1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
|
Network Working Group JH. Song
Request for Comments: 4493 R. Poovendran
Category: Informational University of Washington
J. Lee
Samsung Electronics
T. Iwata
Nagoya University
June 2006
The AES-CMAC Algorithm
Status of This Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2006).
Abstract
The National Institute of Standards and Technology (NIST) has
recently specified the Cipher-based Message Authentication Code
(CMAC), which is equivalent to the One-Key CBC MAC1 (OMAC1) submitted
by Iwata and Kurosawa. This memo specifies an authentication
algorithm based on CMAC with the 128-bit Advanced Encryption Standard
(AES). This new authentication algorithm is named AES-CMAC. The
purpose of this document is to make the AES-CMAC algorithm
conveniently available to the Internet Community.
Song, et al. Informational [Page 1]
^L
RFC 4493 The AES-CMAC Algorithm June 2006
Table of Contents
1. Introduction ....................................................2
2. Specification of AES-CMAC .......................................3
2.1. Basic Definitions ..........................................3
2.2. Overview ...................................................4
2.3. Subkey Generation Algorithm ................................5
2.4. MAC Generation Algorithm ...................................7
2.5. MAC Verification Algorithm .................................9
3. Security Considerations ........................................10
4. Test Vectors ...................................................11
5. Acknowledgement ................................................12
6. References .....................................................12
6.1. Normative References ......................................12
6.2. Informative References ....................................12
Appendix A. Test Code .............................................14
1. Introduction
The National Institute of Standards and Technology (NIST) has
recently specified the Cipher-based Message Authentication Code
(CMAC). CMAC [NIST-CMAC] is a keyed hash function that is based on a
symmetric key block cipher, such as the Advanced Encryption Standard
[NIST-AES]. CMAC is equivalent to the One-Key CBC MAC1 (OMAC1)
submitted by Iwata and Kurosawa [OMAC1a, OMAC1b]. OMAC1 is an
improvement of the eXtended Cipher Block Chaining mode (XCBC)
submitted by Black and Rogaway [XCBCa, XCBCb], which itself is an
improvement of the basic Cipher Block Chaining-Message Authentication
Code (CBC-MAC). XCBC efficiently addresses the security deficiencies
of CBC-MAC, and OMAC1 efficiently reduces the key size of XCBC.
AES-CMAC provides stronger assurance of data integrity than a
checksum or an error-detecting code. The verification of a checksum
or an error-detecting code detects only accidental modifications of
the data, while CMAC is designed to detect intentional, unauthorized
modifications of the data, as well as accidental modifications.
AES-CMAC achieves a security goal similar to that of HMAC [RFC-HMAC].
Since AES-CMAC is based on a symmetric key block cipher, AES, and
HMAC is based on a hash function, such as SHA-1, AES-CMAC is
appropriate for information systems in which AES is more readily
available than a hash function.
This memo specifies the authentication algorithm based on CMAC with
AES-128. This new authentication algorithm is named AES-CMAC.
Song, et al. Informational [Page 2]
^L
RFC 4493 The AES-CMAC Algorithm June 2006
2. Specification of AES-CMAC
2.1. Basic Definitions
The following table describes the basic definitions necessary to
explain the specification of AES-CMAC.
x || y Concatenation.
x || y is the string x concatenated with the string
y.
0000 || 1111 is 00001111.
x XOR y Exclusive-OR operation.
For two equal length strings, x and y,
x XOR y is their bit-wise exclusive-OR.
ceil(x) Ceiling function.
The smallest integer no smaller than x.
ceil(3.5) is 4. ceil(5) is 5.
x << 1 Left-shift of the string x by 1 bit.
The most significant bit disappears, and a zero
comes into the least significant bit.
10010001 << 1 is 00100010.
0^n The string that consists of n zero-bits.
0^3 means 000 in binary format.
10^4 means 10000 in binary format.
10^i means 1 followed by i-times repeated
zeros.
MSB(x) The most-significant bit of the string x.
MSB(10010000) means 1.
padding(x) 10^i padded output of input x.
