1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
|
Network Working Group G. Camarillo
Request for Comments: 4582 Ericsson
Category: Standards Track J. Ott
Helsinki University of Technology
K. Drage
Lucent Technologies
November 2006
The Binary Floor Control Protocol (BFCP)
Status of This Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The IETF Trust (2006).
Abstract
Floor control is a means to manage joint or exclusive access to
shared resources in a (multiparty) conferencing environment.
Thereby, floor control complements other functions -- such as
conference and media session setup, conference policy manipulation,
and media control -- that are realized by other protocols.
This document specifies the Binary Floor Control Protocol (BFCP).
BFCP is used between floor participants and floor control servers,
and between floor chairs (i.e., moderators) and floor control
servers.
Table of Contents
1. Introduction ....................................................4
2. Terminology .....................................................4
3. Scope ...........................................................5
3.1. Floor Creation .............................................7
3.2. Obtaining Information to Contact a Floor Control Server ....7
3.3. Obtaining Floor-Resource Associations ......................7
3.4. Privileges of Floor Control ................................8
4. Overview of Operation ...........................................8
4.1. Floor Participant to Floor Control Server Interface ........8
4.2. Floor Chair to Floor Control Server Interface .............13
Camarillo, et al. Standards Track [Page 1]
^L
RFC 4582 BFCP November 2006
5. Packet Format ..................................................14
5.1. COMMON-HEADER Format ......................................15
5.2. Attribute Format ..........................................16
5.2.1. BENEFICIARY-ID .....................................18
5.2.2. FLOOR-ID ...........................................18
5.2.3. FLOOR-REQUEST-ID ...................................19
5.2.4. PRIORITY ...........................................19
5.2.5. REQUEST-STATUS .....................................20
5.2.6. ERROR-CODE .........................................21
5.2.6.1. Error-Specific Details for Error Code 4 ...22
5.2.7. ERROR-INFO .........................................22
5.2.8. PARTICIPANT-PROVIDED-INFO ..........................23
5.2.9. STATUS-INFO ........................................24
5.2.10. SUPPORTED-ATTRIBUTES ..............................24
5.2.11. SUPPORTED-PRIMITIVES ..............................25
5.2.12. USER-DISPLAY-NAME .................................26
5.2.13. USER-URI ..........................................26
5.2.14. BENEFICIARY-INFORMATION ...........................27
5.2.15. FLOOR-REQUEST-INFORMATION .........................27
5.2.16. REQUESTED-BY-INFORMATION ..........................28
5.2.17. FLOOR-REQUEST-STATUS .............................29
5.2.18. OVERALL-REQUEST-STATUS ...........................30
5.3. Message Format ............................................30
5.3.1. FloorRequest .......................................31
5.3.2. FloorRelease .......................................31
5.3.3. FloorRequestQuery ..................................31
5.3.4. FloorRequestStatus .................................31
5.3.5. UserQuery ..........................................32
5.3.6. UserStatus .........................................32
5.3.7. FloorQuery .........................................32
5.3.8. FloorStatus ........................................33
5.3.9. ChairAction ........................................33
5.3.10. ChairActionAck ....................................33
5.3.11. Hello .............................................33
5.3.12. HelloAck ..........................................34
5.3.13. Error .............................................34
6. Transport ......................................................34
7. Lower-Layer Security ...........................................35
8. Protocol Transactions ..........................................35
8.1. Client Behavior ...........................................36
8.2. Server Behavior ...........................................36
9. Authentication and Authorization ...............................36
9.1. TLS-Based Mutual Authentication ...........................37
10. Floor Participant Operations ..................................37
10.1. Requesting a Floor .......................................37
10.1.1. Sending a FloorRequest Message ....................38
10.1.2. Receiving a Response ..............................38
10.2. Cancelling a Floor Request and Releasing a Floor .........40
Camarillo, et al. Standards Track [Page 2]
^L
RFC 4582 BFCP November 2006
10.2.1. Sending a FloorRelease Message ....................40
10.2.2. Receiving a Response ..............................40
11. Chair Operations ..............................................41
11.1. Sending a ChairAction Message ............................41
11.2. Receiving a Response .....................................42
12. General Client Operations .....................................43
12.1. Requesting Information about Floors ......................43
12.1.1. Sending a FloorQuery Message ......................43
12.1.2. Receiving a Response ..............................43
12.2. Requesting Information about Floor Requests ..............44
12.2.1. Sending a FloorRequestQuery Message ...............45
12.2.2. Receiving a Response ..............................45
12.3. Requesting Information about a User ......................45
12.3.1. Sending a UserQuery Message .......................46
12.3.2. Receiving a Response ..............................46
12.4. Obtaining the Capabilities of a Floor Control Server .....46
12.4.1. Sending a Hello Message ...........................47
12.4.2. Receiving Responses ...............................47
13. Floor Control Server Operations ...............................47
13.1. Reception of a FloorRequest Message ......................48
13.1.1. Generating the First FloorRequestStatus Message ...48
13.1.2. Generation of Subsequent
FloorRequestStatus Messages .......................50
13.2. Reception of a FloorRequestQuery Message .................51
13.3. Reception of a UserQuery Message .........................52
13.4. Reception of a FloorRelease Message ......................53
13.5. Reception of a FloorQuery Message ........................54
13.5.1. Generation of the First FloorStatus Message .......55
13.5.2. Generation of Subsequent FloorStatus Messages .....56
13.6. Reception of a ChairAction Message .......................56
13.7. Reception of a Hello Message .............................57
13.8. Error Message Generation .................................58
14. Security Considerations .......................................58
15. IANA Considerations ...........................................59
15.1. Attribute Subregistry ....................................59
15.2. Primitive Subregistry ....................................60
15.3. Request Status Subregistry ...............................61
15.4. Error Code Subregistry ...................................62
16. Acknowledgements ..............................................62
17. References ....................................................63
17.1. Normative References .....................................63
17.2. Informational References .................................63
Camarillo, et al. Standards Track [Page 3]
^L
RFC 4582 BFCP November 2006
1. Introduction
Within a conference, some applications need to manage the access to a
set of shared resources, such as the right to send media to a
particular media session. Floor control enables such applications to
provide users with coordinated (shared or exclusive) access to these
resources.
The Requirements for Floor Control Protocol [9] list a set of
requirements that need to be met by floor control protocols. The
Binary Floor Control Protocol (BFCP), which is specified in this
document, meets these requirements.
In addition, BFCP has been designed so that it can be used in
low-bandwidth environments. The binary encoding used by BFCP
achieves a small message size (when message signatures are not used)
that keeps the time it takes to transmit delay-sensitive BFCP
messages to a minimum. Delay-sensitive BFCP messages include
FloorRequest, FloorRelease, FloorRequestStatus, and ChairAction. It
is expected that future extensions to these messages will not
increase the size of these messages in a significant way.
The remainder of this document is organized as follows: Section 2
defines the terminology used throughout this document, Section 3
discusses the scope of BFCP (i.e., which tasks fall within the scope
of BFCP and which ones are performed using different mechanisms),
Section 4 provides a non-normative overview of BFCP operation, and
subsequent sections provide the normative specification of BFCP.
2. Terminology
In this document, the key words "MUST", "MUST NOT", "REQUIRED",
"SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT
RECOMMENDED", "MAY", and "OPTIONAL" are to be interpreted as
described in BCP 14, RFC 2119 [1] and indicate requirement levels for
compliant implementations.
Media Participant: An entity that has access to the media resources
of a conference (e.g., it can receive a media stream). In floor-
controlled conferences, a given media participant is typically
colocated with a floor participant, but it does not need to be.
Third-party floor requests consist of having a floor participant
request a floor for a media participant when they are not colocated.
The protocol between a floor participant and a media participant
(that are not colocated) is outside the scope of this document.
Client: A floor participant or a floor chair that communicates with a
floor control server using BFCP.
Camarillo, et al. Standards Track [Page 4]
^L
RFC 4582 BFCP November 2006
Floor: A temporary permission to access or manipulate a specific
shared resource or set of resources.
Floor Chair: A logical entity that manages one floor (grants, denies,
or revokes a floor). An entity that assumes the logical role of a
floor chair for a given transaction may assume a different role
(e.g., floor participant) for a different transaction. The roles of
floor chair and floor participant are defined on a transaction-by-
transaction basis. BFCP transactions are defined in Section 8.
Floor Control: A mechanism that enables applications or users to gain
safe and mutually exclusive or non-exclusive input access to the
shared object or resource.
Floor Control Server: A logical entity that maintains the state of
the floor(s), including which floors exists, who the floor chairs
are, who holds a floor, etc. Requests to manipulate a floor are
directed at the floor control server. The floor control server of a
conference may perform other logical roles (e.g., floor participant)
in another conference.
Floor Participant: A logical entity that requests floors, and
possibly information about them, from a floor control server. An
entity that assumes the logical role of a floor participant for a
given transaction may assume a different role (e.g., a floor chair)
for a different transaction. The roles of floor participant and
floor chair are defined on a transaction-by-transaction basis. BFCP
transactions are defined in Section 8. In floor-controlled
conferences, a given floor participant is typically colocated with a
media participant, but it does not need to be. Third-party floor
requests consist of having a floor participant request a floor for a
media participant when they are not colocated.
Participant: An entity that acts as a floor participant, as a media
participant, or as both.
3. Scope
As stated earlier, BFCP is a protocol to coordinate access to shared
resources in a conference following the requirements defined in [9].
Floor control complements other functions defined in the XCON
conferencing framework [10]. The floor control protocol BFCP defined
in this document only specifies a means to arbitrate access to
floors. The rules and constraints for floor arbitration and the
results of floor assignments are outside the scope of this document
and are defined by other protocols [10].
Camarillo, et al. Standards Track [Page 5]
^L
RFC 4582 BFCP November 2006
Figure 1 shows the tasks that BFCP can perform.
+---------+
| Floor |
| Chair |
| |
+---------+
^ |
| |
Notification | | Decision
| |
| |
Floor | v
+-------------+ Request +---------+ +-------------+
| Floor |----------->| Floor | Notification | Floor |
| Participant | | Control |------------->| Participant |
| |<-----------| Server | | |
+-------------+ Granted or +---------+ +-------------+
Denied
Figure 1: Functionality provided by BFCP
BFCP provides a means:
o for floor participants to send floor requests to floor control
servers.
o for floor control servers to grant or deny requests to access a
given resource from floor participants.
o for floor chairs to send floor control servers decisions regarding
floor requests.
o for floor control servers to keep floor participants and floor
chairs informed about the status of a given floor or a given floor
request.
Even though tasks that do not belong to the previous list are outside
the scope of BFCP, some of these out-of-scope tasks relate to floor
control and are essential for creating floors and establishing BFCP
connections between different entities. In the following
subsections, we discuss some of these tasks and mechanisms to perform
them.
Camarillo, et al. Standards Track [Page 6]
^L
RFC 4582 BFCP November 2006
3.1. Floor Creation
The association of a given floor with a resource or a set of
resources (e.g., media streams) is out of the scope of BFCP as
described in [10]. Floor creation and termination are also outside
the scope of BFCP; these aspects are handled using the conference
control protocol for manipulating the conference object.
Consequently, the floor control server needs to stay up to date on
changes to the conference object (e.g., when a new floor is created).
3.2. Obtaining Information to Contact a Floor Control Server
A client needs a set of data in order to establish a BFCP connection
to a floor control server. These data include the transport address
of the server, the conference identifier, and a user identifier.
Clients can obtain this information in different ways. One is to use
an SDP offer/answer [8] exchange, which is described in [7]. Other
mechanisms are described in the XCON framework [10] (and other
related documents).
3.3. Obtaining Floor-Resource Associations
Floors are associated with resources. For example, a floor that
controls who talks at a given time has a particular audio session as
its associated resource. Associations between floors and resources
are part of the conference object.
Floor participants and floor chairs need to know which resources are
associated with which floors. They can obtain this information by
using different mechanisms, such as an SDP offer/answer [8] exchange.
How to use an SDP offer/answer exchange to obtain these associations
is described in [7].
Note that floor participants perform SDP offer/answer exchanges
with the conference focus of the conference. So, the conference
focus needs to obtain information about associations between
floors and resources in order to be able to provide this
information to a floor participant in an SDP offer/answer
exchange.
Other mechanisms for obtaining this information, including discussion
of how the information is made available to a (SIP) Focus, are
described in the XCON framework [10] (and other related documents).
Camarillo, et al. Standards Track [Page 7]
^L
RFC 4582 BFCP November 2006
3.4. Privileges of Floor Control
A participant whose floor request is granted has the right to use (in
a certain way) the resource or resources associated with the floor
that was requested. For example, the participant may have the right
to send media over a particular audio stream.
Nevertheless, holding a floor does not imply that others will not be
able to use its associated resources at the same time, even if they
do not have the right to do so. Determination of which media
participants can actually use the resources in the conference is
discussed in the XCON Framework [10].
4. Overview of Operation
This section provides a non-normative description of BFCP operations.
Section 4.1 describes the interface between floor participants and
floor control servers, and Section 4.2 describes the interface
between floor chairs and floor control servers.
BFCP messages, which use a TLV (Type-Length-Value) binary encoding,
consist of a common header followed by a set of attributes. The
common header contains, among other information, a 32-bit conference
identifier. Floor participants, media participants, and floor chairs
are identified by 16-bit user identifiers.
