1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
|
Network Working Group P. Srisuresh
Request for Comments: 4973 Kazeon Systems
Category: Experimental P. Joseph
Consultant
July 2007
OSPF-xTE: Experimental Extension to OSPF for Traffic Engineering
Status of This Memo
This memo defines an Experimental Protocol for the Internet
community. It does not specify an Internet standard of any kind.
Discussion and suggestions for improvement are requested.
Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The IETF Trust (2007).
Abstract
This document defines OSPF-xTE, an experimental traffic engineering
(TE) extension to the link-state routing protocol OSPF. OSPF-xTE
defines new TE Link State Advertisements (LSAs) to disseminate TE
metrics within an autonomous System (AS), which may consist of
multiple areas. When an AS consists of TE and non-TE nodes, OSPF-xTE
ensures that non-TE nodes in the AS are unaffected by the TE LSAs.
OSPF-xTE generates a stand-alone TE Link State Database (TE-LSDB),
distinct from the native OSPF LSDB, for computation of TE circuit
paths. OSPF-xTE is versatile and extendible to non-packet networks
such as Synchronous Optical Network (SONET) / Time Division
Multiplexing (TDM) and optical networks.
IESG Note
The content of this RFC was at one time considered by the IETF, and
therefore it may resemble a current IETF work in progress or a
published IETF work. This RFC is not a candidate for any level of
Internet Standard. The IETF disclaims any knowledge of the fitness
of this RFC for any purpose and in particular notes that the decision
to publish is not based on IETF review for such things as security,
congestion control, or inappropriate interaction with deployed
protocols. The RFC Editor has chosen to publish this document at its
discretion. Readers of this RFC should exercise caution in
evaluating its value for implementation and deployment. See RFC 3932
for more information.
Srisuresh & Joseph Experimental [Page 1]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
See RFC 3630 for the IETF consensus protocol for OSPF Traffic
Engineering. The OSPF WG position at the time of publication is that
although this proposal has some useful properties, the protocol in
RFC 3630 is sufficient for the traffic engineering needs that have
been identified so far, and the cost of migrating to this proposal
exceeds its benefits.
Table of Contents
1. Introduction ....................................................3
2. Principles of Traffic Engineering ...............................3
3. Terminology .....................................................5
3.1. Native OSPF Terms ..........................................5
3.2. OSPF-xTE Terms .............................................6
4. Motivations behind the Design of OSPF-xTE .......................9
4.1. Scalable Design ............................................9
4.2. Operable in Mixed and Peer Networks ........................9
4.3. Efficient in Flooding Reach ................................9
4.4. Ability to Reserve TE-Exclusive Links .....................10
4.5. Extensible Design .........................................11
4.6. Unified for Packet and Non-Packet Networks ................11
4.7. Networks Benefiting from the OSPF-xTE Design ..............11
5. OSPF-xTE Solution Overview .....................................12
5.1. OSPF-xTE Solution .........................................12
5.2. Assumptions ...............................................13
6. Strategy for Transition of Opaque LSAs to OSPF-xTE .............14
7. OSPF-xTE Router Adjacency -- TE Topology Discovery .............14
7.1. The OSPF-xTE Router Adjacency .............................14
7.2. The Hello Protocol ........................................15
7.3. The Designated Router .....................................15
7.4. The Backup Designated Router ..............................15
7.5. Flooding and the Synchronization of Databases .............16
7.6. The Graph of Adjacencies ..................................16
8. TE LSAs for Packet Network .....................................18
8.1. TE-Router LSA (0x81) ......................................18
8.1.1. Router-TE Flags: TE Capabilities of the Router .....19
8.1.2. Router-TE TLVs .....................................20
8.1.3. Link-TE Flags: TE Capabilities of a Link ...........22
8.1.4. Link-TE TLVs .......................................23
8.2. TE-Incremental-Link-Update LSA (0x8d) .....................26
8.3. TE-Circuit-Path LSA (0x8C) ................................28
8.4. TE-Summary LSAs ...........................................31
8.4.1. TE-Summary Network LSA (0x83) ......................32
8.4.2. TE-Summary Router LSA (0x84) .......................33
8.5. TE-AS-external LSAs (0x85) ................................34
9. TE LSAs for Non-Packet Network .................................36
9.1. TE-Router LSA (0x81) ......................................36
9.1.1. Router-TE flags - TE Capabilities of a Router ......37
Srisuresh & Joseph Experimental [Page 2]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
9.1.2. Link-TE Options: TE Capabilities of a TE Link ......38
9.2. TE-positional-ring-network LSA (0x82) .....................38
9.3. TE-Router-Proxy LSA (0x8e) ................................40
10. Abstract Topology Representation with TE Support ..............42
11. Changes to Data Structures in OSPF-xTE Nodes ..................44
11.1. Changes to Router Data Structure .........................44
11.2. Two Sets of Neighbors ....................................44
11.3. Changes to Interface Data Structure ......................44
12. IANA Considerations ...........................................45
12.1. TE LSA Type Values .......................................45
12.2. TE TLV Tag Values ........................................46
13. Acknowledgements ..............................................46
14. Security Considerations .......................................47
15. Normative References ..........................................48
16. Informative References ........................................48
1. Introduction
This document defines OSPF-xTE, an experimental traffic engineering
(TE) extension to the link-state routing protocol OSPF. The
objective of OSPF-xTE is to discover TE network topology and
disseminate TE metrics within an autonomous system (AS). A stand-
alone TE Link State Database (TE-LSDB), different from the native
OSPF LSDB, is created to facilitate computation of TE circuit paths.
Devising algorithms to compute TE circuit paths is not an objective
of this document.
OSPF-xTE is different from the Opaque-LSA-based approach outlined in
[OPQLSA-TE]. Section 4 describes the motivations behind the design
of OSPF-xTE. Section 6 outlines a transition path for those
currently using [OPQLSA-TE] for intra-area and wish to extend this
using OSPF-xTE across the AS.
Readers interested in TE extensions for packet networks alone may
skip section 9.0.
2. Principles of Traffic Engineering
The objective of traffic engineering (TE) is to set up circuit
path(s) between a pair of nodes or links and to forward traffic of a
certain forwarding equivalency class (FEC) through the circuit path.
Only unicast circuit paths are considered in this section; multicast
variations are outside the scope.
A traffic engineered circuit path is unidirectional and may be
identified by the tuple: (FEC, TE circuit parameters, origin
node/link, destination node/link).
Srisuresh & Joseph Experimental [Page 3]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
A forwarding equivalency class (FEC) is a grouping of traffic that is
forwarded in the same manner by a node. An FEC may be classified
based on a number of criteria, as follows:
a) traffic arriving on a specific interface,
b) traffic arriving at a certain time of day,
c) traffic meeting a certain packet based classification
criteria (ex: based on a match of the fields in the IP and
transport headers within a packet),
d) traffic in a certain priority class,
e) traffic arriving on a specific set of TDM (Synchronous
Transport Signal (STS)) circuits on an interface, or
f) traffic arriving on a certain wavelength of an interface.
Discerning traffic based on the FEC criteria is mandatory for Label
Edge Routers (LERs). The intermediate Label-Switched Routers (LSRs)
are transparent to the traffic content. LSRs are only responsible
for maintaining the circuit for its lifetime. This document will not
address definition of FEC criteria, the mapping of an FEC to circuit,
or the associated signaling to set up circuits. [MPLS-TE] and
[GMPLS-TE] address the FEC criteria. [RSVP-TE] and [CR-LDP] address
signaling protocols to set up circuits.
