summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc4471.txt
blob: eb338e6b5edfd14e446f07b87b0807069b53f591 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
Network Working Group                                          G. Sisson
Request for Comments: 4471                                     B. Laurie
Category: Experimental                                           Nominet
                                                          September 2006


            Derivation of DNS Name Predecessor and Successor


Status of This Memo

   This memo defines an Experimental Protocol for the Internet
   community.  It does not specify an Internet standard of any kind.
   Discussion and suggestions for improvement are requested.
   Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2006).

Abstract

   This document describes two methods for deriving the canonically-
   ordered predecessor and successor of a DNS name.  These methods may
   be used for dynamic NSEC resource record synthesis, enabling
   security-aware name servers to provide authenticated denial of
   existence without disclosing other owner names in a DNSSEC secured
   zone.

Table of Contents

   1. Introduction ....................................................2
   2. Notational Conventions ..........................................3
   3. Derivations .....................................................3
      3.1. Absolute Method ............................................3
           3.1.1. Derivation of DNS Name Predecessor ..................3
           3.1.2. Derivation of DNS Name Successor ....................4
      3.2. Modified Method ............................................4
           3.2.1. Derivation of DNS Name Predecessor ..................5
           3.2.2. Derivation of DNS Name Successor ....................6
   4. Notes ...........................................................6
      4.1. Test for Existence .........................................6
      4.2. Case Considerations ........................................7
      4.3. Choice of Range ............................................7
      4.4. Wild Card Considerations ...................................8
      4.5. Possible Modifications .....................................8
           4.5.1. Restriction of Effective Maximum DNS Name Length ....8
           4.5.2. Use of Modified Method with Zones Containing



Sisson & Laurie               Experimental                      [Page 1]
^L
RFC 4471           DNS Name Predecessor and Successor     September 2006


                  SRV RRs .............................................8
   5. Examples ........................................................9
      5.1. Examples of Immediate Predecessors Using Absolute Method ..10
      5.2. Examples of Immediate Successors Using Absolute Method ....14
      5.3. Examples of Predecessors Using Modified Method ............19
      5.4. Examples of Successors Using Modified Method ..............20
   6. Security Considerations ........................................21
   7. Acknowledgements ...............................................21
   8. References .....................................................21
      8.1. Normative References ......................................21
      8.2. Informative References ....................................22

1.  Introduction

   One of the proposals for avoiding the exposure of zone information
   during the deployment DNSSEC is dynamic NSEC resource record (RR)
   synthesis.  This technique is described in [DNSSEC-TRANS] and
   [RFC4470], and involves the generation of NSEC RRs that just span the
   query name for non-existent owner names.  In order to do this, the
   DNS names that would occur just prior to and just following a given
   query name must be calculated in real time, as maintaining a list of
   all possible owner names that might occur in a zone would be
   impracticable.

   Section 6.1 of [RFC4034] defines canonical DNS name order.  This
   document does not amend or modify this definition.  However, the
   derivation of immediate predecessor and successor, although trivial,
   is non-obvious.  Accordingly, several methods are described here as
   an aid to implementors and a reference to other interested parties.

   This document describes two methods:

   1.  An "absolute method", which returns the immediate predecessor or
       successor of a domain name such that no valid DNS name could
       exist between that DNS name and the predecessor or successor.

   2.  A "modified method", which returns a predecessor and successor
       that are more economical in size and computation.  This method is
       restricted to use with zones consisting exclusively of owner
       names that contain no more than one label more than the owner
       name of the apex, where the longest possible owner name (i.e.,
       one with a maximum length left-most label) would not exceed the
       maximum DNS name length.  This is, however, the type of zone for
       which the technique of online signing is most likely to be used.







Sisson & Laurie               Experimental                      [Page 2]
^L
RFC 4471           DNS Name Predecessor and Successor     September 2006


2.  Notational Conventions

   The following notational conventions are used in this document for
   economy of expression:

   N: An unspecified DNS name.

   P(N): Immediate predecessor to N (absolute method).

   S(N): Immediate successor to N (absolute method).

   P'(N): Predecessor to N (modified method).

   S'(N): Successor to N (modified method).

