summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc4497.txt
blob: 2db71cbdad3860df28565f030594833035026f8b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
Network Working Group                                          J. Elwell
Request for Comments: 4497                                       Siemens
BCP: 117                                                        F. Derks
Category: Best Current Practice                              NEC Philips
                                                               P. Mourot
                                                             O. Rousseau
                                                                 Alcatel
                                                                May 2006


  Interworking between the Session Initiation Protocol (SIP) and QSIG

Status of This Memo

   This document specifies an Internet Best Current Practices for the
   Internet Community, and requests discussion and suggestions for
   improvements.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2006).

Abstract

   This document specifies interworking between the Session Initiation
   Protocol (SIP) and QSIG within corporate telecommunication networks
   (also known as enterprise networks).  SIP is an Internet
   application-layer control (signalling) protocol for creating,
   modifying, and terminating sessions with one or more participants.
   These sessions include, in particular, telephone calls.  QSIG is a
   signalling protocol for creating, modifying, and terminating
   circuit-switched calls (in particular, telephone calls) within
   Private Integrated Services Networks (PISNs).  QSIG is specified in a
   number of Ecma Standards and published also as ISO/IEC standards.

















Elwell, et al.           Best Current Practice                  [Page 1]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


Table of Contents

   1. Introduction ....................................................4
   2. Terminology .....................................................5
   3. Definitions .....................................................5
      3.1. External Definitions .......................................5
      3.2. Other definitions ..........................................5
           3.2.1. Corporate Telecommunication Network (CN) ............5
           3.2.2. Gateway .............................................6
           3.2.3. IP Network ..........................................6
           3.2.4. Media Stream ........................................6
           3.2.5. Private Integrated Services Network (PISN) ..........6
           3.2.6. Private Integrated Services Network Exchange
                  (PINX) ..............................................6
   4. Acronyms ........................................................6
   5. Background and Architecture .....................................7
   6. Overview .......................................................10
   7. General Requirements ...........................................11
   8. Message Mapping Requirements ...................................12
      8.1. Message Validation and Handling of Protocol Errors ........12
      8.2. Call Establishment from QSIG to SIP .......................14
           8.2.1. Call Establishment from QSIG to SIP Using
                  En Bloc Procedures .................................14
           8.2.2. Call Establishment from QSIG to SIP Using
                  Overlap Procedures .................................16
      8.3. Call Establishment from SIP to QSIG .......................20
           8.3.1. Receipt of SIP INVITE Request for a New Call .......20
           8.3.2. Receipt of QSIG CALL PROCEEDING Message ............21
           8.3.3. Receipt of QSIG PROGRESS Message ...................22
           8.3.4. Receipt of QSIG ALERTING Message ...................22
           8.3.5. Inclusion of SDP Information in a SIP 18x
                  Provisional Response ...............................23
           8.3.6. Receipt of QSIG CONNECT Message ....................24
           8.3.7. Receipt of SIP PRACK Request .......................25
           8.3.8. Receipt of SIP ACK Request .........................25
           8.3.9. Receipt of a SIP INVITE Request for a Call
                  Already Being ......................................25
      8.4. Call Clearing and Call Failure ............................26
           8.4.1. Receipt of a QSIG DISCONNECT, RELEASE, or
                  RELEASE COMPLETE ...................................26
           8.4.2. Receipt of a SIP BYE Request .......................29
           8.4.3. Receipt of a SIP CANCEL Request ....................29
           8.4.4. Receipt of a SIP 4xx-6xx Response to an
                  INVITE Request .....................................29
           8.4.5. Gateway-Initiated Call Clearing ....................32
      8.5. Request to Change Media Characteristics ...................32





Elwell, et al.           Best Current Practice                  [Page 2]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   9. Number Mapping .................................................32
      9.1. Mapping from QSIG to SIP ..................................33
           9.1.1. Using Information from the QSIG Called
                  Party Number Information Element ...................33
           9.1.2. Using Information from the QSIG Calling
                  Party Number Information Element ...................33
           9.1.3. Using Information from the QSIG Connected
                  Number Information Element .........................35
      9.2. Mapping from SIP to QSIG ..................................36
           9.2.1. Generating the QSIG Called Party Number
                  Information Element ................................36
           9.2.2. Generating the QSIG Calling Party Number
                  Information Element ................................37
           9.2.3. Generating the QSIG Connected Number
                  Information Element ................................38
   10. Requirements for Support of Basic Services ....................39
      10.1. Derivation of QSIG Bearer Capability Information
            Element ..................................................39
      10.2. Derivation of Media Type in SDP ..........................39
   11. Security Considerations .......................................40
      11.1. General ..................................................40
      11.2. Calls from QSIG to Invalid or Restricted Numbers .........40
      11.3. Abuse of SIP Response Code ...............................41
      11.4. Use of the To Header URI .................................41
      11.5. Use of the From Header URI ...............................41
      11.6. Abuse of Early Media .....................................42
      11.7. Protection from Denial-of-Service Attacks ................42
   12. Acknowledgements ..............................................43
   13. Normative References ..........................................43
   Appendix A. Example Message Sequences .............................45





















Elwell, et al.           Best Current Practice                  [Page 3]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


1.  Introduction

   This document specifies signalling interworking between QSIG and the
   Session Initiation Protocol (SIP) in support of basic services within
   a corporate telecommunication network (CN) (also known as enterprise
   network).

   QSIG is a signalling protocol that operates between Private
   Integrated Services eXchanges (PINX) within a Private Integrated
   Services Network (PISN).  A PISN provides circuit-switched basic
   services and supplementary services to its users.  QSIG is specified
   in Ecma Standards; in particular, [2] (call control in support of
   basic services), [3] (generic functional protocol for the support of
   supplementary services), and a number of standards specifying
   individual supplementary services.

   NOTE: The name QSIG was derived from the fact that it is used for
   signalling at the Q reference point.  The Q reference point is a
   point of demarcation between two PINXs.

   SIP is an application-layer protocol for establishing, terminating,
   and modifying multimedia sessions.  It is typically carried over IP
   [15], [16].  Telephone calls are considered a type of multimedia
   session where just audio is exchanged.  SIP is defined in [10].

   As the support of telephony within corporate networks evolves from
   circuit-switched technology to Internet technology, the two
   technologies will coexist in many networks for a period, perhaps
   several years.  Therefore, there is a need to be able to establish,
   modify, and terminate sessions involving a participant in the SIP
   network and a participant in the QSIG network.  Such calls are
   supported by gateways that perform interworking between SIP and QSIG.

   This document specifies SIP-QSIG signalling interworking for basic
   services that provide a bi-directional transfer capability for
   speech, DTMF, facsimile, and modem media between a PISN employing
   QSIG and a corporate IP network employing SIP.  Other aspects of
   interworking, e.g., the use of RTP and SDP, will differ according to
   the type of media concerned and are outside the scope of this
   specification.

   Call-related and call-independent signalling in support of
   supplementary services is outside the scope of this specification,
   but support for certain supplementary services (e.g., call transfer,
   call diversion) could be the subject of future work.






Elwell, et al.           Best Current Practice                  [Page 4]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   Interworking between QSIG and SIP permits a call originating at a
   user of a PISN to terminate at a user of a corporate IP network, or a
   call originating at a user of a corporate IP network to terminate at
   a user of a PISN.

   Interworking between a PISN employing QSIG and a public IP network
   employing SIP is outside the scope of this specification.  However,
   the functionality specified in this specification is in principle
   applicable to such a scenario when deployed in conjunction with other
   relevant functionality (e.g., number translation, security functions,
   etc.).

   This specification is applicable to any interworking unit that can
   act as a gateway between a PISN employing QSIG and a corporate IP
   network employing SIP.

2.  Terminology

   In this document, the key words "MUST", "MUST NOT", "REQUIRED",
   "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
   and "OPTIONAL" are to be interpreted as described in RFC 2119 [4] and
   indicate requirement levels for compliant SIP implementations.

3.  Definitions

   For the purposes of this specification, the following definitions
   apply.

3.1.  External Definitions

   The definitions in [2] and [10] apply as appropriate.

3.2.  Other definitions

3.2.1.  Corporate Telecommunication Network (CN)

   Sets of privately-owned or carrier-provided equipment that are
   located at geographically dispersed locations and are interconnected
   to provide telecommunication services to a defined group of users.

   NOTE: A CN can comprise a PISN, a private IP network (intranet), or a
   combination of the two.









Elwell, et al.           Best Current Practice                  [Page 5]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


3.2.2.  Gateway

   An entity that performs interworking between a PISN using QSIG and an
   IP network using SIP.

3.2.3.  IP Network

   A network (unless otherwise stated, a corporate network) offering
   connectionless packet-mode services based on the Internet Protocol
   (IP) as the network-layer protocol.

3.2.4.  Media Stream

   Audio or other user information transmitted in UDP packets, typically
   containing RTP, in a single direction between the gateway and a peer
   entity participating in a session established using SIP.

   NOTE: Normally a SIP session establishes a pair of media streams, one
   in each direction.

3.2.5.  Private Integrated Services Network (PISN)

   A CN or part of a CN that employs circuit-switched technology.

3.2.6.  Private Integrated Services Network Exchange (PINX)

   A PISN nodal entity comprising switching and call handling functions
   and supporting QSIG signalling in accordance with [2].

4.  Acronyms

   DNS   Domain Name Service
   IP    Internet Protocol
   PINX  Private Integrated services Network eXchange
   PISN  Private Integrated Services Network
   RTP   Real-time Transport Protocol
   SCTP  Stream Control Transmission Protocol
   SDP   Session Description Protocol
   SIP   Session Initiation Protocol
   TCP   Transmission Control Protocol
   TLS   Transport Layer Security
   TU    Transaction User
   UA    User Agent
   UAC   User Agent Client
   UAS   User Agent Server
   UDP   User Datagram Protocol





Elwell, et al.           Best Current Practice                  [Page 6]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


5.  Background and Architecture

   During the 1980s, corporate voice telecommunications adopted
   technology similar in principle to Integrated Services Digital
   Networks (ISDN).  Digital circuit switches, commonly known as Private
   Branch eXchanges (PBX) or more formally as Private Integrated
   services Network eXchanges (PINX) have been interconnected by digital
   transmission systems to form Private Integrated Services Networks
   (PISN).  These digital transmission systems carry voice or other
   payload in fixed-rate channels, typically 64 Kbit/s, and signalling
   in a separate channel.  A technique known as common channel
   signalling is employed, whereby a single signalling channel
   potentially controls a number of payload channels or bearer channels.
   A typical arrangement is a point-to-point transmission facility at T1
   or E1 rate providing a 64 Kbit/s signalling channel and 23 or 30
   bearer channels, respectively.  Other arrangements are possible and
   have been deployed, including the use of multiple transmission
   facilities for a signalling channel and its logically associated
   bearer channels.  Also, arrangements involving bearer channels at
   sub-64 Kbit/s have been deployed, where voice payload requires the
   use of codecs that perform compression.

   QSIG is the internationally-standardized message-based signalling
   protocol for use in networks as described above.  It runs in a
   signalling channel between two PINXs and controls calls on a number
   of logically associated bearer channels between the same two PINXs.
   The signalling channel and its logically associated bearer channels
   are collectively known as an inter-PINX link.  QSIG is independent of
   the type of transmission capabilities over which the signalling
   channel and bearer channels are provided.  QSIG is also independent
   of the transport protocol used to transport QSIG messages reliably
   over the signalling channel.

   QSIG provides a means for establishing and clearing calls that
   originate and terminate on different PINXs.  A call can be routed
   over a single inter-PINX link connecting the originating and
   terminating PINX, or over several inter-PINX links in series with
   switching at intermediate PINXs known as transit PINXs.  A call can
   originate or terminate in another network, in which case it enters or
   leaves the PISN environment through a gateway PINX.  Parties are
   identified by numbers, in accordance with either [17] or a private
   numbering plan.  This basic call capability is specified in [2].  In
   addition to basic call capability, QSIG specifies a number of further
   capabilities supporting the use of supplementary services in PISNs.

   More recently, corporate telecommunications networks have started to
   exploit IP in various ways.  One way is to migrate part of the
   network to IP using SIP.  This might, for example, be a new branch



Elwell, et al.           Best Current Practice                  [Page 7]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   office with a SIP proxy and SIP endpoints instead of a PINX.
   Alternatively, SIP equipment might be used to replace an existing
   PINX or PINXs.  The new SIP environment needs to interwork with the
   QSIG-based PISN in order to support calls originating in one
   environment and terminating in the other.  Interworking is achieved
   through a gateway.

   Interworking between QSIG and SIP at gateways can also be used where
   a SIP network interconnects different parts of a PISN, thereby
   allowing calls between the different parts.  A call can enter the SIP
   network at one gateway and leave at another.  Each gateway would
   behave in accordance with this specification.

   Another way of connecting two parts of a PISN would be to encapsulate
   QSIG signalling in SIP messages for calls between the two parts.
   This is outside the scope of this specification but could be the
   subject of future work.

   This document specifies signalling protocol interworking aspects of a
   gateway between a PISN employing QSIG signalling and an IP network
   employing SIP signalling.  The gateway appears as a PINX to other
   PINXs in the PISN.  The gateway appears as a SIP endpoint to other
   SIP entities in the IP network.  The environment is shown in Figure
   1.

        +------+   IP network                  PISN
        |      |
        |SIP   |                                             +------+
        |Proxy |                                            /|      |
        |      |                                           / |PINX  |
        +---+--+             *-----------+                /  |      |
            |                |           |        +-----+/   +------+
            |                |           |        |     |
            |                |           |        |PINX |
   ---+-----+-------+--------+  Gateway  +--------|     |
      |             |        |           |        |     |\
      |             |        |           |        +-----+ \
      |             |        |           |                 \ +------+
      |             |        |           |                  \|      |
   +--+---+      +--+---+    *-----------+                   |PINX  |
   |SIP   |      |SIP   |                                    |      |
   |End-  |      |End-  |                                    +------+
   |point |      |point |
   +------+      +------+

                          Figure 1: Environment





Elwell, et al.           Best Current Practice                  [Page 8]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   In addition to the signalling interworking functionality specified in
   this specification, it is assumed that the gateway also includes the
   following functionality:

   - one or more physical interfaces on the PISN side supporting one or
     more inter-PINX links, each link providing one or more constant bit
     rate channels for media streams and a reliable layer 2 connection
     (e.g., over a fixed rate physical channel) for transporting QSIG
     signalling messages; and

   - one or more physical interfaces on the IP network side supporting,
     through layer 1 and layer 2 protocols, IP as the network layer
     protocol and UDP [6] and TCP [5] as transport layer protocols,
     these being used for the transport of SIP signalling messages and,
     in the case of UDP, also for media streams;

   - optionally the support of TLS [7] and/or SCTP [9] as additional
     transport layer protocols on the IP network side, these being used
     for the transport of SIP signalling messages; and

   - a means of transferring media streams in each direction between the
     PISN and the IP network, including as a minimum packetization of
     media streams sent to the IP network and de-packetization of media
     streams received from the IP network.

