1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
|
Network Working Group B. Korver
Request for Comments: 4945 Network Resonance, Inc.
Category: Standards Track August 2007
The Internet IP Security PKI Profile of IKEv1/ISAKMP, IKEv2, and PKIX
Status of This Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The IETF Trust (2007).
Abstract
The Internet Key Exchange (IKE) and Public Key Infrastructure for
X.509 (PKIX) certificate profile both provide frameworks that must be
profiled for use in a given application. This document provides a
profile of IKE and PKIX that defines the requirements for using PKI
technology in the context of IKE/IPsec. The document complements
protocol specifications such as IKEv1 and IKEv2, which assume the
existence of public key certificates and related keying materials,
but which do not address PKI issues explicitly. This document
addresses those issues. The intended audience is implementers of PKI
for IPsec.
Korver Standards Track [Page 1]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
Table of Contents
1. Introduction ....................................................4
2. Terms and Definitions ...........................................4
3. Use of Certificates in RFC 2401 and IKEv1/ISAKMP ................5
3.1. Identification Payload .....................................5
3.1.1. ID_IPV4_ADDR and ID_IPV6_ADDR .......................7
3.1.2. ID_FQDN .............................................9
3.1.3. ID_USER_FQDN .......................................10
3.1.4. ID_IPV4_ADDR_SUBNET, ID_IPV6_ADDR_SUBNET,
ID_IPV4_ADDR_RANGE, ID_IPV6_ADDR_RANGE .............11
3.1.5. ID_DER_ASN1_DN .....................................11
3.1.6. ID_DER_ASN1_GN .....................................12
3.1.7. ID_KEY_ID ..........................................12
3.1.8. Selecting an Identity from a Certificate ...........12
3.1.9. Subject for DN Only ................................12
3.1.10. Binding Identity to Policy ........................13
3.2. Certificate Request Payload ...............................13
3.2.1. Certificate Type ...................................14
3.2.2. X.509 Certificate - Signature ......................14
3.2.3. Revocation Lists (CRL and ARL) .....................14
3.2.4. PKCS #7 wrapped X.509 certificate ..................15
3.2.5. Location of Certificate Request Payloads ...........15
3.2.6. Presence or Absence of Certificate Request
Payloads ...........................................15
3.2.7. Certificate Requests ...............................15
3.2.8. Robustness .........................................18
3.2.9. Optimizations ......................................18
3.3. Certificate Payload .......................................19
3.3.1. Certificate Type ...................................20
3.3.2. X.509 Certificate - Signature ......................20
3.3.3. Revocation Lists (CRL and ARL) .....................20
3.3.4. PKCS #7 Wrapped X.509 Certificate ..................20
3.3.5. Location of Certificate Payloads ...................21
3.3.6. Certificate Payloads Not Mandatory .................21
3.3.7. Response to Multiple Certification
Authority Proposals ................................21
3.3.8. Using Local Keying Materials .......................21
3.3.9. Multiple End-Entity Certificates ...................22
3.3.10. Robustness ........................................22
3.3.11. Optimizations .....................................23
4. Use of Certificates in RFC 4301 and IKEv2 ......................24
4.1. Identification Payload ....................................24
4.2. Certificate Request Payload ...............................24
4.2.1. Revocation Lists (CRL and ARL) .....................24
4.3. Certificate Payload .......................................25
4.3.1. IKEv2's Hash and URL of X.509 Certificate ..........25
4.3.2. Location of Certificate Payloads ...................25
Korver Standards Track [Page 2]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
4.3.3. Ordering of Certificate Payloads ...................25
5. Certificate Profile for IKEv1/ISAKMP and IKEv2 .................26
5.1. X.509 Certificates ........................................26
5.1.1. Versions ...........................................26
5.1.2. Subject ............................................26
5.1.3. X.509 Certificate Extensions .......................27
5.2. X.509 Certificate Revocation Lists ........................33
5.2.1. Multiple Sources of Certificate Revocation
Information ........................................34
5.2.2. X.509 Certificate Revocation List Extensions .......34
5.3. Strength of Signature Hashing Algorithms ..................35
6. Configuration Data Exchange Conventions ........................36
6.1. Certificates ..............................................36
6.2. CRLs and ARLs .............................................37
6.3. Public Keys ...............................................37
6.4. PKCS#10 Certificate Signing Requests ......................37
7. Security Considerations ........................................37
7.1. Certificate Request Payload ...............................37
7.2. IKEv1 Main Mode ...........................................37
7.3. Disabling Certificate Checks ..............................38
8. Acknowledgements ...............................................38
9. References .....................................................38
9.1. Normative References ......................................38
9.2. Informative References ....................................39
Appendix A. The Possible Dangers of Delta CRLs ....................40
Appendix B. More on Empty CERTREQs ................................40
Korver Standards Track [Page 3]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
1. Introduction
IKE [1], ISAKMP [2], and IKEv2 [3] provide a secure key exchange
mechanism for use with IPsec [4] [14]. In many cases, the peers
authenticate using digital certificates as specified in PKIX [5].
Unfortunately, the combination of these standards leads to an
underspecified set of requirements for the use of certificates in the
context of IPsec.
ISAKMP references the PKIX certificate profile but, in many cases,
merely specifies the contents of various messages without specifying
their syntax or semantics. Meanwhile, the PKIX certificate profile
provides a large set of certificate mechanisms that are generally
applicable for Internet protocols, but little specific guidance for
IPsec. Given the numerous underspecified choices, interoperability
is hampered if all implementers do not make similar choices, or at
least fail to account for implementations that have chosen
differently.
This profile of the IKE and PKIX frameworks is intended to provide an
agreed-upon standard for using PKI technology in the context of IPsec
by profiling the PKIX framework for use with IKE and IPsec, and by
documenting the contents of the relevant IKE payloads and further
specifying their semantics.
In addition to providing a profile of IKE and PKIX, this document
attempts to incorporate lessons learned from recent experience with
both implementation and deployment, as well as the current state of
related protocols and technologies.
Material from ISAKMP, IKEv1, IKEv2, or PKIX is not repeated here, and
readers of this document are assumed to have read and understood
those documents. The requirements and security aspects of those
documents are fully relevant to this document as well.
This document is organized as follows. Section 2 defines special
terminology used in the rest of this document, Section 3 provides the
profile of IKEv1/ISAKMP, Section 4 provides a profile of IKEv2, and
Section 5 provides the profile of PKIX. Section 6 covers conventions
for the out-of-band exchange of keying materials for configuration
purposes.
2. Terms and Definitions
Except for those terms that are defined immediately below, all terms
used in this document are defined in either the PKIX [5], ISAKMP [2],
IKEv1 [1], IKEv2 [3], or Domain of Interpretation (DOI) [6]
documents.
Korver Standards Track [Page 4]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
o Peer source address: The source address in packets from a peer.
This address may be different from any addresses asserted as the
"identity" of the peer.
o FQDN: Fully qualified domain name.
o ID_USER_FQDN: IKEv2 renamed ID_USER_FQDN to ID_RFC822_ADDR. Both
are referred to as ID_USER_FQDN in this document.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [7].
3. Use of Certificates in RFC 2401 and IKEv1/ISAKMP
3.1. Identification Payload
The Identification (ID) Payload indicates the identity claimed by the
sender. The recipient can then use the ID as a lookup key for policy
and for certificate lookup in whatever certificate store or directory
that it has available. Our primary concern in this section is to
profile the ID payload so that it can be safely used to generate or
lookup policy. IKE mandates the use of the ID payload in Phase 1.
The DOI [6] defines the 11 types of Identification Data that can be
used and specifies the syntax for these types. These are discussed
below in detail.
The ID payload requirements in this document cover only the portion
of the explicit policy checks that deal with the Identification
Payload specifically. For instance, in the case where ID does not
contain an IP address, checks such as verifying that the peer source
address is permitted by the relevant policy are not addressed here,
as they are out of the scope of this document.
Implementations SHOULD populate ID with identity information that is
contained within the end-entity certificate. Populating ID with
identity information from the end-entity certificate enables
recipients to use ID as a lookup key to find the peer end-entity
certificate. The only case where implementations may populate ID
with information that is not contained in the end-entity certificate
is when ID contains the peer source address (a single address, not a
subnet or range).
Because implementations may use ID as a lookup key to determine which
policy to use, all implementations MUST be especially careful to
verify the truthfulness of the contents by verifying that they
correspond to some keying material demonstrably held by the peer.
Korver Standards Track [Page 5]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
Failure to do so may result in the use of an inappropriate or
insecure policy. The following sections describe the methods for
performing this binding.
The following table summarizes the binding of the Identification
Payload to the contents of end-entity certificates and of identity
information to policy. Each ID type is covered more thoroughly in
the following sections.
ID type | Support | Correspond | Cert | SPD lookup
| for send | PKIX Attrib | matching | rules
-------------------------------------------------------------------
| | | |
IP*_ADDR | MUST [a] | SubjAltName | MUST [b] | [c], [d]
| | iPAddress | |
| | | |
FQDN | MUST [a] | SubjAltName | MUST [b] | [c], [d]
| | dNSName | |
| | | |
USER_FQDN| MUST [a] | SubjAltName | MUST [b] | [c], [d]
| | rfc822Name | |
| | | |
IP range | MUST NOT | n/a | n/a | n/a
| | | |
DN | MUST [a] | Entire | MUST [b] | MUST support lookup
| | Subject, | | on any combination
| | bitwise | | of C, CN, O, or OU
| | compare | |
| | | |
GN | MUST NOT | n/a | n/a | n/a
| | | |
KEY_ID | MUST NOT | n/a | n/a | n/a
| | | |
[a] = Implementation MUST have the configuration option to send this
ID type in the ID payload. Whether or not the ID type is used
is a matter of local configuration.