3.  Derivations

   These derivations assume that all uppercase US-ASCII letters in N
   have already been replaced by their corresponding lowercase
   equivalents.  Unless otherwise specified, processing stops after the
   first step in which a condition is met.

   The derivations make reference to maximum label length and maximum
   DNS name length; these are defined in Section 3.1 of [RFC1034] to be
   63 and 255 octets, respectively.

3.1.  Absolute Method

3.1.1.  Derivation of DNS Name Predecessor

   To derive P(N):

   1.  If N is the same as the owner name of the zone apex, prepend N
       repeatedly with labels of the maximum length possible consisting
       of octets of the maximum sort value (e.g., 0xff) until N is the
       maximum length possible; otherwise proceed to the next step.

   2.  If the least significant (left-most) label of N consists of a
       single octet of the minimum sort value (e.g., 0x00), remove that
       label; otherwise proceed to the next step.

   3.  If the least significant (right-most) octet in the least
       significant (left-most) label of N is the minimum sort value,
       remove the least significant octet and proceed to step 5.

   4.  Decrement the value of the least significant (right-most) octet
       of the least significant (left-most) label, skipping any values
       that correspond to uppercase US-ASCII letters, and then append



Sisson & Laurie               Experimental                      [Page 3]
^L
RFC 4471           DNS Name Predecessor and Successor     September 2006


       the least significant (left-most) label with as many octets as
       possible of the maximum sort value.  Proceed to the next step.

   5.  Prepend N repeatedly with labels of as long a length as possible
       consisting of octets of the maximum sort value until N is the
       maximum length possible.

3.1.2.  Derivation of DNS Name Successor

   To derive S(N):

   1.  If N is two or more octets shorter than the maximum DNS name
       length, prepend N with a label containing a single octet of the
       minimum sort value (e.g., 0x00); otherwise proceed to the next
       step.

   2.  If N is one octet shorter than the maximum DNS name length and
       the least significant (left-most) label is one or more octets
       shorter than the maximum label length, append an octet of the
       minimum sort value to the least significant label; otherwise
       proceed to the next step.

   3.  Increment the value of the least significant (right-most) octet
       in the least significant (left-most) label that is less than the
       maximum sort value (e.g., 0xff), skipping any values that
       correspond to uppercase US-ASCII letters, and then remove any
       octets to the right of that one.  If all octets in the label are
       the maximum sort value, then proceed to the next step.

   4.  Remove the least significant (left-most) label.  Unless N is now
       the same as the owner name of the zone apex (this will occur only
       if N was the maximum possible name in canonical DNS name order,
       and thus has wrapped to the owner name of zone apex), repeat
       starting at step 2.

3.2.  Modified Method

   This method is for use with zones consisting only of single-label
   owner names where an owner name consisting of label of maximum length
   would not result in a DNS name that exceeded the maximum DNS name
   length.  This method is computationally simpler and returns values
   that are more economical in size than the absolute method.  It
   differs from the absolute method detailed above in the following
   ways:

   1.  Step 1 of the derivation P(N) has been omitted as the existence
       of the owner name of the zone apex never requires denial.




Sisson & Laurie               Experimental                      [Page 4]
^L
RFC 4471           DNS Name Predecessor and Successor     September 2006


   2.  A new step 1 has been introduced that removes unnecessary labels.

   3.  Step 4 of the derivation P(N) has been omitted as it is only
       necessary for zones containing owner names consisting of more
       than one label.  This omission generally results in a significant
       reduction of the length of derived predecessors.

   4.  Step 1 of the derivation S(N) had been omitted as it is only
       necessary for zones containing owner names consisting of more
       than one label.  This omission results in a tiny reduction of the
       length of derived successors, and maintains consistency with the
       modification of step 4 of the derivation P(N) described above.

   5.  Steps 2 and 4 of the derivation S(N) have been modified to
       eliminate checks for maximum DNS name length, as it is an
       assumption of this method that no DNS name in the zone can exceed
       the maximum DNS name length.

3.2.1.  Derivation of DNS Name Predecessor

   To derive P'(N):

   1.  If N is two or more labels longer than the owner name of the
       apex, repeatedly remove the least significant (left-most) label
       until N is only one label longer than the owner name of the apex;
       otherwise proceed to the next step.