BFCP supports nested attributes (i.e., attributes that contain
attributes). These are referred to as grouped attributes.
There are two types of transactions in BFCP: client-initiated
transactions and server-initiated transactions. Client-initiated
transactions consist of a message from a client to the floor control
server and a response from the floor control server to the client.
Both messages can be related because they carry the same Transaction
ID value in their common headers. Server-initiated transactions
consist of a single message, whose Transaction ID is 0, from the
floor control server to a client.
4.1. Floor Participant to Floor Control Server Interface
Floor participants request a floor by sending a FloorRequest message
to the floor control server. BFCP supports third-party floor
requests. That is, the floor participant sending the floor request
need not be colocated with the media participant that will get the
floor once the floor request is granted. FloorRequest messages carry
the identity of the requester in the User ID field of the common
header, and the identity of the beneficiary of the floor (in third-
party floor requests) in a BENEFICIARY-ID attribute.
Camarillo, et al. Standards Track [Page 8]
^L
RFC 4582 BFCP November 2006
Third-party floor requests can be sent, for example, by floor
participants that have a BFCP connection to the floor control
server but that are not media participants (i.e., they do not
handle any media).
FloorRequest messages identify the floor or floors being requested by
carrying their 16-bit floor identifiers in FLOOR-ID attributes. If a
FloorRequest message carries more than one floor identifier, the
floor control server treats all the floor requests as an atomic
package. That is, the floor control server either grants or denies
all the floors in the FloorRequest message.
Floor control servers respond to FloorRequest messages with
FloorRequestStatus messages, which provide information about the
status of the floor request. The first FloorRequestStatus message is
the response to the FloorRequest message from the client, and
therefore has the same Transaction ID as the FloorRequest.
Additionally, the first FloorRequestStatus message carries the Floor
Request ID in a FLOOR-REQUEST-INFORMATION attribute. Subsequent
FloorRequestStatus messages related to the same floor request will
carry the same Floor Request ID. This way, the floor participant can
associate them with the appropriate floor request.
Messages from the floor participant related to a particular floor
request also use the same Floor Request ID as the first
FloorRequestStatus Message from the floor control server.
Figure 2 shows how a floor participant requests a floor, obtains it,
and, at a later time, releases it. This figure illustrates the use,
among other things, of the Transaction ID and the FLOOR-REQUEST-ID
attribute.
Camarillo, et al. Standards Track [Page 9]
^L
RFC 4582 BFCP November 2006
Floor Participant Floor Control
Server
|(1) FloorRequest |
|Transaction ID: 123 |
|User ID: 234 |
|FLOOR-ID: 543 |
|---------------------------------------------->|
| |
|(2) FloorRequestStatus |
|Transaction ID: 123 |
|User ID: 234 |
|FLOOR-REQUEST-INFORMATION |
| Floor Request ID: 789 |
| OVERALL-REQUEST-STATUS |
| Request Status: Pending |
| FLOOR-REQUEST-STATUS |
| Floor ID: 543 |
|<----------------------------------------------|
| |
|(3) FloorRequestStatus |
|Transaction ID: 0 |
|User ID: 234 |
|FLOOR-REQUEST-INFORMATION |
| Floor Request ID: 789 |
| OVERALL-REQUEST-STATUS |
| Request Status: Accepted |
| Queue Position: 1st |
| FLOOR-REQUEST-STATUS |
| Floor ID: 543 |
|<----------------------------------------------|
| |
|(4) FloorRequestStatus |
|Transaction ID: 0 |
|User ID: 234 |
|FLOOR-REQUEST-INFORMATION |
| Floor Request ID: 789 |
| OVERALL-REQUEST-STATUS |
| Request Status: Granted |
| FLOOR-REQUEST-STATUS |
| Floor ID: 543 |
|<----------------------------------------------|
| |
|(5) FloorRelease |
|Transaction ID: 154 |
|User ID: 234 |
|FLOOR-REQUEST-ID: 789 |
|---------------------------------------------->|
Camarillo, et al. Standards Track [Page 10]
^L
RFC 4582 BFCP November 2006
| |
|(6) FloorRequestStatus |
|Transaction ID: 154 |
|User ID: 234 |
|FLOOR-REQUEST-INFORMATION |
| Floor Request ID: 789 |
| OVERALL-REQUEST-STATUS |
| Request Status: Released |
| FLOOR-REQUEST-STATUS |
| Floor ID: 543 |
|<----------------------------------------------|
Figure 2: Requesting and releasing a floor
Figure 3 shows how a floor participant requests to be informed on the
status of a floor. The first FloorStatus message from the floor
control server is the response to the FloorQuery message and, as
such, has the same Transaction ID as the FloorQuery message.
Subsequent FloorStatus messages consist of server-initiated
transactions, and therefore their Transaction ID is 0. FloorStatus
message (2) indicates that there are currently two floor requests for
the floor whose Floor ID is 543. FloorStatus message (3) indicates
that the floor requests with Floor Request ID 764 has been granted,
and the floor request with Floor Request ID 635 is the first in the
queue. FloorStatus message (4) indicates that the floor request with
Floor Request ID 635 has been granted.
Floor Participant Floor Control
Server
|(1) FloorQuery |
|Transaction ID: 257 |
|User ID: 234 |
|FLOOR-ID: 543 |
|---------------------------------------------->|
Camarillo, et al. Standards Track [Page 11]
^L
RFC 4582 BFCP November 2006
| |
|(2) FloorStatus |
|Transaction ID: 257 |
|User ID: 234 |
|FLOOR-ID:543 |
|FLOOR-REQUEST-INFORMATION |
| Floor Request ID: 764 |
| OVERALL-REQUEST-STATUS |
| Request Status: Accepted |
| Queue Position: 1st |
| FLOOR-REQUEST-STATUS |
| Floor ID: 543 |
| BENEFICIARY-INFORMATION |
| Beneficiary ID: 124 |
|FLOOR-REQUEST-INFORMATION |
| Floor Request ID: 635 |
| OVERALL-REQUEST-STATUS |
| Request Status: Accepted |
| Queue Position: 2nd |
| FLOOR-REQUEST-STATUS |
| Floor ID: 543 |
| BENEFICIARY-INFORMATION |
| Beneficiary ID: 154 |
|<----------------------------------------------|
| |
|(3) FloorStatus |
|Transaction ID: 0 |
|User ID: 234 |
|FLOOR-ID:543 |
|FLOOR-REQUEST-INFORMATION |
| Floor Request ID: 764 |
| OVERALL-REQUEST-STATUS |
| Request Status: Granted |
| FLOOR-REQUEST-STATUS |
| Floor ID: 543 |
| BENEFICIARY-INFORMATION |
| Beneficiary ID: 124 |
|FLOOR-REQUEST-INFORMATION |
| Floor Request ID: 635 |
| OVERALL-REQUEST-STATUS |
| Request Status: Accepted |
| Queue Position: 1st |
| FLOOR-REQUEST-STATUS |
| Floor ID: 543 |
| BENEFICIARY-INFORMATION |
| Beneficiary ID: 154 |
|<----------------------------------------------|
Camarillo, et al. Standards Track [Page 12]
^L
RFC 4582 BFCP November 2006
| |
|(4) FloorStatus |
|Transaction ID: 0 |
|User ID: 234 |
|FLOOR-ID:543 |
|FLOOR-REQUEST-INFORMATION |
| Floor Request ID: 635 |
| OVERALL-REQUEST-STATUS |
| Request Status: Granted |
| FLOOR-REQUEST-STATUS |
| Floor ID: 543 |
| BENEFICIARY-INFORMATION |
| Beneficiary ID: 154 |
|<----------------------------------------------|
Figure 3: Obtaining status information about a floor
FloorStatus messages contain information about the floor requests
they carry. For example, FloorStatus message (4) indicates that the
floor request with Floor Request ID 635 has as the beneficiary (i.e.,
the participant that holds the floor when a particular floor request
is granted) the participant whose User ID is 154. The floor request
applies only to the floor whose Floor ID is 543. That is, this is
not a multi-floor floor request.
A multi-floor floor request applies to more than one floor (e.g.,
a participant wants to be able to speak and write on the
whiteboard at the same time). The floor control server treats a
multi-floor floor request as an atomic package. That is, the
floor control server either grants the request for all floors or
denies the request for all floors.
4.2. Floor Chair to Floor Control Server Interface
Figure 4 shows a floor chair instructing a floor control server to
grant a floor.
Note, however, that although the floor control server needs to
take into consideration the instructions received in ChairAction
messages (e.g., granting a floor), it does not necessarily need to
perform them exactly as requested by the floor chair. The
operation that the floor control server performs depends on the
ChairAction message and on the internal state of the floor control
server.
Camarillo, et al. Standards Track [Page 13]
^L
RFC 4582 BFCP November 2006
For example, a floor chair may send a ChairAction message granting a
floor that was requested as part of an atomic floor request operation
that involved several floors. Even if the chair responsible for one
of the floors instructs the floor control server to grant the floor,
the floor control server will not grant it until the chairs
responsible for the other floors agree to grant them as well. In
another example, a floor chair may instruct the floor control server
to grant a floor to a participant. The floor control server needs to
revoke the floor from its current holder before granting it to the
new participant.
So, the floor control server is ultimately responsible for keeping a
coherent floor state using instructions from floor chairs as input to
this state.
Floor Chair Floor Control
Server
|(1) ChairAction |
|Transaction ID: 769 |
|User ID: 357 |
|FLOOR-REQUEST-INFORMATION |
| Floor Request ID: 635 |
| FLOOR-REQUEST-STATUS |
| Floor ID: 543 |
| Request Status: Granted |
|---------------------------------------------->|
| |
|(2) ChairActionAck |
|Transaction ID: 769 |
|User ID: 357 |
|<----------------------------------------------|
Figure 4: Chair instructing the floor control server
5. Packet Format
BFCP packets consist of a 12-octet common header followed by
attributes. All the protocol values MUST be sent in network byte
order.
Camarillo, et al. Standards Track [Page 14]
^L
RFC 4582 BFCP November 2006
5.1. COMMON-HEADER Format
The following is the format of the common header.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ver |Reserved | Primitive | Payload Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Conference ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Transaction ID | User ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 5: COMMON-HEADER format
Ver: The 3-bit version field MUST be set to 1 to indicate this
version of BFCP.
Reserved: At this point, the 5 bits in the reserved field SHOULD be
set to zero by the sender of the message and MUST be ignored by the
receiver.
Primitive: This 8-bit field identifies the main purpose of the
message. The following primitive values are defined:
+-------+--------------------+------------------+
| Value | Primitive | Direction |
+-------+--------------------+------------------+
| 1 | FloorRequest | P -> S |
| 2 | FloorRelease | P -> S |
| 3 | FloorRequestQuery | P -> S ; Ch -> S |
| 4 | FloorRequestStatus | P <- S ; Ch <- S |
| 5 | UserQuery | P -> S ; Ch -> S |
| 6 | UserStatus | P <- S ; Ch <- S |
| 7 | FloorQuery | P -> S ; Ch -> S |
| 8 | FloorStatus | P <- S ; Ch <- S |
| 9 | ChairAction | Ch -> S |
| 10 | ChairActionAck | Ch <- S |
| 11 | Hello | P -> S ; Ch -> S |
| 12 | HelloAck | P <- S ; Ch <- S |
| 13 | Error | P <- S ; Ch <- S |
+-------+--------------------+------------------+
S: Floor Control Server
P: Floor Participant
Ch: Floor Chair
Table 1: BFCP primitives
Camarillo, et al. Standards Track [Page 15]
^L
RFC 4582 BFCP November 2006
Payload Length: This 16-bit field contains the length of the message
in 4-octet units, excluding the common header.
Conference ID: This 32-bit field identifies the conference the
message belongs to.
Transaction ID: This field contains a 16-bit value that allows users
to match a given message with its response. The value of the
Transaction ID in server-initiated transactions is 0 (see Section 8).
User ID: This field contains a 16-bit value that uniquely identifies
a participant within a conference.
The identity used by a participant in BFCP, which is carried in
the User ID field, is generally mapped to the identity used by the
same participant in the session establishment protocol (e.g., in
SIP). The way this mapping is performed is outside the scope of
this specification.
5.2. Attribute Format
BFCP attributes are encoded in TLV (Type-Length-Value) format.
Attributes are 32-bit aligned.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type |M| Length | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| |
/ Attribute Contents /
/ /
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 6: Attribute format
Type: This 7-bit field contains the type of the attribute. Each
attribute, identified by its type, has a particular format. The
attribute formats defined are:
Unsigned16: The contents of the attribute consist of a 16-bit
unsigned integer.
OctetString16: The contents of the attribute consist of 16 bits of
arbitrary data.
Camarillo, et al. Standards Track [Page 16]
^L
RFC 4582 BFCP November 2006
OctetString: The contents of the attribute consist of arbitrary
data of variable length.
Grouped: The contents of the attribute consist of a sequence of
attributes.
Note that extension attributes defined in the future may define
new attribute formats.