   NOTE: [10] mandates support for both UDP and TCP for the transport of
   SIP messages and allows optional support for TLS and/or SCTP for this
   same purpose.

   The protocol model relevant to signalling interworking functionality
   of a gateway is shown in Figure 2.




















Elwell, et al.           Best Current Practice                  [Page 9]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   +---------------------------------------------------------+
   |                   Interworking function                 |
   |                                                         |
   +-----------------------+---------+-----------------------+
   |                       |         |                       |
   |        SIP            |         |                       |
   |                       |         |                       |
   +-----------------------+         |                       |
   |                       |         |                       |
   |  UDP/TCP/TLS/SCTP     |         |        QSIG           |
   |                       |         |                       |
   +-----------------------+         |                       |
   |                       |         |                       |
   |        IP             |         |                       |
   |                       |         |                       |
   +-----------------------+         +-----------------------+
   |    IP network         |         |        PISN           |
   |    lower layers       |         |    lower layers       |
   |                       |         |                       |
   +-----------------------+         +-----------------------+

                    Figure 2: Protocol model

   In Figure 2, the SIP box represents SIP syntax and encoding, the SIP
   transport layer, and the SIP transaction layer.  The Interworking
   function includes SIP Transaction User (TU) functionality.

6.  Overview

   The gateway maps received QSIG messages, where appropriate, to SIP
   messages and vice versa and maintains an association between a QSIG
   call and a SIP dialog.

   A call from QSIG to SIP is initiated when a QSIG SETUP message
   arrives at the gateway.  The QSIG SETUP message initiates QSIG call
   establishment, and an initial response message (e.g., CALL
   PROCEEDING) completes negotiation of the bearer channel to be used
   for that call.  The gateway then sends a SIP INVITE request, having
   translated the QSIG called party number to a URI suitable for
   inclusion in the Request-URI.  The SIP INVITE request and the
   resulting SIP dialog, if successfully established, are associated
   with the QSIG call.  The SIP 2xx response to the INVITE request is
   mapped to a QSIG CONNECT message, signifying answer of the call.
   During establishment, media streams established by SIP and SDP are
   connected to the bearer channel.






Elwell, et al.           Best Current Practice                 [Page 10]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   A call from SIP to QSIG is initiated when a SIP INVITE request
   arrives at the gateway.  The gateway sends a QSIG SETUP message to
   initiate QSIG call establishment, having translated the SIP Request-
   URI to a number suitable for use as the QSIG called party number.
   The resulting QSIG call is associated with the SIP INVITE request and
   with the eventual SIP dialog.  Receipt of an initial QSIG response
   message completes negotiation of the bearer channel to be used,
   allowing media streams established by SIP and SDP to be connected to
   that bearer channel.  The QSIG CONNECT message is mapped to a SIP 200
   OK response to the INVITE request.

   Appendix A gives examples of typical message sequences that can
   arise.

7.  General Requirements

   In order to conform to this specification, a gateway SHALL support
   QSIG in accordance with [2] as a gateway and SHALL support SIP in
   accordance with [10] as a UA.  In particular, the gateway SHALL
   support SIP syntax and encoding, the SIP transport layer, and the SIP
   transaction layer in accordance with [10].  In addition, the gateway
   SHALL support SIP TU behaviour for a UA in accordance with [10]
   except where stated otherwise in Sections 8, 9, and 10 of this
   specification.

   NOTE: [10] mandates that a SIP entity support both UDP and TCP as
   transport layer protocols for SIP messages.  Other transport layer
   protocols can also be supported.

   The gateway SHALL also support SIP reliable provisional responses in
   accordance with [11] as a UA.

   NOTE: [11] makes provision for recovering from loss of provisional
   responses (other than 100) to INVITE requests when using unreliable
   transport services in the IP network.  This is important for ensuring
   delivery of responses that map to essential QSIG messages.

   The gateway SHALL support SDP in accordance with [8] and its use in
   accordance with the offer/answer model in [12].

   Section 9 also specifies optional use of the Privacy header in
   accordance with [13] and the P-Asserted-Identity header in accordance
   with [14].

   The gateway SHALL support calls from QSIG to SIP and calls from SIP
   to QSIG.





Elwell, et al.           Best Current Practice                 [Page 11]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   SIP methods not defined in [10] or [11] are outside the scope of this
   specification but could be the subject of other specifications for
   interworking with QSIG, e.g., for interworking in support of
   supplementary services.

   As a result of DNS lookup by the gateway in order to determine where
   to send a SIP INVITE request, a number of candidate destinations can
   be attempted in sequence.  The way in which this is handled by the
   gateway is outside the scope of this specification.  However, any
   behaviour specified in this document on receipt of a SIP 4xx or 5xx
   final response to an INVITE request SHOULD apply only when there are
   no more candidate destinations to try or when overlap signalling
   applies in the SIP network (see 8.2.2.2).

8.  Message Mapping Requirements

8.1.  Message Validation and Handling of Protocol Errors

   The gateway SHALL validate received QSIG messages in accordance with
   the requirements of [2] and SHALL act in accordance with [2] on
   detection of a QSIG protocol error.  The requirements of this section
   for acting on a received QSIG message apply only to a received QSIG
   message that has been successfully validated and that satisfies one
   of the following conditions:

   -the QSIG message is a SETUP message and indicates a destination in
   the IP network and a bearer capability for which the gateway is able
   to provide interworking; or

   -the QSIG message is a message other than SETUP and contains a call
   reference that identifies an existing call for which the gateway is
   providing interworking between QSIG and SIP.

   The processing of any valid QSIG message that does not satisfy any of
   these conditions is outside the scope of this specification.  Also,
   the processing of any QSIG message relating to call-independent
   signalling connections or connectionless transport, as specified in
   [3], is outside the scope of this specification.

   If segmented QSIG messages are received, the gateway SHALL await
   receipt of all segments of a message and SHALL validate and act on
   the complete reassembled message.

   The gateway SHALL validate received SIP messages (requests and
   responses) in accordance with the requirements of [10] and SHALL act
   in accordance with [10] on detection of a SIP protocol error.





Elwell, et al.           Best Current Practice                 [Page 12]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   Requirements of this section for acting on a received SIP message
   apply only to a received message that has been successfully validated
   and that satisfies one of the following conditions:

   - the SIP message is an INVITE request that contains no tag parameter
     in the To header field, does not match an ongoing transaction
     (i.e., is not a merged request; see Section 8.2.2.2 of [10]), and
     indicates a destination in the PISN for which the gateway is able
     to provide interworking; or

   - the SIP message is a request that relates to an existing dialog
     representing a call for which the gateway is providing interworking
     between QSIG and SIP; or

   - the SIP message is a CANCEL request that relates to a received
     INVITE request for which the gateway is providing interworking with
     QSIG but for which the only response sent is informational (1xx),
     no dialog having been confirmed; or

   - the SIP message is a response to a request sent by the gateway in
     accordance with this section.

   The processing of any valid SIP message that does not satisfy any of
   these conditions is outside the scope of this specification.

   NOTE: These rules mean that an error detected in a received message
   will not be propagated to the other side of the gateway.  However,
   there can be an indirect impact on the other side of the gateway,
   e.g., the initiation of call clearing procedures.

   The gateway SHALL run QSIG protocol timers as specified in [2] and
   SHALL act in accordance with [2] if a QSIG protocol timer expires.
   Any other action on expiry of a QSIG protocol timer is outside the
   scope of this specification, except that if it results in the
   clearing of the QSIG call, the gateway SHALL also clear the SIP call
   in accordance with Section 8.4.5.

   The gateway SHALL run SIP protocol timers as specified in [10] and
   SHALL act in accordance with [10] if a SIP protocol timer expires.
   Any other action on expiry of a SIP protocol timer is outside the
   scope of this specification, except that if it results in the
   clearing of the SIP call, the gateway SHALL also clear the QSIG call
   in accordance with Section 8.4.5.








Elwell, et al.           Best Current Practice                 [Page 13]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


8.2.  Call Establishment from QSIG to SIP

8.2.1.  Call Establishment from QSIG to SIP Using En Bloc Procedures

   The following procedures apply when the gateway receives a QSIG SETUP
   message containing a Sending Complete information element or the
   gateway receives a QSIG SETUP message and is able to determine that
   the number in the Called party number information element is
   complete.

   NOTE: In the absence of a Sending Complete information element, the
   means by which the gateway determines the number to be complete is an
   implementation matter.  It can involve knowledge of the numbering
   plan and/or use of inter-digit timer expiry.

8.2.1.1.  Receipt of QSIG SETUP Message

   On receipt of a QSIG SETUP message containing a number that the
   gateway determines to be complete in the Called party number
   information element, or containing a Sending complete information
   element and a number that could potentially be complete, the gateway
   SHALL map the QSIG SETUP message to a SIP INVITE request.  The
   gateway SHALL also send a QSIG CALL PROCEEDING message.

   The gateway SHALL generate the SIP Request-URI, To, and From fields
   in the SIP INVITE request in accordance with Section 9.  The gateway
   SHALL include in the INVITE request a Supported header containing
   option tag 100rel, to indicate support for [11].

   The gateway SHALL include SDP offer information in the SIP INVITE
   request as described in Section 10.  It SHOULD also connect the
   incoming media stream to the user information channel of the inter-
   PINX link, to allow the caller to hear in-band tones or announcements
   and prevent speech clipping on answer.  Because of forking, the
   gateway may receive more than one media stream, in which case it
   SHOULD select one (e.g., the first received).  If the gateway is able
   to correlate an unselected media stream with a particular early
   dialog established using a reliable provisional response, it MAY use
   the UPDATE method [19] to stop that stream and then use the UPDATE
   method to start that stream again if a 2xx response is received on
   that dialog.

   On receipt of a QSIG SETUP message containing a Sending complete
   information element and a number that the gateway determines to be
   incomplete in the Called party number information element, the
   gateway SHALL initiate QSIG call clearing procedures using cause
   value 28, "invalid number format (address incomplete)".




Elwell, et al.           Best Current Practice                 [Page 14]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   If information in the QSIG SETUP message is unsuitable for generating
   any of the mandatory fields in a SIP INVITE request (e.g., if a
   Request-URI cannot be derived from the QSIG Called party number
   information element) or for generating SDP information, the gateway
   SHALL NOT issue a SIP INVITE request and SHALL initiate QSIG call
   clearing procedures in accordance with [2].

8.2.1.2.  Receipt of SIP 100 (Trying) Response to an INVITE Request

   A SIP 100 response SHALL NOT trigger any QSIG messages.  It only
   serves the purpose of suppressing INVITE request retransmissions.

8.2.1.3.  Receipt of SIP 18x provisional response to an INVITE request

   The gateway SHALL map a received SIP 18x response to an INVITE
   request to a QSIG PROGRESS or ALERTING message based on the following
   conditions.

   - If a SIP 180 response is received and no QSIG ALERTING message has
   been sent, the gateway SHALL generate a QSIG ALERTING message.  The
   gateway MAY supply ring-back tone on the user information channel of
   the inter-PINX link, in which case the gateway SHALL include progress
   description number 8 in the QSIG ALERTING message.  Otherwise the
   gateway SHALL NOT include progress description number 8 in the QSIG
   ALERTING message unless the gateway is aware that in-band information
   (e.g., ring-back tone) is being transmitted.

   - If a SIP 181/182/183 response is received, no QSIG ALERTING message
   has been sent, and no message containing progress description number
   1 has been sent, the gateway SHALL generate a QSIG PROGRESS message
   containing progress description number 1.

   NOTE: This will ensure that QSIG timer T310 is stopped if running at
   the Originating PINX.

   In all other scenarios, the gateway SHALL NOT map the SIP 18x
   response to a QSIG message.

   If the SIP 18x response contains a Require header with option tag
   100rel, the gateway SHALL send back a SIP PRACK request in accordance
   with [11].

8.2.1.4.  Receipt of SIP 2xx Response to an INVITE Request

   If the gateway receives a SIP 2xx response as the first SIP 2xx
   response to a SIP INVITE request, the gateway SHALL map the SIP 2xx
   response to a QSIG CONNECT message.  The gateway SHALL also send a
   SIP ACK request to acknowledge the 2xx response.  The gateway SHALL



Elwell, et al.           Best Current Practice                 [Page 15]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   NOT include any SDP information in the SIP ACK request.  If the
   gateway receives further 2xx responses, it SHALL respond to each in
   accordance with [10], SHOULD issue a BYE request for each, and SHALL
   NOT generate any further QSIG messages.

   Media streams will normally have been established in the IP network
   in each direction.  If so, the gateway SHALL connect the media
   streams to the corresponding user-information channel on the inter-
   PINX link if it has not already done so and stop any local ring-back
   tone.

   If the SIP 2xx response is received in response to the SIP PRACK
   request, the gateway SHALL NOT map this message to any QSIG message.

   NOTE: A SIP 2xx response to the INVITE request can be received later
   on a different dialog as a result of a forking proxy.

8.2.1.5.  Receipt of SIP 3xx Response to an INVITE Request

   On receipt of a SIP 3xx response to an INVITE request, the gateway
   SHALL act in accordance with [10].

   NOTE: This will normally result in sending a new SIP INVITE request.

   Unless the gateway supports the QSIG Call Diversion Supplementary
   Service, no QSIG message SHALL be sent.  The definition of Call
   Diversion Supplementary Service for QSIG to SIP interworking is
   beyond the scope of this specification.

8.2.2.  Call Establishment from QSIG to SIP Using Overlap Procedures

   SIP uses en bloc signalling, and it is strongly RECOMMENDED to avoid
   using overlap signalling in a SIP network.  A SIP/QSIG gateway
   dealing with overlap signalling SHOULD perform a conversion from
   overlap to en bloc signalling method using one or more of the
   following mechanisms:

      - timers;

      - numbering plan information;

      - the presence of a Sending complete information element in a
        received QSIG INFORMATION message.

   If the gateway performs a conversion from overlap to en bloc
   signalling in the SIP network, then the procedures defined in Section
   8.2.2.1 SHALL apply.