It is described in detail in section 2.4.
Key 128-bit (16-octet) long key for AES-128.
Denoted by K.
First subkey 128-bit (16-octet) long first subkey,
derived through the subkey
generation algorithm from the key K.
Denoted by K1.
Song, et al. Informational [Page 3]
^L
RFC 4493 The AES-CMAC Algorithm June 2006
Second subkey 128-bit (16-octet) long second subkey,
derived through the subkey
generation algorithm from the key K.
Denoted by K2.
Message A message to be authenticated.
Denoted by M.
The message can be null, which means that the length
of M is 0.
Message length The length of the message M in octets.
Denoted by len.
The minimum value of the length can be 0. The
maximum value of the length is not specified in
this document.
AES-128(K,M) AES-128(K,M) is the 128-bit ciphertext of AES-128
for a 128-bit key, K, and a 128-bit message, M.
MAC A 128-bit string that is the output of AES-CMAC.
Denoted by T.
Validating the MAC provides assurance of the
integrity and authenticity of the message from
the source.
MAC length By default, the length of the output of AES-CMAC is
128 bits. It is possible to truncate the MAC.
The result of the truncation should be taken in most
significant bits first order. The MAC length must be
specified before the communication starts, and
it must not be changed during the lifetime of the
key.
2.2. Overview
AES-CMAC uses the Advanced Encryption Standard [NIST-AES] as a
building block. To generate a MAC, AES-CMAC takes a secret key, a
message of variable length, and the length of the message in octets
as inputs and returns a fixed-bit string called a MAC.
The core of AES-CMAC is the basic CBC-MAC. For a message, M, to be
authenticated, the CBC-MAC is applied to M. There are two cases of
operation in CMAC. Figure 2.1 illustrates the operation of CBC-MAC
in both cases. If the size of the input message block is equal to a
positive multiple of the block size (namely, 128 bits), the last
block shall be exclusive-OR'ed with K1 before processing. Otherwise,
the last block shall be padded with 10^i (notation is described in
section 2.1) and exclusive-OR'ed with K2. The result of the previous
Song, et al. Informational [Page 4]
^L
RFC 4493 The AES-CMAC Algorithm June 2006
process will be the input of the last encryption. The output of
AES-CMAC provides data integrity of the whole input message.
+-----+ +-----+ +-----+ +-----+ +-----+ +---+----+
| M_1 | | M_2 | | M_n | | M_1 | | M_2 | |M_n|10^i|
+-----+ +-----+ +-----+ +-----+ +-----+ +---+----+
| | | +--+ | | | +--+
| +--->(+) +--->(+)<-|K1| | +--->(+) +--->(+)<-|K2|
| | | | | +--+ | | | | | +--+
+-----+ | +-----+ | +-----+ +-----+ | +-----+ | +-----+
|AES_K| | |AES_K| | |AES_K| |AES_K| | |AES_K| | |AES_K|
+-----+ | +-----+ | +-----+ +-----+ | +-----+ | +-----+
| | | | | | | | | |
+-----+ +-----+ | +-----+ +-----+ |
| |
+-----+ +-----+
| T | | T |
+-----+ +-----+
(a) positive multiple block length (b) otherwise
Figure 2.1. Illustration of the two cases of AES-CMAC
AES_K is AES-128 with key K.
The message M is divided into blocks M_1,...,M_n,
where M_i is the i-th message block.
The length of M_i is 128 bits for i = 1,...,n-1, and
the length of the last block, M_n, is less than or equal to 128 bits.
K1 is the subkey for the case (a), and
K2 is the subkey for the case (b).
K1 and K2 are generated by the subkey generation algorithm
described in section 2.3.
2.3. Subkey Generation Algorithm
The subkey generation algorithm, Generate_Subkey(), takes a secret
key, K, which is just the key for AES-128.
The outputs of the subkey generation algorithm are two subkeys, K1
and K2. We write (K1,K2) := Generate_Subkey(K).
