

   :bits

   ; Read 8 bits

   INPUT-BITS (8, result, decompression_failure2) ; Input 0x21 or fail
   OUTPUT (result_lsb, 1)              ; Output 0x21

   :end_message

   END-MESSAGE (0, 0, 0, 0, 0, 0, 0)




Surtees & West               Informational                     [Page 37]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   If the compressed message is 0xfffa 0068 6921, then the code
   terminates successfully with the output 0x6869 21, and a total of 23
   UDVM cycles are used.  However, if the compressed message is 0xfffa
   0068 69, then decompression failure occurs (at the final INPUT-BITS).

4.  Torture Tests for State Handler

   The following sections give code to test the various functions of the
   SigComp state handler.

4.1.  SigComp Feedback Mechanism

   This section gives assembly code to test the SigComp feedback
   mechanism.  The code is designed to test that the following boundary
   cases have been correctly implemented:

   1.  Both the short and the long versions of the SigComp feedback item
       are used.

   2.  The chain of returned SigComp parameters is terminated by a non-
       zero value.

   at (64)

   :type                           pad (1)
   :type_lsb                       pad (1)

   :requested_feedback_location    pad (1)
   :requested_feedback_length      pad (1)
   :requested_feedback_bytes       pad (127)

   :returned_parameters_location   pad (2)
   :length_of_partial_state_id_a   pad (1)
   :partial_state_identifier_a     pad (6)
   :length_of_partial_state_id_b   pad (1)
   :partial_state_identifier_b     pad (12)
   :length_of_partial_state_id_c   pad (1)
   :partial_state_identifier_c     pad (20)
   :terminate_returned_parameters  pad (1)

   align (128)

   set (q_bit, 1)
   set (s_bit, 0)
   set (i_bit, 0)
   set (flags, (((4 * q_bit) + (2 * s_bit)) + i_bit))

   INPUT-BYTES (1, type_lsb, decompression_failure)



Surtees & West               Informational                     [Page 38]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   COMPARE ($type, 1, short_feedback_item, long_feedback_item,
   decompression_failure)

   :short_feedback_item

   set (requested_feedback_data, 127)
   set (short_feedback_value, ((flags * 256) + requested_feedback_data))

   LOAD (requested_feedback_location, short_feedback_value)
   JUMP (return_sigcomp_parameters)

   :long_feedback_item

   set (requested_feedback_field, 255)
   set (long_feedback_value, ((flags * 256) + requested_feedback_field))

   LOAD (requested_feedback_location, long_feedback_value)
   MEMSET (requested_feedback_bytes, 127, 1, 1)

   :return_sigcomp_parameters

   set (cpb, 0)
   set (dms, 1)
   set (sms, 0)
   set (sigcomp_version, 1)

   set (parameters_msb, (((64 * cpb) + (8 * dms)) + sms))
   set (sigcomp_parameters, ((256 * parameters_msb) + sigcomp_version))

   LOAD (returned_parameters_location, sigcomp_parameters)

   LOAD (length_of_partial_state_id_a, 1536)   ; length 6 first byte 0
   LOAD (length_of_partial_state_id_b, 3072)   ; length 12 first byte 0
   LOAD (length_of_partial_state_id_c, 5120)   ; length 20 first byte 0
   LOAD (terminate_returned_parameters, 5376)  ; length 21
                                               ; used to terminate the
                                               ; returned parameters
   MEMSET (partial_state_identifier_a, 6, 0, 1)
   MEMSET (partial_state_identifier_b, 12, 0, 1)
   MEMSET (partial_state_identifier_c, 20, 0, 1)

   END-MESSAGE (requested_feedback_location,
   returned_parameters_location, 0, 0, 0, 0, 0)
   :decompression_failure
   DECOMPRESSION-FAILURE






Surtees & West               Informational                     [Page 39]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   When the above code is executed, it supplies a requested feedback
   item to the state handler.  If the compressed message is 0x00, then
   the short (1-byte) version of the feedback is used.  Executing the
   bytecode in this case costs a total of 52 UDVM cycles.  Assuming that
   the feedback request is successful, the feedback item should be
   returned in the first SigComp message to be sent in the reverse
   direction.  The SigComp message returning the feedback should begin
   as follows:

   +---+---+---+---+---+---+---+---+
   | 1   1   1   1   1   1 |   X   |   first header byte
   +---+---+---+---+---+---+---+---+
   | 0 |            127            |   returned feedback field
   +---+---+---+---+---+---+---+---+

   So the first 2 bytes of the returning SigComp message should be
   0xfn7f where n = c, d, e, or f (the choice of n is determined by the
   compressor generating the returning SigComp message, which is not
   under the control of the above code).

   If the compressed message is 0x01, then the long version of the
   feedback item is used.  Executing the bytecode in this case costs a
   total of 179 UDVM cycles and the SigComp message returning the
   feedback should begin as follows:

   +---+---+---+---+---+---+---+---+
   | 1   1   1   1   1   1 |   X   |   first header byte
   +---+---+---+---+---+---+---+---+
   | 1 |            127            |   returned feedback length
   +---+---+---+---+---+---+---+---+
   |               1               |              ^
   +---+---+---+---+---+---+---+---+              |
   |               2               |              |
   +---+---+---+---+---+---+---+---+
   |               3               |   returned feedback field
   +---+---+---+---+---+---+---+---+

   So the first 129 bytes of the SigComp message should be 0xfnff 0102
   0304 ... 7e7f where n = c, d, e, or f as above.

   As well as testing the requested and returned feedback items, the
   above code also announces values for each of the SigComp parameters.
   The supplied version of the code announces only the minimum possible
   values for the cycles_per_bit, decompression_memory_size,
   state_memory_size, and SigComp_version (although this can easily be
   adjusted to test different values for these parameters).