The following attribute types are defined:
+------+---------------------------+---------------+
| Type | Attribute | Format |
+------+---------------------------+---------------+
| 1 | BENEFICIARY-ID | Unsigned16 |
| 2 | FLOOR-ID | Unsigned16 |
| 3 | FLOOR-REQUEST-ID | Unsigned16 |
| 4 | PRIORITY | OctetString16 |
| 5 | REQUEST-STATUS | OctetString16 |
| 6 | ERROR-CODE | OctetString |
| 7 | ERROR-INFO | OctetString |
| 8 | PARTICIPANT-PROVIDED-INFO | OctetString |
| 9 | STATUS-INFO | OctetString |
| 10 | SUPPORTED-ATTRIBUTES | OctetString |
| 11 | SUPPORTED-PRIMITIVES | OctetString |
| 12 | USER-DISPLAY-NAME | OctetString |
| 13 | USER-URI | OctetString |
| 14 | BENEFICIARY-INFORMATION | Grouped |
| 15 | FLOOR-REQUEST-INFORMATION | Grouped |
| 16 | REQUESTED-BY-INFORMATION | Grouped |
| 17 | FLOOR-REQUEST-STATUS | Grouped |
| 18 | OVERALL-REQUEST-STATUS | Grouped |
+------+---------------------------+---------------+
Table 2: BFCP attributes
M: The 'M' bit, known as the Mandatory bit, indicates whether support
of the attribute is required. If an unrecognized attribute with the
'M' bit set is received, the message is rejected. The 'M' bit is
significant for extension attributes defined in other documents only.
All attributes specified in this document MUST be understood by the
receiver so that the setting of the 'M' bit is irrelevant for these.
In all other cases, the unrecognised attribute is ignored but the
message is processed.
Length: This 8-bit field contains the length of the attribute in
octets, excluding any padding defined for specific attributes. The
length of attributes that are not grouped includes the Type, 'M' bit,
Camarillo, et al. Standards Track [Page 17]
^L
RFC 4582 BFCP November 2006
and Length fields. The Length in grouped attributes is the length of
the grouped attribute itself (including Type, 'M' bit, and Length
fields) plus the total length (including padding) of all the included
attributes.
Attribute Contents: The contents of the different attributes are
defined in the following sections.
5.2.1. BENEFICIARY-ID
The following is the format of the BENEFICIARY-ID attribute.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 0 0 0 0 1|M|0 0 0 0 0 1 0 0| Beneficiary ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 7: BENEFICIARY-ID format
Beneficiary ID: This field contains a 16-bit value that uniquely
identifies a user within a conference.
Note that although the formats of the Beneficiary ID and of the
User ID field in the common header are similar, their semantics
are different. The Beneficiary ID is used in third-party floor
requests and to request information about a particular
participant.
5.2.2. FLOOR-ID
The following is the format of the FLOOR-ID attribute.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 0 0 0 1 0|M|0 0 0 0 0 1 0 0| Floor ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 8: FLOOR-ID format
Floor ID: This field contains a 16-bit value that uniquely identifies
a floor within a conference.
Camarillo, et al. Standards Track [Page 18]
^L
RFC 4582 BFCP November 2006
5.2.3. FLOOR-REQUEST-ID
The following is the format of the FLOOR-REQUEST-ID attribute.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 0 0 0 1 1|M|0 0 0 0 0 1 0 0| Floor Request ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 9: FLOOR-REQUEST-ID format
Floor Request ID: This field contains a 16-bit value that identifies
a floor request at the floor control server.
5.2.4. PRIORITY
The following is the format of the PRIORITY attribute.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 0 0 1 0 0|M|0 0 0 0 0 1 0 0|Prio | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 10: PRIORITY format
Prio: This field contains a 3-bit priority value, as shown in
Table 3. Senders SHOULD NOT use values higher than 4 in this field.
Receivers MUST treat values higher than 4 as if the value received
were 4 (Highest). The default priority value when the PRIORITY
attribute is missing is 2 (Normal).
+-------+----------+
| Value | Priority |
+-------+----------+
| 0 | Lowest |
| 1 | Low |
| 2 | Normal |
| 3 | High |
| 4 | Highest |
+-------+----------+
Table 3: Priority values
Reserved: At this point, the 13 bits in the reserved field SHOULD be
set to zero by the sender of the message and MUST be ignored by the
receiver.
Camarillo, et al. Standards Track [Page 19]
^L
RFC 4582 BFCP November 2006
5.2.5. REQUEST-STATUS
The following is the format of the REQUEST-STATUS attribute.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 0 0 1 0 1|M|0 0 0 0 0 1 0 0|Request Status |Queue Position |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 11: REQUEST-STATUS format
Request Status: This 8-bit field contains the status of the request,
as described in the following table.
+-------+-----------+
| Value | Status |
+-------+-----------+
| 1 | Pending |
| 2 | Accepted |
| 3 | Granted |
| 4 | Denied |
| 5 | Cancelled |
| 6 | Released |
| 7 | Revoked |
+-------+-----------+
Table 4: Request Status values
Queue Position: This 8-bit field contains, when applicable, the
position of the floor request in the floor request queue at the
server. If the Request Status value is different from Accepted, if
the floor control server does not implement a floor request queue, or
if the floor control server does not want to provide the client with
this information, all the bits of this field SHOULD be set to zero.
A floor request is in Pending state if the floor control server needs
to contact a floor chair in order to accept the floor request, but
has not done it yet. Once the floor control chair accepts the floor
request, the floor request is moved to the Accepted state.
Camarillo, et al. Standards Track [Page 20]
^L
RFC 4582 BFCP November 2006
5.2.6. ERROR-CODE
The following is the format of the ERROR-CODE attribute.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 0 0 1 1 0|M| Length | Error Code | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| |
| Error Specific Details |
/ /
/ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 12: ERROR-CODE format
Error Code: This 8-bit field contains an error code from the
following table. If an error code is not recognised by the receiver,
then the receiver MUST assume that an error exists, and therefore
that the message is processed, but the nature of the error is
unclear.
+-------+-----------------------------------------------------------+
| Value | Meaning |
+-------+-----------------------------------------------------------+
| 1 | Conference does not Exist |
| 2 | User does not Exist |
| 3 | Unknown Primitive |
| 4 | Unknown Mandatory Attribute |
| 5 | Unauthorized Operation |
| 6 | Invalid Floor ID |
| 7 | Floor Request ID Does Not Exist |
| 8 | You have Already Reached the Maximum Number of Ongoing |
| | Floor Requests for this Floor |
| 9 | Use TLS |
+-------+-----------------------------------------------------------+
Table 5: Error Code meaning
Error Specific Details: Present only for certain Error Codes. In
this document, only for Error Code 4 (Unknown Mandatory Attribute).
See Section 5.2.6.1 for its definition.
Padding: One, two, or three octets of padding added so that the
contents of the ERROR-CODE attribute is 32-bit aligned. If the
attribute is already 32-bit aligned, no padding is needed.
Camarillo, et al. Standards Track [Page 21]
^L
RFC 4582 BFCP November 2006
The Padding bits SHOULD be set to zero by the sender and MUST be
ignored by the receiver.
5.2.6.1. Error-Specific Details for Error Code 4
The following is the format of the Error-Specific Details field for
Error Code 4.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unknown Type|R| Unknown Type|R| Unknown Type|R| Unknown Type|R|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
/ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | Unknown Type|R| Unknown Type|R|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unknown Type|R| Unknown Type|R|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 13: Unknown attributes format
Unknown Type: These 7-bit fields contain the Types of the attributes
(which were present in the message that triggered the Error message)
that were unknown to the receiver.
R: At this point, this bit is reserved. It SHOULD be set to zero by
the sender of the message and MUST be ignored by the receiver.
5.2.7. ERROR-INFO
The following is the format of the ERROR-INFO attribute.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 0 0 1 1 1|M| Length | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| |
/ Text /
/ +-+-+-+-+-+-+-+-+
| | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 14: ERROR-INFO format
Text: This field contains UTF-8 [6] encoded text.
Camarillo, et al. Standards Track [Page 22]
^L
RFC 4582 BFCP November 2006
In some situations, the contents of the Text field may be generated
by an automaton. If this automaton has information about the
preferred language of the receiver of a particular ERROR-INFO
attribute, it MAY use this language to generate the Text field.
Padding: One, two, or three octets of padding added so that the
contents of the ERROR-INFO attribute is 32-bit aligned. The Padding
bits SHOULD be set to zero by the sender and MUST be ignored by the
receiver. If the attribute is already 32-bit aligned, no padding is
needed.
5.2.8. PARTICIPANT-PROVIDED-INFO
The following is the format of the PARTICIPANT-PROVIDED-INFO
attribute.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 0 1 0 0 0|M| Length | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| |
/ Text /
/ +-+-+-+-+-+-+-+-+
| | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 15: PARTICIPANT-PROVIDED-INFO format
Text: This field contains UTF-8 [6] encoded text.
Padding: One, two, or three octets of padding added so that the
contents of the PARTICIPANT-PROVIDED-INFO attribute is 32-bit
aligned. The Padding bits SHOULD be set to zero by the sender and
MUST be ignored by the receiver. If the attribute is already 32-bit
aligned, no padding is needed.
Camarillo, et al. Standards Track [Page 23]
^L
RFC 4582 BFCP November 2006
5.2.9. STATUS-INFO
The following is the format of the STATUS-INFO attribute.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 0 1 0 0 1|M| Length | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| |
/ Text /
/ +-+-+-+-+-+-+-+-+
| | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 16: STATUS-INFO format
Text: This field contains UTF-8 [6] encoded text.
In some situations, the contents of the Text field may be generated
by an automaton. If this automaton has information about the
preferred language of the receiver of a particular STATUS-INFO
attribute, it MAY use this language to generate the Text field.
Padding: One, two, or three octets of padding added so that the
contents of the STATUS-INFO attribute is 32-bit aligned. The Padding
bits SHOULD be set to zero by the sender and MUST be ignored by the
receiver. If the attribute is already 32-bit aligned, no padding is
needed.
5.2.10. SUPPORTED-ATTRIBUTES
The following is the format of the SUPPORTED-ATTRIBUTES attribute.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 0 1 0 1 0|M| Length | Supp. Attr. |R| Supp. Attr. |R|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Supp. Attr. |R| Supp. Attr. |R| Supp. Attr. |R| Supp. Attr. |R|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
/ /
/ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 17: SUPPORTED-ATTRIBUTES format
Camarillo, et al. Standards Track [Page 24]
^L
RFC 4582 BFCP November 2006
Supp. Attr.: These fields contain the Types of the attributes that
are supported by the floor control server in the following format:
R: Reserved: This bit MUST be set to zero upon transmission and MUST
be ignored upon reception.
Padding: Two octets of padding added so that the contents of the
SUPPORTED-ATTRIBUTES attribute is 32-bit aligned. If the attribute
is already 32-bit aligned, no padding is needed.
The Padding bits SHOULD be set to zero by the sender and MUST be
ignored by the receiver.
5.2.11. SUPPORTED-PRIMITIVES
The following is the format of the SUPPORTED-PRIMITIVES attribute.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 0 1 0 1 1|M| Length | Primitive | Primitive |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Primitive | Primitive | Primitive | Primitive |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
/ /
/ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 18: SUPPORTED-PRIMITIVES format
Primitive: These fields contain the types of the BFCP messages that
are supported by the floor control server. See Table 1 for the list
of BFCP primitives.
Padding: One, two, or three octets of padding added so that the
contents of the SUPPORTED-PRIMITIVES attribute is 32-bit aligned. If
the attribute is already 32-bit aligned, no padding is needed.
The Padding bits SHOULD be set to zero by the sender and MUST be
ignored by the receiver.
Camarillo, et al. Standards Track [Page 25]
^L
RFC 4582 BFCP November 2006
5.2.12. USER-DISPLAY-NAME
The following is the format of the USER-DISPLAY-NAME attribute.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 0 1 1 0 0|M| Length | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| |
/ Text /
/ +-+-+-+-+-+-+-+-+
| | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 19: USER-DISPLAY-NAME format
Text: This field contains the UTF-8 encoded name of the user.
Padding: One, two, or three octets of padding added so that the
contents of the USER-DISPLAY-NAME attribute is 32-bit aligned. The
Padding bits SHOULD be set to zero by the sender and MUST be ignored
by the receiver. If the attribute is already 32-bit aligned, no
padding is needed.
5.2.13. USER-URI
The following is the format of the USER-URI attribute.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 0 1 1 0 1|M| Length | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| |
/ Text /
/ +-+-+-+-+-+-+-+-+
| | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 20: USER-URI format
Text: This field contains the UTF-8 encoded user's contact URI, that
is, the URI used by the user to set up the resources (e.g., media
streams) that are controlled by BFCP. For example, in the context of
a conference set up by SIP, the USER-URI attribute would carry the
SIP URI of the user.
Camarillo, et al. Standards Track [Page 26]
^L
RFC 4582 BFCP November 2006
Messages containing a user's URI in a USER-URI attribute also
contain the user's User ID. This way, a client receiving such a
message can correlate the user's URI (e.g., the SIP URI the user
used to join a conference) with the user's User ID.
Padding: One, two, or three octets of padding added so that the
contents of the USER-URI attribute is 32-bit aligned. The Padding
bits SHOULD be set to zero by the sender and MUST be ignored by the
receiver. If the attribute is already 32-bit aligned, no padding is
needed.