Elwell, et al.           Best Current Practice                 [Page 16]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   However, for some applications it might be impossible to avoid using
   overlap signalling in the SIP network.  In this case, the procedures
   defined in Section 8.2.2.2 SHALL apply.

8.2.2.1.  En Bloc Signalling in SIP Network

8.2.2.1.1.  Receipt of QSIG SETUP Message

   On receipt of a QSIG SETUP message containing no Sending complete
   information element and a number in the Called party number
   information element that the gateway cannot determine to be complete,
   the gateway SHALL send back a QSIG SETUP ACKNOWLEDGE message, start
   QSIG timer T302, and await further number digits.

8.2.2.1.2.  Receipt of QSIG INFORMATION Message

   On receipt of each QSIG INFORMATION message containing no Sending
   complete information element and containing a number that the gateway
   cannot determine to be complete, QSIG timer T302 SHALL be restarted.
   When QSIG timer T302 expires or a QSIG INFORMATION message containing
   a Sending complete information element is received, the gateway SHALL
   send a SIP INVITE request as described in Section 8.2.1.1.  The
   Request-URI and To fields (see Section 9) SHALL be generated from the
   concatenation of information in the Called party number information
   element in the received QSIG SETUP and INFORMATION messages.  The
   gateway SHALL also send a QSIG CALL PROCEEDING message.

8.2.2.1.3.  Receipt of SIP Responses to INVITE Requests

   SIP responses to INVITE requests SHALL be mapped as described in
   8.2.1.

8.2.2.2.  Overlap Signalling in SIP Network

   The procedures below for using overlap signalling in the SIP network
   are in accordance with the principles described in [18] for using
   overlap sending when interworking with ISDN User Part (ISUP).  In
   [18], there is discussion of some potential problems arising from the
   use of overlap sending in the SIP network.  These potential problems
   are applicable also in the context of QSIG-SIP interworking and can
   be avoided if overlap sending in the QSIG network is terminated at
   the gateway, in accordance with Section 8.2.2.1.  The procedures
   below should be used only where it is not feasible to use the
   procedures of Section 8.2.2.1.







Elwell, et al.           Best Current Practice                 [Page 17]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


8.2.2.2.1.  Receipt of QSIG SETUP Message

   On receipt of a QSIG SETUP message containing no Sending complete
   information element and a number in the Called party number
   information element that the gateway cannot determine to be complete,
   the gateway SHALL send back a QSIG SETUP ACKNOWLEDGE message and
   start QSIG timer T302.  If the QSIG SETUP message contains the
   minimum number of digits required to route the call in the IP
   network, the gateway SHALL send a SIP INVITE request as specified in
   Section 8.2.1.1.  Otherwise, the gateway SHALL wait for more digits
   to arrive in QSIG INFORMATION messages.

8.2.2.2.2.  Receipt of QSIG INFORMATION Message

   On receipt of a QSIG INFORMATION message, the gateway SHALL handle
   the QSIG timer T302 in accordance with [2].

   NOTE: [2] requires the QSIG timer to be stopped if the INFORMATION
   message contains a Sending complete information element or to be
   restarted otherwise.

   Further behaviour of the gateway SHALL depend on whether or not it
   has already sent a SIP INVITE request.  If the gateway has not sent a
   SIP INVITE request and it now has the minimum number of digits
   required to route the call, it SHALL send a SIP INVITE request as
   specified in Section 8.2.2.1.2.  If the gateway still does not have
   the minimum number of digits required, it SHALL wait for more QSIG
   INFORMATION messages to arrive.

   If the gateway has already sent one or more SIP INVITE requests,
   whether or not final responses to those requests have been received,
   it SHALL send a new SIP INVITE request in accordance with Section 3.2
   of [18].  The updated Request-URI and To fields (see Section 9) SHALL
   be generated from the concatenation of information in the Called
   party number information element in the received QSIG SETUP and
   INFORMATION messages.

   NOTE: [18] requires the new request to have the same Call-ID and the
   same From header (including tag) as in the previous INVITE request.
   [18] recommends that the CSeq header should contain a value higher
   than that in the previous INVITE request.

8.2.2.2.3.  Receipt of SIP 100 (Trying) Response to an INVITE Request

   The requirements of Section 8.2.1.2 SHALL apply.






Elwell, et al.           Best Current Practice                 [Page 18]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


8.2.2.2.4.  Receipt of SIP 18x Provisional Response to an INVITE Request

   The requirements of Section 8.2.1.3 SHALL apply.

8.2.2.2.5.  Receipt of SIP 2xx Response to an INVITE Request

   The requirements of Section 8.2.1.4 SHALL apply.  In addition, the
   gateway SHALL send a SIP CANCEL request in accordance with Section
   3.4 of [18] to cancel any SIP INVITE transactions for which no final
   response has been received.

8.2.2.2.6.  Receipt of SIP 3xx Response to an INVITE Request

   The requirements of Section 8.2.1.5 SHALL apply.

8.2.2.2.7.  Receipt of a SIP 4xx, 5xx, or 6xx Final Response to an
            INVITE Request

   On receipt of a SIP 4xx, 5xx, or 6xx final response to an INVITE
   request, the gateway SHALL send back a SIP ACK request.  Unless the
   gateway is able to retry the INVITE request to avoid the problem
   (e.g., by supplying authentication in the case of a 401 or 407
   response), the gateway SHALL also send a QSIG DISCONNECT message
   (8.4.4) if no further QSIG INFORMATION messages are expected and
   final responses have been received to all transmitted SIP INVITE
   requests.

   NOTE: Further QSIG INFORMATION messages will not be expected after
   QSIG timer T302 has expired or after a Sending complete information
   element has been received.

   In all other cases, the receipt of a SIP 4xx, 5xx, or 6xx final
   response to an INVITE request SHALL NOT trigger the sending of any
   QSIG message.

   NOTE: If further QSIG INFORMATION messages arrive, these will result
   in further SIP INVITE requests being sent, one of which might result
   in successful call establishment.  For example, initial INVITE
   requests might produce 484 (Address Incomplete) or 404 (Not Found)
   responses because the Request-URIs derived from incomplete numbers
   cannot be routed, yet a subsequent INVITE request with a routable
   Request-URI might produce a 2xx final response or a more meaningful
   4xx, 5xx, or 6xx final response.








Elwell, et al.           Best Current Practice                 [Page 19]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


8.2.2.2.8.  Receipt of Multiple SIP Responses to an INVITE Request

   Section 3.3 of [18] applies.

8.2.2.2.9.  Cancelling Pending SIP INVITE Transactions

   As stated in Section 3.4 of [18], when a gateway sends a new SIP
   INVITE request containing new digits, it SHOULD NOT send a SIP CANCEL
   request to cancel a previous SIP INVITE transaction that has not had
   a final response.  This SIP CANCEL request could arrive at an egress
   gateway before the new SIP INVITE request and trigger premature call
   clearing.

   NOTE: Previous SIP INVITE transactions can be expected to result in
   SIP 4xx class responses, which terminate the transaction.  In Section
   8.2.2.2.5, there is provision for cancelling any transactions still
   in progress after a SIP 2xx response has been received.

8.2.2.2.10.  QSIG Timer T302 Expiry

   If QSIG timer T302 expires and the gateway has received 4xx, 5xx, or
   6xx responses to all transmitted SIP INVITE requests, the gateway
   SHALL send a QSIG DISCONNECT message.  If T302 expires and the
   gateway has not received 4xx, 5xx, or 6xx responses to all
   transmitted SIP INVITE requests, the gateway SHALL ignore any further
   QSIG INFORMATION messages but SHALL NOT send a QSIG DISCONNECT
   message at this stage.

   NOTE: A QSIG DISCONNECT request will be sent when all outstanding SIP
   INVITE requests have received 4xx, 5xx, or 6xx responses.

8.3.  Call Establishment from SIP to QSIG

8.3.1.  Receipt of SIP INVITE Request for a New Call

   On receipt of a SIP INVITE request for a new call, if a suitable
   channel is available on the inter-PINX link, the gateway SHALL
   generate a QSIG SETUP message from the received SIP INVITE request.
   The gateway SHALL generate the Called party number and Calling party
   number information elements in accordance with Section 9 and SHALL
   generate the Bearer capability information element in accordance with
   Section 10.  If the gateway can determine that the number placed in
   the Called party number information element is complete, the gateway
   MAY include the Sending complete information element.

   NOTE: The means by which the gateway determines the number to be
   complete is an implementation matter.  It can involve knowledge of
   the numbering plan and/or use of the inter-digit timer.



Elwell, et al.           Best Current Practice                 [Page 20]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   The gateway SHOULD send a SIP 100 (Trying) response.

   If information in the SIP INVITE request is unsuitable for generating
   any of the mandatory information elements in a QSIG SETUP message
   (e.g., if a QSIG Called party number information element cannot be
   derived from SIP Request-URI field) or if no suitable channel is
   available on the inter-PINX link, the gateway SHALL NOT issue a QSIG
   SETUP message and SHALL send a SIP 4xx, 5xx, or 6xx response.  If no
   suitable channel is available, the gateway should use response code
   503 (Service Unavailable).

   If the SIP INVITE request does not contain SDP information and does
   not contain either a Required header or a Supported header with
   option tag 100rel, the gateway SHOULD still proceed as above,
   although an implementation can instead send a SIP 488 (Not Acceptable
   Here) response, in which case it SHALL NOT issue a QSIG SETUP
   message.

   NOTE: The absence of SDP offer information in the SIP INVITE request
   means that the gateway might need to send SDP offer information in a
   provisional response and receive SDP answer information in a SIP
   PRACK request (in accordance with [11]) in order to ensure that tones
   and announcements from the PISN are transmitted. SDP offer
   information cannot be sent in an unreliable provisional response
   because SDP answer information would need to be returned in a SIP
   PRACK request.  The recommendation above still to proceed with call
   establishment in this situation reflects the desire to maximise the
   chances of a successful call.  However, if important in-band
   information is likely to be denied in this situation, a gateway can
   choose not to proceed.

   NOTE: If SDP offer information is present in the INVITE request, the
   issuing of a QSIG SETUP message is not dependent on the presence of a
   Required header or a Supported header with option tag 100rel.

   On receipt of a SIP INVITE request relating to a call that has
   already been established from SIP to QSIG, the procedures of 8.3.9
   SHALL apply.

8.3.2.  Receipt of QSIG CALL PROCEEDING Message

   The receipt of a QSIG CALL PROCEEDING message SHALL NOT result in any
   SIP message being sent.








Elwell, et al.           Best Current Practice                 [Page 21]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


8.3.3.  Receipt of QSIG PROGRESS Message

   A QSIG PROGRESS message can be received in the event of interworking
   on the remote side of the PISN or if the PISN is unable to complete
   the call and generates an in-band tone or announcement.  In the
   latter case, a Cause information element is included in the QSIG
   PROGRESS message.

   The gateway SHALL map a received QSIG PROGRESS message to a SIP 183
   (Session Progress) response to the INVITE request.  If the SIP INVITE
   request contained either a Require header or a Supported header with
   option tag 100rel, the gateway SHALL include in the SIP 183 response
   a Require header with option tag 100rel.

   NOTE: In accordance with [11], inclusion of option tag 100rel in a
   provisional response instructs the UAC to acknowledge the provisional
   response by sending a PRACK request.  [11] also specifies procedures
   for repeating a provisional response with option tag 100rel if no
   PRACK is received.

   If the QSIG PROGRESS message contained a Progress indicator
   information element with Progress description number 1 or 8, the
   gateway SHALL connect the media streams to the corresponding user
   information channel of the inter-PINX link if it has not already done
   so, provided that SDP answer information is included in the
   transmitted SIP response to the INVITE request or has already been
   sent or received.  Inclusion of SDP offer or answer information in
   the 183 provisional response SHALL be in accordance with Section
   8.3.5.

   If the QSIG PROGRESS message is received with a Cause information
   element, the gateway SHALL either wait until the tone/announcement is
   complete or has been applied for sufficient time before initiating
   call clearing, or wait for a SIP CANCEL request.  If call clearing is
   initiated, the cause value in the QSIG PROGRESS message SHALL be used
   to derive the response to the SIP INVITE request in accordance with
   Table 1.

8.3.4.  Receipt of QSIG ALERTING Message

   The gateway SHALL map a QSIG ALERTING message to a SIP 180 (Ringing)
   response to the INVITE request.  If the SIP INVITE request contained
   either a Require header or a Supported header with option tag 100rel,
   the gateway SHALL include in the SIP 180 response a Require header
   with option tag 100rel.






Elwell, et al.           Best Current Practice                 [Page 22]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   NOTE: In accordance with [11], inclusion of option tag 100rel in a
   provisional response instructs the UAC to acknowledge the provisional
   response by sending a PRACK request.  [11] also specifies procedures
   for repeating a provisional response with option tag 100rel if no
   PRACK is received.

   If the QSIG ALERTING message contained a Progress indicator
   information element with Progress description number 1 or 8, the
   gateway SHALL connect the media streams to the corresponding user
   information channel of the inter-PINX link if it has not already done
   so, provided that SDP answer information is included in the
   transmitted SIP response or has already been sent or received.
   Inclusion of SDP offer or answer information in the 180 provisional
   response SHALL be in accordance with Section 8.3.5.

8.3.5.  Inclusion of SDP Information in a SIP 18x Provisional Response

   When sending a SIP 18x provisional response to the INVITE request, if
   a QSIG message containing a Progress indicator information element
   with progress description number 1 or 8 has been received the gateway
   SHALL include SDP information.  Otherwise, the gateway MAY include
   SDP information.  If SDP information is included, it shall be in
   accordance with the following rules.

   If the SIP INVITE request contained a Required or Supported header
   with option tag 100rel, and if SDP offer and answer information has
   already been exchanged, no SDP information SHALL be included in the
   SIP 18x provisional response.

   If the SIP INVITE request contained a Required or Supported header
   with option tag 100rel, and if SDP offer information was received in
   the SIP INVITE request but no SDP answer information has been sent,
   SDP answer information SHALL be included in the SIP 18x provisional
   response.

   If the SIP INVITE request contained a Required or Supported header
   with option tag 100rel, and if no SDP offer information was received
   in the SIP INVITE request and no SDP offer information has already
   been sent, SDP offer information SHALL be included in the SIP 18x
   provisional response.

   NOTE: In this case, SDP answer information can be expected in the SIP
   PRACK.

   If the SIP INVITE request contained neither a Required nor a
   Supported header with option tag 100rel, SDP answer information SHALL
   be included in the SIP 18x provisional response.




Elwell, et al.           Best Current Practice                 [Page 23]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   NOTE: Because the provisional response is unreliable, SDP answer
   information needs to be repeated in each provisional response and in
   the final SIP 2xx response.