   2.  If the least significant (left-most) label of N consists of a
       single octet of the minimum sort value (e.g., 0x00), remove that
       label; otherwise proceed to the next step.  (If this condition is
       met, P'(N) is the owner name of the apex.)

   3.  If the least significant (right-most) octet in the least
       significant (left-most) label of N is the minimum sort value,
       remove the least significant octet.

   4.  Decrement the value of the least significant (right-most) octet,
       skipping any values that correspond to uppercase US-ASCII
       letters, and then append the label with as many octets as
       possible of the maximum sort value.











Sisson & Laurie               Experimental                      [Page 5]
^L
RFC 4471           DNS Name Predecessor and Successor     September 2006


3.2.2.  Derivation of DNS Name Successor

   To derive S'(N):

   1.  If N is two or more labels longer than the owner name of the
       apex, repeatedly remove the least significant (left-most) label
       until N is only one label longer than the owner name of the apex.
       Proceed to the next step.

   2.  If the least significant (left-most) label of N is one or more
       octets shorter than the maximum label length, append an octet of
       the minimum sort value to the least significant label; otherwise
       proceed to the next step.

   3.  Increment the value of the least significant (right-most) octet
       in the least significant (left-most) label that is less than the
       maximum sort value (e.g., 0xff), skipping any values that
       correspond to uppercase US-ASCII letters, and then remove any
       octets to the right of that one.  If all octets in the label are
       the maximum sort value, then proceed to the next step.

   4.  Remove the least significant (left-most) label.  (This will occur
       only if the least significant label is the maximum label length
       and consists entirely of octets of the maximum sort value, and
       thus has wrapped to the owner name of the zone apex.)

4.  Notes

4.1.  Test for Existence

   Before using the result of P(N) or P'(N) as the owner name of an NSEC
   RR in a DNS response, a name server should test to see whether the
   name exists.  If it does, either a standard non-synthesised NSEC RR
   should be used, or the synthesised NSEC RR should reflect the RRset
   types that exist at the NSEC RR's owner name in the Type Bit Map
   field as specified by Section 4.1.2 of [RFC4034].  Implementors will
   likely find it simpler to use a non-synthesised NSEC RR.  For further
   details, see Section 2 of [RFC4470].













Sisson & Laurie               Experimental                      [Page 6]
^L
RFC 4471           DNS Name Predecessor and Successor     September 2006


4.2.  Case Considerations

   Section 3.5 of [RFC1034] specifies that "while upper and lower case
   letters are allowed in names, no significance is attached to the
   case".  Additionally, Section 6.1 of [RFC4034] states that when
   determining canonical DNS name order, "uppercase US-ASCII letters are
   treated as if they were lowercase US-ASCII letters".  Consequently,
   values corresponding to US-ASCII uppercase letters must be skipped
   when decrementing and incrementing octets in the derivations
   described in Section 3.

   The following pseudo-code is illustrative:

   Decrement the value of an octet:

      if (octet == '[')       // '[' is just after uppercase 'Z'
              octet = '@';    // '@' is just prior to uppercase 'A'
      else
              octet--;

   Increment the value of an octet:

      if (octet == '@')       // '@' is just prior to uppercase 'A'
              octet = '[';    // '[' is just after uppercase 'Z'
      else
              octet++;

4.3.  Choice of Range

   [RFC2181] makes the clarification that "any binary string whatever
   can be used as the label of any resource record".  Consequently, the
   minimum sort value may be set as 0x00 and the maximum sort value as
   0xff, and the range of possible values will be any DNS name that
   contains octets of any value other than those corresponding to
   uppercase US-ASCII letters.

   However, if all owner names in a zone are in the letter-digit-hyphen,
   or LDH, format specified in [RFC1034], it may be desirable to
   restrict the range of possible values to DNS names containing only
   LDH values.  This has the effect of

   1.  making the output of tools such as `dig' and `nslookup' less
       subject to confusion,

   2.  minimising the impact that NSEC RRs containing DNS names with
       non-LDH values (or non-printable values) might have on faulty DNS
       resolver implementations, and




Sisson & Laurie               Experimental                      [Page 7]
^L
RFC 4471           DNS Name Predecessor and Successor     September 2006


   3.  preventing the possibility of results that are wildcard DNS names
       (see Section 4.4).