Subkeys K1 and K2 are used in both MAC generation and MAC
verification algorithms. K1 is used for the case where the length of
the last block is equal to the block length. K2 is used for the case
where the length of the last block is less than the block length.
Song, et al. Informational [Page 5]
^L
RFC 4493 The AES-CMAC Algorithm June 2006
Figure 2.2 specifies the subkey generation algorithm.
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ Algorithm Generate_Subkey +
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ +
+ Input : K (128-bit key) +
+ Output : K1 (128-bit first subkey) +
+ K2 (128-bit second subkey) +
+-------------------------------------------------------------------+
+ +
+ Constants: const_Zero is 0x00000000000000000000000000000000 +
+ const_Rb is 0x00000000000000000000000000000087 +
+ Variables: L for output of AES-128 applied to 0^128 +
+ +
+ Step 1. L := AES-128(K, const_Zero); +
+ Step 2. if MSB(L) is equal to 0 +
+ then K1 := L << 1; +
+ else K1 := (L << 1) XOR const_Rb; +
+ Step 3. if MSB(K1) is equal to 0 +
+ then K2 := K1 << 1; +
+ else K2 := (K1 << 1) XOR const_Rb; +
+ Step 4. return K1, K2; +
+ +
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Figure 2.2. Algorithm Generate_Subkey
In step 1, AES-128 with key K is applied to an all-zero input block.
In step 2, K1 is derived through the following operation:
If the most significant bit of L is equal to 0, K1 is the left-shift
of L by 1 bit.
Otherwise, K1 is the exclusive-OR of const_Rb and the left-shift of L
by 1 bit.
In step 3, K2 is derived through the following operation:
If the most significant bit of K1 is equal to 0, K2 is the left-shift
of K1 by 1 bit.
Otherwise, K2 is the exclusive-OR of const_Rb and the left-shift of
K1 by 1 bit.
In step 4, (K1,K2) := Generate_Subkey(K) is returned.
Song, et al. Informational [Page 6]
^L
RFC 4493 The AES-CMAC Algorithm June 2006
The mathematical meaning of the procedures in steps 2 and 3,
including const_Rb, can be found in [OMAC1a].
2.4. MAC Generation Algorithm
The MAC generation algorithm, AES-CMAC(), takes three inputs, a
secret key, a message, and the length of the message in octets. The
secret key, denoted by K, is just the key for AES-128. The message
and its length in octets are denoted by M and len, respectively. The
message M is denoted by the sequence of M_i, where M_i is the i-th
message block. That is, if M consists of n blocks, then M is written
as
- M = M_1 || M_2 || ... || M_{n-1} || M_n
The length of M_i is 128 bits for i = 1,...,n-1, and the length of
the last block M_n is less than or equal to 128 bits.
The output of the MAC generation algorithm is a 128-bit string,
called a MAC, which is used to validate the input message. The MAC
is denoted by T, and we write T := AES-CMAC(K,M,len). Validating the
MAC provides assurance of the integrity and authenticity of the
message from the source.
It is possible to truncate the MAC. According to [NIST-CMAC], at
least a 64-bit MAC should be used as protection against guessing
attacks. The result of truncation should be taken in most
significant bits first order.
The block length of AES-128 is 128 bits (16 octets). There is a
special treatment if the length of the message is not a positive
multiple of the block length. The special treatment is to pad M with
the bit-string 10^i to adjust the length of the last block up to the
block length.
For an input string x of r-octets, where 0 <= r < 16, the padding
function, padding(x), is defined as follows:
- padding(x) = x || 10^i where i is 128-8*r-1
That is, padding(x) is the concatenation of x and a single '1',
followed by the minimum number of '0's, so that the total length is
equal to 128 bits.
Figure 2.3 describes the MAC generation algorithm.