   NOTE: If the SIP INVITE request contained no SDP offer information
   and neither a Required nor a Supported header with option tag 100rel,
   it should have been rejected in accordance with Section 8.3.1.

8.3.6.  Receipt of QSIG CONNECT Message

   The gateway SHALL map a QSIG CONNECT message to a SIP 200 (OK) final
   response for the SIP INVITE request.  The gateway SHALL also send a
   QSIG CONNECT ACKNOWLEDGE message.

   If the SIP INVITE request contained a Required or Supported header
   with option tag 100rel, and if SDP offer and answer information has
   already been exchanged, no SDP information SHALL be included in the
   SIP 200 response.

   If the SIP INVITE request contained a Required or Supported header
   with option tag 100rel, and if SDP offer information was received in
   the SIP INVITE request but no SDP answer information has been sent,
   SDP answer information SHALL be included in the SIP 200 response.

   If the SIP INVITE request contained a Required or Supported header
   with option tag 100rel, and if no SDP offer information was received
   in the SIP INVITE request and no SDP offer information has already
   been sent, SDP offer information SHALL be included in the SIP 200
   response.

   NOTE: In this case, SDP answer information can be expected in the SIP
   ACK.

   If the SIP INVITE request contained neither a Required nor a
   Supported header with option tag 100rel, SDP answer information SHALL
   be included in the SIP 200 response.

   NOTE: Because the provisional response is unreliable, SDP answer
   information needs to be repeated in each provisional response and in
   the final 2xx response.

   NOTE: If the SIP INVITE request contained no SDP offer information
   and neither a Required nor a Supported header with option tag 100rel,
   it may have been rejected in accordance with Section 8.3.1.







Elwell, et al.           Best Current Practice                 [Page 24]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   The gateway SHALL connect the media streams to the corresponding user
   information channel of the inter-PINX link if it has not already done
   so, provided that SDP answer information is included in the
   transmitted SIP response or has already been sent or received.

8.3.7.  Receipt of SIP PRACK Request

   The receipt of a SIP PRACK request acknowledging a reliable
   provisional response SHALL NOT result in any QSIG message being sent.
   The gateway SHALL send back a SIP 200 (OK) response to the SIP PRACK
   request.

   If the SIP PRACK contains SDP answer information and a QSIG message
   containing a Progress indicator information element with progress
   description number 1 or 8 has been received, the gateway SHALL
   connect the media streams to the corresponding user information
   channel of the inter-PINX link.

8.3.8.  Receipt of SIP ACK Request

   The receipt of a SIP ACK request SHALL NOT result in any QSIG message
   being sent.

   If the SIP ACK contains SDP answer information, the gateway SHALL
   connect the media streams to the corresponding user information
   channel of the inter-PINX link if it has not already done so.

8.3.9.  Receipt of a SIP INVITE Request for a Call Already Being
        Established

   A gateway can receive a call from SIP using overlap procedures.  This
   should occur when the UAC for the INVITE request is a gateway from a
   network that employs overlap procedures (e.g., an ISUP gateway or
   another QSIG gateway) and the gateway has not absorbed overlap.

   For a call from SIP using overlap procedures, the gateway will
   receive multiple SIP INVITE requests that belong to the same call but
   have different Request-URI and To fields.  Each SIP INVITE request
   belongs to a different dialog.

   A SIP INVITE request is considered to be for the purpose of overlap
   sending if, compared to a previously received SIP INVITE request, it
   has:

      - the same Call-ID header;
      - the same From header (including the tag);
      - no tag in the To header;




Elwell, et al.           Best Current Practice                 [Page 25]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


      - an updated Request-URI from which can be derived a called party
        number with a superset of the digits derived from the previously
        received SIP INVITE request;

      and if

      - the gateway has not yet sent a final response other than 484 to
        the previously received SIP INVITE request.

   If a gateway receives a SIP INVITE request for the purpose of overlap
   sending, it SHALL generate a QSIG INFORMATION message using the call
   reference of the existing QSIG call instead of a new QSIG SETUP
   message and containing only the additional digits in the Called party
   number information element.  It SHALL also respond to the SIP INVITE
   request received previously with a SIP 484 Address Incomplete
   response.

   If a gateway receives a SIP INVITE request that meets all of the
   conditions for a SIP INVITE request for the purpose of overlap
   sending except the condition concerning the Request-URI, the gateway
   SHALL respond to the new request with a SIP 485 (Ambiguous) response.

8.4.  Call Clearing and Call Failure

8.4.1.  Receipt of a QSIG DISCONNECT, RELEASE, or RELEASE COMPLETE
        Message

   On receipt of QSIG DISCONNECT, RELEASE, or RELEASE COMPLETE message
   as the first QSIG call clearing message, gateway behaviour SHALL
   depend on the state of call establishment.

   1) If the gateway has sent a SIP 200 (OK) response to a SIP INVITE
      request and received a SIP ACK request, or if it has received a
      SIP 200 (OK) response to a SIP INVITE request and sent a SIP ACK
      request, the gateway SHALL send a SIP BYE request to clear the
      call.

   2) If the gateway has sent a SIP 200 (OK) response to a SIP INVITE
      request (indicating that call establishment is complete) but has
      not received a SIP ACK request, the gateway SHALL wait until a SIP
      ACK is received and then send a SIP BYE request to clear the call.

   3) If the gateway has sent a SIP INVITE request and received a SIP
      provisional response but not a SIP final response, the gateway
      SHALL send a SIP CANCEL request to clear the call.






Elwell, et al.           Best Current Practice                 [Page 26]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


      NOTE 1: In accordance with [10], if after sending a SIP CANCEL
      request a SIP 2xx response is received to the SIP INVITE request,
      the gateway will need to send a SIP BYE request.

   4) If the gateway has sent a SIP INVITE request but received no SIP
      response, the gateway SHALL NOT send a SIP message.  If a SIP
      final or provisional response is subsequently received, the
      gateway SHALL then act in accordance with 1, 2, or 3 above,
      respectively.

   5) If the gateway has received a SIP INVITE request but not sent a
      SIP final response, the gateway SHALL send a SIP final response
      chosen according to the cause value in the received QSIG message
      as specified in Table 1.  SIP response 500 (Server internal error)
      SHALL be used as the default for cause values not shown in
      Table 1.

   NOTE 2: It is not necessarily appropriate to map some QSIG cause
   values to SIP messages because these cause values are meaningful only
   at the gateway.  A good example of this is cause value 44, "Requested
   circuit or channel not available", which signifies that the channel
   number in the transmitted QSIG SETUP message was not acceptable to
   the peer PINX.  The appropriate behavior in this case is for the
   gateway to send another SETUP message indicating a different channel
   number.  If this is not possible, the gateway should treat it either
   as a congestion situation (no channels available; see Section 8.3.1)
   or as a gateway failure situation (in which case the default SIP
   response code applies).

   In all cases, the gateway SHALL also disconnect media streams, if
   established, and allow QSIG and SIP signalling to complete in
   accordance with [2] and [10], respectively.



















Elwell, et al.           Best Current Practice                 [Page 27]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   Table 1: Mapping of QSIG Cause Value to SIP 4xx-6xx responses to an
   INVITE request

   QSIG Cause value               SIP response
   ----------------------------------------------------------------
   1  Unallocated number          404 Not found
   2  No route to specified       404 Not found
      transit network
   3  No route to destination     404 Not found
   16 Normal call clearing        (NOTE 3)
   17 User busy                   486 Busy here
   18 No user responding          408 Request timeout
   19 No answer from the user     480 Temporarily unavailable
   20 Subscriber absent           480 Temporarily unavailable
   21 Call rejected               603 Decline, if location field
                                      in Cause information element
                                      indicates user.  Otherwise:
                                      403 Forbidden
   22 Number changed              301 Moved permanently, if
                                      information in diagnostic field
                                      of Cause information element is
                                      suitable for generating a SIP
                                      Contact header.  Otherwise:
                                      410 Gone
   23 Redirection to new          410 Gone
      destination
   27 Destination out of order    502 Bad gateway
   28 Address incomplete          484 Address incomplete
   29 Facility rejected           501 Not implemented
   31 Normal, unspecified         480 Temporarily unavailable
   34 No circuit/channel          503 Service unavailable
      available
   38 Network out of order        503 Service unavailable
   41 Temporary failure           503 Service unavailable
   42 Switching equipment         503 Service unavailable
      congestion
   47 Resource unavailable,       503 Service unavailable
      unspecified
   55 Incoming calls barred       403 Forbidden
      within CUG
   57 Bearer capability not       403 Forbidden
      authorized
   58 Bearer capability not       503 Service unavailable
      presently available
   65 Bearer capability not       488 Not acceptable here (NOTE 4)
      implemented
   69 Requested facility not      501 Not implemented
      implemented



Elwell, et al.           Best Current Practice                 [Page 28]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   70 Only restricted digital     488 Not acceptable here (NOTE 4)
      information available
   79 Service or option not       501 Not implemented
      implemented, unspecified
   87 User not member of CUG      403 Forbidden
   88 Incompatible destination    503 Service unavailable
   102 Recovery on timer expiry   504 Server time-out

   NOTE 3: A QSIG call clearing message containing cause value 16 will
   normally result in the sending of a SIP BYE or CANCEL request.
   However, if a SIP response is to be sent to the INVITE request, the
   default response code should be used.

   NOTE 4: The gateway may include a SIP Warning header if diagnostic
   information in the QSIG Cause information element allows a suitable
   warning code to be selected.

8.4.2.  Receipt of a SIP BYE Request

   On receipt of a SIP BYE request, the gateway SHALL send a QSIG
   DISCONNECT message with cause value 16 (normal call clearing).  The
   gateway SHALL also disconnect media streams, if established, and
   allow QSIG and SIP signalling to complete in accordance with [2] and
   [10], respectively.

   NOTE: When responding to a SIP BYE request, in accordance with [10],
   the gateway is also required to respond to any other outstanding
   transactions, e.g., with a SIP 487 (Request Terminated) response.
   This applies in particular if the gateway has not yet returned a
   final response to the SIP INVITE request.

8.4.3.  Receipt of a SIP CANCEL Request

   On receipt of a SIP CANCEL request to clear a call for which the
   gateway has not sent a SIP final response to the received SIP INVITE
   request, the gateway SHALL send a QSIG DISCONNECT message with cause
   value 16 (normal call clearing).  The gateway SHALL also disconnect
   media streams, if established, and allow QSIG and SIP signalling to
   complete in accordance with [2] and [10], respectively.

8.4.4.  Receipt of a SIP 4xx-6xx Response to an INVITE Request

   Except where otherwise specified in the context of overlap sending
   (8.2.2.2), on receipt of a SIP final response (4xx-6xx) to a SIP
   INVITE request, unless the gateway is able to retry the INVITE
   request to avoid the problem (e.g., by supplying authentication in
   the case of a 401 or 407 response), the gateway SHALL transmit a QSIG
   DISCONNECT message.  The cause value in the QSIG DISCONNECT message



Elwell, et al.           Best Current Practice                 [Page 29]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   SHALL be derived from the SIP 4xx-6xx response according to Table 2.
   Cause value 31 (Normal, unspecified) SHALL be used as the default for
   SIP responses not shown in Table 2.  The gateway SHALL also
   disconnect media streams, if established, and allow QSIG and SIP
   signalling to complete in accordance with [2] and [10], respectively.

   When generating a QSIG Cause information element, the location field
   SHOULD contain the value "user", if generated as a result of a SIP
   response code 6xx, or the value "Private network serving the remote
   user" in other circumstances.

   Table 2: Mapping of SIP 4xx-6xx responses to an INVITE request to
   QSIG Cause values

   SIP response                        QSIG Cause value (NOTE 6)
   ------------------------------------------------------------------
   400 Bad request                     41  Temporary failure
   401 Unauthorized                    21  Call rejected (NOTE 5)
   402 Payment required                21  Call rejected
   403 Forbidden                       21  Call rejected
   404 Not found                       1   Unallocated number
   405 Method not allowed              63  Service or option
                                           unavailable, unspecified
   406 Not acceptable                  79  Service or option not
                                           implemented, unspecified
   407 Proxy Authentication required   21  Call rejected (NOTE 5)
   408 Request timeout                 102 Recovery on timer expiry
   410 Gone                            22  Number changed
   413 Request entity too large        127 Interworking, unspecified
                                           (NOTE 6)
   414 Request-URI too long            127 Interworking, unspecified
                                           (NOTE 6)
   415 Unsupported media type          79  Service or option not
                                           implemented, unspecified
                                           (NOTE 6)
   416 Unsupported URI scheme          127 Interworking, unspecified
                                           (NOTE 6)
   420 Bad extension                   127 Interworking, unspecified
                                           (NOTE 6)
   421 Extension required              127 Interworking, unspecified
                                           (NOTE 6)
   423 Interval too brief              127 Interworking, unspecified
                                           (NOTE 6)
   480 Temporarily unavailable         18  No user responding
   481 Call/transaction does not exist 41  Temporary failure
   482 Loop detected                   25  Exchange routing error
   483 Too many hops                   25  Exchange routing error




Elwell, et al.           Best Current Practice                 [Page 30]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   484 Address incomplete              28  Invalid number format
                                           (NOTE 6)
   485 Ambiguous                       1   Unallocated Number
   486 Busy here                       17  User busy
   487 Request terminated              (NOTE 7)
   488 Not Acceptable Here             65  Bearer capability not
                                           implemented or 31 Normal,
                                           unspecified (NOTE 8)
   500 Server internal error           41  Temporary failure
   501 Not implemented                 79  Service or option not
                                           implemented, unspecified
   502 Bad gateway                     38  Network out of order
   503 Service unavailable             41  Temporary failure
   504 Gateway time-out                102 Recovery on timer expiry
   505 Version not supported           127 Interworking, unspecified
                                           (NOTE 6)
   513 Message too large               127 Interworking, unspecified
                                           (NOTE 6)
   600 Busy everywhere                 17  User busy
   603 Decline                         21  Call rejected
   604 Does not exist anywhere         1   Unallocated number
   606 Not acceptable                  65  Bearer capability not
                                           implemented or
                                       31  Normal, unspecified (NOTE 8)

   NOTE 5: In some cases, it may be possible for the gateway to provide
   credentials to the SIP UAS that is rejecting an INVITE due to
   authorization failure.  If the gateway can authenticate itself, then
   obviously it should do so and proceed with the call.  Only if the
   gateway cannot authorize itself should the gateway clear the call in
   the QSIG network with this cause value.