5.2.14. BENEFICIARY-INFORMATION
The BENEFICIARY-INFORMATION attribute is a grouped attribute that
consists of a header, which is referred to as BENEFICIARY-
INFORMATION-HEADER, followed by a sequence of attributes. The
following is the format of the BENEFICIARY-INFORMATION-HEADER:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 0 1 1 1 0|M| Length | Beneficiary ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 21: BENEFICIARY-INFORMATION-HEADER format
Beneficiary ID: This field contains a 16-bit value that uniquely
identifies a user within a conference.
The following is the ABNF (Augmented Backus-Naur Form) [2] of the
BENEFICIARY-INFORMATION grouped attribute. (EXTENSION-ATTRIBUTE
refers to extension attributes that may be defined in the future.)
BENEFICIARY-INFORMATION = (BENEFICIARY-INFORMATION-HEADER)
[USER-DISPLAY-NAME]
[USER-URI]
*[EXTENSION-ATTRIBUTE]
Figure 22: BENEFICIARY-INFORMATION format
5.2.15. FLOOR-REQUEST-INFORMATION
The FLOOR-REQUEST-INFORMATION attribute is a grouped attribute that
consists of a header, which is referred to as FLOOR-REQUEST-
INFORMATION-HEADER, followed by a sequence of attributes. The
following is the format of the FLOOR-REQUEST-INFORMATION-HEADER:
Camarillo, et al. Standards Track [Page 27]
^L
RFC 4582 BFCP November 2006
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 0 1 1 1 1|M| Length | Floor Request ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 23: FLOOR-REQUEST-INFORMATION-HEADER format
Floor Request ID: This field contains a 16-bit value that identifies
a floor request at the floor control server.
The following is the ABNF of the FLOOR-REQUEST-INFORMATION grouped
attribute. (EXTENSION-ATTRIBUTE refers to extension attributes that
may be defined in the future.)
FLOOR-REQUEST-INFORMATION = (FLOOR-REQUEST-INFORMATION-HEADER)
[OVERALL-REQUEST-STATUS]
1*(FLOOR-REQUEST-STATUS)
[BENEFICIARY-INFORMATION]
[REQUESTED-BY-INFORMATION]
[PRIORITY]
[PARTICIPANT-PROVIDED-INFO]
*[EXTENSION-ATTRIBUTE]
Figure 24: FLOOR-REQUEST-INFORMATION format
5.2.16. REQUESTED-BY-INFORMATION
The REQUESTED-BY-INFORMATION attribute is a grouped attribute that
consists of a header, which is referred to as REQUESTED-BY-
INFORMATION-HEADER, followed by a sequence of attributes. The
following is the format of the REQUESTED-BY-INFORMATION-HEADER:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 1 0 0 0 0|M| Length | Requested-by ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 25: REQUESTED-BY-INFORMATION-HEADER format
Requested-by ID: This field contains a 16-bit value that uniquely
identifies a user within a conference.
The following is the ABNF of the REQUESTED-BY-INFORMATION grouped
attribute. (EXTENSION-ATTRIBUTE refers to extension attributes that
may be defined in the future.)
Camarillo, et al. Standards Track [Page 28]
^L
RFC 4582 BFCP November 2006
REQUESTED-BY-INFORMATION = (REQUESTED-BY-INFORMATION-HEADER)
[USER-DISPLAY-NAME]
[USER-URI]
*[EXTENSION-ATTRIBUTE]
Figure 26: REQUESTED-BY-INFORMATION format
5.2.17. FLOOR-REQUEST-STATUS
The FLOOR-REQUEST-STATUS attribute is a grouped attribute that
consists of a header, which is referred to as
FLOOR-REQUEST-STATUS-HEADER, followed by a sequence of attributes.
The following is the format of the FLOOR-REQUEST-STATUS-HEADER:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 1 0 0 0 1|M| Length | Floor ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 27: FLOOR-REQUEST-STATUS-HEADER format
Floor ID: this field contains a 16-bit value that uniquely identifies
a floor within a conference.
The following is the ABNF of the FLOOR-REQUEST-STATUS grouped
attribute. (EXTENSION-ATTRIBUTE refers to extension attributes that
may be defined in the future.)
FLOOR-REQUEST-STATUS = (FLOOR-REQUEST-STATUS-HEADER)
[REQUEST-STATUS]
[STATUS-INFO]
*[EXTENSION-ATTRIBUTE]
Figure 28: FLOOR-REQUEST-STATUS format
Camarillo, et al. Standards Track [Page 29]
^L
RFC 4582 BFCP November 2006
5.2.18. OVERALL-REQUEST-STATUS
The OVERALL-REQUEST-STATUS attribute is a grouped attribute that
consists of a header, which is referred to as
OVERALL-REQUEST-STATUS-HEADER, followed by a sequence of attributes.
The following is the format of the OVERALL-REQUEST-STATUS-HEADER:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 1 0 0 1 0|M| Length | Floor Request ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 29: OVERALL-REQUEST-STATUS-HEADER format
Floor Request ID: this field contains a 16-bit value that identifies
a floor request at the floor control server.
The following is the ABNF of the OVERALL-REQUEST-STATUS grouped
attribute. (EXTENSION-ATTRIBUTE refers to extension attributes that
may be defined in the future.)
OVERALL-REQUEST-STATUS = (OVERALL-REQUEST-STATUS-HEADER)
[REQUEST-STATUS]
[STATUS-INFO]
*[EXTENSION-ATTRIBUTE]
Figure 30: OVERALL-REQUEST-STATUS format
5.3. Message Format
This section contains the normative ABNF (Augmented Backus-Naur Form)
[2] of the BFCP messages. Extension attributes that may be defined
in the future are referred to as EXTENSION-ATTRIBUTE in the ABNF.
Camarillo, et al. Standards Track [Page 30]
^L
RFC 4582 BFCP November 2006
5.3.1. FloorRequest
Floor participants request a floor by sending a FloorRequest message
to the floor control server. The following is the format of the
FloorRequest message:
FloorRequest = (COMMON-HEADER)
1*(FLOOR-ID)
[BENEFICIARY-ID]
[PARTICIPANT-PROVIDED-INFO]
[PRIORITY]
*[EXTENSION-ATTRIBUTE]
Figure 31: FloorRequest format
5.3.2. FloorRelease
Floor participants release a floor by sending a FloorRelease message
to the floor control server. Floor participants also use the
FloorRelease message to cancel pending floor requests. The following
is the format of the FloorRelease message:
FloorRelease = (COMMON-HEADER)
(FLOOR-REQUEST-ID)
*[EXTENSION-ATTRIBUTE]
Figure 32: FloorRelease format
5.3.3. FloorRequestQuery
Floor participants and floor chairs request information about a floor
request by sending a FloorRequestQuery message to the floor control
server. The following is the format of the FloorRequestQuery
message:
FloorRequestQuery = (COMMON-HEADER)
(FLOOR-REQUEST-ID)
*[EXTENSION-ATTRIBUTE]
Figure 33: FloorRequestQuery format
5.3.4. FloorRequestStatus
The floor control server informs floor participants and floor chairs
about the status of their floor requests by sending them
FloorRequestStatus messages. The following is the format of the
FloorRequestStatus message:
Camarillo, et al. Standards Track [Page 31]
^L
RFC 4582 BFCP November 2006
FloorRequestStatus = (COMMON-HEADER)
(FLOOR-REQUEST-INFORMATION)
*[EXTENSION-ATTRIBUTE]
Figure 34: FloorRequestStatus format
5.3.5. UserQuery
Floor participants and floor chairs request information about a
participant and the floor requests related to this participant by
sending a UserQuery message to the floor control server. The
following is the format of the UserQuery message:
UserQuery = (COMMON-HEADER)
[BENEFICIARY-ID]
*[EXTENSION-ATTRIBUTE]
Figure 35: UserQuery format
5.3.6. UserStatus
The floor control server provides information about participants and
their related floor requests to floor participants and floor chairs
by sending them UserStatus messages. The following is the format of
the UserStatus message:
UserStatus = (COMMON-HEADER)
[BENEFICIARY-INFORMATION]
*(FLOOR-REQUEST-INFORMATION)
*[EXTENSION-ATTRIBUTE]
Figure 36: UserStatus format
5.3.7. FloorQuery
Floor participants and floor chairs request information about a floor
or floors by sending a FloorQuery message to the floor control
server. The following is the format of the FloorRequest message:
FloorQuery = (COMMON-HEADER)
*(FLOOR-ID)
*[EXTENSION-ATTRIBUTE]
Figure 37: FloorQuery format
Camarillo, et al. Standards Track [Page 32]
^L
RFC 4582 BFCP November 2006
5.3.8. FloorStatus
The floor control server informs floor participants and floor chairs
about the status (e.g., the current holder) of a floor by sending
them FloorStatus messages. The following is the format of the
FloorStatus message:
FloorStatus = (COMMON-HEADER)
*1(FLOOR-ID)
*[FLOOR-REQUEST-INFORMATION]
*[EXTENSION-ATTRIBUTE]
Figure 38: FloorStatus format
5.3.9. ChairAction
Floor chairs send instructions to floor control servers by sending
ChairAction messages. The following is the format of the ChairAction
message:
ChairAction = (COMMON-HEADER)
(FLOOR-REQUEST-INFORMATION)
*[EXTENSION-ATTRIBUTE]
Figure 39: ChairAction format
5.3.10. ChairActionAck
Floor control servers confirm that they have accepted a ChairAction
message by sending a ChairActionAck message. The following is the
format of the ChairActionAck message:
ChairActionAck = (COMMON-HEADER)
*[EXTENSION-ATTRIBUTE]
Figure 40: ChairActionAck format
5.3.11. Hello
Floor participants and floor chairs check the liveliness of floor
control servers by sending a Hello message. The following is the
format of the Hello message:
Hello = (COMMON-HEADER)
*[EXTENSION-ATTRIBUTE]
Figure 41: Hello format
Camarillo, et al. Standards Track [Page 33]
^L
RFC 4582 BFCP November 2006
5.3.12. HelloAck
Floor control servers confirm that they are alive on reception of a
Hello message by sending a HelloAck message. The following is the
format of the HelloAck message:
HelloAck = (COMMON-HEADER)
(SUPPORTED-PRIMITIVES)
(SUPPORTED-ATTRIBUTES)
*[EXTENSION-ATTRIBUTE]
Figure 42: HelloAck format
5.3.13. Error
Floor control servers inform floor participants and floor chairs
about errors processing requests by sending them Error messages. The
following is the format of the Error message:
Error = (COMMON-HEADER)
(ERROR-CODE)
[ERROR-INFO]
*[EXTENSION-ATTRIBUTE]
Figure 43: Error format
6. Transport
BFCP entities exchange BFCP messages using TCP connections. TCP
provides an in-order reliable delivery of a stream of bytes.
Consequently, message framing is implemented in the application
layer. BFCP implements application-layer framing using TLV-encoded
attributes.
A client MUST NOT use more than one TCP connection to communicate
with a given floor control server within a conference. Nevertheless,
if the same physical box handles different clients (e.g., a floor
chair and a floor participant), which are identified by different
User IDs, a separate connection per client is allowed.
If a BFCP entity (a client or a floor control server) receives data
from TCP that cannot be parsed, the entity MUST close the TCP
connection, and the connection SHOULD be reestablished. Similarly,
if a TCP connection cannot deliver a BFCP message and times out, the
TCP connection SHOULD be reestablished.
Camarillo, et al. Standards Track [Page 34]
^L
RFC 4582 BFCP November 2006
The way connection reestablishment is handled depends on how the
client obtains information to contact the floor control server (e.g.,
using an SDP offer/answer exchange [7]). Once the TCP connection is
reestablished, the client MAY resend those messages for which it did
not get a response from the floor control server.
If a floor control server detects that the TCP connection towards one
of the floor participants is lost, it is up to the local policy of
the floor control server what to do with the pending floor requests
of the floor participant. In any case, it is RECOMMENDED that the
floor control server keep the floor requests (i.e., that it does not
cancel them) while the TCP connection is reestablished.
If a client wishes to end its BFCP connection with a floor control
server, the client closes (i.e., a graceful close) the TCP connection
towards the floor control server. If a floor control server wishes
to end its BFCP connection with a client (e.g., the Focus of the
conference informs the floor control server that the client has been
kicked out from the conference), the floor control server closes
(i.e., a graceful close) the TCP connection towards the client.
7. Lower-Layer Security
BFCP relies on lower-layer security mechanisms to provide replay and
integrity protection and confidentiality. BFCP floor control servers
and clients (which include both floor participants and floor chairs)
MUST support TLS [3]. Any BFCP entity MAY support other security
mechanisms.
BFCP entities MUST support, at a minimum, the TLS
TLS_RSA_WITH_AES_128_CBC_SHA ciphersuite [5].
Which party, the client or the floor control server, acts as the TLS
server depends on how the underlying TCP connection is established.
For example, when the TCP connection is established using an SDP
offer/answer exchange [7], the answerer (which may be the client or
the floor control server) always acts as the TLS server.
8. Protocol Transactions
In BFCP, there are two types of transactions: client-initiated
transactions and server-initiated transactions (notifications).
Client-initiated transactions consist of a request from a client to a
floor control server and a response from the floor control server to
the client. The request carries a Transaction ID in its common
header, which the floor control server copies into the response.
Clients use Transaction ID values to match responses with previously
issued requests.