This document is concerned with the collection of TE metrics for all
the TE enforceable nodes and links within an autonomous system. TE
metrics for a node may include the following.
a) Ability to perform traffic prioritization,
b) Ability to provision bandwidth on interfaces,
c) Support for Constrained Shortest Path First (CSPF)
algorithms,
d) Support for certain TE-Circuit switch type, and
e) Support for a certain type of automatic protection switching.
TE metrics for a link may include the following.
a) available bandwidth,
b) reliability of the link,
c) color assigned to the link,
d) cost of bandwidth usage on the link, and
e) membership in a Shared Risk Link Group (SRLG).
A number of CSPF (Constraint-based Shortest Path First) algorithms
may be used to dynamically set up TE circuit paths in a TE network.
OSPF-xTE mandates that the originating and the terminating entities
of a TE circuit path be identifiable by IP addresses.
Srisuresh & Joseph Experimental [Page 4]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
3. Terminology
Definitions of the majority of the terms used in the context of the
OSPF protocol may be found in [OSPF-V2]. MPLS and traffic
engineering terms may be found in [MPLS-ARCH]. RSVP-TE and CR-LDP
signaling-specific terms may be found in [RSVP-TE] and [CR-LDP],
respectively.
The following subsections describe the native OSPF terms and the
OSPF-xTE terms used within this document.
3.1. Native OSPF Terms
o Native node (Non-TE node)
A native or non-TE node is an OSPF router that is capable of IP
packet forwarding but does not take part in a TE network. A
native OSPF node forwards IP traffic using the shortest-path
forwarding algorithm and does not run the OSPF-xTE extensions.
o Native link (Non-TE link)
A native (or non-TE) link is a network attachment to a TE or
non-TE node used for IP packet traversal.
o Native OSPF network (Non-TE network)
A native OSPF network refers to an OSPF network that does not
support TE. "Non-TE network", "native-OSPF network", and "non-TE
topology" are used synonymously throughout the document.
o LSP
LSP stands for "Label-Switched Path". An LSP is a TE circuit
path in a packet network. The terms "LSP" and "TE circuit path"
are used synonymously in the context of packet networks.
o LSA
LSA stands for OSPF "Link State Advertisement".
Srisuresh & Joseph Experimental [Page 5]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
o LSDB
LSDB stands for "Link State Database". An LSDB contains a
representation of the topology of a network. A native LSDB,
constituted of native OSPF LSAs, represents the topology of a
native IP network. The TE-LSDB, on the other hand, is
constituted of TE LSAs and is a representation of the TE network
topology.
3.2. OSPF-xTE Terms
o TE node
A TE node is a node in the traffic engineering (TE) network. A
TE node has a minimum of one TE link attached to it. Associated
with each TE node is a set of supported TE metrics. A TE node
may also participate in a native IP network.
In a SONET/TDM or photonic cross-connect network, a TE node is
not required to be an OSPF-xTE node. An external OSPF-xTE node
may act as proxy for the TE nodes that cannot be routers
themselves.
o TE link
A TE link is a network attachment point to a TE node and is
intended for traffic engineering use. Associated with each TE
link is a set of supported TE metrics. A TE link may also
optionally carry native IP traffic.
Of the various links attached to a TE node, only the links that
take part in a traffic-engineered network are called TE links.
o TE circuit path
A TE circuit path is a unidirectional data path that is defined
by a list of TE nodes connected to each other through TE links.
A TE circuit path is also often referred simply as a circuit path
or a circuit.
For the purposes of OSPF-xTE, the originating and terminating
entities of a TE circuit path must be identifiable by their IP
addresses. As a general rule, all nodes and links party to a
traffic-engineered network should be uniquely identifiable by an
IP address.
Srisuresh & Joseph Experimental [Page 6]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
o OSPF-xTE node (OSPF-xTE router)
An OSPF-xTE node is a TE node that runs the OSPF routing protocol
and the OSPF-xTE extensions described in this document. An
autonomous system (AS) may consist of a combination of native and
OSPF-xTE nodes.
o TE Control network
The IP network used by the OSPF-xTE nodes for OSPF-xTE
communication is referred as the TE control network or simply the
control network. The control network can be independent of the
TE data network.
o TE network (TE topology)
A TE network is a network of connected TE nodes and TE links, for
the purpose of setting up one or more TE circuit paths. The
terms "TE network", "TE data network", and "TE topology" are used
synonymously throughout the document.
o Packet-TE network (Packet network)
A packet-TE network is a TE network in which the nodes switch
MPLS packets. An MPLS packet is defined in [MPLS-TE] as a packet
with an MPLS header, followed by data octets. The intermediary
node(s) of a circuit path in a packet-TE network perform MPLS
label swapping to emulate the circuit.
Unless specified otherwise, the term "packet network" is used
throughout the document to refer to a packet-TE network.
o Non-packet-TE network (Non-packet network)
A non-packet-TE network is a TE network in which the nodes switch
non-packet entities such as STS time slots, Lambda wavelengths,
or simply interfaces.
SONET/TDM and fiber cross-connect networks are examples of non-
packet-TE networks. Circuit emulation in these networks is
accomplished by the switch fabric in the intermediary nodes
(based on TDM time slot, fiber interface, or Lambda).
Unless specified otherwise, the term non-packet network is used
throughout the document to refer a non-packet-TE network.
Srisuresh & Joseph Experimental [Page 7]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
o Mixed network
A mixed network is a network that is constituted of both packet-
TE and non-TE networks. Traffic in the network is strictly
datagram oriented, i.e., IP datagrams or MPLS packets. Routers
in a mixed network may be TE or native nodes.
OSPF-xTE is usable within a packet network or a mixed network.
o Peer network
A peer network is a network that is constituted of packet-TE and
non-packet-TE networks combined. In a peer network, a TE node
could potentially support TE links for the packet as well as
non-packet data.
OSPF-xTE is usable within a packet network or a non-packet
network or a peer network, which is a combination of the two.
o CSPF
CSPF stands for "Constrained Shortest Path First". Given a TE
LSDB and a set of constraints that must be satisfied to form a
circuit path, there may be several CSPF algorithms to obtain a TE
circuit path that meets the criteria.
o TLV
A TLV stands for a data object in the form: Tag-Length-Value.
All TLVs are assumed to be of the following format, unless
specified otherwise. The Tag and Length are 16 bits wide each.
The Length includes the 4 octets required for Tag and Length
specification. All TLVs described in this document are padded to
32-bit alignment. Any padding required for alignment will not be
a part of the length field, however. TLVs are used to describe
traffic engineering characteristics of the TE nodes, TE links,
and TE circuit paths.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Tag | Length (4 or more) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Value .... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| .... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Srisuresh & Joseph Experimental [Page 8]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
o Router-TE TLVs (Router TLVs)
TLVs used to describe the TE capabilities of a TE node.
o Link-TE TLVs (Link TLVs)
TLVs used to describe the TE capabilities of a TE link.
4. Motivations behind the Design of OSPF-xTE
There are several motivations that led to the design of OSPF-xTE.
OSPF-xTE is scalable, efficient, and usable across a variety of
network topologies. These motivations are explained in detail in the
following subsections. The last subsection lists real-world network
scenarios that benefit from the OSPF-xTE.
4.1. Scalable Design
In OSPF-xTE, an area-level abstraction provides the scaling required
for the TE topology in a large autonomous system (AS). An OSPF-xTE
area border router will advertise summary LSAs for TE and non-TE
topologies independent of each other. Readers may refer to section
10 for a topological view of the AS from the perspective of a OSPF-
xTE node in an area.
[OPQLSA-TE], on the other hand, is designed for intra-area and is not
scalable to AS-wide scope.