Surtees & West               Informational                     [Page 40]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   The code should also announce the availability of state items with
   the following partial state identifiers:

   0x0001 0203 0405
   0x0001 0203 0405 0607 0809 0a0b
   0x0001 0203 0405 0607 0809 0a0b 0c0d 0e0f 1011 1213

   Note that different implementations may make use of the announcement
   information in different ways.  It is a valid implementation choice
   to simply ignore all of the announcement data and use only the
   minimum resources that are guaranteed to be available to all
   endpoints.  However, the above code is useful for checking that an
   endpoint interprets the announcement data correctly (in particular
   ensuring that it does not mistakenly use resources that have not in
   fact been announced).

4.2.  State Memory Management

   The following section gives assembly code to test the memory
   management features of the state handler.  The code checks that the
   correct states are retained by the state handler when insufficient
   memory is available to store all of the requested states.

   The code is designed to test that the following boundary cases have
   been correctly implemented:

   1.  A state item is created that exceeds the total state_memory_size
       for the compartment.

   2.  States are created with a non-zero state_retention_priority.

   3.  A new state item is created that has a lower
       state_retention_priority than existing state items in the
       compartment.

   For the duration of this test, it is assumed that all states will be
   saved in a single compartment with a state_memory_size of 2048 bytes.

   at (64)

   :byte_copy_left                 pad (2)
   :byte_copy_right                pad (2)
   :order                          pad (2)
   :type                           pad (1)
   :type_lsb                       pad (1)
   :state_length                   pad (2)
   :state_retention_priority       pad (2)




Surtees & West               Informational                     [Page 41]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   at(127)
   :decompression_failure
   at (128)

   MULTILOAD (byte_copy_left, 2, state_start, order_data)

   INPUT-BYTES (1, type_lsb, decompression_failure)
   COMPARE ($type, 5, general_test, large_state, verify_state)

   :general_test

   COMPARE ($type, 3, start, state_present, state_not_present)

   :start

   MULTIPLY ($type, 6)
   ADD ($type, order_data)
   LOAD (order, $type)
   ADD ($type, 6)

   ; Finish with the value (order_data + 6*n) in order where
   ; n is the input value 0x00, 0x01, or 0x02
   ; type = order + 6
   ; These values are used to index into the 'order_data'
   ; that is used to work out state retention priorities and lengths

   :loop

   COPY ($order, 2, state_retention_priority)
   COMPARE ($order, $type, continue, end, decompression_failure)

   :continue

   ;  Set up a state creation each time through the loop

   LOAD (state_length, $state_retention_priority)
   MULTIPLY ($state_length, 256)
   STATE-CREATE ($state_length, state_start, 0, 6,
   $state_retention_priority)

   ADD ($order, 2)
   JUMP (loop)

   :state_present

   ; Access the states that should be present
   STATE-ACCESS (state_identifier_a, 6, 0, 0, 0, 0)
   STATE-ACCESS (state_identifier_b, 6, 0, 0, 0, 0)



Surtees & West               Informational                     [Page 42]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   STATE-ACCESS (state_identifier_c, 6, 0, 0, 0, 0)
   STATE-ACCESS (state_identifier_e, 6, 0, 0, 0, 0)
   JUMP (end)

   :state_not_present

   ; Check that the state that shouldn't be present is not present.
   STATE-ACCESS (state_identifier_d, 6, 0, 0, 0, 0)
   JUMP (end)

   :large_state

   STATE-CREATE (2048, state_start, 0, 6, 0)
   JUMP (end)

   :verify_state

   STATE-ACCESS (large_state_identifier, 6, 0, 0, 0, 0)
   JUMP (end)

   :end

   END-MESSAGE (0, 0, 0, 0, 0, 0, 0)

   at (512)

   :state_start

   byte (116, 101, 115, 116)

   :order_data
   ; This data is used to generate the retention priority
   ; and state length of each state creation.

   word (0, 1, 2, 3, 4, 3, 2, 1, 0)

   :state_identifier_a

   byte (142, 234, 75, 67, 167, 135)

   :state_identifier_b

   byte (249, 1, 14, 239, 86, 123)

   :state_identifier_c

   byte (35, 154, 52, 107, 21, 166)




Surtees & West               Informational                     [Page 43]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   :state_identifier_d

   byte (180, 15, 192, 228, 77, 44)

   :state_identifier_e

   byte (212, 162, 33, 71, 230, 10)

   :large_state_identifier

   byte (239, 242, 188, 15, 182, 175)


   The above code must be executed a total of 7 times in order to
   complete the test.  Each time the code is executed, a 1-byte
   compressed message should be provided as below.  The effects of the
   messages are given below.  States are described in the form (name, x,
   y) where name corresponds to the name of the identifier in the
   mnemonic code, x is the length of the state, and y is the retention
   priority of the state.

   Message:   Effect:                                           #cycles:
   0x00       create states:                                       811
                   (a,0,0),
                   (b,256,1),
                   (c,512,2)
   0x01       create states:                                      2603
                   (d,768,3),
                   (e,1024,4) - deleting a, b, c
   0x02       create states:                                       811
                   (c,512,2), - deleting d
                   (b,256,1),
                   (a,0,0)
   0x03       access states a,b,c,e                               1805
   0x04       access state d - not present so decompression failure
   0x05       create states:                                      2057
                   (large, 2048,0) - deleting a, b, c, e
   0x06       access large state                                  1993

   Note that as new states are created, some of the existing states will
   be pushed out of the compartment due to lack of memory.

4.3.  Multiple Compartments

   This section gives assembly code to test the interaction between
   multiple SigComp compartments.  The code is designed to test that the
   following boundary cases have been correctly implemented:




Surtees & West               Informational                     [Page 44]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   1.  The same state item is saved in more than one compartment.

   2.  A state item stored in multiple compartments has the same state
       identifier but a different state_retention_priority in each case.