Camarillo, et al. Standards Track [Page 35]
^L
RFC 4582 BFCP November 2006
Server-initiated transactions consist of a single message from a
floor control server to a client. Since they do not trigger any
response, their Transaction ID is set to 0.
8.1. Client Behavior
A client starting a client-initiated transaction MUST set the
Conference ID in the common header of the message to the Conference
ID for the conference that the client obtained previously.
The client MUST set the Transaction ID value in the common header to
a number that is different from 0 and that MUST NOT be reused in
another message from the client until a response from the server is
received for the transaction. The client uses the Transaction ID
value to match this message with the response from the floor control
server.
8.2. Server Behavior
A floor control server sending a response within a client-initiated
transaction MUST copy the Conference ID, the Transaction ID, and the
User ID from the request received from the client into the response.
Server-initiated transactions MUST contain a Transaction ID equal to
0.
9. Authentication and Authorization
BFCP clients SHOULD authenticate the floor control server before
sending any BFCP message to it or accepting any BFCP message from it.
Similarly, floor control servers SHOULD authenticate a client before
accepting any BFCP message from it or sending any BFCP message to it.
BFCP supports TLS-based mutual authentication between clients and
floor control servers, as specified in Section 9.1. This is the
RECOMMENDED authentication mechanism in BFCP.
Note that future extensions may define additional authentication
mechanisms.
In addition to authenticating BFCP messages, floor control servers
need to authorize them. On receiving an authenticated BFCP message,
the floor control server checks whether the client sending the
message is authorized. If the client is not authorized to perform
the operation being requested, the floor control server generates an
Error message, as described in Section 13.8, with an Error code with
a value of 5 (Unauthorized Operation). Messages from a client that
cannot be authorized MUST NOT be processed further.
Camarillo, et al. Standards Track [Page 36]
^L
RFC 4582 BFCP November 2006
9.1. TLS-Based Mutual Authentication
BFCP supports TLS-based mutual authentication between clients and
floor control servers. BFCP assumes that there is an integrity-
protected channel between the client and the floor control server
that can be used to exchange their self-signed certificates or, more
commonly, the fingerprints of these certificates. These certificates
are used at TLS establishment time.
The implementation of such an integrity-protected channel using
SIP and the SDP offer/answer model is described in [7].
BFCP messages received over an authenticated TLS connection are
considered authenticated. A floor control server that receives a
BFCP message over TCP (no TLS) can request the use of TLS by
generating an Error message, as described in Section 13.8, with an
Error code with a value of 9 (Use TLS). Clients SHOULD simply ignore
unauthenticated messages.
Note that future extensions may define additional authentication
mechanisms that may not require an initial integrity-protected
channel (e.g., authentication based on certificates signed by a
certificate authority).
As described in Section 9, floor control servers need to perform
authorization before processing any message. In particular, the
floor control server SHOULD check that messages arriving over a given
authenticated TLS connection use an authorized User ID (i.e., a User
ID that the user that established the authenticated TLS connection is
allowed to use).
10. Floor Participant Operations
This section specifies how floor participants can perform different
operations, such as requesting a floor, using the protocol elements
described in earlier sections. Section 11 specifies operations that
are specific to floor chairs, such as instructing the floor control
server to grant or revoke a floor, and Section 12 specifies
operations that can be performed by any client (i.e., both floor
participants and floor chairs).
10.1. Requesting a Floor
A floor participant that wishes to request one or more floors does so
by sending a FloorRequest message to the floor control server.
Camarillo, et al. Standards Track [Page 37]
^L
RFC 4582 BFCP November 2006
10.1.1. Sending a FloorRequest Message
The ABNF in Section 5.3.1 describes the attributes that a
FloorRequest message can contain. In addition, the ABNF specifies
normatively which of these attributes are mandatory, and which ones
are optional.
The floor participant sets the Conference ID and the Transaction ID
in the common header following the rules given in Section 8.1.
The floor participant sets the User ID in the common header to the
floor participant's identifier. This User ID will be used by the
floor control server to authenticate and authorize the request. If
the sender of the FloorRequest message (identified by the User ID) is
not the participant that would eventually get the floor (i.e., a
third-party floor request), the sender SHOULD add a BENEFICIARY-ID
attribute to the message identifying the beneficiary of the floor.
Note that the name space for both the User ID and the Beneficiary
ID is the same. That is, a given participant is identified by a
single 16-bit value that can be used in the User ID in the common
header and in several attributes: BENEFICIARY-ID, BENEFICIARY-
INFORMATION, and REQUESTED-BY-INFORMATION.
The floor participant must insert at least one FLOOR-ID attribute in
the FloorRequest message. If the client inserts more than one
FLOOR-ID attribute, the floor control server will treat all the floor
requests as an atomic package. That is, the floor control server
will either grant or deny all the floors in the FloorRequest message.
The floor participant may use a PARTICIPANT-PROVIDED-INFO attribute
to state the reason why the floor or floors are being requested. The
Text field in the PARTICIPANT-PROVIDED-INFO attribute is intended for
human consumption.
The floor participant may request that the server handle the floor
request with a certain priority using a PRIORITY attribute.
10.1.2. Receiving a Response
A message from the floor control server is considered a response to
the FloorRequest message if the message from the floor control server
has the same Conference ID, Transaction ID, and User ID as the
FloorRequest message, as described in Section 8.1. On receiving such
a response, the floor participant follows the rules in Section 9 that
relate to floor control server authentication.
Camarillo, et al. Standards Track [Page 38]
^L
RFC 4582 BFCP November 2006
The successful processing of a FloorRequest message at the floor
control server involves generating one or several FloorRequestStatus
messages. The floor participant obtains a Floor Request ID in the
Floor Request ID field of a FLOOR-REQUEST-INFORMATION attribute in
the first FloorRequestStatus message from the floor control server.
Subsequent FloorRequestStatus messages from the floor control server
regarding the same floor request will carry the same Floor Request ID
in a FLOOR-REQUEST-INFORMATION attribute as the initial
FloorRequestStatus message. This way, the floor participant can
associate subsequent incoming FloorRequestStatus messages with the
ongoing floor request.
The floor participant obtains information about the status of the
floor request in the FLOOR-REQUEST-INFORMATION attribute of each of
the FloorRequestStatus messages received from the floor control
server. This attribute is a grouped attribute, and as such it
includes a number of attributes that provide information about the
floor request.
The OVERALL-REQUEST-STATUS attribute provides information about the
overall status of the floor request. If the Request Status value is
Granted, all the floors that were requested in the FloorRequest
message have been granted. If the Request Status value is Denied,
all the floors that were requested in the FloorRequest message have
been denied. A floor request is considered to be ongoing while it is
in the Pending, Accepted, or Granted states. If the floor request
value is unknown, then the response is still processed. However, no
meaningful value can be reported to the user.
The STATUS-INFO attribute, if present, provides extra information
that the floor participant MAY display to the user.
The FLOOR-REQUEST-STATUS attributes provide information about the
status of the floor request as it relates to a particular floor. The
STATUS-INFO attribute, if present, provides extra information that
the floor participant MAY display to the user.
The BENEFICIARY-INFORMATION attribute identifies the beneficiary of
the floor request in third-party floor requests. The
REQUESTED-BY-INFORMATION attribute need not be present in
FloorRequestStatus messages received by the floor participant that
requested the floor, as this floor participant is already identified
by the User ID in the common header.
The PRIORITY attribute, when present, contains the priority that was
requested by the generator of the FloorRequest message.
Camarillo, et al. Standards Track [Page 39]
^L
RFC 4582 BFCP November 2006
If the response is an Error message, the floor control server could
not process the FloorRequest message for some reason, which is
described in the Error message.
10.2. Cancelling a Floor Request and Releasing a Floor
A floor participant that wishes to cancel an ongoing floor request
does so by sending a FloorRelease message to the floor control
server. The FloorRelease message is also used by floor participants
that hold a floor and would like to release it.
10.2.1. Sending a FloorRelease Message
The ABNF in Section 5.3.2 describes the attributes that a
FloorRelease message can contain. In addition, the ABNF specifies
normatively which of these attributes are mandatory, and which ones
are optional.
The floor participant sets the Conference ID and the Transaction ID
in the common header following the rules given in Section 8.1. The
floor participant sets the User ID in the common header to the floor
participant's identifier. This User ID will be used by the floor
control server to authenticate and authorize the request.
Note that the FloorRelease message is used to release a floor or
floors that were granted and to cancel ongoing floor requests
(from the protocol perspective, both are ongoing floor requests).
Using the same message in both situations helps resolve the race
condition that occurs when the FloorRelease message and the
FloorGrant message cross each other on the wire.
The floor participant uses the FLOOR-REQUEST-ID that was received in
the response to the FloorRequest message that the FloorRelease
message is cancelling.
Note that if the floor participant requested several floors as an
atomic operation (i.e., in a single FloorRequest message), all the
floors are released as an atomic operation as well (i.e., all are
released at the same time).
10.2.2. Receiving a Response
A message from the floor control server is considered a response to
the FloorRelease message if the message from the floor control server
has the same Conference ID, Transaction ID, and User ID as the
FloorRequest message, as described in Section 8.1. On receiving such
a response, the floor participant follows the rules in Section 9 that
relate to floor control server authentication.
Camarillo, et al. Standards Track [Page 40]
^L
RFC 4582 BFCP November 2006
If the response is a FloorRequestStatus message, the Request Status
value in the OVERALL-REQUEST-STATUS attribute (within the FLOOR-
REQUEST-INFORMATION grouped attribute) will be Cancelled or Released.
If the response is an Error message, the floor control server could
not process the FloorRequest message for some reason, which is
described in the Error message.
It is possible that the FloorRelease message crosses on the wire with
a FloorRequestStatus message from the server with a Request Status
different from Cancelled or Released. In any case, such a
FloorRequestStatus message will not be a response to the FloorRelease
message, as its Transaction ID will not match that of the
FloorRelease.
11. Chair Operations
This section specifies how floor chairs can instruct the floor
control server to grant or revoke a floor using the protocol elements
described in earlier sections.
Floor chairs that wish to send instructions to a floor control server
do so by sending a ChairAction message.
11.1. Sending a ChairAction Message
The ABNF in Section 5.3.9 describes the attributes that a ChairAction
message can contain. In addition, the ABNF specifies normatively
which of these attributes are mandatory, and which ones are optional.
The floor chair sets the Conference ID and the Transaction ID in the
common header following the rules given in Section 8.1. The floor
chair sets the User ID in the common header to the floor
participant's identifier. This User ID will be used by the floor
control server to authenticate and authorize the request.
The ChairAction message contains instructions that apply to one or
more floors within a particular floor request. The floor or floors
are identified by the FLOOR-REQUEST-STATUS attributes and the floor
request is identified by the FLOOR-REQUEST-INFORMATION-HEADER, which
are carried in the ChairAction message.
For example, if a floor request consists of two floors that depend on
different floor chairs, each floor chair will grant its floor within
the floor request. Once both chairs have granted their floor, the
floor control server will grant the floor request as a whole. On the
other hand, if one of the floor chairs denies its floor, the floor
Camarillo, et al. Standards Track [Page 41]
^L
RFC 4582 BFCP November 2006
control server will deny the floor request as a whole, regardless of
the other floor chair's decision.
The floor chair provides the new status of the floor request as it
relates to a particular floor using a FLOOR-REQUEST-STATUS attribute.
If the new status of the floor request is Accepted, the floor chair
MAY use the Queue Position field to provide a queue position for the
floor request. If the floor chair does not wish to provide a queue
position, all the bits of the Queue Position field SHOULD be set to
zero. The floor chair SHOULD use the Status Revoked to revoke a
floor that was granted (i.e., Granted status) and SHOULD use the
Status Denied to reject floor requests in any other status (e.g.,
Pending and Accepted).
The floor chair MAY add an OVERALL-REQUEST-STATUS attribute to the
ChairAction message to provide a new overall status for the floor
request. If the new overall status of the floor request is Accepted,
the floor chair MAY use the Queue Position field to provide a queue
position for the floor request.
Note that a particular floor control server may implement a
different queue for each floor containing all the floor requests
that relate to that particular floor, a general queue for all
floor requests, or both. Also note that a floor request may
involve several floors and that a ChairAction message may only
deal with a subset of these floors (e.g., if a single floor chair
is not authorized to manage all the floors). In this case, the
floor control server will combine the instructions received from
the different floor chairs in FLOOR-REQUEST-STATUS attributes to
come up with the overall status of the floor request.
Note that, while the action of a floor chair may communicate
information in the OVERALL-REQUEST-STATUS attribute, the floor
control server may override, modify, or ignore this field's
content.
The floor chair may use STATUS-INFO attributes to state the reason
why the floor or floors are being accepted, granted, or revoked. The
Text in the STATUS-INFO attribute is intended for human consumption.
11.2. Receiving a Response
A message from the floor control server is considered a response to
the ChairAction message if the message from the server has the same
Conference ID, Transaction ID, and User ID as the ChairAction
message, as described in Section 8.1. On receiving such a response,
the floor chair follows the rules in Section 9 that relate to floor
control server authentication.
Camarillo, et al. Standards Track [Page 42]
^L
RFC 4582 BFCP November 2006
A ChairActionAck message from the floor control server confirms that
the floor control server has accepted the ChairAction message. An
Error message indicates that the floor control server could not
process the ChairAction message for some reason, which is described
in the Error message.