[b] = The ID in the ID payload MUST match the contents of the
corresponding field (listed) in the certificate exactly, with
no other lookup. The matched ID MAY be used for Security
Policy Database (SPD) lookup, but is not required to be used
for this.
[c] = At a minimum, Implementation MUST be capable of being
configured to perform exact matching of the ID payload contents
to an entry in the local SPD.
Korver Standards Track [Page 6]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
[d] = In addition, the implementation MAY also be configurable to
perform substring or wildcard matches of ID payload contents to
entries in the local SPD. (More on this in Section 3.1.5.)
When sending an IPV4_ADDR, IPV6_ADDR, FQDN, or USER_FQDN,
implementations MUST be able to be configured to send the same string
as it appears in the corresponding SubjectAltName extension. This
document RECOMMENDS that deployers use this configuration option.
All these ID types are treated the same: as strings that can be
compared easily and quickly to a corresponding string in an explicit
value in the certificate. Of these types, FQDN and USER_FQDN are
RECOMMENDED over IP addresses (see discussion in Section 3.1.1).
When sending a Distinguished Name (DN) as ID, implementations MUST
send the entire DN in ID. Also, implementations MUST support at
least the C, CN, O, and OU attributes for SPD matching. See Section
3.1.5 for more details about DN, including SPD matching.
Recipients MUST be able to perform SPD matching on the exact contents
of the ID, and this SHOULD be the default setting. In addition,
implementations MAY use substrings or wildcards in local policy
configuration to do the SPD matching against the ID contents. In
other words, implementations MUST be able to do exact matches of ID
to SPD, but MAY also be configurable to do substring or wildcard
matches of ID to SPD.
3.1.1. ID_IPV4_ADDR and ID_IPV6_ADDR
Implementations MUST support at least the ID_IPV4_ADDR or
ID_IPV6_ADDR ID type, depending on whether the implementation
supports IPv4, IPv6, or both. These addresses MUST be encoded in
"network byte order", as specified in IP [8]: The least significant
bit (LSB) of each octet is the LSB of the corresponding byte in the
network address. For the ID_IPV4_ADDR type, the payload MUST contain
exactly four octets [8]. For the ID_IPV6_ADDR type, the payload MUST
contain exactly sixteen octets [10].
Implementations SHOULD NOT populate ID payload with IP addresses due
to interoperability issues such as problems with Network Address
Translator (NAT) traversal, and problems with IP verification
behavior.
Deployments may only want to consider using the IP address as ID if
all of the following are true:
o the peer's IP address is static, not dynamically changing
o the peer is NOT behind a NAT'ing device
Korver Standards Track [Page 7]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
o the administrator intends the implementation to verify that the
peer source address matches the IP address in the ID received, and
that in the iPAddress field in the peer certificate's
SubjectAltName extension.
Implementations MUST be capable of verifying that the IP address
presented in ID matches via bitwise comparison the IP address present
in the certificate's iPAddress field of the SubjectAltName extension.
Implementations MUST perform this verification by default. When
comparing the contents of ID with the iPAddress field in the
SubjectAltName extension for equality, binary comparison MUST be
performed. Note that certificates may contain multiple address
identity types -- in which case, at least one must match the source
IP. If the default is enabled, then a mismatch between the two
addresses MUST be treated as an error, and security association setup
MUST be aborted. This event SHOULD be auditable. Implementations
MAY provide a configuration option to (i.e., local policy
configuration can enable) skip that verification step, but that
option MUST be off by default. We include the "option-to-skip-
validation" in order to permit better interoperability as current
implementations vary greatly in how they behave on this topic.
In addition, implementations MUST be capable of verifying that the
address contained in the ID is the same as the address contained in
the IP header. Implementations SHOULD be able to check the address
in either the outermost or innermost IP header and MAY provide a
configuration option for specifying which is to be checked. If there
is no configuration option provided, an implementation SHOULD check
the peer source address contained in the outermost header (as is the
practice of most of today's implementations). If ID is one of the IP
address types, then implementations MUST perform this verification by
default. If this default is enabled, then a mismatch MUST be treated
as an error, and security association setup MUST be aborted. This
event SHOULD be auditable. Implementations MAY provide a
configuration option to (i.e. local policy configuration can enable)
skip that verification step, but that option MUST be off by default.
We include the "option-to-skip-validation" in order to permit better
interoperability, as current implementations vary greatly in how they
behave on the topic of verification of source IP.
If the default for both the verifications above are enabled, then, by
transitive property, the implementation will also be verifying that
the peer source IP address matches via a bitwise comparison the
contents of the iPAddress field in the SubjectAltName extension in
the certificate. In addition, implementations MAY allow
administrators to configure a local policy that explicitly requires
that the peer source IP address match via a bitwise comparison the
contents of the iPAddress field in the SubjectAltName extension in
Korver Standards Track [Page 8]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
the certificate. Implementations SHOULD allow administrators to
configure a local policy that skips this validation check.
Implementations MAY support substring, wildcard, or regular
expression matching of the contents of ID to look up the policy in
the SPD, and such would be a matter of local security policy
configuration.
Implementations MAY use the IP address found in the header of packets
received from the peer to look up the policy, but such
implementations MUST still perform verification of the ID payload.
Although packet IP addresses are inherently untrustworthy and must
therefore be independently verified, it is often useful to use the
apparent IP address of the peer to locate a general class of policies
that will be used until the mandatory identity-based policy lookup
can be performed.
For instance, if the IP address of the peer is unrecognized, a VPN
gateway device might load a general "road warrior" policy that
specifies a particular Certification Authority (CA) that is trusted
to issue certificates that contain a valid rfc822Name, which can be
used by that implementation to perform authorization based on access
control lists (ACLs) after the peer's certificate has been validated.
The rfc822Name can then be used to determine the policy that provides
specific authorization to access resources (such as IP addresses,
ports, and so forth).
As another example, if the IP address of the peer is recognized to be
a known peer VPN endpoint, policy may be determined using that
address, but until the identity (address) is validated by validating
the peer certificate, the policy MUST NOT be used to authorize any
IPsec traffic.
3.1.2. ID_FQDN
Implementations MUST support the ID_FQDN ID type, generally to
support host-based access control lists for hosts without fixed IP
addresses. However, implementations SHOULD NOT use the DNS to map
the FQDN to IP addresses for input into any policy decisions, unless
that mapping is known to be secure, for example, if DNSSEC [11] were
employed for that FQDN.
If ID contains an ID_FQDN, implementations MUST be capable of
verifying that the identity contained in the ID payload matches
identity information contained in the peer end-entity certificate, in
the dNSName field in the SubjectAltName extension. Implementations
MUST perform this verification by default. When comparing the
contents of ID with the dNSName field in the SubjectAltName extension
Korver Standards Track [Page 9]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
for equality, case-insensitive string comparison MUST be performed.
Note that case-insensitive string comparison works on
internationalized domain names (IDNs) as well (See IDN [12]).
Substring, wildcard, or regular expression matching MUST NOT be
performed for this comparison. If this default is enabled, then a
mismatch MUST be treated as an error, and security association setup
MUST be aborted. This event SHOULD be auditable. Implementations
MAY provide a configuration option to (i.e., local policy
configuration can enable) skip that verification step, but that
option MUST be off by default. We include the "option-to-skip-
validation" in order to permit better interoperability, as current
implementations vary greatly in how they behave on this topic.
Implementations MAY support substring, wildcard, or regular
expression matching of the contents of ID to look up the policy in
the SPD, and such would be a matter of local security policy
configuration.
3.1.3. ID_USER_FQDN
Implementations MUST support the ID_USER_FQDN ID type, generally to
support user-based access control lists for users without fixed IP
addresses. However, implementations SHOULD NOT use the DNS to map
the FQDN portion to IP addresses for input into any policy decisions,
unless that mapping is known to be secure, for example, if DNSSEC
[11] were employed for that FQDN.
Implementations MUST be capable of verifying that the identity
contained in the ID payload matches identity information contained in
the peer end-entity certificate, in the rfc822Name field in the
SubjectAltName extension. Implementations MUST perform this
verification by default. When comparing the contents of ID with the
rfc822Name field in the SubjectAltName extension for equality, case-
insensitive string comparison MUST be performed. Note that case-
insensitive string comparison works on internationalized domain names
(IDNs) as well (See IDN [12]). Substring, wildcard, or regular
expression matching MUST NOT be performed for this comparison. If
this default is enabled, then a mismatch MUST be treated as an error,
and security association setup MUST be aborted. This event SHOULD be
auditable. Implementations MAY provide a configuration option to
(i.e., local policy configuration can enable) skip that verification
step, but that option MUST be off by default. We include the
"option-to-skip-validation" in order to permit better
interoperability, as current implementations vary greatly in how they
behave on this topic.
Korver Standards Track [Page 10]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
Implementations MAY support substring, wildcard, or regular
expression matching of the contents of ID to look up policy in the
SPD, and such would be a matter of local security policy
configuration.