   This may be accomplished by using a minimum sort value of 0x1f (US-
   ASCII character `-') and a maximum sort value of 0x7a (US-ASCII
   character lowercase `z'), and then skipping non-LDH, non-lowercase
   values when incrementing or decrementing octets.

4.4.  Wild Card Considerations

   Neither derivation avoids the possibility that the result may be a
   DNS name containing a wildcard label, i.e., a label containing a
   single octet with the value 0x2a (US-ASCII character `*').  With
   additional tests, wildcard DNS names may be explicitly avoided;
   alternatively, if the range of octet values can be restricted to
   those corresponding to letter-digit-hyphen, or LDH, characters (see
   Section 4.3), such DNS names will not occur.

   Note that it is improbable that a result that is a wildcard DNS name
   will occur unintentionally; even if one does occur either as the
   owner name of, or in the RDATA of an NSEC RR, it is treated as a
   literal DNS name with no special meaning.

4.5.  Possible Modifications

4.5.1.  Restriction of Effective Maximum DNS Name Length

   [RFC1034] specifies that "the total number of octets that represent a
   name (i.e., the sum of all label octets and label lengths) is limited
   to 255", including the null (zero-length) label that represents the
   root.  For the purpose of deriving predecessors and successors during
   NSEC RR synthesis, the maximum DNS name length may be effectively
   restricted to the length of the longest DNS name in the zone.  This
   will minimise the size of responses containing synthesised NSEC RRs
   but, especially in the case of the modified method, may result in
   some additional computational complexity.

   Note that this modification will have the effect of revealing
   information about the longest name in the zone.  Moreover, when the
   contents of the zone changes, e.g., during dynamic updates and zone
   transfers, care must be taken to ensure that the effective maximum
   DNS name length agrees with the new contents.

4.5.2.  Use of Modified Method with Zones Containing SRV RRs

   Normally, the modified method cannot be used in zones that contain
   Service Record (SRV) RRs [RFC2782], as SRV RRs have owner names that
   contain multiple labels.  However, the use of SRV RRs can be



Sisson & Laurie               Experimental                      [Page 8]
^L
RFC 4471           DNS Name Predecessor and Successor     September 2006


   accommodated by various techniques.  There are at least four possible
   ways to do this:

   1.  Use conventional NSEC RRs for the region of the zone that
       contains first-level labels beginning with the underscore (`_')
       character.  For the purposes of generating these NSEC RRs, the
       existence of (possibly fictional) ownernames `9{63}' and `a'
       could be assumed, providing a lower and upper bound for this
       region.  Then all queries where the QNAME does not exist but
       contains a first-level label beginning with an underscore could
       be handled using the normal DNSSEC protocol.

       This approach would make it possible to enumerate all DNS names
       in the zone containing a first-level label beginning with
       underscore, including all SRV RRs, but this may be of less a
       concern to the zone administrator than incurring the overhead of
       the absolute method or of the following variants of the modified
       method.

   2.  The absolute method could be used for synthesising NSEC RRs for
       all queries where the QNAME contains a leading underscore.
       However, this re-introduces the susceptibility of the absolute
       method to denial of service activity, as an attacker could send
       queries for an effectively inexhaustible supply of domain names
       beginning with a leading underscore.

   3.  A variant of the modified method could be used for synthesising
       NSEC RRs for all queries where the QNAME contains a leading
       underscore.  This variant would assume that all predecessors and
       successors to queries where the QNAME contains a leading
       underscore may consist of two labels rather than only one.  This
       introduces a little additional complexity without incurring the
       full increase in response size and computational complexity as
       the absolute method.

   4.  Finally, a variant of the modified method that assumes that all
       owner names in the zone consist of one or two labels could be
       used.  However, this negates much of the reduction in response
       size of the modified method and may be nearly as computationally
       complex as the absolute method.

5.  Examples

   In the following examples,

      the owner name of the zone apex is "example.com.",





Sisson & Laurie               Experimental                      [Page 9]
^L
RFC 4471           DNS Name Predecessor and Successor     September 2006


      the range of octet values is 0x00 - 0xff excluding values
      corresponding to uppercase US-ASCII letters, and

      non-printable octet values are expressed as three-digit decimal
      numbers preceded by a backslash (as specified in Section 5.1 of
      [RFC1035]).