4.2. Operable in Mixed and Peer Networks
OSPF-xTE assumes that an AS may be constituted of coexisting TE and
non-TE networks. OSPF-xTE dynamically discovers TE topology and the
associated TE metrics of the nodes and links that form the TE
network. As such, OSPF-xTE generates a stand-alone TE-LSDB that is
fully representative of the TE network. Stand-alone TE-LSDB allows
for speedy TE computations.
[OPQLSA-TE] is designed for packet networks and is not suitable for
mixes and peer networks. TE-LSDB in [OPQLSA-TE] is derived from the
combination of Opaque LSAs and native LSDB. Further, the TE-LSDB
thus derived has no knowledge of the TE capabilities of the routers
in the network.
4.3. Efficient in Flooding Reach
OSPF-xTE is able to identify the TE topology in a mixed network and
to limit the flooding of TE LSAs to only the TE nodes. Non-TE nodes
are not bombarded with TE LSAs.
Srisuresh & Joseph Experimental [Page 9]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
In a TE network, a subset of the TE metrics may be prone to rapid
change, while others remain largely unchanged. Changes in TE metrics
must be communicated at the earliest throughout the network to ensure
that the TE-LSDB is up-to-date within the network. As a general
rule, a TE network is likely to generate significantly more control
traffic than a native network. The excess traffic is almost directly
proportional to the rate at which TE circuits are set up and torn
down within the TE network. The TE database synchronization should
occur much quicker compared to the aggregate circuit set up and
tear-down rates. OSPF-xTE defines TE-Incremental-Link-update LSA
(section 8.2) to advertise only a subset of the metrics that are
prone to rapid changes.
The more frequent and wider the flooding, the larger the number of
retransmissions and acknowledgements. The same information (needed
or not) may reach a router through multiple links. Even if the
router did not forward the information past the node, it would still
have to send acknowledgements across all the various links on which
the LSAs tried to converge. It is undesirable to flood non-TE nodes
with TE information.
4.4. Ability to Reserve TE-Exclusive Links
OSPF-xTE draws a clear distinction between TE and non-TE links. A TE
link may be configured to permit TE traffic alone, and not permit
best-effort IP traffic on the link. This permits TE enforceability
on the TE links.
When links of a TE topology do not overlap the links of a native IP
network, OSPF-xTE allows for virtual isolation of the two networks.
Best-effort IP network and TE network often have different service
requirements. Keeping the two networks physically isolated can be
expensive. Combining the two networks into a single physically
connected network will bring economies of scale, while service
enforceability can be maintained individually for each of the TE and
non-TE sections of the network.
[OPQLSA-TE] does not support the ability to isolate best-effort IP
traffic from TE traffic on a link. All links are subject to best-
effort IP traffic. An OSPF router could potentially select a TE link
to be its least cost link and inundate the link with best-effort IP
traffic, thereby rendering the link unusable for TE purposes.
Srisuresh & Joseph Experimental [Page 10]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
4.5. Extensible Design
The OSPF-xTE design is based on the tried-and-tested OSPF paradigm,
and it inherits all the benefits of OSPF, present and future. TE
LSAs are extensible, just as the native OSPF on which OSPF-xTE is
founded are extensible.
4.6. Unified for Packet and Non-Packet Networks
OSPF-xTE is usable within a packet network or a non-packet network or
a combination peer network.
Signaling protocols such as RSVP and LDP work the same across packet
and non-packet networks. Signaling protocols merely need the TE
characteristics of nodes and links so they can signal the nodes to
formulate TE circuit paths. In a peer network, the underlying
control protocol must be capable of providing a unified LSDB for all
TE nodes (nodes with packet-TE links as well as non-packet-TE links)
in the network. OSPF-xTE meets this requirement.
4.7. Networks Benefiting from the OSPF-xTE Design
Below are examples of some real-world network scenarios that benefit
from OSPF-xTE.
o IP providers transitioning to provide TE services
Providers needing to support MPLS-based TE in their IP network
may choose to transition gradually. They may add new TE links or
convert existing links into TE links within an area first and
progressively advance to offering MPLS in the entire AS.
Not all routers will support TE extensions at the same time
during the migration process. Use of TE-specific LSAs and their
flooding to OSPF-xTE only nodes will allow the vendor to
introduce MPLS TE without destabilizing the existing network.
The native OSPF-LSDB will remain undisturbed while newer TE links
are added to the network.
o Providers offering best-effort-IP & TE services
Providers choosing to offer both best-effort-IP and TE based
packet services simultaneously on the same physically connected
network will benefit from the OSPF-xTE design. By maintaining
independent LSDBs for each type of service, TE links are not
cannibalized in a mixed network.
Srisuresh & Joseph Experimental [Page 11]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
o Large TE networks
The OSPF-xTE design is advantageous in large TE networks that
require the AS to be sub-divided into multiple areas. OSPF-xTE
permits inter-area exchange of TE information, which ensures that
all nodes in the AS have up-to-date, AS-wide, TE reachability
knowledge. This in turn will make TE circuit setup predictable
and computationally bounded.
o Non-Packet Networks and Peer Networks
Vendors may also use OSPF-xTE for their non-packet TE networks.
OSPF-xTE defines the following functions in support of non-packet
TE networks.
(a) "Positional-Ring" type network LSAs.
(b) Router proxying -- allowing a router to advertise on behalf
of other nodes (that are not packet/OSPF-capable).
5. OSPF-xTE Solution Overview
5.1. OSPF-xTE Solution
Locally-scoped Opaque LSA (type 9) is used to discovery the TE
topology within a network. Section 7.1 describes in detail the use
of type 9 Opaque LSA for TE topology discovery. TE LSAs are designed
for use by the OSPF-xTE nodes. Section 8.0 describes the TE LSAs in
detail. Changes required of the OSPF data structures to support
OSPF-xTE are described in section 11.0. A new TE-neighbors data
structure will be used to advertise TE LSAs along TE topology.
An OSPF-xTE node will have a native LSDB and a TE-LSDB, while a
native OSPF node will have just a native LSDB. Consider the OSPF
area, constituted of OSPF-xTE and native OSPF routers, shown in
Figure 1. Nodes RT1, RT2, RT3, and RT6 are OSPF-xTE routers with TE
and non-TE link attachments. Nodes RT4 and RT5 are native OSPF
routers with no TE links. When the LSA database is synchronized, all
nodes will share the same native LSDB. OSPF-xTE nodes alone will
have the additional TE-LSDB.
Srisuresh & Joseph Experimental [Page 12]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
+---+
| |--------------------------------------+
|RT6|\\ |
+---+ \\ |
|| \\ |
|| \\ |
|| \\ |
|| +---+ |
|| | |----------------+ |
|| |RT1|\\ | |
|| +---+ \\ | |
|| //| \\ | |
|| // | \\ | |
|| // | \\ | |
+---+ // | \\ +---+ |
|RT2|// | \\|RT3|------+
| |----------|----------------| |
+---+ | +---+
| |
| |
| |
+---+ +---+
|RT5|--------------|RT4|
+---+ +---+
Legend:
-- Native (non-TE) network link
| Native (non-TE) network link
\\ TE network link
|| TE network link
Figure 1. A (TE + native) OSPF Network Topology
5.2. Assumptions
OSPF-xTE is an extension to the native OSPF protocol and does not
mandate changes to the existing OSPF. OSPF-xTE design makes the
following assumptions.
(1) An OSPF-xTE node will need to establish router adjacency with at
least one other OSPF-xTE node in the area in order for the
router's TE database to be synchronized within the area.
Failing this, the OSPF router will not be in the TE calculations
of other TE routers in the area.
It is the responsibility of the network administrator(s) to
ensure connectedness of the TE network. Otherwise, there can be
disjoint TE topologies within a network.
Srisuresh & Joseph Experimental [Page 13]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
(2) OSPF-xTE nodes must advertise the link state of its TE links.