12. General Client Operations
This section specifies operations that can be performed by any
client. That is, they are not specific to floor participants or
floor chairs. They can be performed by both.
12.1. Requesting Information about Floors
A client can obtain information about the status of a floor or floors
in different ways, which include using BFCP and using out-of-band
mechanisms. Clients using BFCP to obtain such information use the
procedures described in this section.
Clients request information about the status of one or several floors
by sending a FloorQuery message to the floor control server.
12.1.1. Sending a FloorQuery Message
The ABNF in Section 5.3.7 describes the attributes that a FloorQuery
message can contain. In addition, the ABNF specifies normatively
which of these attributes are mandatory, and which ones are optional.
The client sets the Conference ID and the Transaction ID in the
common header following the rules given in Section 8.1. The client
sets the User ID in the common header to the client's identifier.
This User ID will be used by the floor control server to authenticate
and authorize the request.
The client inserts in the message all the Floor IDs it wants to
receive information about. The floor control server will send
periodic information about all of these floors. If the client does
not want to receive information about a particular floor any longer,
it sends a new FloorQuery message removing the FLOOR-ID of this
floor. If the client does not want to receive information about any
floor any longer, it sends a FloorQuery message with no FLOOR-ID
attribute.
12.1.2. Receiving a Response
A message from the floor control server is considered a response to
the FloorQuery message if the message from the floor control server
has the same Conference ID, Transaction ID, and User ID as the
Camarillo, et al. Standards Track [Page 43]
^L
RFC 4582 BFCP November 2006
FloorRequest message, as described in Section 8.1. On receiving such
a response, the client follows the rules in Section 9 that relate to
floor control server authentication.
On reception of the FloorQuery message, the floor control server will
respond with a FloorStatus message or with an Error message. If the
response is a FloorStatus message, it will contain information about
one of the floors the client requested information about. If the
client did not include any FLOOR-ID attribute in its FloorQuery
message (i.e., the client does not want to receive information about
any floor any longer), the FloorStatus message from the floor control
server will not include any FLOOR-ID attribute either.
FloorStatus messages that carry information about a floor contain a
FLOOR-ID attribute that identifies the floor. After this attribute,
FloorStatus messages contain information about existing (one or more)
floor requests that relate to that floor. The information about each
particular floor request is encoded in a FLOOR-REQUEST-INFORMATION
attribute. This grouped attribute carries a Floor Request ID that
identifies the floor request, followed by a set of attributes that
provide information about the floor request.
After the first FloorStatus, the floor control server will continue
sending FloorStatus messages, periodically informing the client about
changes on the floors the client requested information about.
12.2. Requesting Information about Floor Requests
A client can obtain information about the status of one or several
floor requests in different ways, which include using BFCP and using
out-of-band mechanisms. Clients using BFCP to obtain such
information use the procedures described in this section.
Clients request information about the current status of a floor
request by sending a FloorRequestQuery message to the floor control
server.
Requesting information about a particular floor request is useful in
a number of situations. For example, on reception of a FloorRequest
message, a floor control server may choose to return
FloorRequestStatus messages only when the floor request changes its
state (e.g., from Accepted to Granted), but not when the floor
request advances in its queue. In this situation, if the user
requests it, the floor participant can use a FloorRequestQuery
message to poll the floor control server for the status of the floor
request.
Camarillo, et al. Standards Track [Page 44]
^L
RFC 4582 BFCP November 2006
12.2.1. Sending a FloorRequestQuery Message
The ABNF in Section 5.3.3 describes the attributes that a
FloorRequestQuery message can contain. In addition, the ABNF
specifies normatively which of these attributes are mandatory, and
which ones are optional.
The client sets the Conference ID and the Transaction ID in the
common header following the rules given in Section 8.1. The client
sets the User ID in the common header to the client's identifier.
This User ID will be used by the floor control server to authenticate
and authorize the request.
The client must insert a FLOOR-REQUEST-ID attribute that identifies
the floor request at the floor control server.
12.2.2. Receiving a Response
A message from the floor control server is considered a response to
the FloorRequestQuery message if the message from the floor control
server has the same Conference ID, Transaction ID, and User ID as the
FloorRequestQuery message, as described in Section 8.1. On receiving
such a response, the client follows the rules in Section 9 that
relate to floor control server authentication.
If the response is a FloorRequestStatus message, the client obtains
information about the status of the FloorRequest the client requested
information about in a FLOOR-REQUEST-INFORMATION attribute.
If the response is an Error message, the floor control server could
not process the FloorRequestQuery message for some reason, which is
described in the Error message.
12.3. Requesting Information about a User
A client can obtain information about a participant and the floor
requests related to this participant in different ways, which include
using BFCP and using out-of-band mechanisms. Clients using BFCP to
obtain such information use the procedures described in this section.
Clients request information about a participant and the floor
requests related to this participant by sending a UserQuery message
to the floor control server.
This functionality may be useful for floor chairs or floor
participants interested in the display name and the URI of a
particular floor participant. In addition, a floor participant may
find it useful to request information about itself. For example, a
Camarillo, et al. Standards Track [Page 45]
^L
RFC 4582 BFCP November 2006
floor participant, after experiencing connectivity problems (e.g.,
its TCP connection with the floor control server was down for a while
and eventually was re-established), may need to request information
about all the floor requests associated to itself that still exist.
12.3.1. Sending a UserQuery Message
The ABNF in Section 5.3.5 describes the attributes that a UserQuery
message can contain. In addition, the ABNF specifies normatively
which of these attributes are mandatory, and which ones are optional.
The client sets the Conference ID and the Transaction ID in the
common header following the rules given in Section 8.1. The client
sets the User ID in the common header to the client's identifier.
This User ID will be used by the floor control server to authenticate
and authorize the request.
If the floor participant the client is requesting information about
is not the client issuing the UserQuery message (which is identified
by the User ID in the common header of the message), the client MUST
insert a BENEFICIARY-ID attribute.
12.3.2. Receiving a Response
A message from the floor control server is considered a response to
the UserQuery message if the message from the floor control server
has the same Conference ID, Transaction ID, and User ID as the
UserQuery message, as described in Section 8.1. On receiving such a
response, the client follows the rules in Section 9 that relate to
floor control server authentication.
If the response is a UserStatus message, the client obtains
information about the floor participant in a BENEFICIARY-INFORMATION
grouped attribute and about the status of the floor requests
associated with the floor participant in FLOOR-REQUEST-INFORMATION
attributes.
If the response is an Error message, the floor control server could
not process the UserQuery message for some reason, which is described
in the Error message.
12.4. Obtaining the Capabilities of a Floor Control Server
A client that wishes to obtain the capabilities of a floor control
server does so by sending a Hello message to the floor control
server.
Camarillo, et al. Standards Track [Page 46]
^L
RFC 4582 BFCP November 2006
12.4.1. Sending a Hello Message
The ABNF in Section 5.3.11 describes the attributes that a Hello
message can contain. In addition, the ABNF specifies normatively
which of these attributes are mandatory, and which ones are optional.
The client sets the Conference ID and the Transaction ID in the
common header following the rules given in Section 8.1. The client
sets the User ID in the common header to the client's identifier.
This User ID will be used by the floor control server to authenticate
and authorize the request.
12.4.2. Receiving Responses
A message from the floor control server is considered a response to
the Hello message by the client if the message from the floor control
server has the same Conference ID, Transaction ID, and User ID as the
Hello message, as described in Section 8.1. On receiving such a
response, the client follows the rules in Section 9 that relate to
floor control server authentication.
If the response is a HelloAck message, the floor control server could
process the Hello message successfully. The SUPPORTED-PRIMITVIES and
SUPPORTED-ATTRIBUTES attributes indicate which primitives and
attributes, respectively, are supported by the server.
If the response is an Error message, the floor control server could
not process the Hello message for some reason, which is described in
the Error message.
13. Floor Control Server Operations
This section specifies how floor control servers can perform
different operations, such as granting a floor, using the protocol
elements described in earlier sections.
On reception of a message from a client, the floor control server
MUST check whether the value of the Primitive is supported. If it
does not, the floor control server SHOULD send an Error message, as
described in Section 13.8, with Error code 3 (Unknown Primitive).
On reception of a message from a client, the floor control server
MUST check whether the value of the Conference ID matched an existing
conference. If it does not, the floor control server SHOULD send an
Error message, as described in Section 13.8, with Error code 1
(Conference does not Exist).
Camarillo, et al. Standards Track [Page 47]
^L
RFC 4582 BFCP November 2006
On reception of a message from a client, the floor control server
follows the rules in Section 9 that relate to the authentication of
the message.
On reception of a message from a client, the floor control server
MUST check whether it understands all the mandatory ('M' bit set)
attributes in the message. If the floor control server does not
understand all of them, the floor control server SHOULD send an Error
message, as described in Section 13.8, with Error code 2
(Authentication Failed). The Error message SHOULD list the
attributes that were not understood.
13.1. Reception of a FloorRequest Message
On reception of a FloorRequest message, the floor control server
follows the rules in Section 9 that relate to client authentication
and authorization. If while processing the FloorRequest message, the
floor control server encounters an error, it SHOULD generate an Error
response following the procedures described in Section 13.8.
BFCP allows floor participants to have several ongoing floor
requests for the same floor (e.g., the same floor participant can
occupy more than one position in a queue at the same time). A
floor control server that only supports a certain number of
ongoing floor requests per floor participant (e.g., one) can use
Error Code 8 (You have Already Reached the Maximum Number of
Ongoing Floor Requests for this Floor) to inform the floor
participant.
13.1.1. Generating the First FloorRequestStatus Message
The successful processing of a FloorRequest message by a floor
control server involves generating one or several FloorRequestStatus
messages, the first of which SHOULD be generated as soon as possible.
If the floor control server cannot accept, grant, or deny the floor
request right away (e.g., a decision from a chair is needed), it
SHOULD use a Request Status value of Pending in the OVERALL-REQUEST-
STATUS attribute (within the FLOOR-REQUEST-INFORMATION grouped
attribute) of the first FloorRequestStatus message it generates.
The policy that a floor control server follows to grant or deny
floors is outside the scope of this document. A given floor
control server may perform these decisions automatically while
another may contact a human acting as a chair every time a
decision needs to be made.
The floor control server MUST copy the Conference ID, the Transaction
ID, and the User ID from the FloorRequest into the
Camarillo, et al. Standards Track [Page 48]
^L
RFC 4582 BFCP November 2006
FloorRequestStatus, as described in Section 8.2. Additionally, the
floor control server MUST add a FLOOR-REQUEST-INFORMATION grouped
attribute to the FloorRequestStatus. The attributes contained in
this grouped attribute carry information about the floor request.
The floor control server MUST assign an identifier that is unique
within the conference to this floor request, and MUST insert it in
the Floor Request ID field of the FLOOR-REQUEST-INFORMATION
attribute. This identifier will be used by the floor participant (or
by a chair or chairs) to refer to this specific floor request in the
future.
The floor control server MUST copy the Floor IDs in the FLOOR-ID
attributes of the FloorRequest into the FLOOR-REQUEST-STATUS
attributes in the FLOOR-REQUEST-INFORMATION grouped attribute. These
Floor IDs identify the floors being requested (i.e., the floors
associated with this particular floor request).
The floor control server SHOULD copy (if present) the contents of the
BENEFICIARY-ID attribute from the FloorRequest into a
BENEFICIARY-INFORMATION attribute inside the
FLOOR-REQUEST-INFORMATION grouped attribute. Additionally, the floor
control server MAY provide the display name and the URI of the
beneficiary in this BENEFICIARY-INFORMATION attribute.
The floor control server MAY provide information about the requester
of the floor in a REQUESTED-BY-INFORMATION attribute inside the
FLOOR-REQUEST-INFORMATION grouped attribute.
The floor control server MAY copy (if present) the PARTICIPANT-
PROVIDED-INFO attribute from the FloorRequest into the FLOOR-
REQUEST-INFORMATION grouped attribute.
Note that this attribute carries the priority requested by the
participant. The priority that the floor control server assigns
to the floor request depends on the priority requested by the
participant and the rights the participant has according to the
policy of the conference. For example, a participant that is only
allowed to use the Normal priority may request Highest priority
for a floor request. In that case, the floor control server would
ignore the priority requested by the participant.
The floor control server MAY copy (if present) the
PARTICIPANT-PROVIDED-INFO attribute from the FloorRequest into the
FLOOR-REQUEST-INFORMATION grouped attribute.
Camarillo, et al. Standards Track [Page 49]
^L
RFC 4582 BFCP November 2006
13.1.2. Generation of Subsequent FloorRequestStatus Messages
A floor request is considered to be ongoing as long as it is not in
the Cancelled, Released, or Revoked states. If the OVERALL-REQUEST-
STATUS attribute (inside the FLOOR-REQUEST-INFORMATION grouped
attribute) of the first FloorRequestStatus message generated by the
floor control server did not indicate any of these states, the floor
control server will need to send subsequent FloorRequestStatus
messages.
When the status of the floor request changes, the floor control
server SHOULD send new FloorRequestStatus messages with the
appropriate Request Status. The floor control server MUST add a
FLOOR-REQUEST-INFORMATION attribute with a Floor Request ID equal to
the one sent in the first FloorRequestStatus message to any new
FloorRequestStatus related to the same floor request. (The Floor
Request ID identifies the floor request to which the
FloorRequestStatus applies.)