   3.  A state item is deleted from one compartment but still belongs to
       a different compartment.

   4.  A state item belonging to multiple compartments is deleted from
       every compartment to which it belongs.

   The test requires a total of three compartments to be available,
   which will be referred to as Compartment 0, Compartment 1, and
   Compartment 2.  Each of the three compartments should have a
   state_memory_size of 2048 bytes.

   The assembly code for the test is given below:

   at (64)

   :byte_copy_left                 pad (2)
   :byte_copy_right                pad (2)
   :type                           pad (1)
   :type_lsb                       pad (1)

   at (127)
   :decompression_failure
   at (128)

   MULTILOAD (byte_copy_left, 2, state_start, state_end)
   INPUT-BYTES (1, type_lsb, decompression_failure)
   COMPARE ($type, 3, create_state, overwrite_state, temp)

   :temp

   COMPARE ($type, 5, overwrite_state, access_state, error_conditions)

   :create_state
   ; starting byte identified by $type according to input:
   ; Input     0x00        0x01        0x02
   ; $type      512         513         514

   ADD ($type, state_start)
   STATE-CREATE (448, $type, 0, 6, 0)

   ; create state again, beginning in different place in buffer
   ; starting byte identified by $type according to input:
   ; Input     0x00        0x01        0x02



Surtees & West               Informational                     [Page 45]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   ; $type      515         516         517

   ADD ($type, 3)
   STATE-CREATE (448, $type, 0, 6, 0)

   ; create a third time beginning in different place again
   ; starting byte identified by $type according to input:
   ; Input     0x00        0x01        0x02
   ; $type      516         517         515

   SUBTRACT ($type, temp_one)
   REMAINDER ($type, 3)
   ADD ($type, temp_two)
   STATE-CREATE (448, $type, 0, 6, 0)

   :common_state

   STATE-CREATE (448, temp_three, 0, 6, $type)
   JUMP (end)

   :overwrite_state

   STATE-CREATE (1984, 32, 0, 6, 0)
   JUMP (end)

   :access_state

   STATE-ACCESS (state_identifier_c, 6, 0, 0, 0, 0)
   STATE-ACCESS (state_identifier_d, 6, 0, 0, 0, 0)
   STATE-ACCESS (state_identifier_f, 6, 0, 0, 0, 0)
   STATE-ACCESS (state_identifier_g, 6, 0, 0, 0, 0)

   :end

   END-MESSAGE (0, 0, 0, 0, 0, 0, 0)

   :error_conditions

   COMPARE ($type, 7, access_a, access_b, access_e)

   :access_a

   STATE-ACCESS (state_identifier_a, 6, 0, 0, 0, 0)
   JUMP (end)

   :access_b





Surtees & West               Informational                     [Page 46]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   STATE-ACCESS (state_identifier_b, 6, 0, 0, 0, 0)
   JUMP (end)

   :access_e

   STATE-ACCESS (state_identifier_e, 6, 0, 0, 0, 0)
   JUMP (end)

   at (512)

   :state_start

   byte (0, 1, 2, 3, 4, 5, 6)

   :state_end

   set (temp_one, (state_start + 2))   ; = 514
   set (temp_two, (state_start + 3))   ; = 515
   set (temp_three, (state_end - 1))   ; = 518

   :state_identifier_a         ; start state at 512

   byte (172, 166, 11, 142, 178, 131)

   :state_identifier_b         ; start state at 513

   byte (157, 191, 175, 198, 61, 210)

   :state_identifier_c         ; start state at 514

   byte (52, 197, 217, 29, 83, 97)

   :state_identifier_d         ; start state at 515

   byte (189, 214, 186, 42, 198, 90)

   :state_identifier_e         ; start state at 516

   byte (71, 194, 24, 20, 238, 7)

   :state_identifier_f         ; start state at 517

   byte (194, 117, 148, 29, 215, 161)

   :state_identifier_g         ; start state at 518

   byte (72, 135, 156, 141, 233, 14)




Surtees & West               Informational                     [Page 47]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   The above code must be executed a total of 9 times in order to
   complete the test.  Each time the code is executed, a 1-byte
   compressed message N should be provided, taking the values 0x00 to
   0x08 in ascending order (so the compressed message should be 0x00 the
   first time the code is run, 0x01 the second, and so on).

   If the code makes a state creation request, then the state must be
   saved in Compartment (N modulo 3).

   When the compressed message is 0x00, 0x01, or 0x02, the code makes
   four state creation requests in compartments 0, 1, and 2,
   respectively.  This creates a total of seven distinct state items
   referred to as State a through State g.  The states should be
   distributed among the three compartments as illustrated in Figure 1
   (note that some states belong to more than one compartment).

   When the compressed message is 0x03 or 0x04, the code overwrites all
   of the states in Compartments 0 and 1, respectively.  This means that
   States a, b, and e will be unavailable because they are no longer
   present in any of the three compartments.

   When the compressed message is 0x05, the code checks that the States
   c, d, f, and g are still available.  Decompression should terminate
   successfully in this case.

   When the compressed message is 0x06, 0x07, or 0x08, the code attempts
   to access States a, b, and e, respectively.  Decompression failure
   should occur in this case because the relevant states are no longer
   available.