TE links are not obligated to support native IP traffic. Hence,
an OSPF-xTE node cannot be required to synchronize its link-
state database with neighbors on all its links. The only
requirement is to have the TE LSDB synchronized across all
OSPF-xTE nodes in the area.
(3) A link in a packet network may be designated as a TE link or a
native-IP link or both. For example, a link may be used for
both TE and non-TE traffic, as long as the link is under
subscribed in bandwidth for TE traffic (for example, 50% of the
link capacity is set aside for TE traffic).
(4) Non-packet TE sub-topologies must have a minimum of one node
running OSPF-xTE protocol. For example, a SONET/SDH TDM ring
must have a minimum of one Gateway Network Element (GNE) running
OSPF-xTE. The OSPF-xTE node will advertise on behalf of all the
TE nodes in the ring.
6. Strategy for Transition of Opaque LSAs to OSPF-xTE
Below is a strategy to transition implementations currently using
Opaque LSAs ([OPQLSA-TE]) within an area to adapt OSPF-xTE in a
gradual fashion across the AS.
(1) Use [OPQLSA-TE] within an area. Derive TE topology within the
area from the combination of Opaque LSAs and native LSDB.
(2) Use TE-Summary LSAs and TE-AS-external LSAs for inter-area
communication. Use the TE topology within an area to summarize
the TE networks in the area and advertise the same to all TE
nodes in the backbone. The TE-ABRs (TE area border routers) on
the backbone area will in turn advertise these summaries within
their connected areas.
7. OSPF-xTE Router Adjacency -- TE Topology Discovery
OSPF creates adjacencies between neighboring routers for the purpose
of exchanging routing information. The following subsections
describe the use of locally-scoped Opaque LSAs to discover OSPF-xTE
neighboring routers. The capability is used as the basis to build a
TE topology.
7.1. The OSPF-xTE Router Adjacency
OSPF uses the options field in the Hello packet to advertise optional
router capabilities [OSPF-V2]. However, all the bits in this field
have been allocated and there is no way to advertise OSPF-xTE
Srisuresh & Joseph Experimental [Page 14]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
capability using the options field at this time. This document
proposes using local-scope Opaque LSA (OPAQUE-9 LSA) to advertise
support for OSPF-xTE and establish OSPF-xTE adjacency. In order to
exchange Opaque LSAs, the neighboring routers must have the O-bit
(Opaque option bit) set in the options field.
[OSPF-CAP] proposes a format for exchanging router capabilities via
OPAQUE-9 LSA. Routers supporting OSPF-xTE will be required to set
the "OSPF Experimental TE" bit within the "router capabilities"
field. Two routers will not become TE neighbors unless they share a
common network link on which both routers advertise support for
OSPF-xTE. Routers that do not support OSPF-xTE may simply ignore the
advertisement.
7.2. The Hello Protocol
The Hello protocol is primarily responsible for dynamically
establishing and maintaining neighbor adjacencies. In a TE network,
it is not required for all links and neighbors to establish adjacency
using this protocol. OSPF-xTE router adjacency between two routers
is established using the method described in the previous section.
For non-broadcast multi-access (NBMA) and broadcast networks, the
HELLO protocol is responsible for electing the Designated Router and
the Backup Designated Router. Routers supporting the TE option shall
be given a higher precedence for becoming a designated router over
those that do not support TE.
7.3. The Designated Router
When a router's non-TE link first becomes functional, it checks to
see whether there is currently a Designated Router for the network.
If there is one, it accepts that Designated Router, regardless of its
router priority, so long as the current designated router is TE
compliant. Otherwise, the router itself becomes Designated Router if
it has the highest Router Priority on the network and is TE
compliant.
OSPF-xTE must be implemented on the most robust routers, as they
become likely candidates to take on the role as Designated Router.
7.4. The Backup Designated Router
The Backup Designated Router is also elected by the Hello Protocol.
Each Hello Packet has a field that specifies the Backup Designated
Router for the network. Once again, TE-compliance must be weighed in
conjunction with router priority in electing the Backup Designated
Router.
Srisuresh & Joseph Experimental [Page 15]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
7.5. Flooding and the Synchronization of Databases
In OSPF, adjacent routers within an area are required to synchronize
their databases. However, a more concise requirement is that all
routers in an area must converge on the same LSDB. As stated in item
2 of section 5.2, a basic assertion of OSPF-xTE is that the links
used by the OSPF-xTE control network for flooding must not be
required to match the links used by the data network for real-time
data forwarding. For instance, it should not be required to send
OSPF-xTE messages over a TE link that is configured to reject non-TE
traffic. However, the control network must be set up such that a
minimum of one path exists between any two OSPF or OSPF-xTE routers
within the network, for flooding purposes. This revised control
network connectivity requirement does not jeopardize convergence of
LSDB within an area.
In a mixed network, where some of the neighbors are TE compliant and
others are not, the designated OSPF-xTE router will exchange
different sets of LSAs with its neighbors. TE LSAs are exchanged
only with the TE neighbors. Native LSAs are exchanged with all
neighbors (TE and non-TE alike). Restricting the scope of TE LSA
flooding to just the OSPF-xTE nodes will not affect the native nodes
that coexist with the OSPF-xTE nodes.
The control traffic for a TE network (i.e., TE LSA advertisement) is
likely to be higher than that of a native OSPF network. This is
because the TE metrics may vary with each TE circuit setup and the
corresponding state change must be advertised at the earliest, not
exceeding the MinLSInterval of 5 seconds. To minimize advertising
repetitive content, OSPF-xTE defines a new TE-incremental-Link-update
LSA (section 8.2) that would advertise just the TLVs that changed for
a link.
The OSPFIGP-TE well-known multicast address 224.0.0.24 has been
assigned by IANA for the exchange of TE-compliant database
descriptors during database synchronization.
7.6. The Graph of Adjacencies
If two routers have multiple networks in common, they may have
multiple adjacencies between them. The adjacency may be one of two
types - native OSPF adjacency and TE adjacency. OSPF-xTE routers
will form both types of adjacency.
Two types of adjacency graphs are possible, depending on whether a
Designated Router is elected for the network. On physical point-to-
point networks, point-to-multipoint networks, and virtual links,
neighboring routers become adjacent whenever they can communicate
Srisuresh & Joseph Experimental [Page 16]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
directly. The adjacency can be either (a) TE-compliant or (b)
native. In contrast, on broadcast and NBMA networks the designated
router and the backup designated router may maintain two sets of
adjacency. The remaining routers will form either TE-compliant or
native adjacency.
In the broadcast network in Figure 2, routers RT7 and RT3 are chosen
as the Designated and Backup Designated Routers, respectively.
Routers RT3, RT4 and RT7 are TE-compliant, but RT5 and RT6 are not.
So RT4 will have TE-compliant adjacency with the designated and
backup routers, while RT5 and RT6 will only have native adjacency
with the Designated and Backup Designated Routers.
Network Adjacency
+---+ +---+
|RT1|------------|RT2| o-----------------o
+---+ N1 +---+ RT1 RT2
RT7
o:::::
+---+ +---+ +---+ /| :
|RT7| |RT3| |RT4| / | :
+---+ +---+ +---+ / | :
| | | / | :
+-----------------------+ RT5o RT6o oRT4
N2 | | * * ;
+---+ +---+ * * ;
|RT5| |RT6| * * ;
+---+ +---+ ** ;
o;;;;;
RT3
Adjacency Legend:
----- Native adjacency (primary)
***** Native adjacency (backup)
::::: TE-compliant adjacency (primary)
;;;;; TE-compliant adjacency (backup)
Figure 2. Two Adjacency Graphs with TE-Compliant Routers
Srisuresh & Joseph Experimental [Page 17]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
8. TE LSAs for Packet Network
The OSPFv2 protocol currently has a total of 11 LSA types. LSA types
1 through 5 are defined in [OSPF-V2]. LSA types 6, 7, and 8 are
defined in [MOSPF], [NSSA], and [BGP-OSPF], respectively. LSA types
9 through 11 are defined in [OPAQUE].