5.1.  Examples of Immediate Predecessors Using Absolute Method

   Example of a typical case:

      P(foo.example.com.) =

           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255.\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255.\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255.fon\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255.example.com.

      or, in alternate notation:

           \255{49}.\255{63}.\255{63}.fon\255{60}.example.com.

      where {n} represents the number of repetitions of an octet.

   Example where least significant (left-most) label of DNS name
   consists of a single octet of the minimum sort value:

      P(\000.foo.example.com.) = foo.example.com.







Sisson & Laurie               Experimental                     [Page 10]
^L
RFC 4471           DNS Name Predecessor and Successor     September 2006


   Example where least significant (right-most) octet of least
   significant (left-most) label has the minimum sort value:

      P(foo\000.example.com.) =

           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255.\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255.\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255.\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255.foo.example.com.

      or, in alternate notation:

           \255{45}.\255{63}.\255{63}.\255{63}.foo.example.com.






















Sisson & Laurie               Experimental                     [Page 11]
^L
RFC 4471           DNS Name Predecessor and Successor     September 2006


   Example where DNS name contains an octet that must be decremented by
   skipping values corresponding to US-ASCII uppercase letters:

      P(fo\[.example.com.) =

           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255.\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255.\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255.fo\@\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255.example.com.

      or, in alternate notation:

           \255{49}.\255{63}.\255{63}.fo\@\255{60}.example.com.

      where {n} represents the number of repetitions of an octet.




















Sisson & Laurie               Experimental                     [Page 12]
^L
RFC 4471           DNS Name Predecessor and Successor     September 2006


   Example where DNS name is the owner name of the zone apex, and
   consequently wraps to the DNS name with the maximum possible sort
   order in the zone:

      P(example.com.) =

           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255.\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255.\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255.\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255.example.com.

      or, in alternate notation:

           \255{49}.\255{63}.\255{63}.\255{63}.example.com.




















Sisson & Laurie               Experimental                     [Page 13]
^L
RFC 4471           DNS Name Predecessor and Successor     September 2006


5.2.  Examples of Immediate Successors Using Absolute Method

   Example of typical case:

      S(foo.example.com.) = \000.foo.example.com.

   Example where DNS name is one octet short of the maximum DNS name
   length:

      N =  fooooooooooooooooooooooooooooooooooooooooooooooo
           .ooooooooooooooooooooooooooooooooooooooooooooooo
           oooooooooooooooo.ooooooooooooooooooooooooooooooo
           oooooooooooooooooooooooooooooooo.ooooooooooooooo
           oooooooooooooooooooooooooooooooooooooooooooooooo.example.com.

      or, in alternate notation:

           fo{47}.o{63}.o{63}.o{63}.example.com.

      S(N) =

           fooooooooooooooooooooooooooooooooooooooooooooooo
           \000.ooooooooooooooooooooooooooooooooooooooooooo
           oooooooooooooooooooo.ooooooooooooooooooooooooooo
           oooooooooooooooooooooooooooooooooooo.ooooooooooo
           oooooooooooooooooooooooooooooooooooooooooooooooo
           oooo.example.com.

      or, in alternate notation:

           fo{47}\000.o{63}.o{63}.o{63}.example.com.




















Sisson & Laurie               Experimental                     [Page 14]
^L
RFC 4471           DNS Name Predecessor and Successor     September 2006


   Example where DNS name is the maximum DNS name length:

      N  = fooooooooooooooooooooooooooooooooooooooooooooooo
           o.oooooooooooooooooooooooooooooooooooooooooooooo
           ooooooooooooooooo.oooooooooooooooooooooooooooooo
           ooooooooooooooooooooooooooooooooo.oooooooooooooo
           oooooooooooooooooooooooooooooooooooooooooooooooo
           o.example.com.

      or, in alternate notation:

           fo{48}.o{63}.o{63}.o{63}.example.com.

      S(N) =

           fooooooooooooooooooooooooooooooooooooooooooooooo
           p.oooooooooooooooooooooooooooooooooooooooooooooo
           ooooooooooooooooo.oooooooooooooooooooooooooooooo
           ooooooooooooooooooooooooooooooooo.oooooooooooooo
           oooooooooooooooooooooooooooooooooooooooooooooooo
           o.example.com.

      or, in alternate notation:

           fo{47}p.o{63}.o{63}.o{63}.example.com.


