   The cost in UDVM cycles for each compressed message is given below
   (except for messages 0x06, 0x07, and 0x08 where decompression failure
   should to occur):

   Compressed message: 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08

   Cost in UDVM cycles: 1809 1809 1809 1993 1994 1804 N/A N/A N/A














Surtees & West               Informational                     [Page 48]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


                     +-----------------------------+
                     |        Compartment 0        |
                     |                             |
                     |                             |
                     |           State a           |
                     |                             |
                     |         +-------------------+---------+
                     |         |                   |         |
                     |         |                   |         |
                     |         |           State d |         |
                     |         |                   |         |
                     |         |                   |         |
           +---------+---------+---------+         |         |
           |         |         |         |         |         |
           |         |         |         |         |         |
           |         | State e | State g |         | State c |
           |         |         |         |         |         |
           |         |         |         |         |         |
           |         +---------+---------+---------+         |
           |                   |         |                   |
           |                   |         |                   |
           |           State b | State f |                   |
           |                   |         |                   |
           |                   |         |   Compartment 2   |
           |                   +---------+-------------------+
           |                             |
           |                             |
           |                             |
           |                             |
           |        Compartment 1        |
           +-----------------------------+

            Figure 1: States created in the three compartments

4.4.  Accessing RFC 3485 State

   This section gives assembly code to test accessing SIP-SDP static
   dictionary state [3].  The code first accesses the state and then
   outputs the result.

   at (32)

   :input      pad (1)
   :input2     pad (1)
   :input3     pad (1)






Surtees & West               Informational                     [Page 49]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   at (128)

   STATE-ACCESS (sip_dictionary, 20, 0xcfe, 1, input, 0)
   STATE-ACCESS (sip_dictionary, 6, 0xcff, 1, input2, 0)
   STATE-ACCESS (sip_dictionary, 12, 0xd00, 1, input3, 0)

   OUTPUT (input, 3)

   END-MESSAGE (0, 0, 0, 0, 0, 0, 0)

   :sip_dictionary
   byte (0xfb, 0xe5, 0x07, 0xdf, 0xe5, 0xe6)
   byte (0xaa, 0x5a, 0xf2, 0xab, 0xb9, 0x14)
   byte (0xce, 0xaa, 0x05, 0xf9, 0x9c, 0xe6)
   byte (0x1b, 0xa5)

   The output of the code is 0x5349 50, and the cost is 11 UDVM cycles.

4.5.  Bytecode State Creation

   This section gives assembly code to test storing bytecode using
   END-MESSAGE and later loading the bytecode using a partial state
   identifier within the SigComp header.  The assembly code is designed
   to test the following cases:

   1.  The bytes to be saved are changed after the state create request
       has been made.

   2.  The uploaded bytecode is modified before execution.

   3.  The bytecode is loaded using the partial state identifier and is
       modified before execution.

   4.  The bytecode is loaded to an address lower than 128, using the
       partial state identifier.

   5.  The bytecode is loaded using the partial state identifier.  Part
       of the loaded memory is reserved area, which is overwritten after
       loading the bytecode.

   6.  The loading of the bytecode fails because the partial state
       identifier is too short.









Surtees & West               Informational                     [Page 50]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   at (30)
   :save_area1
   set (saved_instr1, (save_area1 + (code_start2 - start_saved))) ; = 33

   at (80)
   :save_area2
   set (saved_instr2, (save_area2 + (code_start2 - start_saved))) ; = 83

   at (128)
   :code_start

   COPY (start_saved, saved_len, save_area1)
                       ; copy 'ok2', OUTPUT (save_area2,3) END-MESSAGE
                       ; to position 30 and create as state
   STATE-CREATE (saved_len, save_area1, saved_instr1, 6, 10)


   set (modify1, (save_area1 + 5)) ; = 35
   LOAD (modify1, 0x1e03)
                       ; modify save_area2 to be save_area1 in the
                       ; created state

   COPY (start_saved, saved_len, save_area2)
   STATE-CREATE (saved_len, save_area2, saved_instr2, 20, 10)
   STATE-CREATE (saved_len, save_area2, saved_instr2, 12, 10)
                       ; copy 'ok2', OUTPUT (save_area2,3) END-MESSAGE
                       ; to position 80 and create as state twice with
                       ; min access len 20 and 12

   JUMP (modify)

   :ok1
   byte (0x4f, 0x4b, 0x31)

   set (after_output_minus1, (after_output - 1))

   :modify
   INPUT-BYTES (1, after_output_minus1, decompression_failure)
                       ; Input overwrites the next instruction
   OUTPUT (ok1, 3)     ; Now is OUTPUT (ok1, 2) so output is 0x4f4b

   :after_output

   ; Save from ok1 to the opcode of END-MESSAGE

   set (modify_len, ((after_output + 1) - ok1)) ; = 13





Surtees & West               Informational                     [Page 51]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   END-MESSAGE (0, 0, modify_len, ok1, modify, 6, 10)
                       ; Save 'ok1', INPUT-BYTES, OUTPUT as state

   set (saved_len, (end_saved - start_saved)) ; = 8

   :start_saved
   byte (0x4f, 0x4b, 0x32)

   :code_start2

   ; Translated bytecode for OUTPUT (save_area2, 3)
   byte (0x22, 0xa0, 0x50, 0x03)

   ; Translated bytecode for END-MESSAGE (0, 0, 0, 0, 0, 0, 0)
   ; The zeros do not need to be sent because UDVM is initialised to 0
   byte (0x23)

   :end_saved
   :decompression_failure

   The outputs and cycle usages are:

   Message              Output                  Cycles
   1                    0x4f4b                  66
   2                    0x4f4b 31               7
   3                    0x4f4b 32               5
   4                    0x0000 32               5
   5                    None                    Decompression failure

   First message: mnemonic code annotated above

   0xf804 6112 a0be 081e 2008 1e21 060a 0e23 be03 12a0 be08 a050 2008
   0xa050 a053 140a 2008 a050 a053 0c0a 1606 004f 4b31 1c01 a0b3 fc22
   0xa0a8 0323 0000 0da0 a8a0 ab06 0a4f 4b32 22a0 5003 2302

   Second message: access and run last state saved by previous message -
   'ok1', INPUT-BYTES, OUTPUT, END-MESSAGE.

   0xf905 b88c e72c 9103

   Third message: access and run state from save_area2 with 12 bytes of
   state identifier - 'ok2', INPUT-BYTES, OUTPUT, END-MESSAGE.

   0xfb24 63cd ff5c f8c7 6df6 a289 ff

   Fourth message: access and run state from save_area1.  The state is
   'ok2', INPUT-BYTES, OUTPUT, END-MESSAGE but the first two bytes
   should be overwritten when initialising UDVM memory.