   NOTE 6: For some response codes, the gateway may be able to retry the
   INVITE request in order to work around the problem.  In particular,
   this may be the case with response codes indicating a protocol error.
   The gateway SHOULD clear the call in the QSIG network with the
   indicated cause value only if retry is not possible or fails.

   NOTE 7: The circumstances in which SIP response code 487 can be
   expected to arise do not require it to be mapped to a QSIG cause
   code, since the QSIG call will normally already be cleared or in the
   process of clearing.  If QSIG call clearing does, however, need to be
   initiated, the default cause value should be used.

   NOTE 8: When the Warning header is present in a SIP 606 or 488
   message, the warning code should be examined to determine whether it
   is reasonable to generate cause value 65.  This cause value should be
   generated only if there is a chance that a new call attempt with



Elwell, et al.           Best Current Practice                 [Page 31]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   different content in the Bearer capability information element will
   avoid the problem.  In other circumstances, the default cause value
   should be used.

8.4.5 Gateway-Initiated Call Clearing

   If the gateway initiates clearing of the QSIG call owing to QSIG
   timer expiry, QSIG protocol error, or use of the QSIG RESTART message
   in accordance with [2], the gateway SHALL also initiate clearing of
   the SIP call in accordance with Section 8.4.1.  If this involves the
   sending of a final response to a SIP INVITE request, the gateway
   SHALL use response code 480 (Temporarily Unavailable) if optional
   QSIG timer T301 has expired or, otherwise, response code 408 (Request
   timeout) or 500 (Server internal error), as appropriate.

   If the gateway initiates clearing of the SIP call owing to SIP timer
   expiry or SIP protocol error in accordance with [10], the gateway
   SHALL also initiate clearing of the QSIG call in accordance with [2]
   using cause value 102 (Recovery on timer expiry) or 41 (Temporary
   failure), as appropriate.

8.5.  Request to Change Media Characteristics

   If after a call has been successfully established the gateway
   receives a SIP INVITE request to change the media characteristics of
   the call in a way that would be incompatible with the bearer
   capability in use within the PISN, the gateway SHALL send back a SIP
   488 (Not Acceptable Here) response and SHALL NOT change the media
   characteristics of the existing call.

9.  Number Mapping

   In QSIG, users are identified by numbers, as defined in [1].  Numbers
   are conveyed within the Called party number, Calling party number,
   and Connected number information elements.  The Calling party number
   and Connected number information elements also contain a presentation
   indicator, which can indicate that privacy is required (presentation
   restricted), and a screening indicator, which indicates the source
   and authentication status of the number.

   In SIP, users are identified by Universal Resource Identifiers (URIs)
   conveyed within the Request-URI and various headers, including the
   From and To headers specified in [10] and optionally the P-Asserted-
   Identity header specified in [14].  In addition, privacy is indicated
   by the Privacy header specified in [13].






Elwell, et al.           Best Current Practice                 [Page 32]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   This clause specifies the mapping between QSIG Called party number,
   Calling party number, and Connected number information elements and
   corresponding elements in SIP.

   A gateway MAY implement the P-Asserted-Identity header in accordance
   with [14].  If a gateway implements the P-Asserted-Identity header,
   it SHALL also implement the Privacy header in accordance with [13].
   If a gateway does not implement the P-Asserted-Identity header, it
   MAY implement the Privacy header.

9.1.  Mapping from QSIG to SIP

   The method used to convert a number to a URI is outside the scope of
   this specification.  However, the gateway SHOULD take account of the
   Numbering Plan (NPI) and Type Of Number (TON) fields in the QSIG
   information element concerned when interpreting a number.

   Some aspects of mapping depend on whether the gateway is in the same
   trust domain (as defined in [14]) as the next hop SIP node (i.e., the
   proxy or UA to which the INVITE request is sent or from which INVITE
   request is received) to honour requests for identity privacy in the
   Privacy header.  This will be network-dependent, and it is
   RECOMMENDED that gateways supporting the P-Asserted-Identity header
   hold a configurable list of next hop nodes that are to be trusted in
   this respect.

9.1.1.  Using Information from the QSIG Called Party Number Information
        Element

   When mapping a QSIG SETUP message to a SIP INVITE request, the
   gateway SHALL convert the number in the QSIG Called party number
   information to a URI and include that URI in the SIP Request-URI and
   in the To header.

9.1.2.  Using Information from the QSIG Calling Party Number Information
        Element

   When mapping a QSIG SETUP message to a SIP INVITE request, the
   gateway SHALL use the Calling party number information element, if
   present, as follows.

   If the information element contains a number, the gateway SHALL
   attempt to derive a URI from that number.  Further behaviour depends
   on whether a URI has been derived and the value of the presentation
   indication.






Elwell, et al.           Best Current Practice                 [Page 33]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


9.1.2.1.  No URI derived, and presentation indicator does not have value
          "presentation restricted"

   In this case (including the case where the Calling party number
   information element is absent), the gateway SHALL include a URI
   identifying the gateway in the From header.  Also, if the gateway
   supports the mechanism defined in [14], the gateway SHALL NOT
   generate a P-Asserted-Identity header.

9.1.2.2.  No URI derived, and presentation indicator has value
          "presentation restricted"

   In this case, the gateway SHALL generate an anonymous From header.
   Also, if the gateway supports the mechanism defined in [14], the
   gateway SHALL generate a Privacy header field with parameter
   priv-value = "id" and SHALL NOT generate a P-Asserted-Identity
   header.  The inclusion of additional values of the priv-value
   parameter in the Privacy header is outside the scope of this
   specification.

9.1.2.3.  URI derived, and presentation indicator has value
          "presentation restricted"

   If the gateway supports the P-Asserted-Identity header and trusts the
   next hop proxy to honour the Privacy header, the gateway SHALL
   generate a P-Asserted-Identity header containing the derived URI,
   SHALL generate a Privacy header with parameter priv-value = "id", and
   SHALL generate an anonymous From header.  The inclusion of additional
   values of the priv-value parameter in the Privacy header is outside
   the scope of this specification.

   If the gateway does not support the P-Asserted-Identity header or
   does not trust the proxy to honour the Privacy header, the gateway
   SHALL behave as in Section 9.1.2.2.

9.1.2.4.  URI derived, and presentation indicator does not have value
          "presentation restricted"

   In this case, the gateway SHALL generate a P-Asserted-Identity header
   containing the derived URI if the gateway supports this header, SHALL
   NOT generate a Privacy header, and SHALL include the derived URI in
   the From header.  In addition, the gateway MAY use S/MIME, as
   described in Section 23 of [10], to sign a copy of the From header
   included in a message/sipfrag body of the INVITE request as described
   in [20].






Elwell, et al.           Best Current Practice                 [Page 34]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


9.1.3.  Using Information from the QSIG Connected Number Information
        Element

   When mapping a QSIG CONNECT message to a SIP 200 (OK) response to an
   INVITE request, the gateway SHALL use the Connected number
   information element, if present, as follows.

   If the information element contains a number, the gateway SHALL
   attempt to derive a URI from that number.  Further behaviour depends
   on whether a URI has been derived and the value of the presentation
   indication.

9.1.3.1.  No URI derived, and presentation indicator does not have value
          "presentation restricted"

   In this case (including the case where the Connected number
   information element is absent), the gateway SHALL NOT generate a
   P-Asserted-Identity header and SHALL NOT generate a Privacy header.

9.1.3.2.  No URI derived, and presentation indicator has value
          "presentation restricted"

   In this case, if the gateway supports the mechanism defined in [14],
   the gateway SHALL generate a Privacy header field with parameter
   priv-value = "id" and SHALL NOT generate a P-Asserted-Identity
   header.  The inclusion of additional values of the priv-value
   parameter in the Privacy header is outside the scope of this
   specification.

9.1.3.3.  URI derived, and presentation indicator has value
          "presentation restricted"

   If the gateway supports the P-Asserted-Identity header and trusts the
   next hop proxy to honour the Privacy header, the gateway SHALL
   generate a P-Asserted-Identity header containing the derived URI and
   SHALL generate a Privacy header with parameter priv-value = "id".
   The inclusion of additional values of the priv-value parameter in the
   Privacy header is outside the scope of this specification.

   If the gateway does not support the P-Asserted-Identity header or
   does not trust the proxy to honour the Privacy header, the gateway
   SHALL behave as in Section 9.1.3.2.









Elwell, et al.           Best Current Practice                 [Page 35]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


9.1.3.4.  URI derived, and presentation indicator does not have value
          "presentation restricted"

   In this case, the gateway SHALL generate a P-Asserted-Identity header
   containing the derived URI if the gateway supports this header and
   SHALL NOT generate a Privacy header.  In addition, the gateway MAY
   use S/MIME, as described in Section 23 of [10], to sign a To header
   containing the derived URI, the To header being included in a
   message/sipfrag body of the INVITE response as described in [20].

   NOTE: The To header in the message/sipfrag body may differ from the
   to header in the response's headers.

9.2.  Mapping from SIP to QSIG

   The method used to convert a URI to a number is outside the scope of
   this specification.  However, NPI and TON fields in the QSIG
   information element concerned SHALL be set to appropriate values in
   accordance with [1].

   Some aspects of mapping depend on whether the gateway trusts the next
   hop SIP node (i.e., the proxy or UA to which the INVITE request is
   sent or from which INVITE request is received) to provide accurate
   information in the P-Asserted-Identity header.  This will be
   network-dependent, and it is RECOMMENDED that gateways hold a
   configurable list of next hop nodes that are to be trusted in this
   respect.

   Some aspects of mapping depend on whether the gateway is prepared to
   use a URI in the From header to derive a number for the Calling party
   number information element.  The default behaviour SHOULD be not to
   use an unsigned or unvalidated From header for this purpose, since in
   principle the information comes from an untrusted source (the remote
   UA).  However, it is recognised that some network administrations may
   believe that the benefits to be derived from supplying a calling
   party number outweigh any risks of supplying false information.
   Therefore, a gateway MAY be configurable to use an unsigned or
   unvalidated From header for this purpose.

9.2.1.  Generating the QSIG Called Party Number Information Element

   When mapping a SIP INVITE request to a QSIG SETUP message, the
   gateway SHALL convert the URI in the SIP Request-URI to a number and
   include that number in the QSIG Called party number information
   element.






Elwell, et al.           Best Current Practice                 [Page 36]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   NOTE: The To header should not be used for this purpose.  This is
   because re-targeting of the request in the SIP network can change the
   Request-URI but leave the To header unchanged.  It is important that
   routing in the QSIG network be based on the final target from the SIP
   network.

9.2.2.  Generating the QSIG Calling Party Number Information Element

   When mapping a SIP INVITE request to a QSIG SETUP message, the
   gateway SHALL generate a Calling party number information element as
   follows.

   If the SIP INVITE request contains an S/MIME signed message/sipfrag
   body [20] containing a From header, and if the gateway supports this
   capability and can verify the authenticity and trustworthiness of
   this information, the gateway SHALL attempt to derive a number from
   the URI in that header.  If no number is derived from a
   message/sipfrag body, if the SIP INVITE request contains a P-
   Asserted-Identity header, and if the gateway supports that header and
   trusts the information therein, the gateway SHALL attempt to derive a
   number from the URI in that header.  If a number is derived from one
   of these headers, the gateway SHALL include it in the Calling party
   number information element and include value "network provided" in
   the screening indicator.

   If no number is derivable as described above and if the gateway is
   prepared to use the unsigned or unvalidated From header, the gateway
   SHALL attempt to derive a number from the URI in the From header.  If
   a number is derived from the From header, the gateway SHALL include
   it in the Calling party number information element and include value
   "user provided, not screened" in the screening indicator.

   If no number is derivable, the gateway SHALL NOT include a number in
   the Calling party number information element.

   If the SIP INVITE request contains a Privacy header with value "id"
   in parameter priv-value and the gateway supports this header, or if
   the value in the From header indicates anonymous, the gateway SHALL
   include value "presentation restricted" in the presentation
   indicator.  Based on local policy, the gateway MAY use the presence
   of other priv-values to set the presentation indicator to
   "presentation restricted".  Otherwise the gateway SHALL include value
   "presentation allowed" if a number is present or "not available due
   to interworking" if no number is present.







Elwell, et al.           Best Current Practice                 [Page 37]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   If the resulting Calling party number information element contains no
   number and contains value "not available due to interworking" in the
   presentation indicator, the gateway MAY omit the information element
   from the QSIG SETUP message.

9.2.3.  Generating the QSIG Connected Number Information Element

   When mapping a SIP 2xx response to an INVITE request to a QSIG
   CONNECT message, the gateway SHALL generate a Connected number
   information element as follows.

   If the SIP 2xx response contains an S/MIME signed message/sipfrag
   [20] body containing a To header and the gateway supports this
   capability and can verify the authenticity and trustworthiness of
   this information, the gateway SHALL attempt to derive a number from
   the URI in that header.  If no number is derived from a
   message/sipfrag body, if the SIP 2xx response contains a
   P-Asserted-Identity header, and if the gateway supports that header
   and trusts the information therein, the gateway SHALL attempt to
   derive a number from the URI in that header.  If a number is derived
   from one of these headers, the gateway SHALL include it in the
   Connected number information element and include value "network
   provided" in the screening indicator.

   If no number is derivable as described above, the gateway SHOULD NOT
   include a number in the Connected number information element.

   If the SIP 2xx response contains a Privacy header with value "id" in
   parameter priv-value and the gateway supports this header, the
   gateway SHALL include value "presentation restricted" in the
   presentation indicator.  Based on local policy, the gateway MAY use
   the presence of other priv-values to set the presentation indicator
   to "presentation restricted".  Otherwise, the gateway SHALL include
   value "presentation allowed" if a number is present or "not available
   due to interworking" if no number is present.

   If the resulting Connected number information element contains no
   number and value "not available due to interworking" in the
   presentation indicator, the gateway MAY omit the information element
   from the QSIG CONNECT message.











Elwell, et al.           Best Current Practice                 [Page 38]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


10.  Requirements for Support of Basic Services

   This document specifies signalling interworking for basic services
   that provide a bi-directional transfer capability for speech,
   facsimile, and modem media between the two networks.

10.1.  Derivation of QSIG Bearer Capability Information Element

   The gateway SHALL generate the Bearer Capability Information Element
   in the QSIG SETUP message based on SDP offer information received
   along with the SIP INVITE request.  If the SIP INVITE request does
   not contain SDP offer information or the media type in the SDP offer
   information is only 'audio', then the Bearer capability information
   element SHALL BE generated according to Table 3.  Coding of the
   Bearer capability information element for other media types is
   outside the scope of this specification.