Each LSA type has a unique flooding scope. Opaque LSA types 9
through 11 are general purpose LSAs, with flooding scope set to
link-local, area-local, and AS-wide (except stub areas) respectively.
In the following subsections, we define new LSAs for traffic
engineering (TE) use. The values for the new TE LSA types are
assigned with the high bit of the LSA-type octet set to 1. The new
TE LSAs are largely modeled after the existing LSAs for content
format and have a unique flooding scope.
TE-router LSA is defined to advertise TE characteristics of an OSPF-
xTE router and all the TE links attached to the router. TE-
incremental-Link-Update LSA is defined to advertise incremental
updates to the metrics of a TE link. Flooding scope for both these
LSAs is restricted to an area.
TE-Summary network and router LSAs are defined to advertise the
reachability of area-specific TE networks and area border routers
(along with router TE characteristics) to external areas. Flooding
scope of the TE-Summary LSAs is the TE topology in the entire AS less
the non-backbone area for which the advertising router is an ABR.
Just as with native OSPF summary LSAs, the TE-Summary LSAs do not
reveal the topological details of an area to external areas.
TE-AS-external LSA and TE-Circuit-Path LSA are defined to advertise
AS external network reachability and pre-engineered TE circuits,
respectively. While flooding scope for both these LSAs can be the
entire AS, flooding scope for the pre-engineered TE circuit LSA may
optionally be restricted to just the TE topology within an area.
8.1. TE-Router LSA (0x81)
The TE-router LSA (0x81) is modeled after the router LSA and has the
same flooding scope as the router LSA. However, the scope is
restricted to only the OSPF-xTE nodes within the area. The TE router
LSA describes the TE metrics of the router as well as the TE links
attached to the router. Below is the format of the TE-router LSA.
Unless specified explicitly otherwise, the fields carry the same
meaning as they do in a router LSA. Only the differences are
explained below. Router-TE flags, Router-TE TLVs, Link-TE options,
and Link-TE TLVs are each described in the following sub-sections.
Srisuresh & Joseph Experimental [Page 18]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS age | Options | 0x81 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link State ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Advertising Router |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS sequence number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS checksum | length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 |V|E|B| 0 | Router-TE flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Router-TE flags (contd.) | Router-TE TLVs |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| .... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| .... | # of TE links |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Data |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | 0 | Link-TE flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link-TE flags (contd.) | Zero or more Link-TE TLVs |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Data |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... |
8.1.1. Router-TE Flags: TE Capabilities of the Router
The following flags are used to describe the TE capabilities of an
OSPF-xTE router. The remaining bits of the 32-bit word are reserved
for future use.
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|L|L|P| | | | |L|S|C|
|S|E|S| | | | |S|I|S|
|R|R|C| | | | |P|G|P|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|<---- Boolean TE flags ------->|<- TE flags pointing to TLVs ->|
Srisuresh & Joseph Experimental [Page 19]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
Bit LSR - When set, the router is considered to have LSR (Label-
Switched Router) capability.
Bit LER - When set, the router is considered to have LER
capability. All MPLS border routers will be required
to have LER capability. Setting both the LER and E
bits indicates an AS Boundary router with LER
capability. Setting both the LER and B bits indicates
an area border router with LER capability.
Bit PSC - Indicates the node is packet-switch capable.
Bit LSP - An MPLS Label switch TLV TE-NODE-TLV-MPLS-SWITCHING
follows. This is applicable only when the PSC flag is
set.
Bit SIG - An MPLS Signaling-protocol-support TLV TE-NODE-TLV-
MPLS-SIG-PROTOCOLS follows.
BIT CSPF - A CSPF algorithm support TLV TE-NODE-TLV-CSPF-ALG
follows.
8.1.2. Router-TE TLVs
The following Router-TE TLVs are defined.
8.1.2.1. TE-NODE-TLV-MPLS-SWITCHING
MPLS switching TLV is applicable only for packet switched nodes. The
TLV specifies the MPLS packet switching capabilities of the TE node.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Tag = 0x8001 | Length = 6 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Label Depth | QOS | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Label Depth is the depth of label stack the node is capable of
processing on its ingress interfaces. An octet is used to represent
label depth. A default value of 1 is assumed when the TLV is not
listed. Label depth is relevant when an LER has to pop multiple
labels off the MPLS stack.
QOS is a single-octet field that may be assigned '1' or '0'. Nodes
supporting QOS are able to interpret the EXP bits in the MPLS header
to prioritize multiple classes of traffic through the same LSP.
Srisuresh & Joseph Experimental [Page 20]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
8.1.2.2. TE-NODE-TLV-MPLS-SIG-PROTOCOLS
MPLS signaling protocols TLV lists all the signaling protocol
supported by the node. An octet is used to list each signaling
protocol supported.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Tag = 0x8002 | Length = 5, 6 or 7 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Protocol-1 | ... | .... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
RSVP-TE protocol is represented as 1, CR-LDP as 2, and LDP as 3.
These are the only permitted signaling protocols at this time.
8.1.2.3. TE-NODE-TLV-CSPF-ALGORITHMS
The CSPF algorithms TLV lists all the CSPF algorithm codes supported.
Support for CSPF algorithms makes the node eligible to compute
complete or partial circuit paths. Support for CSPF algorithms can
also be beneficial in knowing whether or not a node is capable of
expanding loose routes (in an MPLS signaling request) into a detailed
circuit path.
Two octets are used to list each CSPF algorithm code. The algorithm
codes may be vendor defined and unique within an Autonomous System.
If the node supports 'n' CSPF algorithms, the Length would be (4 + 4
* ((n+1)/2)) octets.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Tag = 0x8003 | Length = 4(1 + (n+1)/2) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| CSPF-1 | .... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| CSPF-n | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Srisuresh & Joseph Experimental [Page 21]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
8.1.2.4. TE-NODE-TLV-NULL
When a TE-Router or a TE link has multiple TLVs to describe the
metrics, the NULL TLV is used to terminate the TLV list.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Tag = 0x8888 | Length = 4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
8.1.3. Link-TE Flags: TE Capabilities of a Link
The following flags are used to describe the TE capabilities of a
link. The remaining bits of the 32-bit word are reserved for future
use.
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|T|N|P| | | |D| |S|L|B|C|
|E|T|K| | | |B| |R|U|W|O|
| |E|T| | | |S| |L|G| |L|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|<---- Boolean TE flags ------->|<- TE flags pointing to TLVs ->|
Bit TE - Indicates whether TE is permitted on the link. A link
can be denied for TE use by setting the flag to 0.
Bit NTE - Indicates whether non-TE traffic is permitted on the
TE link. This flag is relevant only when the TE flag
is set.
Bit PKT - Indicates whether or not the link is capable of IP
packet processing.
Bit DBS - Indicates whether or not database synchronization is
permitted on this link.
Bit SRLG - Shared Risk Link Group TLV TE-LINK-TLV-SRLG follows.
Bit LUG - Link Usage Cost Metric TLV TE-LINK-TLV-LUG follows.
Bit BW - One or more Link Bandwidth TLVs follow.
Bit COL - Link Color TLV TE-LINK-TLV-COLOR follows.