The floor control server MUST set the Transaction ID of subsequent
FloorRequestStatus messages to 0.
The rate at which the floor control server sends
FloorRequestStatus messages is a matter of local policy. A floor
control server may choose to send a new FloorRequestStatus message
every time the floor request moves in the floor request queue,
while another may choose only to send a new FloorRequestStatus
message when the floor request is Granted or Denied.
The floor control server may add a STATUS-INFO attribute to any of
the FloorRequestStatus messages it generates to provide extra
information about its decisions regarding the floor request (e.g.,
why it was denied).
Floor participants and floor chairs may request to be informed
about the status of a floor following the procedures in
Section 12.1. If the processing of a floor request changes the
status of a floor (e.g., the floor request is granted and
consequently the floor has a new holder), the floor control server
needs to follow the procedures in Section 13.5 to inform the
clients that have requested that information.
The common header and the rest of the attributes are the same as in
the first FloorRequestStatus message.
The floor control server can discard the state information about a
particular floor request when this reaches a status of Cancelled,
Released, or Revoked.
Camarillo, et al. Standards Track [Page 50]
^L
RFC 4582 BFCP November 2006
13.2. Reception of a FloorRequestQuery Message
On reception of a FloorRequestQuery message, the floor control server
follows the rules in Section 9 that relate to client authentication
and authorization. If while processing the FloorRequestQuery
message, the floor control server encounters an error, it SHOULD
generate an Error response following the procedures described in
Section 13.8.
The successful processing of a FloorRequestQuery message by a floor
control server involves generating a FloorRequestStatus message,
which SHOULD be generated as soon as possible.
The floor control server MUST copy the Conference ID, the Transaction
ID, and the User ID from the FloorRequestQuery message into the
FloorRequestStatus message, as described in Section 8.2.
Additionally, the floor control server MUST include information about
the floor request in the FLOOR-REQUEST-INFORMATION grouped attribute
to the FloorRequestStatus.
The floor control server MUST copy the contents of the
FLOOR-REQUEST-ID attribute from the FloorRequestQuery message into
the Floor Request ID field of the FLOOR-REQUEST-INFORMATION
attribute.
The floor control server MUST add FLOOR-REQUEST-STATUS attributes to
the FLOOR-REQUEST-INFORMATION grouped attribute identifying the
floors being requested (i.e., the floors associated with the floor
request identified by the FLOOR-REQUEST-ID attribute).
The floor control server SHOULD add a BENEFICIARY-ID attribute to the
FLOOR-REQUEST-INFORMATION grouped attribute identifying the
beneficiary of the floor request. Additionally, the floor control
server MAY provide the display name and the URI of the beneficiary in
this BENEFICIARY-INFORMATION attribute.
The floor control server MAY provide information about the requester
of the floor in a REQUESTED-BY-INFORMATION attribute inside the
FLOOR-REQUEST-INFORMATION grouped attribute.
The floor control server MAY provide the reason why the floor
participant requested the floor in a PARTICIPANT-PROVIDED-INFO.
The floor control server MAY also add to the
FLOOR-REQUEST-INFORMATION grouped attribute a PRIORITY attribute with
the Priority value requested for the floor request and a STATUS-INFO
attribute with extra information about the floor request.
Camarillo, et al. Standards Track [Page 51]
^L
RFC 4582 BFCP November 2006
The floor control server MUST add an OVERALL-REQUEST-STATUS attribute
to the FLOOR-REQUEST-INFORMATION grouped attribute with the current
status of the floor request. The floor control server MAY provide
information about the status of the floor request as it relates to
each of the floors being requested in the FLOOR-REQUEST-STATUS
attributes.
13.3. Reception of a UserQuery Message
On reception of a UserQuery message, the floor control server follows
the rules in Section 9 that relate to client authentication and
authorization. If while processing the UserQuery message, the floor
control server encounters an error, it SHOULD generate an Error
response following the procedures described in Section 13.8.
The successful processing of a UserQuery message by a floor control
server involves generating a UserStatus message, which SHOULD be
generated as soon as possible.
The floor control server MUST copy the Conference ID, the Transaction
ID, and the User ID from the UserQuery message into the USerStatus
message, as described in Section 8.2.
The sender of the UserQuery message is requesting information about
all the floor requests associated with a given participant (i.e., the
floor requests where the participant is either the beneficiary or the
requester). This participant is identified by a BENEFICIARY-ID
attribute or, in the absence of a BENEFICIARY-ID attribute, by a the
User ID in the common header of the UserQuery message.
The floor control server MUST copy, if present, the contents of the
BENEFICIARY-ID attribute from the UserQuery message into a
BENEFICIARY-INFORMATION attribute in the UserStatus message.
Additionally, the floor control server MAY provide the display name
and the URI of the participant about which the UserStatus message
provides information in this BENEFICIARY-INFORMATION attribute.
The floor control server SHOULD add to the UserStatus message a
FLOOR-REQUEST-INFORMATION grouped attribute for each floor request
related to the participant about which the message provides
information (i.e., the floor requests where the participant is either
the beneficiary or the requester). For each
FLOOR-REQUEST-INFORMATION attribute, the floor control server follows
the following steps.
The floor control server MUST identify the floor request the
FLOOR-REQUEST-INFORMATION attribute applies to by filling the Floor
Request ID field of the FLOOR-REQUEST-INFORMATION attribute.
Camarillo, et al. Standards Track [Page 52]
^L
RFC 4582 BFCP November 2006
The floor control server MUST add FLOOR-REQUEST-STATUS attributes to
the FLOOR-REQUEST-INFORMATION grouped attribute identifying the
floors being requested (i.e., the floors associated with the floor
request identified by the FLOOR-REQUEST-ID attribute).
The floor control server SHOULD add a BENEFICIARY-ID attribute to the
FLOOR-REQUEST-INFORMATION grouped attribute identifying the
beneficiary of the floor request. Additionally, the floor control
server MAY provide the display name and the URI of the beneficiary in
this BENEFICIARY-INFORMATION attribute.
The floor control server MAY provide information about the requester
of the floor in a REQUESTED-BY-INFORMATION attribute inside the
FLOOR-REQUEST-INFORMATION grouped attribute.
The floor control server MAY provide the reason why the floor
participant requested the floor in a PARTICIPANT-PROVIDED-INFO.
The floor control server MAY also add to the FLOOR-REQUEST-
INFORMATION grouped attribute a PRIORITY attribute with the Priority
value requested for the floor request.
The floor control server MUST include the current status of the floor
request in an OVERALL-REQUEST-STATUS attribute to the FLOOR-REQUEST-
INFORMATION grouped attribute. The floor control server MAY add a
STATUS-INFO attribute with extra information about the floor request.
The floor control server MAY provide information about the status of
the floor request as it relates to each of the floors being requested
in the FLOOR-REQUEST-STATUS attributes.
13.4. Reception of a FloorRelease Message
On reception of a FloorRelease message, the floor control server
follows the rules in Section 9 that relate to client authentication
and authorization. If while processing the FloorRelease message, the
floor control server encounters an error, it SHOULD generate an Error
response following the procedures described in Section 13.8.
The successful processing of a FloorRelease message by a floor
control server involves generating a FloorRequestStatus message,
which SHOULD be generated as soon as possible.
The floor control server MUST copy the Conference ID, the Transaction
ID, and the User ID from the FloorRelease message into the
FloorRequestStatus message, as described in Section 8.2.
Camarillo, et al. Standards Track [Page 53]
^L
RFC 4582 BFCP November 2006
The floor control server MUST add a FLOOR-REQUEST-INFORMATION grouped
attribute to the FloorRequestStatus. The attributes contained in
this grouped attribute carry information about the floor request.
The FloorRelease message identifies the floor request it applies to
using a FLOOR-REQUEST-ID. The floor control server MUST copy the
contents of the FLOOR-REQUEST-ID attribute from the FloorRelease
message into the Floor Request ID field of the
FLOOR-REQUEST-INFORMATION attribute.
The floor control server MUST identify the floors being requested
(i.e., the floors associated with the floor request identified by the
FLOOR-REQUEST-ID attribute) in FLOOR-REQUEST-STATUS attributes to the
FLOOR-REQUEST-INFORMATION grouped attribute.
The floor control server MUST add an OVERALL-REQUEST-STATUS attribute
to the FLOOR-REQUEST-INFORMATION grouped attribute. The Request
Status value SHOULD be Released, if the floor (or floors) had been
previously granted, or Cancelled, if the floor (or floors) had not
been previously granted. The floor control server MAY add a STATUS-
INFO attribute with extra information about the floor request.
13.5. Reception of a FloorQuery Message
On reception of a FloorQuery message, the floor control server
follows the rules in Section 9 that relate to client authentication.
If while processing the FloorRelease message, the floor control
server encounters an error, it SHOULD generate an Error response
following the procedures described in Section 13.8.
A floor control server receiving a FloorQuery message from a client
SHOULD keep this client informed about the status of the floors
identified by FLOOR-ID attributes in the FloorQuery message. Floor
Control Servers keep clients informed by using FloorStatus messages.
An individual FloorStatus message carries information about a single
floor. So, when a FloorQuery message requests information about more
than one floor, the floor control server needs to send separate
FloorStatus messages for different floors.
The information FloorQuery messages carry may depend on the user
requesting the information. For example, a chair may be able to
receive information about pending requests, while a regular user may
not be authorized to do so.
Camarillo, et al. Standards Track [Page 54]
^L
RFC 4582 BFCP November 2006
13.5.1. Generation of the First FloorStatus Message
The successful processing of a FloorQuery message by a floor control
server involves generating one or several FloorStatus messages, the
first of which SHOULD be generated as soon as possible.
The floor control server MUST copy the Conference ID, the Transaction
ID, and the User ID from the FloorQuery message into the FloorStatus
message, as described in Section 8.2.
If the FloorQuery message did not contain any FLOOR-ID attribute, the
floor control server sends the FloorStatus message without adding any
additional attribute and does not send any subsequent FloorStatus
message to the floor participant.
If the FloorQuery message contained one or more FLOOR-ID attributes,
the floor control server chooses one from among them and adds this
FLOOR-ID attribute to the FloorStatus message. The floor control
server SHOULD add a FLOOR-REQUEST-INFORMATION grouped attribute for
each floor request associated to the floor. Each
FLOOR-REQUEST-INFORMATION grouped attribute contains a number of
attributes that provide information about the floor request. For
each FLOOR-REQUEST-INFORMATION attribute, the floor control server
follows the following steps.
The floor control server MUST identify the floor request the
FLOOR-REQUEST-INFORMATION attribute applies to by filling the Floor
Request ID field of the FLOOR-REQUEST-INFORMATION attribute.
The floor control server MUST add FLOOR-REQUEST-STATUS attributes to
the FLOOR-REQUEST-INFORMATION grouped attribute identifying the
floors being requested (i.e., the floors associated with the floor
request identified by the FLOOR-REQUEST-ID attribute).
The floor control server SHOULD add a BENEFICIARY-ID attribute to the
FLOOR-REQUEST-INFORMATION grouped attribute identifying the
beneficiary of the floor request. Additionally, the floor control
server MAY provide the display name and the URI of the beneficiary in
this BENEFICIARY-INFORMATION attribute.
The floor control server MAY provide information about the requester
of the floor in a REQUESTED-BY-INFORMATION attribute inside the
FLOOR-REQUEST-INFORMATION grouped attribute.
Camarillo, et al. Standards Track [Page 55]
^L
RFC 4582 BFCP November 2006
The floor control server MAY provide the reason why the floor
participant requested the floor in a PARTICIPANT-PROVIDED-INFO.
The floor control server MAY also add to the FLOOR-REQUEST-
INFORMATION grouped attribute a PRIORITY attribute with the Priority
value requested for the floor request.
The floor control server MUST add an OVERALL-REQUEST-STATUS attribute
to the FLOOR-REQUEST-INFORMATION grouped attribute with the current
status of the floor request. The floor control server MAY add a
STATUS-INFO attribute with extra information about the floor request.
The floor control server MAY provide information about the status of
the floor request as it relates to each of the floors being requested
in the FLOOR-REQUEST-STATUS attributes.
13.5.2. Generation of Subsequent FloorStatus Messages
If the FloorQuery message carried more than one FLOOR-ID attribute,
the floor control server SHOULD generate a FloorStatus message for
each of them (except for the FLOOR-ID attribute chosen for the first
FloorStatus message) as soon as possible. These FloorStatus messages
are generated following the same rules as those for the first
FloorStatus message (see Section 13.5.1), but their Transaction ID is
0.
After generating these messages, the floor control server sends
FloorStatus messages, periodically keeping the client informed about
all the floors for which the client requested information. The
Transaction ID of these messages MUST be 0.
The rate at which the floor control server sends FloorStatus
messages is a matter of local policy. A floor control server may
choose to send a new FloorStatus message every time a new floor
request arrives, while another may choose to only send a new
FloorStatus message when a new floor request is Granted.
13.6. Reception of a ChairAction Message
On reception of a ChairAction message, the floor control server
follows the rules in Section 9 that relate to client authentication
and authorization. If while processing the ChairAction message, the
floor control server encounters an error, it SHOULD generate an Error
response following the procedures described in Section 13.8.