   In addition, the gateway MAY include a Low layer compatibility
   information element and/or High layer compatibility information in
   the QSIG SETUP message if the gateway is able to derive relevant
   information from the SDP offer information.  Specific mappings are
   outside the scope of this specification.

      Table 3: Bearer capability encoding for 'audio' transfer

   Field                          Value
   -----------------------------------------------------------------
   Coding Standard                "CCITT standardized coding" (00)
   Information transfer           "3,1 kHz audio" (10000)
   capability
   Transfer mode                  "circuit mode" (00)
   Information transfer rate      "64 Kbits/s" (10000)
   Multiplier                     Octet omitted
   User information layer 1       Generated by gateway based on
   protocol                       Information of the PISN.  Supported
                                  values are
                                  "CCITT recommendation G.711 mu-law"
                                  (00010)
                                  "CCITT recommendation G.711 A-law"
                                  (00011)

10.2.  Derivation of Media Type in SDP

   The gateway SHALL generate SDP offer information to include in the
   SIP INVITE request based on information in the QSIG SETUP message.
   The gateway MAY take account of QSIG Low layer compatibility and/or
   High layer compatibility information elements, if present in the QSIG
   SETUP message, when deriving SDP offer information, in which case



Elwell, et al.           Best Current Practice                 [Page 39]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   specific mappings are outside the scope of this specification.
   Otherwise, the gateway shall generate SDP offer information based
   only on the Bearer capability information element in the QSIG SETUP
   message, in which case the media type SHALL be derived according to
   Table 4.

      Table 4: Media type setting in SDP based on Bearer capability
      information element

   Information transfer capability in          Media type in SDP
   Bearer capability information element
   ---------------------------------------------------------------
   "speech" (00000)                            audio
   "3,1 kHz audio" (10000)                     audio

11.  Security Considerations

11.1.  General

   Normal considerations apply for UA use of SIP security measures,
   including digest authentication, TLS, and S/MIME as described in
   [10].

   The translation of QSIG information elements into SIP headers can
   introduce some privacy and security concerns.  For example, care
   needs to be taken to provide adequate privacy for a user requesting
   presentation restriction if the Calling party number information
   element is openly mapped to the From header.  Procedures for dealing
   with this particular situation are specified in Section 9.1.2.
   However, since the mapping specified in this document is mainly
   concerned with translating information elements into the headers and
   fields used to route SIP requests, gateways consequently reveal
   (through this translation process) the minimum possible amount of
   information.

   There are some concerns, however, that arise from the other direction
   of mapping, the mapping of SIP headers to QSIG information elements,
   which are enumerated in the following paragraphs.

11.2.  Calls from QSIG to Invalid or Restricted Numbers

   When end users dial numbers in a PISN, their selections populate the
   Called party number information element in the QSIG SETUP message.
   Similarly, the SIP URI or tel URL and its optional parameters in the
   Request-URI of a SIP INVITE request, which can be created directly by
   end users of a SIP device, map to that information element at a
   gateway.  However, in a PISN, policy can prevent the user from
   dialing certain (invalid or restricted) numbers.  Thus, gateway



Elwell, et al.           Best Current Practice                 [Page 40]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   implementers may wish to provide a means for gateway administrators
   to apply policies restricting the use of certain SIP URIs or tel
   URLs, or SIP URI or tel URL parameters, when authorizing a call from
   SIP to QSIG.

11.3.  Abuse of SIP Response Code

   Some additional risks may result from the mapping of SIP response
   codes to QSIG cause values.  SIP user agents could conceivably
   respond to an INVITE request from a gateway with any arbitrary SIP
   response code, and thus they can dictate (within the boundaries of
   the mappings supported by the gateway) the Q.850 cause code that will
   be sent by the gateway in the resulting QSIG call clearing message.
   Generally speaking, the manner in which a call is rejected is
   unlikely to provide any avenue for fraud or denial of service (e.g.,
   by signalling that a call should not be billed, or that the network
   should take critical resources off-line).  However, gateway
   implementers may wish to make provision for gateway administrators to
   modify the response code to cause value mappings to avoid any
   undesirable network-specific behaviour resulting from the mappings
   recommended in Section 8.4.4.

11.4.  Use of the To Header URI

   This specification requires the gateway to map the Request-URI rather
   than the To header in a SIP INVITE request to the Called party number
   information element in a QSIG SETUP message.  Although a SIP UA is
   expected to put the same URI in the To header and in the Request-URI,
   this is not policed by other SIP entities.  Therefore, a To header
   URI that differs from the Request-URI received at the gateway cannot
   be used as a reliable indication that the call has been re-targeted
   in the SIP network or as a reliable indication of the original
   target. Gateway implementers making use of the To header for mapping
   to QSIG elements (e.g., as part of QSIG call diversion signalling)
   may wish to make provision for disabling this mapping when deployed
   in situations where the reliability of the QSIG elements concerned is
   important.

11.5.  Use of the From Header URI

   The arbitrary population of the From header of requests by SIP user
   agents has some well-understood security implications for devices
   that rely on the From header as an accurate representation of the
   identity of the originator.  Any gateway that intends to use an
   unsigned or unverified From header to populate the Calling party
   number information element of a QSIG SETUP message should
   authenticate the originator of the request and make sure that it is
   authorized to assert that calling number (or make use of some more



Elwell, et al.           Best Current Practice                 [Page 41]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   secure method to ascertain the identity of the caller).  Note that
   gateways, like all other SIP user agents, MUST support Digest
   authentication as described in [10].  Similar considerations apply to
   the use of the SIP P-Asserted-Identity header for mapping to the QSIG
   Calling party number or Connected number information element, i.e.,
   the source of this information should be authenticated.  Use of a
   signed message/sipfrag body to derive a QSIG Calling party number or
   Connected number information element is another secure alternative.

11.6.  Abuse of Early Media

   There is another class of potential risk that is related to the cut-
   through of the backwards media path before the call is answered.
   Several practices described in this document involve the connection
   of media streams to user information channels on inter-PINX links and
   the sending of progress description number 1 or 8 in a backward QSIG
   message.  This can result in media being cut through end-to-end, and
   it is possible for the called user agent then to play arbitrary audio
   to the caller for an indefinite period of time before transmitting a
   final response (in the form of a 2xx or higher response code) to an
   INVITE request.  This is useful since it also permits network
   entities (particularly legacy networks that are incapable of
   transmitting Q.850 cause values) to play tones and announcements to
   indicate call failure or call progress, without triggering charging
   by transmitting a 2xx response.  Also, early cut-through can help
   prevent clipping of the initial media when the call is answered.
   There are conceivable respects in which this capability could be used
   fraudulently by the called user agent for transmitting arbitrary
   information without answering the call or before answering the call.
   However, in corporate networks, charging is often not an issue, and
   for calls arriving at a corporate network from a carrier network, the
   carrier network normally takes steps to prevent fraud.

   The usefulness of this capability appears to outweigh any risks
   involved, which may in practice be no greater than in existing
   PISN/ISDN environments.  However, gateway implementers may wish to
   make provision for gateway administrators to turn off cut-through or
   minimise its impact (e.g., by imposing a time limit) when deployed in
   situations where problems can arise.

11.7.  Protection from Denial-of-Service Attacks

   Unlike a traditional PISN phone, a SIP user agent can launch multiple
   simultaneous requests in order to reach a particular resource.  It
   would be trivial for a SIP user agent to launch 100 SIP INVITE
   requests at a 100 port gateway, thereby tying up all of its ports.  A
   malicious user could choose to launch requests to telephone numbers
   that are known never to answer, or, where overlap signalling is used,



Elwell, et al.           Best Current Practice                 [Page 42]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   to incomplete addresses.  This could saturate resources at the
   gateway indefinitely, potentially without incurring any charges.
   Gateway implementers may therefore wish to provide means of
   restricting according to policy the number of simultaneous requests
   originating from the same authenticated source, or similar mechanisms
   to address this possible denial-of-service attack.

12.  Acknowledgements

   This document is a product of the authors' activities in Ecma
   (www.ecma-international.org) on interoperability of QSIG with IP
   networks.  An earlier version is published as Standard ECMA-339.
   Ecma has made this work available to the IETF as the basis for
   publishing an RFC.

   The authors wish to acknowledge the assistance of Francois Audet,
   Adam Roach, Jean-Francois Rey, Thomas Stach, and members of Ecma
   TC32-TG17 in preparing and commenting on this document.

13.  Normative References

   [1]  International Standard ISO/IEC 11571 "Private Integrated
        Services Networks (PISN) - Addressing" (also published by Ecma
        as Standard ECMA-155).

   [2]  International Standard ISO/IEC 11572 "Private Integrated
        Services Network - Circuit-mode Bearer Services - Inter-Exchange
        Signalling Procedures and Protocol" (also published by Ecma as
        Standard ECMA-143).

   [3]  International Standard ISO/IEC 11582 "Private Integrated
        Services Network - Generic Functional Protocol for the Support
        of Supplementary Services - Inter-Exchange Signalling Procedures
        and Protocol" (also published by Ecma as Standard ECMA-165).

   [4]  Bradner, S., "Key words for use in RFCs to Indicate Requirement
        Levels", BCP 14, RFC 2119, March 1997.

   [5]  Postel, J., "Transmission Control Protocol", STD 7, RFC 793,
        September 1981.

   [6]  Postel, J., "User Datagram Protocol", STD 6, RFC 768, August
        1980.

   [7]  Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC
        2246, January 1999.





Elwell, et al.           Best Current Practice                 [Page 43]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   [8]  Handley, M. and V. Jacobson, "SDP: Session Description
        Protocol", RFC 2327, April 1998.

   [9]  Stewart, R., Xie, Q., Morneault, K., Sharp, C., Schwarzbauer,
        H., Taylor, T., Rytina, I., Kalla, M., Zhang, L., and V. Paxson,
        "Stream Control Transmission Protocol", RFC 2960, October 2000.

   [10] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
        Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
        Session Initiation Protocol", RFC 3261, June 2002.

   [11] Rosenberg, J. and H. Schulzrinne, "Reliability of Provisional
        Responses in Session Initiation Protocol (SIP)", RFC 3262, June
        2002.

   [12] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with
        Session Description Protocol (SDP)", RFC 3264, June 2002.

   [13] Peterson, J., "A Privacy Mechanism for the Session Initiation
        Protocol (SIP)", RFC 3323, November 2002.

   [14] Jennings, C., Peterson, J., and M. Watson, "Private Extensions
        to the Session Initiation Protocol (SIP) for Asserted Identity
        within Trusted Networks", RFC 3325, November 2002.

   [15] Postel, J., "Internet Protocol", STD 5, RFC 791, September 1981.

   [16] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6)
        Specification", RFC 2460, December 1998.

   [17] ITU-T Recommendation E.164, "The International Public
        Telecommunication Numbering Plan", (1997-05).

   [18] Camarillo, G., Roach, A., Peterson, J., and L. Ong, "Mapping of
        Integrated Services Digital Network (ISDN) User Part (ISUP)
        Overlap Signalling to the Session Initiation Protocol (SIP)",
        RFC 3578, August 2003.

   [19] Rosenberg, J., "The Session Initiation Protocol (SIP) UPDATE
        Method", RFC 3311, October 2002.

   [20] Sparks, R., "Internet Media Type message/sipfrag", RFC 3420,
        November 2002.








Elwell, et al.           Best Current Practice                 [Page 44]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


Appendix A.  Example Message Sequences

A.1.  Introduction

   This appendix shows some typical message sequences that can occur for
   an interworking between QSIG and SIP.  It is informative.

   NOTE: For all message sequence diagrams, there is no message mapping
   between QSIG and SIP unless explicitly indicated by dotted lines.
   Also, if there are no dotted lines connecting two messages, this
   means that these are independent of each other in terms of the time
   when they occur.

   NOTE: Numbers prefixing SIP method names and response codes in the
   diagrams represent sequence numbers.  Messages bearing the same
   number will have the same value in the CSeq header.

   NOTE: In these examples, SIP provisional responses (other than 100)
   are shown as being sent reliably, using the PRACK method for
   acknowledgement.

A.2.  Message Sequences for Call Establishment from QSIG to SIP

   Below are typical message sequences for successful call establishment
   from QSIG to SIP


























Elwell, et al.           Best Current Practice                 [Page 45]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


A.2.1.  QSIG to SIP, using en bloc procedures on both QSIG and SIP

                           +-------------------+
                           |                   |
                           |     GATEWAY       |
        PISN               |                   |        IP NETWORK
        |                  +-----+------+------+                 |
        |                        |      |                        |
        |                        |      |                        |
        |   QSIG SETUP           |      |        1-INVITE        |
       1|----------------------->|......|----------------------->| 2
        |                        |      |                        |
        |                        |      |                        |
        | QSIG CALL PROCEEDING   |      |        1-100 TRYING    |
       3|<-----------------------|      |<-----------------------+ 4
        |                        |      |                        |
        |                        |      |                        |
        |   QSIG ALERTING        |      |        1-180 RINGING   |
       8|<-----------------------|......|<-----------------------+ 5
        |                        |      |                        |
        |                        |      |        2-PRACK         |
        |                        |      |----------------------->| 6
        |                        |      |        2-200 OK        |
        |                        |      |<-----------------------+ 7
        |                        |      |                        |
        |   QSIG CONNECT         |      |        1-200 OK        |
      11|<-----------------------|......|<-----------------------+ 9
        |                        |      |                        |
        |   QSIG CONNECT ACK     |      |        1-ACK           |
      12|----------------------->|      |----------------------->| 10
        |                        |      |                        |
        |<======================>|      |<======================>|
        |        AUDIO           |      |         AUDIO          |

   Figure 3: Typical message sequence for successful call establishment
   from QSIG to SIP, using en bloc procedures on both QSIG and SIP

   1  The PISN sends a QSIG SETUP message to the gateway to begin a
      session with a SIP UA.
   2  On receipt of the QSIG SETUP message, the gateway generates a SIP
      INVITE request and sends it to an appropriate SIP entity in the IP
      network based on the called number.
   3  The gateway sends a QSIG CALL PROCEEDING message to the PISN; no
      more QSIG INFORMATION messages will be accepted.
   4  The IP network sends a SIP 100 (Trying) response to the gateway.
   5  The IP network sends a SIP 180 (Ringing) response.