Song, et al. Informational [Page 7]
^L
RFC 4493 The AES-CMAC Algorithm June 2006
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ Algorithm AES-CMAC +
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ +
+ Input : K ( 128-bit key ) +
+ : M ( message to be authenticated ) +
+ : len ( length of the message in octets ) +
+ Output : T ( message authentication code ) +
+ +
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ Constants: const_Zero is 0x00000000000000000000000000000000 +
+ const_Bsize is 16 +
+ +
+ Variables: K1, K2 for 128-bit subkeys +
+ M_i is the i-th block (i=1..ceil(len/const_Bsize)) +
+ M_last is the last block xor-ed with K1 or K2 +
+ n for number of blocks to be processed +
+ r for number of octets of last block +
+ flag for denoting if last block is complete or not +
+ +
+ Step 1. (K1,K2) := Generate_Subkey(K); +
+ Step 2. n := ceil(len/const_Bsize); +
+ Step 3. if n = 0 +
+ then +
+ n := 1; +
+ flag := false; +
+ else +
+ if len mod const_Bsize is 0 +
+ then flag := true; +
+ else flag := false; +
+ +
+ Step 4. if flag is true +
+ then M_last := M_n XOR K1; +
+ else M_last := padding(M_n) XOR K2; +
+ Step 5. X := const_Zero; +
+ Step 6. for i := 1 to n-1 do +
+ begin +
+ Y := X XOR M_i; +
+ X := AES-128(K,Y); +
+ end +
+ Y := M_last XOR X; +
+ T := AES-128(K,Y); +
+ Step 7. return T; +
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Figure 2.3. Algorithm AES-CMAC
Song, et al. Informational [Page 8]
^L
RFC 4493 The AES-CMAC Algorithm June 2006
In step 1, subkeys K1 and K2 are derived from K through the subkey
generation algorithm.
In step 2, the number of blocks, n, is calculated. The number of
blocks is the smallest integer value greater than or equal to the
quotient determined by dividing the length parameter by the block
length, 16 octets.
In step 3, the length of the input message is checked. If the input
length is 0 (null), the number of blocks to be processed shall be 1,
and the flag shall be marked as not-complete-block (false).
Otherwise, if the last block length is 128 bits, the flag is marked
as complete-block (true); else mark the flag as not-complete-block
(false).
In step 4, M_last is calculated by exclusive-OR'ing M_n and one of
the previously calculated subkeys. If the last block is a complete
block (true), then M_last is the exclusive-OR of M_n and K1.
Otherwise, M_last is the exclusive-OR of padding(M_n) and K2.
In step 5, the variable X is initialized.
In step 6, the basic CBC-MAC is applied to M_1,...,M_{n-1},M_last.
In step 7, the 128-bit MAC, T := AES-CMAC(K,M,len), is returned.
If necessary, the MAC is truncated before it is returned.
2.5. MAC Verification Algorithm
The verification of the MAC is simply done by a MAC recomputation.
We use the MAC generation algorithm, which is described in section
2.4.
The MAC verification algorithm, Verify_MAC(), takes four inputs, a
secret key, a message, the length of the message in octets, and the
received MAC. These are denoted by K, M, len, and T', respectively.
The output of the MAC verification algorithm is either INVALID or
VALID.
Figure 2.4 describes the MAC verification algorithm.
Song, et al. Informational [Page 9]
^L
RFC 4493 The AES-CMAC Algorithm June 2006
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ Algorithm Verify_MAC +
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ +
+ Input : K ( 128-bit Key ) +
+ : M ( message to be verified ) +
+ : len ( length of the message in octets ) +
+ : T' ( the received MAC to be verified ) +
+ Output : INVALID or VALID +
+ +
+-------------------------------------------------------------------+
+ +
+ Step 1. T* := AES-CMAC(K,M,len); +
+ Step 2. if T* is equal to T' +
+ then +
+ return VALID; +
+ else +
+ return INVALID; +
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Figure 2.4. Algorithm Verify_MAC
In step 1, T* is derived from K, M, and len through the MAC
generation algorithm.
In step 2, T* and T' are compared. If T* is equal to T', then return
VALID; otherwise return INVALID.
If the output is INVALID, then the message is definitely not
authentic, i.e., it did not originate from a source that executed the
generation process on the message to produce the purported MAC.