Surtees & West               Informational                     [Page 52]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   0xf95b 4b43 d567 83

   Fifth message: attempt to access state from save_area2 with fewer
   than 20 bytes of state identifier.

   0xf9de 8126 1199 1f

5.  Security Considerations

   This document describes torture tests for the SigComp protocol RFC
   3320 [2].  Consequently, the security considerations for this
   document match those of SigComp.

   In addition, the torture tests include tests for a significant number
   of "boundary and error cases" for execution of the UDVM bytecode.
   Boundary and error problems are common vectors for security attacks,
   so ensuring that a UDVM implementation executes this set of torture
   tests correctly should contribute to the security of the
   implementation.

6.  Acknowledgements

   Thanks to Richard Price and Pekka Pessi for test contributions and to
   Pekka Pessi and Cristian Constantin, who served as committed working
   group document reviewers.

7.  Normative References

   [1]  Surtees, A. and M. West, "Signaling Compression (SigComp) Users'
        Guide", RFC 4464, May 2006.

   [2]  Price, R., Bormann, C., Christoffersson, J., Hannu, H., Liu, Z.,
        and J. Rosenberg, "Signaling Compression (SigComp)", RFC 3320,
        January 2003.

   [3]  Garcia-Martin, M., Bormann, C., Ott, J., Price, R., and A.B.
        Roach, "The Session Initiation Protocol (SIP) and Session
        Description Protocol (SDP) Static Dictionary for Signaling
        Compression (SigComp)", RFC 3485, February 2003.

   [4]  Roach, A.B., "A Negative Acknowledgement Mechanism for Signaling
        Compression", RFC 4077, May 2005.









Surtees & West               Informational                     [Page 53]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


Appendix A.  UDVM Bytecode for the Torture Tests

   The following sections list the raw UDVM bytecode generated for each
   test.  The bytecode is presented in the form of a complete SigComp
   message, including the appropriate header.  It is followed by input
   messages, the output they produce, and where the decompression
   succeeds the number of cycles used.

   In some cases, the test is designed to be run several times with
   different compressed messages appended to the code.  In the cases
   where multiple whole messages are used for a test, e.g.,
   Appendix A.2.3, these are supplied.  In the case where decompression
   failure occurs, the high-level reason for it is given as a reason
   code defined in NACK [4].

   Note that the different assemblers can output different bytecode for
   the same piece of assembly code, so a valid assembler can produce
   results different from those presented below.  However, the following
   bytecode should always generate the same results on any UDVM.

A.1.  Instructions

A.1.1.  Bit Manipulation

   0xf80a 7116 a07f 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x01c0 00ff 8055 5502 202a 0321 0420 0305 21ff 2286 0401 20c0 ff02
   0x2060 0320 0421 6005 2061 2286 0423

   Input: None
   Output: 0x0150 0000 febf 0000
   Cycles: 22
















Surtees & West               Informational                     [Page 54]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


A.1.2.  Arithmetic

   0xf80a a11c 01a0 450b 0722 0116 a077 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x06c0 00ff 9941 0720 0108 20a3 e909 20a0 650a 200b 2286 0406 21c0
   0xff07 2162 0821 6109 2061 0a21 6222 8604 23

   Input: 0x00
   Output: 0x0000 0000 0000 0004
   Cycles: 25

   Input: 0x01
   DECOMPRESSION-FAILURE           DIV_BY_ZERO

   Input: 0x02
   DECOMPRESSION-FAILURE           DIV_BY_ZERO

A.1.3.  Sorting

   0xf80d c10c 8802 170b 8802 1722 a12e 2d23 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0a00 0a00 1100 0700 1600 0300 0300 0300 1300 0100 1000 0e00
   0x0800 0200 0d00 1400 1200 1700 0f00 1500 0c00 0600 096e 6720 6975
   0x6920 7469 742c 2079 6f75 2720 5346 6f6e 6761 2075 7272 646f 2074
   0x6f6e 2e2e 0070 6570 206e 7472 656e 69

   Input: None
   Output: 0x466f 7264 2c20 796f 7527 7265 2074 7572 6e69 6e67
           0x2069 6e74 6f20 6120 7065 6e67 7569 6e2e 2053 746f
           0x7020 6974 2e
   Cycles: 371














Surtees & West               Informational                     [Page 55]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


A.1.4.  SHA-1

   0xf808 710d a0c3 03a0 4422 a044 140d a0c6 38a0 4422 a044 140e 86a0
   0xfe0e a042 a0ff 0da0 fe8e a044 22a0 4414 0e86 a0ff 0ea0 42a1 070d
   0xa0ff a280 a0ff 22a0 ff14 2300 0000 0000 0000 6162 6361 6263 6462
   0x6364 6563 6465 6664 6566 6765 6667 6866 6768 6967 6869 6a68 696a
   0x6b69 6a6b 6c6a 6b6c 6d6b 6c6d 6e6c 6d6e 6f6d 6e6f 706e 6f70 7161
   0x3031 3233 3435 3637

   Input: None
   Output: 0xa999 3e36 4706 816a ba3e 2571 7850 c26c 9cd0 d89d
           0x8498 3e44 1c3b d26e baae 4aa1 f951 29e5 e546 70f1
           0x12ff 347b 4f27 d69e 1f32 8e6f 4b55 73e3 666e 122f
           0x4f46 0452 ebb5 6393 4f46 0452 ebb5 6393 4f46 0452
   Cycles: 17176

A.1.5.  LOAD and MULTILOAD

   0xf803 610e 87a0 840e a082 c080 0ec0 80a0 860e c084 c084 2287 081c
   0x01a0 4127 0820 0206 203c 0f60 03a0 a2a0 b187 0f60 042a 87c0 80c0
   0x8422 8708 23