Elwell, et al.           Best Current Practice                 [Page 46]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   6  The gateway may send back a SIP PRACK request to the IP network
      based on the inclusion of a Require header or a Supported header
      with option tag 100rel in the initial SIP INVITE request.
   7  The IP network sends a SIP 200 (OK) response to the gateway to
      acknowledge the SIP PRACK request
   8  The gateway maps this SIP 180 (Ringing) response to a QSIG
      ALERTING message and sends it to the PISN.
   9  The IP network sends a SIP 200 (OK) response when the call is
      answered.
   10 The gateway sends a SIP ACK request to acknowledge the SIP 200
      (OK) response.
   11 The gateway maps this SIP 200 (OK) response to a QSIG CONNECT
      message and sends it to the PISN.
   12 The PISN sends a QSIG CONNECT ACKNOWLEDGE message in response to
      the QSIG CONNECT message.




































Elwell, et al.           Best Current Practice                 [Page 47]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


A.2.2.  QSIG to SIP, using overlap receiving on QSIG and en bloc sending
        on SIP

                        +------------------------+
     PISN               |         GATEWAY        |      IP NETWORK
                        |                        |
     |  QSIG SETUP      +--------+-------+-------+                |
    1|-------------------------->|       |                        |
     |                           |       |                        |
     |  QSIG SETUP ACK           |       |                        |
    2|<--------------------------|       |                        |
     |                           |       |                        |
     | QSIG INFORMATION          |       |                        |
    3|-------------------------->|       |                        |
     |                           |       |                        |
     | QSIG INFORMATION          |       |  1-INVITE              |
   3a|-------------------------->|.......|----------------------->|4
     | QSIG CALL PROCEEDING      |       |  1-100 TRYING          |
    5|<--------------------------|       |<-----------------------|6
     |                           |       |                        |
     | QSIG ALERTING             |       |  1-180 RINGING         |
   10|<--------------------------|.......|<-----------------------|7
     |                           |       |  2-PRACK               |
     |                           |       |----------------------->|8
     |                           |       |  2-200 OK              |
     |                           |       |<-----------------------|9
     | QSIG CONNECT              |       |  1-200 OK              |
   13|<--------------------------|.......|<-----------------------|11
     |                           |       |                        |
     | QSIG CONNECT ACK          |       |  1-ACK                 |
   14|-------------------------->|       |----------------------->|12
     |          AUDIO            |       |           AUDIO        |
     |<=========================>|       |<======================>|

   Figure 4: Typical message sequence for successful call establishment
   from QSIG to SIP, using overlap receiving on QSIG and en bloc sending
   on SIP

   1  The PISN sends a QSIG SETUP message to the gateway to begin a
      session with a SIP UA.  The QSIG SETUP message does not contain a
      Sending Complete information element.
   2  The gateway sends a QSIG SETUP ACKNOWLEDGE message to the PISN.
      More digits are expected.
   3  More digits are sent from the PISN within a QSIG INFORMATION
      message.
   3a More digits are sent from the PISN within a QSIG INFORMATION
      message.  The QSIG INFORMATION message contains a Sending Complete
      information element.



Elwell, et al.           Best Current Practice                 [Page 48]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   4  The Gateway generates a SIP INVITE request and sends it to an
      appropriate SIP entity in the IP network, based on the called
      number.
   5  The gateway sends a QSIG CALL PROCEEDING message to the PISN; no
      more QSIG INFORMATION messages will be accepted.
   6  The IP network sends a SIP 100 (Trying) response to the gateway.
   7  The IP network sends a SIP 180 (Ringing) response.
   8  The gateway may send back a SIP PRACK request to the IP network
      based on the inclusion of a Require header or a Supported header
      with option tag 100rel in the initial SIP INVITE request.
   9  The IP network sends a SIP 200 (OK) response to the gateway to
      acknowledge the SIP PRACK request.
   10 The gateway maps this SIP 180 (Ringing) response to a QSIG
      ALERTING message and sends it to the PINX.
   11 The IP network sends a SIP 200 (OK) response when the call is
      answered.
   12 The gateway sends an SIP ACK request to acknowledge the SIP 200
      (OK) response.
   13 The gateway maps this SIP 200 (OK) response to a QSIG CONNECT
      message and sends it to the PINX.
   14 The PISN sends a QSIG CONNECT ACKNOWLEDGE message in response to
      the QSIG CONNECT message.





























Elwell, et al.           Best Current Practice                 [Page 49]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


A.2.3.  QSIG to SIP, using overlap procedures on both QSIG and SIP

                        +----------------------+
     PISN               |        GATEWAY       |         IP NETWORK
                        |                      |
     |  QSIG SETUP      +-------+-------+------+                  |
   1 |------------------------->|       |                         |
     |                          |       |                         |
     |  QSIG SETUP ACK          |       |                         |
   2 |<-------------------------|       |                         |
     |                          |       |                         |
     | QSIG INFORMATION         |       |                         |
   3 |------------------------->|       |                         |
     | QSIG INFORMATION         |       | 1-INVITE                |
   3 |------------------------->|.......|------------------------>|4
     |                          |       | 1-484                   |
     |                          |       |<------------------------|5
     |                          |       | 1-ACK                   |
     |                          |       |------------------------>|6
     | QSIG INFORMATION         |       | 2-INVITE                |
   7 |------------------------->|.......|------------------------>|4
     |                          |       | 2-484                   |
     |                          |       |<------------------------|5
     |                          |       | 2-ACK                   |
     |                          |       |------------------------>|6
     |                          |       |                         |
     | QSIG INFORMATION         |       |                         |
     | Sending Complete IE      |       | 3-INVITE                |
   8 |------------------------->|.......|------------------------>|10
     | QSIG CALL PROCEEDING     |       | 3-100 TRYING            |
   9 |<-------------------------|       |<------------------------|11
     |                          |       |                         |
     | QSIG ALERTING            |       | 3-180 RINGING           |
   15|<-------------------------|.......|<------------------------|12
     |                          |       | 4-PRACK                 |
     |                          |       |------------------------>|13
     |                          |       | 4-200 OK                |
     |                          |       |<------------------------|14
     | QSIG CONNECT             |       | 3-200 OK                |
   18|<-------------------------|.......|<------------------------|16
     |                          |       |                         |
     | QSIG CONNECT ACK         |       | 3-ACK                   |
   19|------------------------->|       |------------------------>|17
     |         AUDIO            |       |         AUDIO           |
     |<========================>|       |<=======================>|
     |                          |       |                         |





Elwell, et al.           Best Current Practice                 [Page 50]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   Figure 5: Typical message sequence for successful call establishment
   from QSIG to SIP, using overlap procedures on both QSIG and SIP

   1  The PISN sends a QSIG SETUP message to the gateway to begin a
      session with a SIP UA.  The QSIG SETUP message does not contain a
      Sending complete information element.
   2  The gateway sends a QSIG SETUP ACKNOWLEDGE message to the PISN.
      More digits are expected.
   3  More digits are sent from the PISN within a QSIG INFORMATION
      message.
   4  When the gateway receives the minimum number of digits required to
      route the call, it generates a SIP INVITE request and sends it to
      an appropriate SIP entity in the IP network based on the called
      number
   5  Due to an insufficient number of digits, the IP network will
      return a SIP 484 (Address Incomplete) response.
   6  The SIP 484 (Address Incomplete) response is acknowledged.
   7  More digits are received from the PISN in a QSIG INFORMATION
      message.  A new INVITE is sent with the same Call-ID and From
      values but an updated Request-URI.
   8  More digits are received from the PISN in a QSIG INFORMATION
      message.  The QSIG INFORMATION message contains a Sending Complete
      information element.
   9  The gateway sends a QSIG CALL PROCEEDING message to the PISN; no
      more information will be accepted.
   10 The gateway sends a new SIP INVITE request with an updated
      Request-URI field.
   11 The IP network sends a SIP 100 (Trying) response to the gateway.
   12 The IP network sends a SIP 180 (Ringing) response.
   13 The gateway may send back a SIP PRACK request to the IP network
      based on the inclusion of a Require header or a Supported header
      with option tag 100rel in the initial SIP INVITE request.
   14 The IP network sends a SIP 200 (OK) response to the gateway to
      acknowledge the SIP PRACK request.
   15 The gateway maps this SIP 180 (Ringing) response to a QSIG
      ALERTING message and sends it to the PISN.
   16 The IP network sends a SIP 200 (OK) response when the call is
      answered.
   17 The gateway sends a SIP ACK request to acknowledge the SIP 200
      (OK) response.
   18 The gateway maps this SIP 200 (OK) response to a QSIG CONNECT
      message.
   19 The PISN sends a QSIG CONNECT ACKNOWLEDGE message in response to
      the QSIG CONNECT message.







Elwell, et al.           Best Current Practice                 [Page 51]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


A.3.  Message sequences for call establishment from SIP to QSIG

   Below are typical message sequences for successful call establishment
   from SIP to QSIG

A.3.1.  SIP to QSIG, using en bloc procedures

                        +----------------------+
     IP NETWORK         |        GATEWAY       |              PISN
                        |                      |
     |                  +-------+-------+------+                  |
     |                          |       |                         |
     |                          |       |                         |
     |     1-INVITE             |       | QSIG SETUP              |
   1 |------------------------->|.......|------------------------>|3
     |     1-100 TRYING         |       | QSIG CALL PROCEEDING    |
   2 |<-------------------------|       |<------------------------|4
     |     1-180 RINGING        |       | QSIG ALERTING           |
   6 |<-------------------------|.......|<------------------------|5
     |                          |       |                         |
     |                          |       |                         |
     |     2-PRACK              |       |                         |
   7 |------------------------->|       |                         |
     |     2-200 OK             |       |                         |
   8 |<-------------------------|       |                         |
     |     1-200 OK             |       | QSIG CONNECT            |
   11|<-------------------------|.......|<------------------------|9
     |                          |       |                         |
     |     1-ACK                |       | QSIG CONNECT ACK        |
   12|------------------------->|       |------------------------>|10
     |         AUDIO            |       |         AUDIO           |
     |<========================>|       |<=======================>|
     |                          |       |                         |

   Figure 6: Typical message sequence for successful call establishment
   from SIP to QSIG, using en bloc procedures

   1  The IP network sends a SIP INVITE request to the gateway.
   2  The gateway sends a SIP 100 (Trying) response to the IP network.
   3  On receipt of the SIP INVITE request, the gateway sends a QSIG
      SETUP message.
   4  The PISN sends a QSIG CALL PROCEEDING message to the gateway.
   5  A QSIG ALERTING message is returned to indicate that the end user
      in the PISN is being alerted.
   6  The gateway maps the QSIG ALERTING message to a SIP 180 (Ringing)
      response.





Elwell, et al.           Best Current Practice                 [Page 52]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   7  The IP network can send back a SIP PRACK request to the IP network
      based on the inclusion of a Require header or a Supported header
      with option tag 100rel in the initial SIP INVITE request.
   8  The gateway sends a SIP 200 (OK) response to acknowledge the SIP
      PRACK request.
   9  The PISN sends a QSIG CONNECT message to the gateway when the call
      is answered.
   10 The gateway sends a QSIG CONNECT ACKNOWLEDGE message to
      acknowledge the QSIG CONNECT message.
   11 The QSIG CONNECT message is mapped to a SIP 200 (OK) response.
   12 The IP network, upon receiving a SIP INVITE final response (200),
      will send a SIP ACK request to acknowledge receipt.







































Elwell, et al.           Best Current Practice                 [Page 53]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


A.3.2.  SIP to QSIG, using overlap receiving on SIP and en bloc sending
        on QSIG

                        +----------------------+
     IP NETWORK         |        GATEWAY       |               PISN
                        |                      |
     | 1-INVITE         +-------+-------+------+                  |
   1 |------------------------->|       |                         |
     |     1-484                |       |                         |
   2 |<-------------------------|       |                         |
     |     1-ACK                |       |                         |
   3 |------------------------->|       |                         |
     |     2-INVITE             |       |                         |
   1 |------------------------->|       |                         |
     |     2-484                |       |                         |
   2 |<-------------------------|       |                         |
     |     2- ACK               |       |                         |
   3 |------------------------->|       |                         |
     |     3-INVITE             |       | QSIG SETUP              |
   4 |------------------------->|.......|------------------------>|6
     |     3-100 TRYING         |       | QSIG CALL PROCEEDING    |
   5 |<-------------------------|       |<------------------------|7
     |     3-180 RINGING        |       | QSIG ALERTING           |
   9 |<-------------------------|.......|<------------------------|8
     |                          |       |                         |
     |                          |       |                         |
     |     4-PRACK              |       |                         |
   10|------------------------->|       |                         |
     |     4-200 OK             |       |                         |
   11|<-------------------------|       |                         |
     |     3-200 OK             |       | QSIG CONNECT            |
   14|<-------------------------|.......|<------------------------|12
     |                          |       |                         |
     |     3-ACK                |       | QSIG CONNECT ACK        |
   15|------------------------->|       |------------------------>|13
     |         AUDIO            |       |         AUDIO           |
     |<========================>|       |<=======================>|
     |                          |       |                         |

   Figure 7: Typical message sequence for successful call establishment
   from SIP to QSIG, using overlap receiving on SIP and en bloc sending
   on QSIG

   1  The IP network sends a SIP INVITE request to the gateway.
   2  Due to an insufficient number of digits, the gateway returns a SIP
      484 (Address Incomplete) response.
   3  The IP network acknowledges the SIP 484 (Address Incomplete)
      response.



Elwell, et al.           Best Current Practice                 [Page 54]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   4  The IP network sends a new SIP INVITE request with the same Call-
      ID and updated Request-URI.
   5  The gateway now has all the digits required to route the call to
      the PISN.  The gateway sends back a SIP 100 (Trying) response.
   6  The gateway sends a QSIG SETUP message.
   7  The PISN sends a QSIG CALL PROCEEDING message to the gateway.
   8  A QSIG ALERTING message is returned to indicate that the end user
      in the PISN is being alerted.
   9  The gateway maps the QSIG ALERTING message to a SIP 180 (Ringing)
      response.
   10 The IP network can send back a SIP PRACK request to the IP network
      based on the inclusion of a Require header or a Supported header
      with option tag 100rel in the initial SIP INVITE request.
   11 The gateway sends a SIP 200 (OK) response to acknowledge the SIP
      PRACK request.
   12 The PISN sends a QSIG CONNECT message to the gateway when the call
      is answered.
   13 The gateway sends a QSIG CONNECT ACKNOWLEDGE message to
      acknowledge the CONNECT message.
   14 The QSIG CONNECT message is mapped to a SIP 200 (OK) response.
   15 The IP network, upon receiving a SIP INVITE final response (200),
      will send a SIP ACK request to acknowledge receipt.





