If the output is VALID, then the design of the AES-CMAC provides
assurance that the message is authentic and, hence, was not corrupted
in transit; however, this assurance, as for any MAC algorithm, is not
absolute.
3. Security Considerations
The security provided by AES-CMAC is built on the strong
cryptographic algorithm AES. However, as is true with any
cryptographic algorithm, part of its strength lies in the secret key,
K, and the correctness of the implementation in all of the
participating systems. If the secret key is compromised or
inappropriately shared, it guarantees neither authentication nor
integrity of message at all. The secret key shall be generated in a
way that meets the pseudo randomness requirement of RFC 4086
[RFC4086] and should be kept safe. If and only if AES-CMAC is used
Song, et al. Informational [Page 10]
^L
RFC 4493 The AES-CMAC Algorithm June 2006
properly it provides the authentication and integrity that meet the
best current practice of message authentication.
4. Test Vectors
The following test vectors are the same as those of [NIST-CMAC]. The
following vectors are also the output of the test program in Appendix
A.
--------------------------------------------------
Subkey Generation
K 2b7e1516 28aed2a6 abf71588 09cf4f3c
AES-128(key,0) 7df76b0c 1ab899b3 3e42f047 b91b546f
K1 fbeed618 35713366 7c85e08f 7236a8de
K2 f7ddac30 6ae266cc f90bc11e e46d513b
--------------------------------------------------
--------------------------------------------------
Example 1: len = 0
M <empty string>
AES-CMAC bb1d6929 e9593728 7fa37d12 9b756746
--------------------------------------------------
Example 2: len = 16
M 6bc1bee2 2e409f96 e93d7e11 7393172a
AES-CMAC 070a16b4 6b4d4144 f79bdd9d d04a287c
--------------------------------------------------
Example 3: len = 40
M 6bc1bee2 2e409f96 e93d7e11 7393172a
ae2d8a57 1e03ac9c 9eb76fac 45af8e51
30c81c46 a35ce411
AES-CMAC dfa66747 de9ae630 30ca3261 1497c827
--------------------------------------------------
Example 4: len = 64
M 6bc1bee2 2e409f96 e93d7e11 7393172a
ae2d8a57 1e03ac9c 9eb76fac 45af8e51
30c81c46 a35ce411 e5fbc119 1a0a52ef
f69f2445 df4f9b17 ad2b417b e66c3710
AES-CMAC 51f0bebf 7e3b9d92 fc497417 79363cfe
--------------------------------------------------
Song, et al. Informational [Page 11]
^L
RFC 4493 The AES-CMAC Algorithm June 2006
5. Acknowledgement
Portions of the text herein are borrowed from [NIST-CMAC]. We
appreciate the OMAC1 authors, the SP 800-38B author, and Russ Housley
for his useful comments and guidance, which have been incorporated
herein. We also thank Alfred Hoenes for many useful comments. This
memo was prepared while Tetsu Iwata was at Ibaraki University, Japan.
We acknowledge the support from the following grants: Collaborative
Technology Alliance (CTA) from US Army Research Laboratory, DAAD19-
01-2-0011; Presidential Award from Army Research Office, W911NF-05-
1-0491; NSF CAREER ANI-0093187. Results do not reflect any position
of the funding agencies.
6. References
6.1. Normative References
[NIST-CMAC] NIST, Special Publication 800-38B, "Recommendation for
Block Cipher Modes of Operation: The CMAC Mode for
Authentication", May 2005.
[NIST-AES] NIST, FIPS 197, "Advanced Encryption Standard (AES)",
November 2001.
http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf
[RFC4086] Eastlake, D., 3rd, Schiller, J., and S. Crocker,
"Randomness Requirements for Security", BCP 106, RFC
4086, June 2005.
6.2. Informative References
[RFC-HMAC] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC:
Keyed-Hashing for Message Authentication", RFC 2104,
February 1997.
[OMAC1a] Tetsu Iwata and Kaoru Kurosawa, "OMAC: One-Key CBC MAC",
Fast Software Encryption, FSE 2003, LNCS 2887, pp. 129-
153, Springer-Verlag, 2003.