The successful processing of a ChairAction message by a floor control
server involves generating a ChairActionAck message, which SHOULD be
generated as soon as possible.
Camarillo, et al. Standards Track [Page 56]
^L
RFC 4582 BFCP November 2006
The floor control server MUST copy the Conference ID, the Transaction
ID, and the User ID from the ChairAction message into the
ChairActionAck message, as described in Section 8.2.
The floor control server needs to take into consideration the
operation requested in the ChairAction message (e.g., granting a
floor) but does not necessarily need to perform it as requested by
the floor chair. The operation that the floor control server
performs depends on the ChairAction message and on the internal state
of the floor control server.
For example, a floor chair may send a ChairAction message granting a
floor that was requested as part of an atomic floor request operation
that involved several floors. Even if the chair responsible for one
of the floors instructs the floor control server to grant the floor,
the floor control server will not grant it until the chairs
responsible for the other floors agree to grant them as well.
So, the floor control server is ultimately responsible for keeping a
coherent floor state using instructions from floor chairs as input to
this state.
If the new Status in the ChairAction message is Accepted and all the
bits of the Queue Position field are zero, the floor chair is
requesting that the floor control server assign a queue position
(e.g., the last in the queue) to the floor request based on the local
policy of the floor control server. (Of course, such a request only
applies if the floor control server implements a queue.)
13.7. Reception of a Hello Message
On reception of a Hello message, the floor control server follows the
rules in Section 9 that relate to client authentication. If while
processing the Hello message, the floor control server encounters an
error, it SHOULD generate an Error response following the procedures
described in Section 13.8.
The successful processing of a Hello message by a floor control
server involves generating a HelloAck message, which SHOULD be
generated as soon as possible. The floor control server MUST copy
the Conference ID, the Transaction ID, and the User ID from the Hello
into the HelloAck, as described in Section 8.2.
The floor control server MUST add a SUPPORTED-PRIMITIVES attribute to
the HelloAck message listing all the primitives (i.e., BFCP messages)
supported by the floor control server.
Camarillo, et al. Standards Track [Page 57]
^L
RFC 4582 BFCP November 2006
The floor control server MUST add a SUPPORTED-ATTRIBUTES attribute to
the HelloAck message listing all the attributes supported by the
floor control server.
13.8. Error Message Generation
Error messages are always sent in response to a previous message from
the client as part of a client-initiated transaction. The ABNF in
Section 5.3.13 describes the attributes that an Error message can
contain. In addition, the ABNF specifies normatively which of these
attributes are mandatory and which ones are optional.
The floor control server MUST copy the Conference ID, the Transaction
ID, and the User ID from the message from the client into the Error
message, as described in Section 8.2.
The floor control server MUST add an ERROR-CODE attribute to the
Error message. The ERROR-CODE attribute contains an Error Code from
Table 5. Additionally, the floor control server may add an
ERROR-INFO attribute with extra information about the error.
14. Security Considerations
BFCP uses TLS to provide mutual authentication between clients and
servers. TLS also provides replay and integrity protection and
confidentiality. It is RECOMMENDED that TLS with non-null encryption
always be used. BFCP entities MAY use other security mechanisms as
long as they provide similar security properties.
The remainder of this section analyzes some of the threats against
BFCP and how they are addressed.
An attacker may attempt to impersonate a client (a floor participant
or a floor chair) in order to generate forged floor requests or to
grant or deny existing floor requests. Client impersonation is
avoided by having servers only accept BFCP messages over
authenticated TLS connections. The floor control server assumes that
attackers cannot highjack the TLS connection and, therefore, that
messages over the TLS connection come from the client that was
initially authenticated.
An attacker may attempt to impersonate a floor control server. A
successful attacker would be able to make clients think that they
hold a particular floor so that they would try to access a resource
(e.g., sending media) without having legitimate rights to access it.
Floor control server impersonation is avoided by having servers only
accept BFCP messages over authenticated TLS connections.
Camarillo, et al. Standards Track [Page 58]
^L
RFC 4582 BFCP November 2006
Attackers may attempt to modify messages exchanged by a client and a
floor control server. The integrity protection provided by TLS
connections prevents this attack.
An attacker may attempt to fetch a valid message sent by a client to
a floor control server and replay it over a connection between the
attacker and the floor control server. This attack is prevented by
having floor control servers check that messages arriving over a
given authenticated TLS connection use an authorized user ID (i.e., a
user ID that the user that established the authenticated TLS
connection is allowed to use).
Attackers may attempt to pick messages from the network to get access
to confidential information between the floor control server and a
client (e.g., why a floor request was denied). TLS confidentiality
prevents this attack. Therefore, it is RECOMMENDED that TLS be used
with a non-null encryption algorithm.
15. IANA Considerations
The IANA has created a new registry for BFCP parameters called
"Binary Floor Control Protocol (BFCP) Parameters". This new registry
has a number of subregistries, which are described in the following
sections.
15.1. Attribute Subregistry
This section establishes the Attribute subregistry under the BFCP
Parameters registry. As per the terminology in RFC 2434 [4], the
registration policy for BFCP attributes shall be "Specification
Required". For the purposes of this subregistry, the BFCP attributes
for which IANA registration is requested MUST be defined by a
standards-track RFC. Such an RFC MUST specify the attribute's type,
name, format, and semantics.
For each BFCP attribute, the IANA registers its type, its name, and
the reference to the RFC where the attribute is defined. The
following table contains the initial values of this subregistry.
Camarillo, et al. Standards Track [Page 59]
^L
RFC 4582 BFCP November 2006
+------+---------------------------+------------+
| Type | Attribute | Reference |
+------+---------------------------+------------+
| 1 | BENEFICIARY-ID | [RFC 4582] |
| 2 | FLOOR-ID | [RFC 4582] |
| 3 | FLOOR-REQUEST-ID | [RFC 4582] |
| 4 | PRIORITY | [RFC 4582] |
| 5 | REQUEST-STATUS | [RFC 4582] |
| 6 | ERROR-CODE | [RFC 4582] |
| 7 | ERROR-INFO | [RFC 4582] |
| 8 | PARTICIPANT-PROVIDED-INFO | [RFC 4582] |
| 9 | STATUS-INFO | [RFC 4582] |
| 10 | SUPPORTED-ATTRIBUTES | [RFC 4582] |
| 11 | SUPPORTED-PRIMITIVES | [RFC 4582] |
| 12 | USER-DISPLAY-NAME | [RFC 4582] |
| 13 | USER-URI | [RFC 4582] |
| 14 | BENEFICIARY-INFORMATION | [RFC 4582] |
| 15 | FLOOR-REQUEST-INFORMATION | [RFC 4582] |
| 16 | REQUESTED-BY-INFORMATION | [RFC 4582] |
| 17 | FLOOR-REQUEST-STATUS | [RFC 4582] |
| 18 | OVERALL-REQUEST-STATUS | [RFC 4582] |
+------+---------------------------+------------+
Table 6: Initial values of the BFCP Attribute subregistry
15.2. Primitive Subregistry
This section establishes the Primitive subregistry under the BFCP
Parameters registry. As per the terminology in RFC 2434 [4], the
registration policy for BFCP primitives shall be "Specification
Required". For the purposes of this subregistry, the BFCP primitives
for which IANA registration is requested MUST be defined by a
standards-track RFC. Such an RFC MUST specify the primitive's value,
name, format, and semantics.
For each BFCP primitive, the IANA registers its value, its name, and
the reference to the RFC where the primitive is defined. The
following table contains the initial values of this subregistry.
Camarillo, et al. Standards Track [Page 60]
^L
RFC 4582 BFCP November 2006
+-------+--------------------+------------+
| Value | Primitive | Reference |
+-------+--------------------+------------+
| 1 | FloorRequest | [RFC 4582] |
| 2 | FloorRelease | [RFC 4582] |
| 3 | FloorRequestQuery | [RFC 4582] |
| 4 | FloorRequestStatus | [RFC 4582] |
| 5 | UserQuery | [RFC 4582] |
| 6 | UserStatus | [RFC 4582] |
| 7 | FloorQuery | [RFC 4582] |
| 8 | FloorStatus | [RFC 4582] |
| 9 | ChairAction | [RFC 4582] |
| 10 | ChairActionAck | [RFC 4582] |
| 11 | Hello | [RFC 4582] |
| 12 | HelloAck | [RFC 4582] |
| 13 | Error | [RFC 4582] |
+-------+--------------------+------------+
Table 7: Initial values of the BFCP primitive subregistry
15.3. Request Status Subregistry
This section establishes the Request Status subregistry under the
BFCP Parameters registry. As per the terminology in RFC 2434 [4],
the registration policy for BFCP request status shall be
"Specification Required". For the purposes of this subregistry, the
BFCP request status for which IANA registration is requested MUST be
defined by a standards-track RFC. Such an RFC MUST specify the value
and the semantics of the request status.
For each BFCP request status, the IANA registers its value, its
meaning, and the reference to the RFC where the request status is
defined. The following table contains the initial values of this
subregistry.
+-------+-----------+------------+
| Value | Status | Reference |
+-------+-----------+------------+
| 1 | Pending | [RFC 4582] |
| 2 | Accepted | [RFC 4582] |
| 3 | Granted | [RFC 4582] |
| 4 | Denied | [RFC 4582] |
| 5 | Cancelled | [RFC 4582] |
| 6 | Released | [RFC 4582] |
| 7 | Revoked | [RFC 4582] |
+-------+-----------+------------+
Table 8: Initial values of the Request Status subregistry
Camarillo, et al. Standards Track [Page 61]
^L
RFC 4582 BFCP November 2006
15.4. Error Code Subregistry
This section establishes the Error Code subregistry under the BFCP
Parameters registry. As per the terminology in RFC 2434 [4], the
registration policy for BFCP error codes shall be "Specification
Required". For the purposes of this subregistry, the BFCP error
codes for which IANA registration is requested MUST be defined by a
standards-track RFC. Such an RFC MUST specify the value and the
semantics of the error code, and any Error Specific Details that
apply to it.
For each BFCP primitive, the IANA registers its value, its meaning,
and the reference to the RFC where the primitive is defined. The
following table contains the initial values of this subregistry.
+-------+-----------------------------------------------+------------+
| Value | Meaning | Reference |
+-------+-----------------------------------------------+------------+
| 1 | Conference does not Exist | [RFC 4582] |
| 2 | User does not Exist | [RFC 4582] |
| 3 | Unknown Primitive | [RFC 4582] |
| 4 | Unknown Mandatory Attribute | [RFC 4582] |
| 5 | Unauthorized Operation | [RFC 4582] |
| 6 | Invalid Floor ID | [RFC 4582] |
| 7 | Floor Request ID Does Not Exist | [RFC 4582] |
| 8 | You have Already Reached the Maximum Number | [RFC 4582] |
| | of Ongoing Floor Requests for this Floor | |
| 9 | Use TLS | [RFC 4582] |
+-------+-----------------------------------------------+-----------+
Table 9: Initial Values of the Error Code subregistry
16. Acknowledgements
The XCON WG chairs, Adam Roach and Alan Johnston, provided useful
ideas for this document. Additionally, Xiaotao Wu, Paul Kyzivat,
Jonathan Rosenberg, Miguel A. Garcia-Martin, Mary Barnes, Ben
Campbell, Dave Morgan, and Oscar Novo provided useful comments.
Camarillo, et al. Standards Track [Page 62]
^L
RFC 4582 BFCP November 2006
17. References
17.1. Normative References
[1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997.
[2] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
Specifications: ABNF", RFC 4234, October 2005.
[3] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS)
Protocol Version 1.1", RFC 4346, April 2006.
[4] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.
[5] Chown, P., "Advanced Encryption Standard (AES) Ciphersuites for
Transport Layer Security (TLS)", RFC 3268, June 2002.
[6] Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD
63, RFC 3629, November 2003.
[7] Camarillo, G., "Session Description Protocol (SDP) Format for
Binary Floor Control Protocol (BFCP) Streams", RFC 4583,
November 2006.
17.2. Informational References
[8] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with
Session Description Protocol (SDP)", RFC 3264, June 2002.
[9] Koskelainen, P., Ott, J., Schulzrinne, H., and X. Wu,
"Requirements for Floor Control Protocols", RFC 4376, February
2006.
[10] Barnes, M. and C. Boulton, "A Framework and Data Model for
Centralized Conferencing", Work in Progress, February 2005.
Camarillo, et al. Standards Track [Page 63]
^L
RFC 4582 BFCP November 2006
Authors' Addresses
Gonzalo Camarillo
Ericsson
Hirsalantie 11
Jorvas 02420
Finland
EMail: Gonzalo.Camarillo@ericsson.com
Joerg Ott
Helsinki University of Technology
Department for Electrical and Communications Engineering
Networking Laboratory
PO Box 3000
02015 TKK
Finland
EMail: jo@netlab.hut.fi
Keith Drage
Lucent Technologies
Windmill Hill Business Park
Swindon
Wiltshire SN5 6PP
UK
EMail: drage@lucent.com
Camarillo, et al. Standards Track [Page 64]
^L
RFC 4582 BFCP November 2006
Full Copyright Statement
Copyright (C) The IETF Trust (2006).
This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST,
AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Camarillo, et al. Standards Track [Page 65]
^L
|