3.1.4. ID_IPV4_ADDR_SUBNET, ID_IPV6_ADDR_SUBNET, ID_IPV4_ADDR_RANGE,
ID_IPV6_ADDR_RANGE
Note that RFC 3779 [13] defines blocks of addresses using the
certificate extension identified by:
id-pe-ipAddrBlock OBJECT IDENTIFIER ::= { id-pe 7 }
although use of this extension in IKE is considered experimental at
this time.
3.1.5. ID_DER_ASN1_DN
Implementations MUST support receiving the ID_DER_ASN1_DN ID type.
Implementations MUST be capable of generating this type, and the
decision to do so will be a matter of local security policy
configuration. When generating this type, implementations MUST
populate the contents of ID with the Subject field from the end-
entity certificate, and MUST do so such that a binary comparison of
the two will succeed. If there is not a match, this MUST be treated
as an error, and security association setup MUST be aborted. This
event SHOULD be auditable.
Implementations MUST NOT populate ID with the Subject from the end-
entity certificate if it is empty, even though an empty certificate
Subject is explicitly allowed in the "Subject" section of the PKIX
certificate profile.
Regarding SPD matching, implementations MUST be able to perform
matching based on a bitwise comparison of the entire DN in ID to its
entry in the SPD. However, operational experience has shown that
using the entire DN in local configuration is difficult, especially
in large-scale deployments. Therefore, implementations also MUST be
able to perform SPD matches of any combination of one or more of the
C, CN, O, OU attributes within Subject DN in the ID to the same in
the SPD. Implementations MAY support matching using additional DN
attributes in any combination, although interoperability is far from
certain and is dubious. Implementations MAY also support performing
substring, wildcard, or regular expression matches for any of its
supported DN attributes from ID, in any combination, to the SPD.
Such flexibility allows deployers to create one SPD entry on the
gateway for an entire department of a company (e.g., O=Foobar Inc.,
OU=Engineering) while still allowing them to draw out other details
Korver Standards Track [Page 11]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
from the DN (e.g., CN=John Doe) for auditing purposes. All the above
is a matter of local implementation and local policy definition and
enforcement capability, not bits on the wire, but will have a great
impact on interoperability.
3.1.6. ID_DER_ASN1_GN
Implementations MUST NOT generate this type, because the recipient
will be unlikely to know how to use it.
3.1.7. ID_KEY_ID
The ID_KEY_ID type used to specify pre-shared keys and thus is out of
scope.
3.1.8. Selecting an Identity from a Certificate
Implementations MUST support certificates that contain more than a
single identity, such as when the Subject field and the
SubjectAltName extension are both populated, or the SubjectAltName
extension contains multiple identities irrespective of whether or not
the Subject is empty. In many cases, a certificate will contain an
identity, such as an IP address, in the SubjectAltName extension in
addition to a non-empty Subject.
Implementations should populate ID with whichever identity is likely
to be named in the peer's policy. In practice, this generally means
FQDN, or USER_FQDN, but this information may also be available to the
administrator through some out-of-band means. In the absence of such
out-of-band configuration information, the identity with which an
implementation chooses to populate the ID payload is a local matter.
3.1.9. Subject for DN Only
If an FQDN is intended to be processed as an identity for the
purposes of ID matching, it MUST be placed in the dNSName field of
the SubjectAltName extension. Implementations MUST NOT populate the
Subject with an FQDN in place of populating the dNSName field of the
SubjectAltName extension.
While nothing prevents an FQDN, USER_FQDN, or IP address information
from appearing somewhere in the Subject contents, such entries MUST
NOT be interpreted as identity information for the purposes of
matching with ID or for policy lookup.
Korver Standards Track [Page 12]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
3.1.10. Binding Identity to Policy
In the presence of certificates that contain multiple identities,
implementations should select the most appropriate identity from the
certificate and populate the ID with that. The recipient MUST use
the identity sent as a first key when selecting the policy. The
recipient MUST also use the most specific policy from that database
if there are overlapping policies caused by wildcards (or the
implementation can de-correlate the policy database so there will not
be overlapping entries, or it can also forbid creation of overlapping
policies and leave the de-correlation process to the administrator,
but, as this moves the problem to the administrator, it is NOT
RECOMMENDED).
For example, imagine that an implementation is configured with a
certificate that contains both a non-empty Subject and a dNSName.
The sender's policy may specify which of those to use, and it
indicates the policy to the other end by sending that ID. If the
recipient has both a specific policy for the dNSName for this host
and generic wildcard rule for some attributes present in the Subject
field, it will match a different policy depending on which ID is
sent. As the sender knows why it wanted to connect the peer, it also
knows what identity it should use to match the policy it needs to the
operation it tries to perform; it is the only party who can select
the ID adequately.
In the event that the policy cannot be found in the recipient's SPD
using the ID sent, then the recipient MAY use the other identities in
the certificate when attempting to match a suitable policy. For
example, say the certificate contains a non-empty Subject field, a
dNSName and an iPAddress. If an iPAddress is sent in ID but no
specific entry exists for the address in the policy database, the
recipient MAY search in the policy database based on the Subject or
the dNSName contained in the certificate.
3.2. Certificate Request Payload
The Certificate Request (CERTREQ) Payload allows an implementation to
request that a peer provide some set of certificates or certificate
revocation lists (CRLs). It is not clear from ISAKMP exactly how
that set should be specified or how the peer should respond. We
describe the semantics on both sides.
Korver Standards Track [Page 13]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
3.2.1. Certificate Type
The Certificate Type field identifies to the peer the type of
certificate keying materials that are desired. ISAKMP defines 10
types of Certificate Data that can be requested and specifies the
syntax for these types. For the purposes of this document, only the
following types are relevant:
o X.509 Certificate - Signature
o Revocation Lists (CRL and ARL)
o PKCS #7 wrapped X.509 certificate
The use of the other types are out of the scope of this document:
o X.509 Certificate - Key Exchange
o PGP (Pretty Good Privacy) Certificate
o DNS Signed Key
o Kerberos Tokens
o SPKI (Simple Public Key Infrastructure) Certificate
o X.509 Certificate Attribute
3.2.2. X.509 Certificate - Signature
This type requests that the end-entity certificate be a certificate
used for signing.
3.2.3. Revocation Lists (CRL and ARL)
ISAKMP does not support Certificate Payload sizes over approximately
64K, which is too small for many CRLs, and UDP fragmentation is
likely to occur at sizes much smaller than that. Therefore, the
acquisition of revocation material is to be dealt with out-of-band of
IKE. For this and other reasons, implementations SHOULD NOT generate
CERTREQs where the Certificate Type is "Certificate Revocation List
(CRL)" or "Authority Revocation List (ARL)". Implementations that do
generate such CERTREQs MUST NOT require the recipient to respond with
a CRL or ARL, and MUST NOT fail when not receiving any. Upon receipt
of such a CERTREQ, implementations MAY ignore the request.
In lieu of exchanging revocation lists in-band, a pointer to
revocation checking SHOULD be listed in either the
CRLDistributionPoints (CDP) or the AuthorityInfoAccess (AIA)
certificate extensions (see Section 5 for details). Unless other
methods for obtaining revocation information are available,
implementations SHOULD be able to process these attributes, and from
them be able to identify cached revocation material, or retrieve the
relevant revocation material from a URL, for validation processing.
In addition, implementations MUST have the ability to configure
Korver Standards Track [Page 14]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
validation checking information for each certification authority.
Regardless of the method (CDP, AIA, or static configuration), the
acquisition of revocation material SHOULD occur out-of-band of IKE.
Note, however, that an inability to access revocation status data
through out-of-band means provides a potential security vulnerability
that could potentially be exploited by an attacker.
3.2.4. PKCS #7 wrapped X.509 certificate
This ID type defines a particular encoding (not a particular
certificate type); some current implementations may ignore CERTREQs
they receive that contain this ID type, and the editors are unaware
of any implementations that generate such CERTREQ messages.
Therefore, the use of this type is deprecated. Implementations
SHOULD NOT require CERTREQs that contain this Certificate Type.
Implementations that receive CERTREQs that contain this ID type MAY
treat such payloads as synonymous with "X.509 Certificate -
Signature".
3.2.5. Location of Certificate Request Payloads
In IKEv1 Main Mode, the CERTREQ payload MUST be in messages 4 and 5.
3.2.6. Presence or Absence of Certificate Request Payloads
When in-band exchange of certificate keying materials is desired,
implementations MUST inform the peer of this by sending at least one
CERTREQ. In other words, an implementation that does not send any
CERTREQs during an exchange SHOULD NOT expect to receive any CERT
payloads.
3.2.7. Certificate Requests
3.2.7.1. Specifying Certification Authorities
When requesting in-band exchange of keying materials, implementations
SHOULD generate CERTREQs for every peer trust anchor that local
policy explicitly deems trusted during a given exchange.
Implementations SHOULD populate the Certification Authority field
with the Subject field of the trust anchor, populated such that
binary comparison of the Subject and the Certification Authority will
succeed.
Korver Standards Track [Page 15]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
Upon receipt of a CERTREQ, implementations MUST respond by sending at
least the end-entity certificate corresponding to the Certification
Authority listed in the CERTREQ unless local security policy
configuration specifies that keying materials must be exchanged out-
of-band. Implementations MAY send certificates other than the end-
entity certificate (see Section 3.3 for discussion).
Note that, in the case where multiple end-entity certificates may be
available that chain to different trust anchors, implementations
SHOULD resort to local heuristics to determine which trust anchor is
most appropriate to use for generating the CERTREQ. Such heuristics
are out of the scope of this document.