Sisson & Laurie               Experimental                     [Page 15]
^L
RFC 4471           DNS Name Predecessor and Successor     September 2006


   Example where DNS name is the maximum DNS name length and the least
   significant (left-most) label has the maximum sort value:

      N =  \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255.ooooooooooooooooooooooooooooooooooooooooooo
           oooooooooooooooooooo.ooooooooooooooooooooooooooo
           oooooooooooooooooooooooooooooooooooo.ooooooooooo
           oooooooooooooooooooooooooooooooooooooooooooooooo
           oooo.example.com.

      or, in alternate notation:

           \255{49}.o{63}.o{63}.o{63}.example.com.

      S(N) =

           oooooooooooooooooooooooooooooooooooooooooooooooo
           oooooooooooooop.oooooooooooooooooooooooooooooooo
           ooooooooooooooooooooooooooooooo.oooooooooooooooo
           ooooooooooooooooooooooooooooooooooooooooooooooo.
           example.com.

      or, in alternate notation:

           o{62}p.o{63}.o{63}.example.com.























Sisson & Laurie               Experimental                     [Page 16]
^L
RFC 4471           DNS Name Predecessor and Successor     September 2006


   Example where DNS name is the maximum DNS name length and the eight
   least significant (right-most) octets of the least significant
   (left-most) label have the maximum sort value:

      N  = foooooooooooooooooooooooooooooooooooooooo\255
           \255\255\255\255\255\255\255.ooooooooooooooooooo
           oooooooooooooooooooooooooooooooooooooooooooo.ooo
           oooooooooooooooooooooooooooooooooooooooooooooooo
           oooooooooooo.ooooooooooooooooooooooooooooooooooo
           oooooooooooooooooooooooooooo.example.com.

      or, in alternate notation:

           fo{40}\255{8}.o{63}.o{63}.o{63}.example.com.

      S(N) =

           fooooooooooooooooooooooooooooooooooooooop.oooooo
           oooooooooooooooooooooooooooooooooooooooooooooooo
           ooooooooo.oooooooooooooooooooooooooooooooooooooo
           ooooooooooooooooooooooooo.oooooooooooooooooooooo
           ooooooooooooooooooooooooooooooooooooooooo.example.com.

      or, in alternate notation:

           fo{39}p.o{63}.o{63}.o{63}.example.com.

























Sisson & Laurie               Experimental                     [Page 17]
^L
RFC 4471           DNS Name Predecessor and Successor     September 2006


   Example where DNS name is the maximum DNS name length and contains an
   octet that must be incremented by skipping values corresponding to
   US-ASCII uppercase letters:

      N  = fooooooooooooooooooooooooooooooooooooooooooooooo
           \@.ooooooooooooooooooooooooooooooooooooooooooooo
           oooooooooooooooooo.ooooooooooooooooooooooooooooo
           oooooooooooooooooooooooooooooooooo.ooooooooooooo
           oooooooooooooooooooooooooooooooooooooooooooooooo
           oo.example.com.

      or, in alternate notation:

           fo{47}\@.o{63}.o{63}.o{63}.example.com.

      S(N) =

           fooooooooooooooooooooooooooooooooooooooooooooooo
           \[.ooooooooooooooooooooooooooooooooooooooooooooo
           oooooooooooooooooo.ooooooooooooooooooooooooooooo
           oooooooooooooooooooooooooooooooooo.ooooooooooooo
           oooooooooooooooooooooooooooooooooooooooooooooooo
           oo.example.com.

      or, in alternate notation:

           fo{47}\[.o{63}.o{63}.o{63}.example.com.
























Sisson & Laurie               Experimental                     [Page 18]
^L
RFC 4471           DNS Name Predecessor and Successor     September 2006


   Example where DNS name has the maximum possible sort order in the
   zone, and consequently wraps to the owner name of the zone apex:

      N  = \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255.\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255.\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255.\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255.example.com.

      or, in alternate notation:

           \255{49}.\255{63}.\255{63}.\255{63}.example.com.

      S(N) = example.com.