[OMAC1b] Tetsu Iwata and Kaoru Kurosawa, "OMAC: One-Key CBC MAC",
Submission to NIST, December 2002. Available from the
NIST modes of operation web site at
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/
omac/omac-spec.pdf
Song, et al. Informational [Page 12]
^L
RFC 4493 The AES-CMAC Algorithm June 2006
[XCBCa] John Black and Phillip Rogaway, "A Suggestion for
Handling Arbitrary-Length Messages with the CBC MAC",
NIST Second Modes of Operation Workshop, August 2001.
Available from the NIST modes of operation web site at
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/
xcbc-mac/xcbc-mac-spec.pdf
[XCBCb] John Black and Phillip Rogaway, "CBC MACs for Arbitrary-
Length Messages: The Three-Key Constructions", Journal of
Cryptology, Vol. 18, No. 2, pp. 111-132, Springer-Verlag,
Spring 2005.
Song, et al. Informational [Page 13]
^L
RFC 4493 The AES-CMAC Algorithm June 2006
Appendix A. Test Code
This C source is designed to generate the test vectors that appear in
this memo to verify correctness of the algorithm. The source code is
not intended for use in commercial products.
/****************************************************************/
/* AES-CMAC with AES-128 bit */
/* CMAC Algorithm described in SP800-38B */
/* Author: Junhyuk Song (junhyuk.song@samsung.com) */
/* Jicheol Lee (jicheol.lee@samsung.com) */
/****************************************************************/
#include <stdio.h>
/* For CMAC Calculation */
unsigned char const_Rb[16] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x87
};
unsigned char const_Zero[16] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
/* Basic Functions */
void xor_128(unsigned char *a, unsigned char *b, unsigned char *out)
{
int i;
for (i=0;i<16; i++)
{
out[i] = a[i] ^ b[i];
}
}
void print_hex(char *str, unsigned char *buf, int len)
{
int i;
for ( i=0; i<len; i++ ) {
if ( (i % 16) == 0 && i != 0 ) printf(str);
printf("%02x", buf[i]);
if ( (i % 4) == 3 ) printf(" ");
if ( (i % 16) == 15 ) printf("\n");
}
if ( (i % 16) != 0 ) printf("\n");
}
Song, et al. Informational [Page 14]
^L
RFC 4493 The AES-CMAC Algorithm June 2006
void print128(unsigned char *bytes)
{
int j;
for (j=0; j<16;j++) {
printf("%02x",bytes[j]);
if ( (j%4) == 3 ) printf(" ");
}
}
void print96(unsigned char *bytes)
{
int j;
for (j=0; j<12;j++) {
printf("%02x",bytes[j]);
if ( (j%4) == 3 ) printf(" ");
}
}
/* AES-CMAC Generation Function */
void leftshift_onebit(unsigned char *input,unsigned char *output)
{
int i;
unsigned char overflow = 0;
for ( i=15; i>=0; i-- ) {
output[i] = input[i] << 1;
output[i] |= overflow;
overflow = (input[i] & 0x80)?1:0;
}
return;
}
void generate_subkey(unsigned char *key, unsigned char *K1, unsigned
char *K2)
{
unsigned char L[16];
unsigned char Z[16];
unsigned char tmp[16];
int i;
for ( i=0; i<16; i++ ) Z[i] = 0;
AES_128(key,Z,L);
if ( (L[0] & 0x80) == 0 ) { /* If MSB(L) = 0, then K1 = L << 1 */
leftshift_onebit(L,K1);
} else { /* Else K1 = ( L << 1 ) (+) Rb */
Song, et al. Informational [Page 15]
^L
RFC 4493 The AES-CMAC Algorithm June 2006
leftshift_onebit(L,tmp);
xor_128(tmp,const_Rb,K1);
}
if ( (K1[0] & 0x80) == 0 ) {
leftshift_onebit(K1,K2);
} else {
leftshift_onebit(K1,tmp);
xor_128(tmp,const_Rb,K2);
}
return;
}