3.2.7.2. Empty Certification Authority Field
Implementations SHOULD generate CERTREQs where the Certificate Type
is "X.509 Certificate - Signature" and where the Certification
Authority field is not empty. However, implementations MAY generate
CERTREQs with an empty Certification Authority field under special
conditions. Although PKIX prohibits certificates with an empty
Issuer field, there does exist a use case where doing so is
appropriate, and carries special meaning in the IKE context. This
has become a convention within the IKE interoperability tests and
usage space, and so its use is specified, explained here for the sake
of interoperability.
USE CASE: Consider the rare case where you have a gateway with
multiple policies for a large number of IKE peers: some of these
peers are business partners, some are remote-access employees, some
are teleworkers, some are branch offices, and/or the gateway may be
simultaneously serving many customers (e.g., Virtual Routers). The
total number of certificates, and corresponding trust anchors, is
very high -- say, hundreds. Each of these policies is configured
with one or more acceptable trust anchors, so that in total, the
gateway has one hundred (100) trust anchors that could possibly used
to authenticate an incoming connection. Assume that many of those
connections originate from hosts/gateways with dynamically assigned
IP addresses, so that the source IP of the IKE initiator is not known
to the gateway, nor is the identity of the initiator (until it is
revealed in Main Mode message 5). In IKE main mode message 4, the
responder gateway will need to send a CERTREQ to the initiator.
Given this example, the gateway will have no idea which of the
hundred possible Certification Authorities to send in the CERTREQ.
Sending all possible Certification Authorities will cause significant
processing delays, bandwidth consumption, and UDP fragmentation, so
this tactic is ruled out.
Korver Standards Track [Page 16]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
In such a deployment, the responder gateway implementation should be
able to do all it can to indicate a Certification Authority in the
CERTREQ. This means the responder SHOULD first check SPD to see if
it can match the source IP, and find some indication of which CA is
associated with that IP. If this fails (because the source IP is not
familiar, as in the case above), then the responder SHOULD have a
configuration option specifying which CAs are the default CAs to
indicate in CERTREQ during such ambiguous connections (e.g., send
CERTREQ with these N CAs if there is an unknown source IP). If such
a fall-back is not configured or impractical in a certain deployment
scenario, then the responder implementation SHOULD have both of the
following configuration options:
o send a CERTREQ payload with an empty Certification Authority
field, or
o terminate the negotiation with an appropriate error message and
audit log entry.
Receiving a CERTREQ payload with an empty Certification Authority
field indicates that the recipient should send all/any end-entity
certificates it has, regardless of the trust anchor. The initiator
should be aware of what policy and which identity it will use, as it
initiated the connection on a matched policy to begin with, and can
thus respond with the appropriate certificate.
If, after sending an empty CERTREQ in Main Mode message 4, a
responder receives a certificate in message 5 that chains to a trust
anchor that the responder either (a) does NOT support, or (b) was not
configured for the policy (that policy was now able to be matched due
to having the initiator's certificate present), this MUST be treated
as an error, and security association setup MUST be aborted. This
event SHOULD be auditable.
Instead of sending an empty CERTREQ, the responder implementation MAY
be configured to terminate the negotiation on the grounds of a
conflict with locally configured security policy.
The decision of which to configure is a matter of local security
policy; this document RECOMMENDS that both options be presented to
administrators.
More examples and explanation of this issue are included in "More on
Empty CERTREQs" (Appendix B).
Korver Standards Track [Page 17]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
3.2.8. Robustness
3.2.8.1. Unrecognized or Unsupported Certificate Types
Implementations MUST be able to deal with receiving CERTREQs with
unsupported Certificate Types. Absent any recognized and supported
CERTREQ types, implementations MAY treat them as if they are of a
supported type with the Certification Authority field left empty,
depending on local policy. ISAKMP [2] Section 5.10, "Certificate
Request Payload Processing", specifies additional processing.
3.2.8.2. Undecodable Certification Authority Fields
Implementations MUST be able to deal with receiving CERTREQs with
undecodable Certification Authority fields. Implementations MAY
ignore such payloads, depending on local policy. ISAKMP specifies
other actions which may be taken.
3.2.8.3. Ordering of Certificate Request Payloads
Implementations MUST NOT assume that CERTREQs are ordered in any way.
3.2.9. Optimizations
3.2.9.1. Duplicate Certificate Request Payloads
Implementations SHOULD NOT send duplicate CERTREQs during an
exchange.
3.2.9.2. Name Lowest 'Common' Certification Authorities
When a peer's certificate keying material has been cached, an
implementation can send a hint to the peer to elide some of the
certificates the peer would normally include in the response. In
addition to the normal set of CERTREQs that are sent specifying the
trust anchors, an implementation MAY send CERTREQs specifying the
relevant cached end-entity certificates. When sending these hints,
it is still necessary to send the normal set of trust anchor CERTREQs
because the hints do not sufficiently convey all of the information
required by the peer. Specifically, either the peer may not support
this optimization or there may be additional chains that could be
used in this context but will not be if only the end-entity
certificate is specified.
No special processing is required on the part of the recipient of
such a CERTREQ, and the end-entity certificates will still be sent.
On the other hand, the recipient MAY elect to elide certificates
based on receipt of such hints.
Korver Standards Track [Page 18]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
CERTREQs must contain information that identifies a Certification
Authority certificate, which results in the peer always sending at
least the end-entity certificate. Always sending the end-entity
certificate allows implementations to determine unambiguously when a
new certificate is being used by a peer (perhaps because the previous
certificate has just expired), which may result in a failure because
a new intermediate CA certificate might not be available to validate
the new end-entity certificate). Implementations that implement this
optimization MUST recognize when the end-entity certificate has
changed and respond to it by not performing this optimization if the
exchange must be retried so that any missing keying materials will be
sent during retry.
3.2.9.3. Example
Imagine that an IKEv1 implementation has previously received and
cached the peer certificate chain TA->CA1->CA2->EE. If, during a
subsequent exchange, this implementation sends a CERTREQ containing
the Subject field in certificate TA, this implementation is
requesting that the peer send at least three certificates: CA1, CA2,
and EE. On the other hand, if this implementation also sends a
CERTREQ containing the Subject field of CA2, the implementation is
providing a hint that only one certificate needs to be sent: EE.
Note that in this example, the fact that TA is a trust anchor should
not be construed to imply that TA is a self-signed certificate.
3.3. Certificate Payload
The Certificate (CERT) Payload allows the peer to transmit a single
certificate or CRL. Multiple certificates should be transmitted in
multiple payloads. For backwards-compatibility reasons,
implementations MAY send intermediate CA certificates in addition to
the appropriate end-entity certificate(s), but SHOULD NOT send any
CRLs, ARLs, or trust anchors. Exchanging trust anchors and
especially CRLs and ARLs in IKE would increase the likelihood of UDP
fragmentation, make the IKE exchange more complex, and consume
additional network bandwidth.
Note, however, that while the sender of the CERT payloads SHOULD NOT
send any certificates it considers trust anchors, it's possible that
the recipient may consider any given intermediate CA certificate to
be a trust anchor. For instance, imagine the sender has the
certificate chain TA1->CA1->EE1 while the recipient has the
certificate chain TA2->EE2 where TA2=CA1. The sender is merely
including an intermediate CA certificate, while the recipient
receives a trust anchor.
Korver Standards Track [Page 19]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
However, not all certificate forms that are legal in the PKIX
certificate profile make sense in the context of IPsec. The issue of
how to represent IKE-meaningful name-forms in a certificate is
especially problematic. This document provides a profile for a
subset of the PKIX certificate profile that makes sense for IKEv1/
ISAKMP.
3.3.1. Certificate Type
The Certificate Type field identifies to the peer the type of
certificate keying materials that are included. ISAKMP defines 10
types of Certificate Data that can be sent and specifies the syntax
for these types. For the purposes of this document, only the
following types are relevant:
o X.509 Certificate - Signature
o Revocation Lists (CRL and ARL)
o PKCS #7 wrapped X.509 certificate
The use of the other types are out of the scope of this document:
o X.509 Certificate - Key Exchange
o PGP Certificate
o DNS Signed Key
o Kerberos Tokens
o SPKI Certificate
o X.509 Certificate Attribute
3.3.2. X.509 Certificate - Signature
This type specifies that Certificate Data contains a certificate used
for signing.
3.3.3. Revocation Lists (CRL and ARL)
These types specify that Certificate Data contains an X.509 CRL or
ARL. These types SHOULD NOT be sent in IKE. See Section 3.2.3 for
discussion.
3.3.4. PKCS #7 Wrapped X.509 Certificate
This type defines a particular encoding, not a particular certificate
type. Implementations SHOULD NOT generate CERTs that contain this
Certificate Type. Implementations SHOULD accept CERTs that contain
this Certificate Type because several implementations are known to
generate them. Note that those implementations sometimes include
Korver Standards Track [Page 20]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
entire certificate hierarchies inside a single CERT PKCS #7 payload,
which violates the requirement specified in ISAKMP that this payload
contain a single certificate.
3.3.5. Location of Certificate Payloads
In IKEv1 Main Mode, the CERT payload MUST be in messages 5 and 6.
3.3.6. Certificate Payloads Not Mandatory
An implementation that does not receive any CERTREQs during an
exchange SHOULD NOT send any CERT payloads, except when explicitly
configured to proactively send CERT payloads in order to interoperate
with non-compliant implementations that fail to send CERTREQs even
when certificates are desired. In this case, an implementation MAY
send the certificate chain (not including the trust anchor)
associated with the end-entity certificate. This MUST NOT be the
default behavior of implementations.