   Input: 0x00
   Output: 0x0084 0084 0086 0086 002a 0080 002a 002a
   Cycles: 36

   Input: 0x01
   DECOMPRESSION-FAILURE           MULTILOAD_OVERWRITTEN

   Input: 0x02
   DECOMPRESSION-FAILURE           MULTILOAD_OVERWRITTEN

A.1.6.  COPY

   0xf803 910e 208e 0e86 860e a042 8712 2087 210e 8680 4100 1286 a055
   0xa041 2220 a077 0e86 200e a042 3015 2004 a041 0112 2004 3022 3004
   0x1230 042e 2220 0223

   Input: None
   Output: 0x4040 4040 4040 4040 4040 4040 4040 4040 4040 4040
           0x4040 4040 4040 4040 4040 4040 4141 4141 4141 4141
           0x4141 4141 4141 4141 4141 4141 4141 4141 4141 4141
           0x4141 4141 4141 4141 4141 4141 4141 4141 4141 4141
           0x4141 4141 4141 4141 4141 4141 4141 4141 4141 4141
           0x4141 4141 4141 4141 4141 4141 4141 4141 4141 5541
           0x4243 4443 44
   Cycles: 365




Surtees & West               Informational                     [Page 56]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


A.1.7.  COPY-LITERAL and COPY-OFFSET

   0xf806 110e 2080 4100 0e86 860e a042 870e a044 2113 2087 2222 8608
   0x0ea0 44a0 9c13 2002 2222 a09c 020e 86a0 480e a042 a052 0ea0 44a0
   0x5215 a048 0aa0 4101 1402 0622 0ea0 4606 1463 0422 2261 0a0e a044
   0xa050 1404 0422 22a0 4402 1405 0422 22a0 4402 2260 0a23

   Input: None
   Output: 0x4141 4141 0061 4141 4141 494A 4142 4344 494A 4142
           0x004A 004E 4748 4845 4647 4748 4546
   Cycles: 216

A.1.8.  MEMSET

   0xf801 810e 8687 0ea0 42a0 8115 86a0 8100 0115 a081 0f86 0f22 8710
   0x23

   Input: None
   Output: 0x8040 4f5e 6d7c 8b9a a9b8 c7d6 e5f4 0312
   Cycles: 166

A.1.9.  CRC

   0xf801 8115 a046 1801 0115 a05e 1487 011c 02a0 4413 1b62 a046 2c0e
   0x23

   Input: 0x62cb
   Output: None
   Cycles: 95

   Input: 0xabcd
   DECOMPRESSION FAILURE           USER_REQUESTED (CRC mismatch)

A.1.10.  INPUT-BITS

   0xf801 511d 62a0 4614 22a0 4602 0622 010a 2207 0622 0116 ee23

   Input: 0x932e ac71
   Output: 0x0000 0002 0002 0013 0000 0003 001a 0038
   Cycles: 66











Surtees & West               Informational                     [Page 57]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


A.1.11.  INPUT-HUFFMAN

   0xf801 d11e a046 1c02 6200 6262 6200 ff00 22a0 4602 0622 010a 2207
   0x0622 0116 e623

   Input: 0x932e ac71 66d8 6f
   Output: 0x0000 0003 0008 04d7 0002 0003 0399 30fe
   Cycles: 84

A.1.12.  INPUT-BYTES

   0xf802 710e 86a0 480e a042 a04c 1d62 a046 1d22 a046 0206 2202 0a22
   0x071c 62a0 480e 22a0 4862 0622 0116 e523

   Input: 0x932e ac71 66d8 6fb1 592b dc9a 9734 d847 a733 874e
         0x1bcb cd51 b5dc 9659 9d6a
   Output: 0x0000 932e 0001 b166 d86f b100 1a2b 0003 9a97 34d8
          0x0007 0001 3387 4e00 08dc 9651 b5dc 9600 599d 6a
   Cycles: 130

A.1.13.  Stack Manipulation

   0xf814 110e a046 8610 0210 6010 a042 2286 0811 8611 6311 a046 2286
   0x0816 2800 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 000e a046 200e a048 a140 0724
   0x8818 3400 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0018 6400 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 000e a046 a17f 0ea1 7f1a 0fa1 b003
   0x0180 c001 8f19 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0023

   Input: None
   Output: 0x0003 0002 0001 0042 0042 0000 0001 0001
   Cycles: 40












Surtees & West               Informational                     [Page 58]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


A.1.14.  Program Flow

   0xf803 f10e a044 040e 86a0 9207 20a0 9022 a043 0116 6006 2101 0e86
   0xa084 0720 a0a1 22a0 4301 1761 0660 f106 0722 010e 86a0 8407 20a0
   0xb622 a043 011a 0462 0860 9fdc f123

   Input: None
   Output: 0x0001 0102 0203 0304 0405 0506 0707 0708 0808 0909
   Cycles: 131

A.1.15.  State Creation

   0xf809 411c 01a0 45ff 0422 0b17 628f 0d06 0620 0aa1 0a00 1400 0422
   0x0117 628f 0c06 0620 0a88 0014 0004 2201 1762 8f16 0606 1c01 a047
   0x9fd2 21a0 4863 12a0 e363 a048 0422 0117 628f 0a06 0621 a0e3 0604
   0x2201 1762 8f0e 0606 2300 000a 8800 1400 2300 0000 0000 0000 437a
   0xe80a 0fdc 1e6a 87c1 b62a 7676 b973 318c 0ef5 0000 0000 0000 0000
   0x00c0 cc3f ee79 bcfc 8fd1 0865 e803 52ee 2977 17df 57

   Input: 0x01
   Output: None
   Cycles: 23

   Input: 0x02
   Output: None
   Cycles: 14

   Input: 0x03
   Output: None
   Cycles: 24

   Input: 0x0405
   DECOMPRESSION-FAILURE           INVALID_STATE_ID_LENGTH

   Input: 0x0415
   DECOMPRESSION-FAILURE           INVALID_STATE_ID_LENGTH

   Input: 0x0406
   Output: None
   Cycles: 23

   Input: 0x09
   Output: None
   Cycles: 34

   Input: 0x1e06
   Output: None
   Cycles: 46



Surtees & West               Informational                     [Page 59]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   Input: 0x1e07
   Output: None
   Cycles: 47