void padding ( unsigned char *lastb, unsigned char *pad, int length )
{
int j;
/* original last block */
for ( j=0; j<16; j++ ) {
if ( j < length ) {
pad[j] = lastb[j];
} else if ( j == length ) {
pad[j] = 0x80;
} else {
pad[j] = 0x00;
}
}
}
void AES_CMAC ( unsigned char *key, unsigned char *input, int length,
unsigned char *mac )
{
unsigned char X[16],Y[16], M_last[16], padded[16];
unsigned char K1[16], K2[16];
int n, i, flag;
generate_subkey(key,K1,K2);
n = (length+15) / 16; /* n is number of rounds */
if ( n == 0 ) {
n = 1;
flag = 0;
} else {
if ( (length%16) == 0 ) { /* last block is a complete block */
flag = 1;
} else { /* last block is not complete block */
flag = 0;
}
Song, et al. Informational [Page 16]
^L
RFC 4493 The AES-CMAC Algorithm June 2006
}
if ( flag ) { /* last block is complete block */
xor_128(&input[16*(n-1)],K1,M_last);
} else {
padding(&input[16*(n-1)],padded,length%16);
xor_128(padded,K2,M_last);
}
for ( i=0; i<16; i++ ) X[i] = 0;
for ( i=0; i<n-1; i++ ) {
xor_128(X,&input[16*i],Y); /* Y := Mi (+) X */
AES_128(key,Y,X); /* X := AES-128(KEY, Y); */
}
xor_128(X,M_last,Y);
AES_128(key,Y,X);
for ( i=0; i<16; i++ ) {
mac[i] = X[i];
}
}
int main()
{
unsigned char L[16], K1[16], K2[16], T[16], TT[12];
unsigned char M[64] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10
};
unsigned char key[16] = {
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c
};
printf("--------------------------------------------------\n");
printf("K "); print128(key); printf("\n");
printf("\nSubkey Generation\n");
AES_128(key,const_Zero,L);
printf("AES_128(key,0) "); print128(L); printf("\n");
generate_subkey(key,K1,K2);
Song, et al. Informational [Page 17]
^L
RFC 4493 The AES-CMAC Algorithm June 2006
printf("K1 "); print128(K1); printf("\n");
printf("K2 "); print128(K2); printf("\n");
printf("\nExample 1: len = 0\n");
printf("M "); printf("<empty string>\n");
AES_CMAC(key,M,0,T);
printf("AES_CMAC "); print128(T); printf("\n");
printf("\nExample 2: len = 16\n");
printf("M "); print_hex(" ",M,16);
AES_CMAC(key,M,16,T);
printf("AES_CMAC "); print128(T); printf("\n");
printf("\nExample 3: len = 40\n");
printf("M "); print_hex(" ",M,40);
AES_CMAC(key,M,40,T);
printf("AES_CMAC "); print128(T); printf("\n");
printf("\nExample 4: len = 64\n");
printf("M "); print_hex(" ",M,64);
AES_CMAC(key,M,64,T);
printf("AES_CMAC "); print128(T); printf("\n");
printf("--------------------------------------------------\n");
return 0;
}
Song, et al. Informational [Page 18]
^L
RFC 4493 The AES-CMAC Algorithm June 2006
Authors' Addresses
Junhyuk Song
University of Washington
Samsung Electronics
Phone: (206) 853-5843
EMail: songlee@ee.washington.edu, junhyuk.song@samsung.com
Jicheol Lee
Samsung Electronics
Phone: +82-31-279-3605
EMail: jicheol.lee@samsung.com
Radha Poovendran
Network Security Lab
University of Washington
Phone: (206) 221-6512
EMail: radha@ee.washington.edu
Tetsu Iwata
Nagoya University
EMail: iwata@cse.nagoya-u.ac.jp
Song, et al. Informational [Page 19]
^L
RFC 4493 The AES-CMAC Algorithm June 2006
Full Copyright Statement
Copyright (C) The Internet Society (2006).
This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is provided by the IETF
Administrative Support Activity (IASA).
Song, et al. Informational [Page 20]
^L
|