Srisuresh & Joseph Experimental [Page 22]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
8.1.4. Link-TE TLVs
8.1.4.1. TE-LINK-TLV-SRLG
The SRLG describes the list of Shared Risk Link Groups (SRLG) the
link belongs to. Two octets are used to list each SRLG. If the link
belongs to 'n' SRLGs, the Length would be (4 + 4 * ((n+1)/2)) octets.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Tag = 0x0001 | Length = 4(1 + (n+1)/2) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SRLG-1 | .... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SRLG-n | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
8.1.4.2 TE-LINK-TLV-BANDWIDTH-MAX
The Bandwidth TLV specifies the maximum bandwidth of the link, as
follows.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Tag = 0x0002 | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Maximum Bandwidth |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Bandwidth is expressed in units of 32 bytes/sec (256 bits/sec). A
32-bit field for bandwidth would permit specification not exceeding 1
terabit/sec.
Maximum Bandwidth is the maximum link capacity expressed in bandwidth
units. Portions or all of this bandwidth may be used for TE use.
Srisuresh & Joseph Experimental [Page 23]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
8.1.4.3. TE-LINK-TLV-BANDWIDTH-MAX-FOR-TE
The Bandwidth TLV specifies the maximum bandwidth available for TE
use, as follows.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Tag = 0x0003 | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Maximum Bandwidth available for TE use |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Bandwidth is expressed in units of 32 bytes/sec (256 bits/sec). A
32-bit field for bandwidth would permit specification not exceeding 1
terabit/sec.
"Maximum Bandwidth available for TE use" is the total reservable
bandwidth on the link for use by all the TE circuit paths traversing
the link. The link is oversubscribed when this field is more than
the Maximum Bandwidth. When the field is less than the Maximum
Bandwidth, the remaining bandwidth on the link may be used for non-TE
traffic in a mixed network.
8.1.4.4. TE-LINK-TLV-BANDWIDTH-TE
The Bandwidth TLV specifies the bandwidth reserved for TE as follows.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Tag = 0x0004 | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TE Bandwidth subscribed |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Bandwidth is expressed in units of 32 bytes/sec (256 bits/sec). A
32-bit field for bandwidth would permit specification not exceeding 1
terabit/sec.
"TE Bandwidth subscribed" is the bandwidth that is currently
subscribed from of the link. "TE Bandwidth subscribed" must be less
than the "Maximum bandwidth available for TE use". New TE circuit
paths are able to claim no more than the difference between the two
bandwidths for reservation.
Srisuresh & Joseph Experimental [Page 24]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
8.1.4.5. TE-LINK-TLV-LUG
The link usage cost TLV specifies bandwidth unit usage cost, TE
circuit set-up cost, and any time constraints for setup and teardown
of TE circuits on the link.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Tag = 0x0005 | Length = 28 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Bandwidth unit usage cost |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TE circuit set-up cost |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TE circuit set-up time constraint |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TE circuit tear-down time constraint |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Circuit Setup time constraint
This 64-bit number specifies the time at or after which a TE-
circuit path may be set up on the link. The set-up time
constraint is specified as the number of seconds from the start
of January 1, 1970 UTC. A reserved value of 0 implies no circuit
setup time constraint.
Circuit Teardown time constraint
This 64-bit number specifies the time at or before which all TE-
circuit paths using the link must be torn down. The teardown
time constraint is specified as the number of seconds from the
start of January 1 1970 UTC. A reserved value of 0 implies no
circuit teardown time constraint.
Srisuresh & Joseph Experimental [Page 25]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
8.1.4.6. TE-LINK-TLV-COLOR
The color TLV is similar to the SRLG TLV, in that an Autonomous
System may choose to issue colors to a TE link meeting certain
criteria. The color TLV can be used to specify one or more colors
assigned to the link as follows. Two octets are used to list each
color. If the link belongs to 'n' number of colors, the Length would
be (4 + 4 * ((n+1)/2)) octets.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Tag = 0x0006 | Length = 4(1 + (n+1)/2) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Color-1 | .... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Color-n | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
8.1.4.7. TE-LINK-TLV-NULL
When a TE link has multiple TLVs to describe its metrics, the NULL
TLV is used to terminate the TLV list. The TE-LINK-TLV-NULL is same
as the TE-NODE-TLV-NULL described in section 8.1.2.4
8.2. TE-Incremental-Link-Update LSA (0x8d)
A significant difference between a native OSPF network and a TE
network is that the latter may be subject to frequent real-time
circuit pinning and is likely to undergo TE-state updates. Some
links might undergo changes more frequently than others. Flooding
the network with TE-router LSAs at the aggregated speed of all link
metric changes is simply not desirable. A smaller in size TE-
incremental-link-update LSA is designed to advertise only the
incremental link updates.
A TE-incremental-link-update LSA will be advertised as frequently as
the link state is changed (not exceeding once every MinLSInterval
seconds). The TE link sequence is largely the advertisement of a
sub-portion of router LSA. The sequence number on this will be
incremented with the TE-router LSA's sequence as the basis. When an
updated TE-router LSA is advertised within 30 minutes of the previous
advertisement, the updated TE-router LSA will assume a sequence
number that is larger than the most frequently updated of its links.
Srisuresh & Joseph Experimental [Page 26]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
Below is the format of the TE-incremental-link-update LSA.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS age | Options | 0x8d |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link State ID (same as Link ID) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Advertising Router |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS sequence number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS checksum | length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Data |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | 0 | Link-TE options |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link-TE options | Zero or more Link-TE TLVs |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| # TOS | metric |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TOS | 0 | TOS metric |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Link State ID
This would be exactly the same as would have been specified for
Link ID, for a link within the router LSA.
Link Data
This specifies the router ID the link belongs to. In majority of
cases, this would be same as the advertising router. This choice
for Link Data is primarily to facilitate proxy advertisement for
incremental link updates.
Suppose that a proxy router LSA was used to advertise the TE-
router LSA of a SONET/TDM node, and that the proxy router is now
required to advertise incremental-link-update for the same
SONET/TDM node. Specifying the actual router-ID to which the
link in the incremental-link-update LSA belongs helps receiving
nodes in finding the exact match for the LSA in their database.
Srisuresh & Joseph Experimental [Page 27]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
The tuple of (LS Type, LSA ID, Advertising router) uniquely
identifies the LSA and replaces LSAs of the same tuple with an
older sequence number. However, there is an exception to this
rule in the context of TE-link-update LSA. TE-Link-update LSA
will initially assume the sequence number of the TE-router LSA it
belongs to. Further, when a new TE-router LSA update with a
larger sequence number is advertised, the newer sequence number
is assumed by all the link LSAs.
8.3. TE-Circuit-Path LSA (0x8C)
TE-Circuit-path LSA (next page) may be used to advertise the
availability of pre-engineered TE circuit path(s) originating from
any router in the network. The flooding scope may be area-wide or
AS-wide. Fields are as follows.
Link State ID
The ID of the far-end router or the far-end link-ID to which the TE
circuit path(s) is being advertised.
TE-circuit-path(s) flags
Bit G - When set, the flooding scope is set to be AS-wide.
Otherwise, the flooding scope is set to be area-wide.
Bit E - When set, the advertised Link-State ID is an AS boundary
router (E is for external). The advertising router and
the Link State ID belong to the same area.
Bit B - When set, the advertised Link State ID is an area border
router (B is for Border)
Bit D - When set, this indicates that the duration of circuit
path validity follows.
Bit S - When set, this indicates that setup time of the circuit
path follows.
Bit T - When set, this indicates that teardown time of the
circuit path follows.
CktType - This 4-bit field specifies the circuit type of the
Forward Equivalency Class (FEC).
Srisuresh & Joseph Experimental [Page 28]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
0x01 - Origin is Router, Destination is Router.
0x02 - Origin is Link, Destination is Link.