   Input: 0x1e14
   Output: None
   Cycles: 60

A.1.16.  STATE-ACCESS

   Set up bytecode:
   0xf819 0123 0000 1089 0014 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0022 a20c
   0x0423 0000 0000 0000 0074 6573 74

   Input: None

   0xf819 411c 01a0 45ff 1762 0106 0d1c 1f89 1400 0000 891f 8914 0c04
   0xa046 0022 a046 0416 a146 1762 0306 101b 1f87 1400 0000 0016 a136
   0x1f89 1306 04a0 4600 16a1 2b1f 8914 0c05 a046 0016 a120 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0023 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 005d f8bc
   0x3e20 93b5 abe1 f170 1342 4ce7 fe05 e069 39





Surtees & West               Informational                     [Page 60]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   Input: 0x00
   Output: 0x7465 7374
   Cycles: 26

   Input: 0x01
   Output: 0x7465 7374
   Cycles: 15

   Input: 0x02
   DECOMPRESSION-FAILURE           STATE_NOT_FOUND

   Input: 0x03
   DECOMPRESSION-FAILURE           STATE_NOT_FOUND (len < min_acc_len)

   Input: 0x04
   DECOMPRESSION-FAILURE           STATE_TOO_SHORT

A.2.  Dispatcher Tests

A.2.1.  Useful Values

   0xf805 f10e 8620 0ea0 4221 1c01 a047 f817 4263 f306 f317 4300 ed06
   0x0c17 4400 e73f e717 44a3 c0e1 07e1 1c01 a047 9fda 0623 4007 2301
   0x1220 0163 1c01 a049 9fca 0ea0 4443 0622 0308 2208 0622 a3e8 0822
   0x4106 2264 0722 a358 1220 6220 2300 00a3 c086 8706

   Input: 1 byte of SigComp version
   Output: None
   Cycles: 968

   0xf93a db1d 3d20 aa

   Input: 1 byte of SigComp version then 0x0000
   Output: None
   Cycles: cycles_per_bit * 1080

   Input: 1 byte of SigComp version then 0x0001
   DECOMPRESSION-FAILURE           CYCLES_EXHAUSTED

   Input: 1 byte of SigComp version then 0x0100
   DECOMPRESSION-FAILURE           SEGFAULT










Surtees & West               Informational                     [Page 61]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


A.2.2.  Cycles Checking

   0xf801 a10f 8604 2029 0022 12a0 4402 6014 02a0 6423 22a0 4402 0622
   0x0116 ef

   Input: None
   DECOMPRESSION-FAILURE           CYCLES_EXHAUSTED

A.2.3.  Message-based Transport

   0xf8

   Input: None
   DECOMPRESSION-FAILURE           MESSAGE_TOO_SHORT

   0xf800

   Input: None
   DECOMPRESSION-FAILURE           MESSAGE_TOO_SHORT

   0xf800 e106 0011 2200 0223 0000 0000 0000 01

   Input: None
   Output: decompression_memory_size
   Cycles: 5

   0xf800 f106 0011 2200 0223 0000 0000 0000 01

   Input: None
   DECOMPRESSION-FAILURE           MESSAGE_TOO_SHORT

   0xf800 e006 0011 2200 0223 0000 0000 0000 01

   Input: None
   DECOMPRESSION-FAILURE           INVALID_CODE_LOCATION

   0xf800 ee06 0011 2200 0223 0000 0000 0000 01

   Input: None
   Output: decompression_memory_size
   Cycles: 5

A.2.4.  Stream-based Transport

   0xffff f801 7108 0002 2200 0222 a092 0523 0000 0000 0000 00ff 00ff
   0x03ff ffff ffff ffff f801 7e08 0002 2200 0222 a3d2 0523 0000 0000
   0x0000 00ff 04ff ffff ffff ffff ffff ff




Surtees & West               Informational                     [Page 62]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   The above stream contains two messages:

   Output: decompression_memory_size
   Cycles: 11

   Output: decompression_memory_size
   Cycles: 11

   0xf8ff ff

   Input: None
   DECOMPRESSION-FAILURE           MESSAGE_TOO_SHORT

   0xf800 ffff

   Input: None
   DECOMPRESSION-FAILURE           MESSAGE_TOO_SHORT

   0xf801 8108 0002 2200 0222 a092 0523 ffff 0000 0000 0000 00ff 00ff
   0x03ff ffff

   Input: None
   DECOMPRESSION-FAILURE           MESSAGE_TOO_SHORT

   0xf801 7008 0002 2200 0222 a092 0523 ffff 0000 0000 0000 00ff 04ff
   0xffff ff

   Input: None
   DECOMPRESSION-FAILURE           INVALID_CODE_LOCATION

A.2.5.  Input Past the End of a Message

   0xf803 210e 86a0 460e a042 a04d 1d09 a046 0a1c 07a0 4606 001d 07a0
   0x46ff 1c02 a046 fa22 a046 021d 10a0 4606 001d 08a0 46ff 22a0 4701
   0x23

   Input: 0xfffa 0068 6921
   Output: 0x6869 21
   Cycles: 23

   Input: 0xfffa 0068 69
   DECOMPRESSION-FAILURE           USER_REQUESTED  (not enough bits)









Surtees & West               Informational                     [Page 63]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


A.3.  State Handler Tests

A.3.1.  SigComp Feedback Mechanism

   0xf805 031c 01a0 41a0 5517 6001 070e a04f 0ea0 42a4 7f16 0e0e a042
   0xa4ff 15a0 44a0 7f01 010e a0c3 a801 0ea0 c5a6 000e a0cc ac00 0ea0
   0xd9b4 000e a0ee b500 15a0 c606 0001 15a0 cd0c 0001 15a0 da14 0001
   0x23a0 42a0 c3