Implementations whose local security policy configuration expects
that a peer must receive certificates through out-of-band means
SHOULD ignore any CERTREQ messages that are received. Such a
condition has been known to occur due to non-compliant or buggy
implementations.
Implementations that receive CERTREQs from a peer that contain only
unrecognized Certification Authorities MAY elect to terminate the
exchange, in order to avoid unnecessary and potentially expensive
cryptographic processing, denial-of-service (resource starvation)
attacks.
3.3.7. Response to Multiple Certification Authority Proposals
In response to multiple CERTREQs that contain different Certification
Authority identities, implementations MAY respond using an end-entity
certificate which chains to a CA that matches any of the identities
provided by the peer.
3.3.8. Using Local Keying Materials
Implementations MAY elect to skip parsing or otherwise decoding a
given set of CERTs if those same keying materials are available via
some preferable means, such as the case where certificates from a
previous exchange have been cached.
Korver Standards Track [Page 21]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
3.3.9. Multiple End-Entity Certificates
Implementations SHOULD NOT send multiple end-entity certificates and
recipients SHOULD NOT be expected to iterate over multiple end-entity
certificates.
If multiple end-entity certificates are sent, they MUST have the same
public key; otherwise, the responder does not know which key was used
in the Main Mode message 5.
3.3.10. Robustness
3.3.10.1. Unrecognized or Unsupported Certificate Types
Implementations MUST be able to deal with receiving CERTs with
unrecognized or unsupported Certificate Types. Implementations MAY
discard such payloads, depending on local policy. ISAKMP [2] Section
5.10, "Certificate Request Payload Processing", specifies additional
processing.
3.3.10.2. Undecodable Certificate Data Fields
Implementations MUST be able to deal with receiving CERTs with
undecodable Certificate Data fields. Implementations MAY discard
such payloads, depending on local policy. ISAKMP specifies other
actions that may be taken.
3.3.10.3. Ordering of Certificate Payloads
Implementations MUST NOT assume that CERTs are ordered in any way.
3.3.10.4. Duplicate Certificate Payloads
Implementations MUST support receiving multiple identical CERTs
during an exchange.
3.3.10.5. Irrelevant Certificates
Implementations MUST be prepared to receive certificates and CRLs
that are not relevant to the current exchange. Implementations MAY
discard such extraneous certificates and CRLs.
Implementations MAY send certificates that are irrelevant to an
exchange. One reason for including certificates that are irrelevant
to an exchange is to minimize the threat of leaking identifying
information in exchanges where CERT is not encrypted in IKEv1. It
should be noted, however, that this probably provides rather poor
protection against leaking the identity.
Korver Standards Track [Page 22]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
Another reason for including certificates that seem irrelevant to an
exchange is that there may be two chains from the Certification
Authority to the end entity, each of which is only valid with certain
validation parameters (such as acceptable policies). Since the end-
entity doesn't know which parameters the relying party is using, it
should send the certificates needed for both chains (even if there's
only one CERTREQ).
Implementations SHOULD NOT send multiple end-entity certificates and
recipients SHOULD NOT be expected to iterate over multiple end-entity
certificates.
3.3.11. Optimizations
3.3.11.1. Duplicate Certificate Payloads
Implementations SHOULD NOT send duplicate CERTs during an exchange.
Such payloads should be suppressed.
3.3.11.2. Send Lowest 'Common' Certificates
When multiple CERTREQs are received that specify certification
authorities within the end-entity certificate chain, implementations
MAY send the shortest chain possible. However, implementations
SHOULD always send the end-entity certificate. See Section 3.2.9.2
for more discussion of this optimization.
3.3.11.3. Ignore Duplicate Certificate Payloads
Implementations MAY employ local means to recognize CERTs that have
already been received and SHOULD discard these duplicate CERTs.
3.3.11.4. Hash Payload
IKEv1 specifies the optional use of the Hash Payload to carry a
pointer to a certificate in either of the Phase 1 public key
encryption modes. This pointer is used by an implementation to
locate the end-entity certificate that contains the public key that a
peer should use for encrypting payloads during the exchange.
Implementations SHOULD include this payload whenever the public
portion of the keypair has been placed in a certificate.
Korver Standards Track [Page 23]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
4. Use of Certificates in RFC 4301 and IKEv2
4.1. Identification Payload
The Peer Authorization Database (PAD) as described in RFC 4301 [14]
describes the use of the ID payload in IKEv2 and provides a formal
model for the binding of identity to policy in addition to providing
services that deal more specifically with the details of policy
enforcement, which are generally out of scope of this document. The
PAD is intended to provide a link between the SPD and the security
association management in protocols such as IKE. See RFC 4301 [14],
Section 4.4.3 for more details.
Note that IKEv2 adds an optional IDr payload in the second exchange
that the initiator may send to the responder in order to specify
which of the responder's multiple identities should be used. The
responder MAY choose to send an IDr in the third exchange that
differs in type or content from the initiator-generated IDr. The
initiator MUST be able to receive a responder-generated IDr that is a
different type from the one the initiator generated.
4.2. Certificate Request Payload
4.2.1. Revocation Lists (CRL and ARL)
IKEv2 does not support Certificate Payload sizes over approximately
64K. See Section 3.2.3 for the problems this can cause.
4.2.1.1. IKEv2's Hash and URL of X.509 certificate
This ID type defines a request for the peer to send a hash and URL of
its X.509 certificate, instead of the actual certificate itself.
This is a particularly useful mechanism when the peer is a device
with little memory and lower bandwidth, e.g., a mobile handset or
consumer electronics device.
If the IKEv2 implementation supports URL lookups, and prefers such a
URL to receiving actual certificates, then the implementation will
want to send a notify of type HTTP_CERT_LOOKUP_SUPPORTED. From IKEv2
[3], Section 3.10.1, "This notification MAY be included in any
message that can include a CERTREQ payload and indicates that the
sender is capable of looking up certificates based on an HTTP-based
URL (and hence presumably would prefer to receive certificate
specifications in that format)". If an HTTP_CERT_LOOKUP_SUPPORTED
notification is sent, the sender MUST support the http scheme. See
Section 4.3.1 for more discussion of HTTP_CERT_LOOKUP_SUPPORTED.
Korver Standards Track [Page 24]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
4.2.1.2. Location of Certificate Request Payloads
In IKEv2, the CERTREQ payload must be in messages 2 and 3. Note that
in IKEv2, it is possible to have one side authenticating with
certificates while the other side authenticates with pre-shared keys.
4.3. Certificate Payload
4.3.1. IKEv2's Hash and URL of X.509 Certificate
This type specifies that Certificate Data contains a hash and the URL
to a repository where an X.509 certificate can be retrieved.
An implementation that sends an HTTP_CERT_LOOKUP_SUPPORTED
notification MUST support the http scheme and MAY support the ftp
scheme, and MUST NOT require any specific form of the url-path, and
it SHOULD support having user-name, password, and port parts in the
URL. The following are examples of mandatory forms:
o http://certs.example.com/certificate.cer
o http://certs.example.com/certs/cert.pl?u=foo;a=pw;valid-to=+86400
o http://certs.example.com/%0a/../foo/bar/zappa
while the following is an example of a form that SHOULD be supported:
o http://user:password@certs.example.com:8888/certificate.cer
FTP MAY be supported, and if it is, the following is an example of
the ftp scheme that MUST be supported:
o ftp://ftp.example.com/pub/certificate.cer
4.3.2. Location of Certificate Payloads
In IKEv2, the CERT payload MUST be in messages 3 and 4. Note that in
IKEv2, it is possible to have one side authenticating with
certificates while the other side authenticates with pre-shared keys.
4.3.3. Ordering of Certificate Payloads
For IKEv2, implementations MUST NOT assume that any but the first
CERT is ordered in any way. IKEv2 specifies that the first CERT
contain an end-entity certificate that can be used to authenticate
the peer.
Korver Standards Track [Page 25]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
5. Certificate Profile for IKEv1/ISAKMP and IKEv2
Except where specifically stated in this document, implementations
MUST conform to the requirements of the PKIX [5] certificate profile.
5.1. X.509 Certificates
Users deploying IKE and IPsec with certificates have often had little
control over the capabilities of CAs available to them.
Implementations of this specification may include configuration knobs
to disable checks required by this specification in order to permit
use with inflexible and/or noncompliant CAs. However, all checks on
certificates exist for a specific reason involving the security of
the entire system. Therefore, all checks MUST be enabled by default.
Administrators and users ought to understand the security purpose for
the various checks, and be clear on what security will be lost by
disabling the check.
5.1.1. Versions
Although PKIX states that "implementations SHOULD be prepared to
accept any version certificate", in practice, this profile requires
certain extensions that necessitate the use of Version 3 certificates
for all but self-signed certificates used as trust anchors.
Implementations that conform to this document MAY therefore reject
Version 1 and Version 2 certificates in all other cases.
5.1.2. Subject
Certification Authority implementations MUST be able to create
certificates with Subject fields with at least the following four
attributes: CN, C, O, and OU. Implementations MAY support other
Subject attributes as well. The contents of these attributes SHOULD
be configurable on a certificate-by-certificate basis, as these
fields will likely be used by IKE implementations to match SPD
policy.
See Section 3.1.5 for details on how IKE implementations need to be
able to process Subject field attributes for SPD policy lookup.