0x04 - Origin is Router, Destination is Link.
0x08 - Origin is Link, Destination is Router.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS age | Options | 0x84 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link State ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Advertising Router |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS sequence number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS checksum | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 |G|E|B|D|S|T|CktType| Circuit Duration (Optional) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Circuit Duration cont... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Circuit Duration cont.. | Circuit Setup time (Optional) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Circuit Setup time cont... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Circuit Setup time cont.. |Circuit Teardown time(Optional)|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Circuit Teardown time cont... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Circuit Teardown time cont.. | No. of TE Circuit Paths |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Circuit-TE ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Circuit-TE Data |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | 0 | Circuit-TE flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Circuit-TE flags (contd.) | Zero or more Circuit-TE TLVs |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Circuit-TE ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Circuit-TE Data |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... |
Srisuresh & Joseph Experimental [Page 29]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
Circuit Duration (Optional)
This 64-bit number specifies the seconds from the time of the LSA
advertisement for which the pre-engineered circuit path will be
valid. This field is specified only when the D-bit is set in the
TE-circuit-path flags.
Circuit Setup time (Optional)
This 64-bit number specifies the time at which the TE circuit
path may be set up. This field is specified only when the S-bit
is set in the TE-circuit-path flags. The set-up time is
specified as the number of seconds from the start of January 1,
1970 UTC.
Circuit Teardown time (Optional)
This 64-bit number specifies the time at which the TE circuit
path may be torn down. This field is specified only when the
T-bit is set in the TE-circuit-path flags. The teardown time is
specified as the number of seconds from the start of January 1
1970 UTC.
No. of TE Circuit Paths
This specifies the number of pre-engineered TE circuit paths
between the advertising router and the router specified in the
Link State ID.
Circuit-TE ID
This is the ID of the far-end router for a given TE circuit path
segment.
Circuit-TE Data
This is the virtual link identifier on the near-end router for a
given TE circuit path segment. This can be a private interface
or handle the near-end router uses to identify the virtual link.
The sequence of (Circuit-TE ID, Circuit-TE Data) pairs lists the
end-point nodes and links in the LSA as a series.
Circuit-TE flags
This lists the zero or more TE-link TLVs that all member elements
of the LSP meet.
Srisuresh & Joseph Experimental [Page 30]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
8.4. TE-Summary LSAs
TE-Summary LSAs are Type 0x83 and 0x84 LSAs. These LSAs are
originated by area border routers. A TE-Summary-network LSA (0x83)
describes the reachability of TE networks in a non-backbone area,
advertised by the area border router. A Type 0x84 summary LSA
describes the reachability of area border routers and AS border
routers and their TE capabilities.
One of the benefits of having multiple areas within an AS is that
frequent TE advertisements within the area do not impact outside the
area. Only the TE abstractions befitting the external areas are
advertised.
Srisuresh & Joseph Experimental [Page 31]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
8.4.1. TE-Summary Network LSA (0x83)
A TE-Summary network LSA may be used to advertise reachability of
TE-networks accessible to areas external to the originating area.
The content and the flooding scope of a TE-Summary LSA is different
from that of a native Summary LSA.
The scope of flooding for a TE-Summary network LSA is AS-wide, with
the exception of the originating area and the stub areas. The area
border router for each non-backbone area is responsible for
advertising the reachability of backbone networks into the area.
Unlike a native-summary network LSA, a TE-Summary network LSA does
not advertise summary costs to reach networks within an area. This
is because TE parameters are not necessarily additive or comparable.
The parameters can be varied in their expression. For example, a
TE-Summary network LSA will not summarize a network whose links do
not fall under an SRLG (Shared-Risk Link Group). This way, the TE-
Summary LSA merely advertises the reachability of TE networks within
an area. The specific circuit paths can be computed by the ABR.
Pre-engineered circuit paths are advertised using TE-Circuit-path
LSAs(refer to Section 8.3).
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS age | Options | 0x83 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link State ID (IP Network Number) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Advertising Router (Area Border Router) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS sequence number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS checksum | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Network Mask |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Area-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Srisuresh & Joseph Experimental [Page 32]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
8.4.2. TE-Summary Router LSA (0x84)
A TE-Summary router LSA may be used to advertise the availability of
area border routers (ABRs) and AS border routers (ASBRs) that are
TE-capable. The TE-Summary router LSAs are originated by the Area
Border Routers. The scope of flooding for the TE-Summary router LSA
is the non-backbone area the advertising ABR belongs to.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS age | Options | 0x84 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link State ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Advertising Router (ABR) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS sequence number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS checksum | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 |E|B| 0 | No. of Areas |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Area-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Router-TE flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Router-TE TLVs |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| .... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Link State ID
The ID of the area border router or the AS border router whose TE
capability is being advertised.
Advertising Router
The ABR that advertises its TE capabilities (and the OSPF areas
it belongs to) or the TE capabilities of an ASBR within one of
the areas for which the ABR is a border router.
Srisuresh & Joseph Experimental [Page 33]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
No. of Areas
Specifies the number of OSPF areas the link state ID belongs to.
Area-ID
Specifies the OSPF area(s) the link state ID belongs to. When
the link state ID is same as the advertising router ID, the
Area-ID lists all the areas the ABR belongs to. In the case the
link state ID is an ASBR, the Area-ID simply lists the area the
ASBR belongs to. The advertising router is assumed to be the ABR
from the same area the ASBR is located in.
Summary-router-TE flags
Bit E - When set, the advertised Link-State ID is an AS boundary
router (E is for external). The advertising router and
the Link State ID belong to the same area.
Bit B - When set, the advertised Link state ID is an Area border
router (B is for Border)
Router-TE flags, Router-TE TLVs
TE capabilities of the link-state-ID router.
TE Flags and TE TLVs are as applicable to the ABR/ASBR specified
in the link state ID. The semantics is same as specified in the
Router-TE LSA.
8.5. TE-AS-external LSAs (0x85)
TE-AS-external LSAs are the Type 0x85 LSAs. This is modeled after
AS-external LSA format and flooding scope. TE-AS-external LSAs are
originated by AS boundary routers with TE extensions, and describe
the TE networks and pre-engineered circuit paths external to the AS.
As with AS-external LSA, the flooding scope of the TE-AS-external LSA
is AS-wide, with the exception of stub areas.
Srisuresh & Joseph Experimental [Page 34]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS age | Options | 0x85 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link State ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Advertising Router |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS sequence number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS checksum | length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Network Mask |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Forwarding address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| External Route Tag |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| # of Virtual TE links | 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link-TE flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link-TE TLVs |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TE-Forwarding address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| External Route TE Tag |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... |
Network Mask
The IP address mask for the advertised TE destination. For
example, this can be used to specify access to a specific TE
node or TE link with an mask of 0xffffffff. This can also be
used to specify access to an aggregated set of destinations
using a different mask. ex: 0xff000000.
Link-TE flags, Link-TE TLVs
The TE attributes of this route. These fields are optional and
are provided only when one or more pre-engineered circuits can
be specified with the advertisement. Without these fields, the
LSA will simply state TE reachability info.
Srisuresh & Joseph Experimental [Page 35]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
Forwarding address
Data traffic for the advertised destination will be forwarded to
this address. If the Forwarding address is set to 0.0.0.0, data
traffic will be forwarded instead to the LSA's originator (i.e.,
the responsible AS boundary router).
External Route Tag
A 32-bit field attached to each external route. This is not
used by the OSPF protocol itself. It may be used to communicate
information between AS boundary routers; the precise nature of
such information is outside the scope of this specification.
9. TE LSAs for Non-Packet Network
A non-packet network would use the TE LSAs described in the previous
section for a packet network with some variations. These variations
are described in the following subsections.