   Input: 0x00
   Output: None
   Cycles: 52

   Input: 0x01
   Output: None
   Cycles: 179

A.3.2.  State Memory Management

   0xf81b a10f 8602 89a2 041c 01a0 47f9 1763 0508 a068 a070 1763 0307
   0x34a0 5608 2306 0623 a204 0ea0 4463 0623 0612 6202 a04a 1762 6308
   0xa058 9fd2 0ea0 4865 0824 8820 6489 0006 6506 2202 16e3 1fa2 1606
   0x0000 0000 1fa2 1c06 0000 0000 1fa2 2206 0000 0000 1fa2 2e06 0000
   0x0000 161e 1fa2 2806 0000 0000 1614 208b 8900 0600 160c 1fa2 3406
   0x0000 0000 1602 2300 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0074 6573
   0x7400 0000 0100 0200 0300 0400 0300 0200 0100 008e ea4b 43a7 87f9
   0x010e ef56 7b23 9a34 6b15 a6b4 0fc0 e44d 2cd4 a221 47e6 0aef f2bc
   0x0fb6 af

   Input: 0x00
   Output: None
   Cycles: 811

   Input: 0x01
   Output: None
   Cycles: 2603






Surtees & West               Informational                     [Page 64]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   Input: 0x02
   Output: None
   Cycles: 811

   Input: 0x03
   Output: None
   Cycles: 1805

   Input: 0x04
   DECOMPRESSION-FAILURE           STATE_NOT_FOUND

   Input: 0x05
   Output: None
   Cycles: 2057

   Input: 0x06
   Output: None
   Cycles: 1993

A.3.3.  Multiple Compartments

   0xf81b 110f 8602 89a2 071c 01a0 45f9 1762 030d 3d06 1762 0537 86a0
   0x6806 2289 20a1 c062 0006 0006 2203 20a1 c062 0006 0007 22a2 020a
   0x2203 0622 a203 20a1 c062 0006 0020 a1c0 a206 0006 6216 2b20 a7c0
   0x2000 0600 1622 1fa2 1306 0000 0000 1fa2 1906 0000 0000 1fa2 2506
   0x0000 0000 1fa2 2b06 0000 0000 2300 0000 0000 0000 1762 0706 101a
   0x1fa2 0706 0000 0000 16ea 1fa2 0d06 0000 0000 16e0 1fa2 1f06 0000
   0x0000 169f d600 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
   0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0102
   0x0304 0506 aca6 0b8e b283 9dbf afc6 3dd2 34c5 d91d 5361 bdd6 ba2a
   0xc65a 47c2 1814 ee07 c275 941d d7a1 4887 9c8d e90e

   Input: 0x00
   Output: None
   Cycles: 1809

   Input: 0x01
   Output: None
   Cycles: 1809





Surtees & West               Informational                     [Page 65]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   Input: 0x02
   Output: None
   Cycles: 1809

   Input: 0x03
   Output: None
   Cycles: 1993

   Input: 0x04
   Output: None
   Cycles: 1994

   Input: 0x05
   Output: None
   Cycles: 1804

   Input: 0x06
   DECOMPRESSION-FAILURE           STATE_NOT_FOUND

   Input: 0x07
   DECOMPRESSION-FAILURE           STATE_NOT_FOUND

   Input: 0x08
   DECOMPRESSION-FAILURE           STATE_NOT_FOUND

A.3.4.  Accessing RFC 3485 State

   0xf803 a11f a0a6 14ac fe01 2000 1fa0 a606 acff 0121 001f a0a6 0cad
   0x0001 2200 2220 0323 0000 0000 0000 00fb e507 dfe5 e6aa 5af2 abb9
   0x14ce aa05 f99c e61b a5

   Input: None
   Output: 0x5349 50
   Cycles: 11

A.3.5.  Bytecode State Creation

   0xf804 6112 a0be 081e 2008 1e21 060a 0e23 be03 12a0 be08 a050 2008
   0xa050 a053 140a 2008 a050 a053 0c0a 1606 004f 4b31 1c01 a0b3 fc22
   0xa0a8 0323 0000 0da0 a8a0 ab06 0a4f 4b32 22a0 5003 2302

   Input: None
   Output: 0x4f4b
   Cycles: 66

   0xf905 b88c e72c 9103





Surtees & West               Informational                     [Page 66]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


   Input: None
   Output: 0x4f4b 31
   Cycles: 7

   0xfb24 63cd ff5c f8c7 6df6 a289 ff

   Input: None
   Output: 0x4f4b 32
   Cycles: 5

   0xf95b 4b43 d567 83

   Input: None
   Output: 0x0000 32
   Cycles: 5

   0xf9de 8126 1199 1f

   Input: None
   DECOMPRESSION-FAILURE           STATE_NOT_FOUND

Authors' Addresses

   Abigail Surtees
   Siemens/Roke Manor Research
   Roke Manor Research Ltd.
   Romsey, Hants  SO51 0ZN
   UK

   Phone: +44 (0)1794 833131
   EMail: abigail.surtees@roke.co.uk
   URI:   http://www.roke.co.uk


   Mark A. West
   Siemens/Roke Manor Research
   Roke Manor Research Ltd.
   Romsey, Hants  SO51 0ZN
   UK

   Phone: +44 (0)1794 833311
   EMail: mark.a.west@roke.co.uk
   URI:   http://www.roke.co.uk








Surtees & West               Informational                     [Page 67]
^L
RFC 4465                 SigComp Torture Tests                 June 2006


Full Copyright Statement

   Copyright (C) The Internet Society (2006).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at
   ietf-ipr@ietf.org.

Acknowledgement

   Funding for the RFC Editor function is provided by the IETF
   Administrative Support Activity (IASA).







Surtees & West               Informational                     [Page 68]
^L