5.3.  Examples of Predecessors Using Modified Method

   Example of a typical case:

      P'(foo.example.com.) =

           fon\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255.example.com.

      or, in alternate notation:

           fon\255{60}.example.com.




Sisson & Laurie               Experimental                     [Page 19]
^L
RFC 4471           DNS Name Predecessor and Successor     September 2006


   Example where DNS name contains more labels than DNS names in the
   zone:

      P'(bar.foo.example.com.) = foo.example.com.

   Example where least significant (right-most) octet of least
   significant (left-most) label has the minimum sort value:

      P'(foo\000.example.com.) = foo.example.com.

   Example where least significant (left-most) label has the minimum
   sort value:

      P'(\000.example.com.) = example.com.

   Example where DNS name is the owner name of the zone apex, and
   consequently wraps to the DNS name with the maximum possible sort
   order in the zone:

      P'(example.com.) =

           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255.example.com.

      or, in alternate notation:

           \255{63}.example.com.

5.4.  Examples of Successors Using Modified Method

   Example of a typical case:

      S'(foo.example.com.) = foo\000.example.com.

   Example where DNS name contains more labels than DNS names in the
   zone:

      S'(bar.foo.example.com.) = foo\000.example.com.


   Example where least significant (left-most) label has the maximum
   sort value, and consequently wraps to the owner name of the zone
   apex:




Sisson & Laurie               Experimental                     [Page 20]
^L
RFC 4471           DNS Name Predecessor and Successor     September 2006


      N  = \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255\255\255\255\255\255\255\255\255\255
           \255\255\255.example.com.

      or, in alternate notation:

           \255{63}.example.com.

      S'(N) = example.com.

6.  Security Considerations

   The derivation of some predecessors/successors requires the testing
   of more conditions than others.  Consequently, the effectiveness of a
   denial-of-service attack may be enhanced by sending queries that
   require more conditions to be tested.  The modified method involves
   the testing of fewer conditions than the absolute method and
   consequently is somewhat less susceptible to this exposure.

7.  Acknowledgements

   The authors would like to thank Sam Weiler, Olaf Kolkman, Olafur
   Gudmundsson, and Niall O'Reilly for their review and input.

8.  References

8.1.  Normative References

   [RFC1034]      Mockapetris, P., "Domain names - concepts and
                  facilities", STD 13, RFC 1034, November 1987.

   [RFC1035]      Mockapetris, P., "Domain names - implementation and
                  specification", STD 13, RFC 1035, November 1987.

   [RFC2181]      Elz, R. and R. Bush, "Clarifications to the DNS
                  Specification", RFC 2181, July 1997.

   [RFC2782]      Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR
                  for specifying the location of services (DNS SRV)",
                  RFC 2782, February 2000.

   [RFC4034]      Arends, R., Austein, R., Larson, M., Massey, D., and
                  S. Rose, "Resource Records for the DNS Security
                  Extensions", RFC 4034, March 2005.




Sisson & Laurie               Experimental                     [Page 21]
^L
RFC 4471           DNS Name Predecessor and Successor     September 2006


8.2.  Informative References

   [RFC4470]      Weiler, S. and J. Ihren, "Minimally Covering NSEC
                  Records and DNSSEC On-line Signing", RFC 4470, April
                  2006.

   [DNSSEC-TRANS] Arends, R., Koch, P., and J. Schlyter, "Evaluating
                  DNSSEC Transition Mechanisms", Work in Progress,
                  February 2005.

Authors' Addresses

   Geoffrey Sisson
   Nominet
   Sandford Gate
   Sandy Lane West
   Oxford
   OX4 6LB
   GB

   Phone: +44 1865 332211
   EMail: geoff@nominet.org.uk


   Ben Laurie
   Nominet
   17 Perryn Road
   London
   W3 7LR
   GB

   Phone: +44 20 8735 0686
   EMail: ben@algroup.co.uk


















Sisson & Laurie               Experimental                     [Page 22]
^L
RFC 4471           DNS Name Predecessor and Successor     September 2006


Full Copyright Statement

   Copyright (C) The Internet Society (2006).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at
   ietf-ipr@ietf.org.

Acknowledgement

   Funding for the RFC Editor function is provided by the IETF
   Administrative Support Activity (IASA).







Sisson & Laurie               Experimental                     [Page 23]
^L