Elwell, et al.           Best Current Practice                 [Page 55]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


A.3.3.  SIP to QSIG, using overlap procedures on both SIP and QSIG

                        +----------------------+
     IP NETWORK         |        GATEWAY       |               PISN
                        |                      |
     | 1-INVITE         +-------+-------+------+                  |
   1 |------------------------->|       |                         |
     |     1-484                |       |                         |
   2 |<-------------------------|       |                         |
     |     1-ACK                |       |                         |
   3 |------------------------->|       |                         |
     |     2-INVITE             |       | QSIG SETUP              |
   4 |------------------------->|.......|------------------------>|6
     |     2-100 TRYING         |       | QSIG SETUP ACK          |
   5 |<-------------------------|       |<------------------------|7
     |     3- INVITE            |       | QSIG INFORMATION        |
   8 |------------------------->|.......|------------------------>|10
     |     3-100 TRYING         |       |                         |
   9 |<-------------------------|       | QSIG CALL PROCEEDING    |
     |                          |       |<------------------------|11
   13|     3-180 RINGING        |       | QSIG ALERTING           |
     |<-------------------------|.......|<------------------------|12
     |     2-484                |       |                         |
   14|<-------------------------|       |                         |
     |     2-ACK                |       |                         |
   15|------------------------->|       |                         |
     |     4-PRACK              |       |                         |
   16|------------------------->|       |                         |
     |     4-200 OK             |       |                         |
   17|<-------------------------|       |                         |
     |     3-200 OK             |       | QSIG CONNECT            |
   20|<-------------------------|.......|<------------------------|18
     |                          |       |                         |
     |     3-ACK                |       | QSIG CONNECT ACK        |
   21|------------------------->|       |------------------------>|19
     |         AUDIO            |       |         AUDIO           |
     |<========================>|       |<=======================>|
     |                          |       |                         |

   Figure 8: Typical message sequence for successful call establishment
   from SIP to QSIG, using overlap procedures on both SIP and QSIG

   1  The IP network sends a SIP INVITE request to the gateway.
   2  Due to an insufficient number of digits, the gateway returns a SIP
      484 (Address Incomplete) response.
   3  The IP network acknowledges the SIP 484 (Address Incomplete)
      response.




Elwell, et al.           Best Current Practice                 [Page 56]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


   4  The IP network sends a new SIP INVITE request with the same
      Call-ID and updated Request-URI.
   5  The gateway now has all the digits required to route the call to
      the PISN.  The gateway sends back a SIP 100 (Trying) response to
      the IP network.
   6  The gateway sends a QSIG SETUP message.
   7  The PISN needs more digits to route the call and sends a QSIG
      SETUP ACKNOWLEDGE message to the gateway.
   8  The IP network sends a new SIP INVITE request with the same
      Call-ID and From values and updated Request-URI.
   9  The gateway sends back a SIP 100 (Trying) response to the IP
      network.
   10 The gateway maps the new SIP INVITE request to a QSIG INFORMATION
      message.
   11 The PISN has all the digits required and sends back a QSIG CALL
      PROCEEDING message to the gateway.
   12 A QSIG ALERTING message is returned to indicate that the end user
      in the PISN is being alerted.
   13 The gateway maps the QSIG ALERTING message to a SIP 180 (Ringing)
      response.
   14 The gateway sends a SIP 484 (Address Incomplete) response for the
      previous SIP INVITE request.
   15 The IP network acknowledges the SIP 484 (Address Incomplete)
      response.
   16 The IP network can send back a SIP PRACK request to the IP network
      based on the inclusion of a Require header or a Supported header
      with option tag 100rel in the initial SIP INVITE request.
   17 The gateway sends a SIP 200 (OK) response to acknowledge the SIP
      PRACK request.
   18 The PISN sends a QSIG CONNECT message to the gateway when the call
      is answered.
   19 The gateway sends a QSIG CONNECT ACKNOWLEDGE message to
      acknowledge the QSIG CONNECT message.
   20 The QSIG CONNECT message is mapped to a SIP 200 (OK) response.
   21 The IP network, upon receiving a SIP INVITE final response (200),
      will send a SIP ACK request to acknowledge receipt.















Elwell, et al.           Best Current Practice                 [Page 57]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


A.4.  Message Sequence for Call Clearing from QSIG to SIP

   Below are typical message sequences for Call Clearing from QSIG to
   SIP

A.4.1.  QSIG to SIP, subsequent to call establishment

                         +-------------------+
                         |                   |
                         |     GATEWAY       |
     PISN                |                   |         IP NETWORK
      |                  +-----+------+------+                 |
      |                        |      |                        |
      |                        |      |                        |
      |     QSIG DISCONNECT    |      |   2- BYE               |
     1|----------------------->|......|----------------------->|4
      |     QSIG RELEASE       |      |        2-200 OK        |
     2|<-----------------------|      |<-----------------------|5
      |     QSIG RELEASE COMP  |      |                        |
     3|----------------------->|      |                        |
      |                        |      |                        |
      |                        |      |                        |
      |                        |      |                        |

   Figure 9: Typical message sequence for call clearing from QSIG to
   SIP, subsequent to call establishment

   1  The PISN sends a QSIG DISCONNECT message to the gateway.
   2  The gateway sends back a QSIG RELEASE message to the PISN in
      response to the QSIG DISCONNECT message.
   3  The PISN sends a QSIG RELEASE COMPLETE message in response.  All
      PISN resources are now released.
   4  The gateway maps the QSIG DISCONNECT message to a SIP BYE request.
   5  The IP network sends back a SIP 200 (OK) response to the SIP BYE
      request.  All IP resources are now released.
















Elwell, et al.           Best Current Practice                 [Page 58]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


A.4.2.  QSIG to SIP, during establishment of a call from SIP to QSIG

                              +-------------------+
                              |                   |
                              |     GATEWAY       |
           PISN               |                   |       IP NETWORK
           |                  +-----+------+------+                |
           |                        |      |                       |
           |                        |      |                       |
           |     QSIG DISCONNECT    |      |   1- 4XX / 6XX        |
          1|----------------------->|......|---------------------->|4
           |     QSIG RELEASE       |      |        1- ACK         |
          2|<-----------------------|      |<----------------------|5
           |     QSIG RELEASE COMP  |      |                       |
          3|----------------------->|      |                       |
           |                        |      |                       |
           |                        |      |                       |

   Figure 10: Typical message sequence for call clearing from QSIG to
   SIP, during establishment of a call from SIP to QSIG (gateway has
   not sent a final response to the SIP INVITE request)

   1  The PISN sends a QSIG DISCONNECT message to the gateway
   2  The gateway sends back a QSIG RELEASE message to the PISN in
      response to the QSIG DISCONNECT message
   3  The PISN sends a QSIG RELEASE COMPLETE message in response.  All
      PISN resources are now released.
   4  The gateway maps the QSIG DISCONNECT message to a SIP 4xx-6xx
      response
   5  The IP network sends back a SIP ACK request in response to the SIP
      4xx-6xx response.  All IP resources are now released




















Elwell, et al.           Best Current Practice                 [Page 59]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


A.4.3.  QSIG to SIP, during establishment of a call from QSIG to SIP

                             +-------------------+
                             |                   |
                             |     GATEWAY       |
         PISN                |                   |         IP NETWORK
          |                  +-----+------+------+                 |
          |                        |      |                        |
          |                        |      |                        |
          |     QSIG DISCONNECT    |      |   1- CANCEL            |
         1|----------------------->|......|----------------------->|4
          |     QSIG RELEASE       |      |1-487 Request Terminated|
         2|<-----------------------|      |<-----------------------|5
          |     QSIG RELEASE COMP  |      |                        |
         3|----------------------->|      |   1- ACK               |
          |                        |      |----------------------->|6
          |                        |      |                        |
          |                        |      |   1- 200 OK            |
          |                        |      |<-----------------------|7
          |                        |      |                        |

   Figure 11: Typical message sequence for call clearing from QSIG to
   SIP, during establishment of a call from QSIG to SIP (gateway has
   received a provisional response to the SIP INVITE request but not a
   final response)

   1  The PISN sends a QSIG DISCONNECT message to the gateway.
   2  The gateway sends back a QSIG RELEASE message to the PISN in
      response to the QSIG DISCONNECT message.
   3  The PISN sends a QSIG RELEASE COMPLETE message in response.  All
      PISN resources are now released.
   4  The gateway maps the QSIG DISCONNECT message to a SIP CANCEL
      request (subject to receipt of a provisional response, but not of
      a final response).
   5  The IP network sends back a SIP 487 (Request Terminated) response
      to the SIP INVITE request.
   6  The gateway, on receiving a SIP final response (487) to the SIP
      INVITE request, sends back a SIP ACK request to acknowledge
      receipt.
   7  The IP network sends back a SIP 200 (OK) response to the SIP
      CANCEL request.  All IP resources are now released.










Elwell, et al.           Best Current Practice                 [Page 60]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


A.5.  Message Sequence for Call Clearing from SIP to QSIG

   Below are typical message sequences for Call Clearing from SIP to
   QSIG

A.5.1.  SIP to QSIG, subsequent to call establishment

                             +-------------------+
                             |                   |
                             |     GATEWAY       |
          IP NETWORK         |                   |              PISN
          |                  +-----+------+------+                 |
          |                        |      |                        |
          |                        |      |                        |
          |   2- BYE               |      |     QSIG DISCONNECT    |
         1|----------------------->|......|----------------------->|3
          |                        |      |     QSIG RELEASE       |
          |                        |      |<-----------------------|4
          |        2-200 OK        |      |     QSIG RELEASE COMP  |
         2|<-----------------------|      |----------------------->|5
          |                        |      |                        |
          |                        |      |                        |

   Figure 12: Typical message sequence for call clearing from SIP to
   QSIG, subsequent to call establishment

   1  The IP network sends a SIP BYE request to the gateway.
   2  The gateway sends back a SIP 200 (OK) response to the SIP BYE
      request.  All IP resources are now released.
   3  The gateway maps the SIP BYE request to a QSIG DISCONNECT message.
   4  The PISN sends back a QSIG RELEASE message to the gateway in
      response to the QSIG DISCONNECT message.
   5  The gateway sends a QSIG RELEASE COMPLETE message in response.
      All PISN resources are now released.

















Elwell, et al.           Best Current Practice                 [Page 61]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


A.5.2.  SIP to QSIG, during establishment of a call from QSIG to SIP

                             +-------------------+
                             |                   |
                             |     GATEWAY       |
          IP NETWORK         |                   |              PISN
          |                  +-----+------+------+                 |
          |                        |      |                        |
          |                        |      |                        |
          |   1- 4XX / 6XX         |      |     QSIG DISCONNECT    |
         1|----------------------->|......|----------------------->|3
          |                        |      |     QSIG RELEASE       |
          |                        |      |<-----------------------|4
          |        1- ACK          |      |     QSIG RELEASE COMP  |
         2|<-----------------------|      |----------------------->|5
          |                        |      |                        |
          |                        |      |                        |
          |                        |      |                        |

   Figure 13: Typical message sequence for call clearing from SIP to
   QSIG, during establishment of a call from QSIG to SIP (gateway has
   not previously received a final response to the SIP INVITE request)

   1  The IP network sends a SIP 4xx-6xx response to the gateway.
   2  The gateway sends back a SIP ACK request in response to the SIP
      4xx-6xx response.  All IP resources are now released.
   3  The gateway maps the SIP 4xx-6xx response to a QSIG DISCONNECT
      message.
   4  The PISN sends back a QSIG RELEASE message to the gateway in
      response to the QSIG DISCONNECT message.
   5  The gateway sends a QSIG RELEASE COMPLETE message in response.
      All PISN resources are now released.



















Elwell, et al.           Best Current Practice                 [Page 62]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


A.5.3.  SIP to QSIG, during establishment of a call from SIP to QSIG

                             +-------------------+
                             |                   |
                             |     GATEWAY       |
         IP NETWORK          |                   |              PISN
          |                  +-----+------+------+                 |
          |                        |      |                        |
          |                        |      |                        |
          |   1- CANCEL            |      |     QSIG DISCONNECT    |
         1|----------------------->|......|----------------------->|4
          |                        |      |     QSIG RELEASE       |
          |                        |      |<-----------------------|5
          |1-487 Request Terminated|      |     QSIG RELEASE COMP  |
         2|<-----------------------|      |----------------------->|6
          |                        |      |                        |
          |   1- ACK               |      |                        |
         3|----------------------->|      |                        |
          |                        |      |                        |
          |   1- 200 OK            |      |                        |
         4|<-----------------------|      |                        |

   Figure 14: Typical message sequence for call clearing from SIP to
   QSIG, during establishment of a call from SIP to QSIG (gateway has
   sent a provisional response to the SIP INVITE request but not a final
   response)

   1  The IP network sends a SIP CANCEL request to the gateway.
   2  The gateway sends back a SIP 487 (Request Terminated) response to
      the SIP INVITE request.
   3  The IP network, on receiving a SIP final response (487) to the SIP
      INVITE request, sends back a SIP ACK request to acknowledge
      receipt.
   4  The gateway sends back a SIP 200 (OK) response to the SIP CANCEL
      request.  All IP resources are now released.
   5  The gateway maps the SIP 4xx-6xx response to a QSIG DISCONNECT
      message.
   6  The PISN sends back a QSIG RELEASE message to the gateway in
      response to the QSIG DISCONNECT message.
   7  The gateway sends a QSIG RELEASE COMPLETE message in response.
      All PISN resources are now released.










Elwell, et al.           Best Current Practice                 [Page 63]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


Authors' Addresses

   John Elwell
   Siemens plc
   Technology Drive
   Beeston
   Nottingham, UK, NG9 1LA

   EMail: john.elwell@siemens.com


   Frank Derks
   NEC Philips Unified Solutions
   Anton Philipsweg 1
   1223 KZ Hilversum
   The Netherlands

   EMail: frank.derks@nec-philips.com


   Olivier Rousseau
   Alcatel Business Systems
   32,Avenue Kleber
   92700 Colombes
   France

   EMail: Olivier.Rousseau@alcatel.fr


   Patrick Mourot
   Alcatel Business Systems
   1,Rue Dr A.  Schweitzer
   67400 Illkirch
   France

   EMail: Patrick.Mourot@alcatel.fr















Elwell, et al.           Best Current Practice                 [Page 64]
^L
RFC 4497           Interworking between SIP and QSIG            May 2006


Full Copyright Statement

   Copyright (C) The Internet Society (2006).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at
   ietf-ipr@ietf.org.

Acknowledgement

   Funding for the RFC Editor function is provided by the IETF
   Administrative Support Activity (IASA).







Elwell, et al.           Best Current Practice                 [Page 65]
^L