5.1.2.1. Empty Subject Name
IKE Implementations MUST accept certificates that contain an empty
Subject field, as specified in the PKIX certificate profile.
Identity information in such certificates will be contained entirely
in the SubjectAltName extension.
Korver Standards Track [Page 26]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
5.1.2.2. Specifying Hosts and not FQDN in the Subject Name
Implementations that desire to place host names that are not intended
to be processed by recipients as FQDNs (for instance "Gateway
Router") in the Subject MUST use the commonName attribute.
5.1.2.3. EmailAddress
As specified in the PKIX certificate profile, implementations MUST
NOT populate X.500 distinguished names with the emailAddress
attribute.
5.1.3. X.509 Certificate Extensions
Conforming IKE implementations MUST recognize extensions that must or
may be marked critical according to this specification. These
extensions are: KeyUsage, SubjectAltName, and BasicConstraints.
Certification Authority implementations SHOULD generate certificates
such that the extension criticality bits are set in accordance with
the PKIX certificate profile and this document. With respect to
compliance with the PKIX certificate profile, IKE implementations
processing certificates MAY ignore the value of the criticality bit
for extensions that are supported by that implementation, but MUST
support the criticality bit for extensions that are not supported by
that implementation. That is, a relying party SHOULD processes all
the extensions it is aware of whether the bit is true or false -- the
bit says what happens when a relying party cannot process an
extension.
implements bit in cert PKIX mandate behavior
------------------------------------------------------
yes true true ok
yes true false ok or reject
yes false true ok or reject
yes false false ok
no true true reject
no true false reject
no false true reject
no false false ok
5.1.3.1. AuthorityKeyIdentifier and SubjectKeyIdentifier
Implementations SHOULD NOT assume support for the
AuthorityKeyIdentifier or SubjectKeyIdentifier extensions. Thus,
Certification Authority implementations should not generate
certificate hierarchies that are overly complex to process in the
absence of these extensions, such as those that require possibly
Korver Standards Track [Page 27]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
verifying a signature against a large number of similarly named CA
certificates in order to find the CA certificate that contains the
key that was used to generate the signature.
5.1.3.2. KeyUsage
IKE uses an end-entity certificate in the authentication process.
The end-entity certificate may be used for multiple applications. As
such, the CA can impose some constraints on the manner that a public
key ought to be used. The KeyUsage (KU) and ExtendedKeyUsage (EKU)
extensions apply in this situation.
Since we are talking about using the public key to validate a
signature, if the KeyUsage extension is present, then at least one of
the digitalSignature or the nonRepudiation bits in the KeyUsage
extension MUST be set (both can be set as well). It is also fine if
other KeyUsage bits are set.
A summary of the logic flow for peer cert validation follows:
o If no KU extension, continue.
o If KU present and doesn't mention digitalSignature or
nonRepudiation (both, in addition to other KUs, is also fine),
reject cert.
o If none of the above, continue.
5.1.3.3. PrivateKeyUsagePeriod
The PKIX certificate profile recommends against the use of this
extension. The PrivateKeyUsageExtension is intended to be used when
signatures will need to be verified long past the time when
signatures using the private keypair may be generated. Since IKE
security associations (SAs) are short-lived relative to the intended
use of this extension in addition to the fact that each signature is
validated only a single time, the usefulness of this extension in the
context of IKE is unclear. Therefore, Certification Authority
implementations MUST NOT generate certificates that contain the
PrivateKeyUsagePeriod extension. If an IKE implementation receives a
certificate with this set, it SHOULD ignore it.
Korver Standards Track [Page 28]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
5.1.3.4. CertificatePolicies
Many IKE implementations do not currently provide support for the
CertificatePolicies extension. Therefore, Certification Authority
implementations that generate certificates that contain this
extension SHOULD NOT mark the extension as critical. As is the case
with all certificate extensions, a relying party receiving this
extension but who can process the extension SHOULD NOT reject the
certificate because it contains the extension.
5.1.3.5. PolicyMappings
Many IKE implementations do not support the PolicyMappings extension.
Therefore, implementations that generate certificates that contain
this extension SHOULD NOT mark the extension as critical.
5.1.3.6. SubjectAltName
Deployments that intend to use an ID of FQDN, USER_FQDN, IPV4_ADDR,
or IPV6_ADDR MUST issue certificates with the corresponding
SubjectAltName fields populated with the same data. Implementations
SHOULD generate only the following GeneralName choices in the
SubjectAltName extension, as these choices map to legal IKEv1/ISAKMP/
IKEv2 Identification Payload types: rfc822Name, dNSName, or
iPAddress. Although it is possible to specify any GeneralName choice
in the Identification Payload by using the ID_DER_ASN1_GN ID type,
implementations SHOULD NOT assume support for such functionality, and
SHOULD NOT generate certificates that do so.
5.1.3.6.1. dNSName
If the IKE ID type is FQDN, then this field MUST contain a fully
qualified domain name. If the IKE ID type is FQDN, then the dNSName
field MUST match its contents. Implementations MUST NOT generate
names that contain wildcards. Implementations MAY treat certificates
that contain wildcards in this field as syntactically invalid.
Although this field is in the form of an FQDN, IKE implementations
SHOULD NOT assume that this field contains an FQDN that will resolve
via the DNS, unless this is known by way of some out-of-band
mechanism. Such a mechanism is out of the scope of this document.
Implementations SHOULD NOT treat the failure to resolve as an error.
Korver Standards Track [Page 29]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
5.1.3.6.2. iPAddress
If the IKE ID type is IPV4_ADDR or IPV6_ADDR, then the iPAddress
field MUST match its contents. Note that although PKIX permits CIDR
[15] notation in the "Name Constraints" extension, the PKIX
certificate profile explicitly prohibits using CIDR notation for
conveying identity information. In other words, the CIDR notation
MUST NOT be used in the SubjectAltName extension.
5.1.3.6.3. rfc822Name
If the IKE ID type is USER_FQDN, then the rfc822Name field MUST match
its contents. Although this field is in the form of an Internet mail
address, IKE implementations SHOULD NOT assume that this field
contains a valid email address, unless this is known by way of some
out-of-band mechanism. Such a mechanism is out of the scope of this
document.
5.1.3.7. IssuerAltName
Certification Authority implementations SHOULD NOT assume that other
implementations support the IssuerAltName extension, and especially
should not assume that information contained in this extension will
be displayed to end users.
5.1.3.8. SubjectDirectoryAttributes
The SubjectDirectoryAttributes extension is intended to convey
identification attributes of the subject. IKE implementations MAY
ignore this extension when it is marked non-critical, as the PKIX
certificate profile mandates.
5.1.3.9. BasicConstraints
The PKIX certificate profile mandates that CA certificates contain
this extension and that it be marked critical. IKE implementations
SHOULD reject CA certificates that do not contain this extension.
For backwards compatibility, implementations may accept such
certificates if explicitly configured to do so, but the default for
this setting MUST be to reject such certificates.
5.1.3.10. NameConstraints
Many IKE implementations do not support the NameConstraints
extension. Since the PKIX certificate profile mandates that this
extension be marked critical when present, Certification Authority
implementations that are interested in maximal interoperability for
IKE SHOULD NOT generate certificates that contain this extension.
Korver Standards Track [Page 30]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
5.1.3.11. PolicyConstraints
Many IKE implementations do not support the PolicyConstraints
extension. Since the PKIX certificate profile mandates that this
extension be marked critical when present, Certification Authority
implementations that are interested in maximal interoperability for
IKE SHOULD NOT generate certificates that contain this extension.
5.1.3.12. ExtendedKeyUsage
The CA SHOULD NOT include the ExtendedKeyUsage (EKU) extension in
certificates for use with IKE. Note that there were three IPsec-
related object identifiers in EKU that were assigned in 1999. The
semantics of these values were never clearly defined. The use of
these three EKU values in IKE/IPsec is obsolete and explicitly
deprecated by this specification. CAs SHOULD NOT issue certificates
for use in IKE with them. (For historical reference only, those
values were id-kp-ipsecEndSystem, id-kp-ipsecTunnel, and id-kp-
ipsecUser.)
The CA SHOULD NOT mark the EKU extension in certificates for use with
IKE and one or more other applications. Nevertheless, this document
defines an ExtendedKeyUsage keyPurposeID that MAY be used to limit a
certificate's use:
id-kp-ipsecIKE OBJECT IDENTIFIER ::= { id-kp 17 }
where id-kp is defined in RFC 3280 [5]. If a certificate is intended
to be used with both IKE and other applications, and one of the other
applications requires use of an EKU value, then such certificates
MUST contain either the keyPurposeID id-kp-ipsecIKE or
anyExtendedKeyUsage [5], as well as the keyPurposeID values
associated with the other applications. Similarly, if a CA issues
multiple otherwise-similar certificates for multiple applications
including IKE, and it is intended that the IKE certificate NOT be
used with another application, the IKE certificate MAY contain an EKU
extension listing a keyPurposeID of id-kp-ipsecIKE to discourage its
use with the other application. Recall, however, that EKU extensions
in certificates meant for use in IKE are NOT RECOMMENDED.
Conforming IKE implementations are not required to support EKU. If a
critical EKU extension appears in a certificate and EKU is not
supported by the implementation, then RFC 3280 requires that the
certificate be rejected. Implementations that do support EKU MUST
support the following logic for certificate validation:
Korver Standards Track [Page 31]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
o If no EKU extension, continue.
o If EKU present AND contains either id-kp-ipsecIKE or
anyExtendedKeyUsage, continue.
o Otherwise, reject cert.
5.1.3.13. CRLDistributionPoints
Because this document deprecates the sending of CRLs in-band, the use
of CRLDistributionPoints (CDP) becomes very important if CRLs are
used for revocation checking (as opposed to, say, Online Certificate
Status Protocol - OCSP [16]). The IPsec peer either needs to have a
URL for a CRL written into its local configuration, or it needs to
learn it from CDP. Therefore, Certification Authority
implementations SHOULD issue certificates with a populated CDP.
Failure to validate the CRLDistributionPoints/
IssuingDistributionPoint pair can result in CRL substitution where an
entity knowingly substitutes a known good CRL from a different
distribution point for the CRL that is supposed to be used, which
would show the entity as revoked. IKE implementations MUST support
validating that the contents of CRLDistributionPoints match those of
the IssuingDistributionPoint to prevent CRL substitution when the
issuing CA is using them. At least one CA is known to default to
this type of CRL use. See Section 5.2.2.5 for more information.
CDPs SHOULD be "resolvable". Several non-compliant Certification
Authority implementations are well known for including unresolvable
CDPs like http://localhost/path_to_CRL and http:///path_to_CRL that
are equivalent to failing to include the CDP extension in the
certificate.
See the IETF IPR Web page for CRLDistributionPoints intellectual
property rights (IPR) information. Note that both the
CRLDistributionPoints and IssuingDistributionPoint extensions are
RECOMMENDED but not REQUIRED by the PKIX certificate profile, so
there is no requirement to license any IPR.
5.1.3.14. InhibitAnyPolicy
Many IKE implementations do not support the InhibitAnyPolicy
extension. Since the PKIX certificate profile mandates that this
extension be marked critical when present, Certification Authority
implementations that are interested in maximal interoperability for
IKE SHOULD NOT generate certificates that contain this extension.
Korver Standards Track [Page 32]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
5.1.3.15. FreshestCRL
IKE implementations MUST NOT assume that the FreshestCRL extension
will exist in peer certificates. Note that most IKE implementations
do not support delta CRLs.
5.1.3.16. AuthorityInfoAccess
The PKIX certificate profile defines the AuthorityInfoAccess
extension, which is used to indicate "how to access CA information
and services for the issuer of the certificate in which the extension
appears". Because this document deprecates the sending of CRLs in-
band, the use of AuthorityInfoAccess (AIA) becomes very important if
OCSP [16] is to be used for revocation checking (as opposed to CRLs).
The IPsec peer either needs to have a URI for the OCSP query written
into its local configuration, or it needs to learn it from AIA.
Therefore, implementations SHOULD support this extension, especially
if OCSP will be used.
5.1.3.17. SubjectInfoAccess
The PKIX certificate profile defines the SubjectInfoAccess
certificate extension, which is used to indicate "how to access
information and services for the subject of the certificate in which
the extension appears". This extension has no known use in the
context of IPsec. Conformant IKE implementations SHOULD ignore this
extension when present.
5.2. X.509 Certificate Revocation Lists
When validating certificates, IKE implementations MUST make use of
certificate revocation information, and SHOULD support such
revocation information in the form of CRLs, unless non-CRL revocation
information is known to be the only method for transmitting this
information. Deployments that intend to use CRLs for revocation
SHOULD populate the CRLDistributionPoints extension. Therefore,
Certification Authority implementations MUST support issuing
certificates with this field populated. IKE implementations MAY
provide a configuration option to disable use of certain types of
revocation information, but that option MUST be off by default. Such
an option is often valuable in lab testing environments.
Korver Standards Track [Page 33]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
5.2.1. Multiple Sources of Certificate Revocation Information
IKE implementations that support multiple sources of obtaining
certificate revocation information MUST act conservatively when the
information provided by these sources is inconsistent: when a
certificate is reported as revoked by one trusted source, the
certificate MUST be considered revoked.
5.2.2. X.509 Certificate Revocation List Extensions
5.2.2.1. AuthorityKeyIdentifier
Certification Authority implementations SHOULD NOT assume that IKE
implementations support the AuthorityKeyIdentifier extension, and
thus should not generate certificate hierarchies which are overly
complex to process in the absence of this extension, such as those
that require possibly verifying a signature against a large number of
similarly named CA certificates in order to find the CA certificate
which contains the key that was used to generate the signature.
5.2.2.2. IssuerAltName
Certification Authority implementations SHOULD NOT assume that IKE
implementations support the IssuerAltName extension, and especially
should not assume that information contained in this extension will
be displayed to end users.
5.2.2.3. CRLNumber
As stated in the PKIX certificate profile, all issuers MUST include
this extension in all CRLs.
5.2.2.4. DeltaCRLIndicator
5.2.2.4.1. If Delta CRLs Are Unsupported
IKE implementations that do not support delta CRLs MUST reject CRLs
that contain the DeltaCRLIndicator (which MUST be marked critical
according to the PKIX certificate profile) and MUST make use of a
base CRL if it is available. Such implementations MUST ensure that a
delta CRL does not "overwrite" a base CRL, for instance, in the
keying material database.
Korver Standards Track [Page 34]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
5.2.2.4.2. Delta CRL Recommendations
Since some IKE implementations that do not support delta CRLs may
behave incorrectly or insecurely when presented with delta CRLs,
administrators and deployers should consider whether issuing delta
CRLs increases security before issuing such CRLs. And, if all the
elements in the VPN and PKI systems do not adequately support Delta
CRLs, then their use should be questioned.
The editors are aware of several implementations that behave in an
incorrect or insecure manner when presented with delta CRLs. See
Appendix A for a description of the issue. Therefore, this
specification RECOMMENDS NOT issuing delta CRLs at this time. On the
other hand, failure to issue delta CRLs may expose a larger window of
vulnerability if a full CRL is not issued as often as delta CRLs
would be. See the Security Considerations section of the PKIX [5]
certificate profile for additional discussion. Implementers as well
as administrators are encouraged to consider these issues.
5.2.2.5. IssuingDistributionPoint
A CA that is using CRLDistributionPoints may do so to provide many
"small" CRLs, each only valid for a particular set of certificates
issued by that CA. To associate a CRL with a certificate, the CA
places the CRLDistributionPoints extension in the certificate, and
places the IssuingDistributionPoint in the CRL. The
distributionPointName field in the CRLDistributionPoints extension
MUST be identical to the distributionPoint field in the
IssuingDistributionPoint extension. At least one CA is known to
default to this type of CRL use. See Section 5.1.3.13 for more
information.
5.2.2.6. FreshestCRL
Given the recommendations against Certification Authority
implementations generating delta CRLs, this specification RECOMMENDS
that implementations do not populate CRLs with the FreshestCRL
extension, which is used to obtain delta CRLs.
5.3. Strength of Signature Hashing Algorithms
At the time that this document is being written, popular
certification authorities and CA software issue certificates using
the RSA-with-SHA1 and RSA-with-MD5 signature algorithms.
Implementations MUST be able to validate certificates with either of
those algorithms.
Korver Standards Track [Page 35]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
As described in [17], both the MD5 and SHA-1 hash algorithms are
weaker than originally expected with respect to hash collisions.
Certificates that use these hash algorithms as part of their
signature algorithms could conceivably be subject to an attack where
a CA issues a certificate with a particular identity, and the
recipient of that certificate can create a different valid
certificate with a different identity. So far, such an attack is
only theoretical, even with the weaknesses found in the hash
algorithms.
Because of the recent attacks, there has been a heightened interest
in having widespread deployment of additional signature algorithms.
The algorithm that has been mentioned most often is RSA-with-SHA256,
two types of which are described in detail in [18]. It is widely
expected that this signature algorithm will be much more resilient to
collision-based attacks than the current RSA-with-SHA1 and RSA-with-
MD5, although no proof of that has been shown. There is active
discussion in the cryptographic community of better hash functions
that could be used in signature algorithms.
In order to interoperate, all implementations need to be able to
validate signatures for all algorithms that the implementations will
encounter. Therefore, implementations SHOULD be able to use
signatures that use the sha256WithRSAEncryption signature algorithm
(PKCS#1 version 1.5) as soon as possible. At the time that this
document is being written, there is at least one CA that supports
generating certificates with sha256WithRSAEncryption signature
algorithm, and it is expected that there will be significant
deployment of this algorithm by the end of 2007.
6. Configuration Data Exchange Conventions
Below, we present a common format for exchanging configuration data.
Implementations MUST support these formats, MUST support receiving
arbitrary whitespace at the beginning and end of any line, MUST
support receiving arbitrary line lengths although they SHOULD
generate lines less than 76 characters, and MUST support receiving
the following three line-termination disciplines: LF (US-ASCII 10),
CR (US-ASCII 13), and CRLF.
6.1. Certificates
Certificates MUST be Base64 [19] encoded and appear between the
following delimiters:
-----BEGIN CERTIFICATE-----
-----END CERTIFICATE-----
Korver Standards Track [Page 36]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
6.2. CRLs and ARLs
CRLs and ARLs MUST be Base64 encoded and appear between the following
delimiters:
-----BEGIN CRL-----
-----END CRL-----
6.3. Public Keys
IKE implementations MUST support two forms of public keys:
certificates and so-called "raw" keys. Certificates should be
transferred in the same form as Section 6.1. A raw key is only the
SubjectPublicKeyInfo portion of the certificate, and MUST be Base64
encoded and appear between the following delimiters:
-----BEGIN PUBLIC KEY-----
-----END PUBLIC KEY-----
6.4. PKCS#10 Certificate Signing Requests
A PKCS#10 [9] Certificate Signing Request MUST be Base64 encoded and
appear between the following delimiters:
-----BEGIN CERTIFICATE REQUEST-----
-----END CERTIFICATE REQUEST-----
7. Security Considerations
7.1. Certificate Request Payload
The Contents of CERTREQ are not encrypted in IKE. In some
environments, this may leak private information. Administrators in
some environments may wish to use the empty Certification Authority
option to prevent such information from leaking, at the cost of
performance.
7.2. IKEv1 Main Mode
Certificates may be included in any message, and therefore
implementations may wish to respond with CERTs in a message that
offers privacy protection in Main Mode messages 5 and 6.
Implementations may not wish to respond with CERTs in the second
message, thereby violating the identity protection feature of Main
Mode in IKEv1.
Korver Standards Track [Page 37]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
7.3. Disabling Certificate Checks
It is important to note that anywhere this document suggests
implementers provide users with the configuration option to simplify,
modify, or disable a feature or verification step, there may be
security consequences for doing so. Deployment experience has shown
that such flexibility may be required in some environments, but
making use of such flexibility can be inappropriate in others. Such
configuration options MUST default to "enabled" and it is appropriate
to provide warnings to users when disabling such features.
8. Acknowledgements
The authors would like to acknowledge the expired document "A PKIX
Profile for IKE" (July 2000) for providing valuable materials for
this document.
The authors would like to especially thank Eric Rescorla, one of its
original authors, in addition to Greg Carter, Steve Hanna, Russ
Housley, Charlie Kaufman, Tero Kivinen, Pekka Savola, Paul Hoffman,
and Gregory Lebovitz for their valuable comments, some of which have
been incorporated verbatim into this document. Paul Knight performed
the arduous task of converting the text to XML format.
9. References
9.1. Normative References
[1] Harkins, D. and D. Carrel, "The Internet Key Exchange (IKE)",
RFC 2409, November 1998.
[2] Maughan, D., Schneider, M., and M. Schertler, "Internet
Security Association and Key Management Protocol (ISAKMP)", RFC
2408, November 1998.
[3] Kaufman, C., "Internet Key Exchange (IKEv2) Protocol", RFC
4306, December 2005.
[4] Kent, S. and R. Atkinson, "Security Architecture for the
Internet Protocol", RFC 2401, November 1998.
[5] Housley, R., Polk, W., Ford, W., and D. Solo, "Internet X.509
Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile", RFC 3280, April 2002.
[6] Piper, D., "The Internet IP Security Domain of Interpretation
for ISAKMP", RFC 2407, November 1998.
Korver Standards Track [Page 38]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
[7] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997.
[8] Postel, J., "Internet Protocol", STD 5, RFC 791, September
1981.
[9] Nystrom, M. and B. Kaliski, "PKCS #10: Certification Request
Syntax Specification Version 1.7", RFC 2986, November 2000.
9.2. Informative References
[10] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6)
Specification", RFC 2460, December 1998.
[11] Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose,
"DNS Security Introduction and Requirements", RFC 4033, March
2005.
[12] Faltstrom, P., Hoffman, P., and A. Costello,
"Internationalizing Domain Names in Applications (IDNA)", RFC
3490, March 2003.
[13] Lynn, C., Kent, S., and K. Seo, "X.509 Extensions for IP
Addresses and AS Identifiers", RFC 3779, June 2004.
[14] Kent, S. and K. Seo, "Security Architecture for the Internet
Protocol", RFC 4301, December 2005.
[15] Fuller, V. and T. Li, "Classless Inter-domain Routing (CIDR):
The Internet Address Assignment and Aggregation Plan", BCP 122,
RFC 4632, August 2006.
[16] Myers, M., Ankney, R., Malpani, A., Galperin, S., and C. Adams,
"X.509 Internet Public Key Infrastructure Online Certificate
Status Protocol - OCSP", RFC 2560, June 1999.
[17] Hoffman, P. and B. Schneier, "Attacks on Cryptographic Hashes
in Internet Protocols", RFC 4270, November 2005.
[18] Schaad, J., Kaliski, B., and R. Housley, "Additional Algorithms
and Identifiers for RSA Cryptography for use in the Internet
X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile", RFC 4055, June 2005.
[19] Josefsson, S., "The Base16, Base32, and Base64 Data Encodings",
RFC 4648, October 2006.
Korver Standards Track [Page 39]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
Appendix A. The Possible Dangers of Delta CRLs
The problem is that the CRL processing algorithm is sometimes written
incorrectly with the assumption that all CRLs are base CRLs and it is
assumed that CRLs will pass content validity tests. Specifically,
such implementations fail to check the certificate against all
possible CRLs: if the first CRL that is obtained from the keying
material database fails to decode, no further revocation checks are
performed for the relevant certificate. This problem is compounded
by the fact that implementations that do not understand delta CRLs
may fail to decode such CRLs due to the critical DeltaCRLIndicator
extension. The algorithm that is implemented in this case is
approximately:
o fetch newest CRL
o check validity of CRL signature
o if CRL signature is valid, then
o if CRL does not contain unrecognized critical extensions and
certificate is on CRL, then set certificate status to revoked
The authors note that a number of PKI toolkits do not even provide a
method for obtaining anything but the newest CRL, which in the
presence of delta CRLs may in fact be a delta CRL, not a base CRL.
Note that the above algorithm is dangerous in many ways. See the
PKIX [5] certificate profile for the correct algorithm.
Appendix B. More on Empty CERTREQs
Sending empty certificate requests is commonly used in
implementations, and in the IPsec interop meetings, vendors have
generally agreed that it means that send all/any end-entity
certificates you have (if multiple end-entity certificates are sent,
they must have same public key, as otherwise, the other end does not
know which key was used). For 99% of cases, the client has exactly
one certificate and public key, so it really doesn't matter, but the
server might have multiple; thus, it simply needs to say to the
client, use any certificate you have. If we are talking about
corporate VPNs, etc., even if the client has multiple certificates or
keys, all of them would be usable when authenticating to the server,
so the client can simply pick one.
If there is some real difference on which certificate to use (like
ones giving different permissions), then the client must be
configured anyway, or it might even ask the user which one to use
Korver Standards Track [Page 40]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
(the user is the only one who knows whether he needs admin
privileges, thus needs to use admin cert, or if the normal email
privileges are ok, thus uses email only cert).
In 99% of the cases, the client has exactly one certificate, so it
will send it. In 90% of the rest of the cases, any of the
certificates is ok, as they are simply different certificates from
the same CA, or from different CAs for the same corporate VPN, thus
any of them is ok.
Sending empty certificate requests has been agreed there to mean
"give me your cert, any cert".
Justification:
o Responder first does all it can to send a CERTREQ with a CA, check
for IP match in SPD, have a default set of CAs to use in ambiguous
cases, etc.
o Sending empty CERTREQs is fairly common in implementations today,
and is generally accepted to mean "send me a certificate, any
certificate that works for you".
o Saves responder sending potentially hundreds of certs, the
fragmentation problems that follow, etc.
o In +90% of use cases, Initiators have exactly one certificate.
o In +90% of the remaining use cases, the multiple certificates it
has are issued by the same CA.
o In the remaining use case(s) -- if not all the others above -- the
Initiator will be configured explicitly with which certificate to
send, so responding to an empty CERTREQ is easy.
The following example shows why initiators need to have sufficient
policy definition to know which certificate to use for a given
connection it initiates.
EXAMPLE: Your client (initiator) is configured with VPN policies for
gateways A and B (representing perhaps corporate partners).
Korver Standards Track [Page 41]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
The policies for the two gateways look something like:
Acme Company policy (gateway A)
Engineering can access 10.1.1.0
Trusted CA: CA-A, Trusted Users: OU=Engineering
Partners can access 20.1.1.0
Trusted CA: CA-B, Trusted Users: OU=AcmePartners
Bizco Company policy (gateway B)
Sales can access 30.1.1.0
Trusted CA: CA-C, Trusted Users: OU=Sales
Partners can access 40.1.1.0
Trusted CA: CA-B, Trusted Users: OU=BizcoPartners
You are an employee of Acme and you are issued the following
certificates:
o From CA-A: CN=JoeUser,OU=Engineering
o From CA-B: CN=JoePartner,OU=BizcoPartners
The client MUST be configured locally to know which CA to use when
connecting to either gateway. If your client is not configured to
know the local credential to use for the remote gateway, this
scenario will not work either. If you attempt to connect to Bizco,
everything will work... as you are presented with responding with a
certificate signed by CA-B or CA-C... as you only have a certificate
from CA-B you are OK. If you attempt to connect to Acme, you have an
issue because you are presented with an ambiguous policy selection.
As the initiator, you will be presented with certificate requests
from both CA-A and CA-B. You have certificates issued by both CAs,
but only one of the certificates will be usable. How does the client
know which certificate it should present? It must have sufficiently
clear local policy specifying which one credential to present for the
connection it initiates.
Author's Address
Brian Korver
Network Resonance, Inc.
2483 E. Bayshore Rd.
Palo Alto, CA 94303
US
Phone: +1 650 812 7705
EMail: briank@networkresonance.com
Korver Standards Track [Page 42]
^L
RFC 4945 PKI Profile for IKE/ISAKMP/PKIX August 2007
Full Copyright Statement
Copyright (C) The IETF Trust (2007).
This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Korver Standards Track [Page 43]
^L
|