Two new LSAs, TE-Positional-ring-network LSA and TE-Router-Proxy LSA
are defined for use in non-packet TE networks.
Readers may refer to [SONET-SDH] for a detailed description of the
terms used in the context of SONET/SDH TDM networks,
9.1. TE-Router LSA (0x81)
The following fields are used to describe each router link (i.e.,
interface). Each router link is typed (see the below Type field).
The Type field indicates the kind of link being described.
Type
A new link type "Positional-Ring Type" (value 5) is defined.
This is essentially a connection to a TDM-Ring. TDM ring
network is different from LAN/NBMA transit network in that nodes
on the TDM ring do not necessarily have a terminating path
between themselves. Second, the order of links is important in
determining the circuit path. Third, the protection switching
and the number of fibers from a node going into a ring are
determined by the ring characteristics, for example, 2-fiber vs.
4-fiber ring and Unidirectional Path Switched Ring (UPSR) vs.
Bidirectional Line Switched Ring (BLSR).
Srisuresh & Joseph Experimental [Page 36]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
Type Description
__________________________________________________
1 Point-to-point connection to another router
2 Connection to a transit network
3 Connection to a stub network
4 Virtual link
5 Positional-Ring type.
Link ID
Identifies the object that this router link connects to. Value
depends on the link's Type. For a positional-ring type, the
Link ID shall be IP Network/Subnet number just as the case with
a broadcast transit network. The following table summarizes the
updated Link ID values.
Type Link ID
______________________________________
1 Neighboring router's Router ID
2 IP address of Designated Router
3 IP network/subnet number
4 Neighboring router's Router ID
5 IP network/subnet number
Link Data
This depends on the link's Type field. For type-5 links, this
specifies the router interface's IP address.
9.1.1 Router-TE flags - TE Capabilities of a Router
Flags specific to non-packet TE nodes are described below.
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|L|L|P|T|L|F| |S|S|S|C|
|S|E|S|D|S|S| |T|E|I|S|
|R|R|C|M|C|C| |A|L|G|P|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|<---- Boolean TE flags ------->|<- TE flags pointing to TLVs ->|
Bit TDM - Indicates the node is TDM circuit switch capable.
Bit LSC - Indicates the node is capable of Lambda switching.
Bit FSC - Indicates the node is capable of fiber-switching (can
also be a non-fiber link type).
Srisuresh & Joseph Experimental [Page 37]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
9.1.2 Link-TE Options: TE Capabilities of a TE Link
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|T|N|P|T|L|F|D| |S|L|B|C|
|E|T|K|D|S|S|B| |R|U|W|O|
| |E|T|M|C|C|S| |L|G|A|L|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|<---- Boolean TE flags ------->|<- TE flags pointing to TLVs ->|
TDM, LSC, FSC bits - Same as defined for router TE options.
9.2. TE-positional-ring-network LSA (0x82)
Network LSA is adequate for packet TE networks. A new TE-
positional-ring-network LSA is defined to represent type-5 link
networks, found in non-packet networks such as SONET/SDH TDM rings.
A type-5 ring is a collection of network elements (NEs) forming a
closed loop. Each NE is connected to two adjacent NEs via a duplex
connection to provide redundancy in the ring. The sequence in which
the NEs are placed on the Ring is pertinent. The NE that provides
the OSPF-xTE functionality is termed the Gateway Network Element
(GNE). The GNE selection criteria is outside the scope of this
document. The GNE is also termed the Designated Router for the ring.
The TE-positional-ring-network LSA (0x82) is modeled after the
network LSA and has the same flooding scope as the network LSA
amongst the OSPF-xTE nodes within the area. Below is the format of
the TE-Positional-Ring-network LSA. Unless specified explicitly
otherwise, the fields carry the same meaning as they do in a network
LSA. Only the differences are explained below.
A TE-positional-ring-network LSA is originated for each Positional-
Ring type network in the area. The tuple of (Link State ID, Network
Mask) below uniquely represents a ring. The TE option must be set in
the Options flag while propagating the LSA.
Srisuresh & Joseph Experimental [Page 38]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS age | Options | 0x82 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link State ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Advertising Router |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS sequence number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS checksum | length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Network Mask |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ring Type | Capacity Unit | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ring capacity |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Network Element Node Id |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... |
Link State ID
This is the IP interface address of the network's Gateway
Network Element, which is also the designated router.
Advertising Router
Router ID of the network's Designated Router.
Ring type
There are 8 types of SONET/SDH rings defined as follows.
1 - A Unidirectional Line Switched 2-fiber ring (2-fiber ULSR)
2 - A Bidirectional Line switched 2-fiber ring (2-fiber BLSR)
3 - A Unidirectional Path Switched 2-fiber ring (2-fiber UPSR)
4 - A Bidirectional Path switched 2-fiber ring (2-fiber BPSR)
5 - A Unidirectional Line Switched 4-fiber ring (4-fiber ULSR)
6 - A Bidirectional Line switched 4-fiber ring (4-fiber BLSR)
7 - A Unidirectional Path Switched 4-fiber ring (4-fiber UPSR)
8 - A Bidirectional Path switched 4-fiber ring (4-fiber BPSR)
Srisuresh & Joseph Experimental [Page 39]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
Capacity Unit
Two units are currently defined, as follows.
1 - Synchronous Transport Signal (STS), which is the basic
signal rate for SONET signals. The rate of an STS signal is
51.84 Mbps
2 - Synchronous Transport Multiplexer (STM), which is the basic
signal rate for SDH signals. The rate of an STM signal is
155.52 Mbps
Ring capacity
Ring capacity expressed in number of Capacity Units.
Network Element Node Id
The Router ID of each of the routers in the positional-ring
network. The list must start with the designated router as the
first element. The Network Elements (NEs) must be listed in
strict clockwise order as they appear on the ring, starting with
the Gateway Network Element (GNE). The number of NEs in the
ring can be deduced from the LSA header's length field.
9.3. TE-Router-Proxy LSA (0x8e)
This is a variation to the TE-router LSA in that the TE-router LSA is
not advertised by the network element, but rather by a trusted TE-
router Proxy. This is typically the scenario in a non-packet TE
network, where some of the nodes do not have OSPF functionality and
count on a helper node to do the advertisement for them. One such
example would be the SONET/SDH Add-Drop Multiplexer (ADM) nodes in a
TDM ring. The nodes may principally depend upon the GNE (Gateway
Network Element) to do the advertisement for them. TE-router-Proxy
LSA shall not be used to advertise area border routers and/or AS
border routers.
Srisuresh & Joseph Experimental [Page 40]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS age | Options | 0x8e |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link State ID (Router ID of the TE Network Element) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Advertising Router |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS sequence number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS checksum | length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | Router-TE flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Router-TE flags (contd.) | Router-TE TLVs |
+---------------------------------------------------------------+
| .... |
+---------------------------------------------------------------+
| .... | # of TE links |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Data |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | 0 | Link-TE options |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link-TE flags | Zero or more Link-TE TLVs |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Data |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... |
Srisuresh & Joseph Experimental [Page 41]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
10. Abstract Topology Representation with TE Support
Below, we consider a TE network composed of three OSPF areas, Area-1,
Area-2 and Area-3, attached together through the backbone area.
Area-1 an has a single area border router, ABR-A1 and no ASBRs.
Area-2 has an area border router ABR-A2 and an AS border router
ASBR-S1. Area-3 has two area border routers ABR-A2 and ABR-A3 and an
AS border router ASBR-S2. The following network also assumes a pre-
engineered TE circuit path between ABR-A1 and ABR-A2; between ABR-A1
and ABR-A3; between ABR-A2 and ASBR-S1; and between ABR-A3 and ASBR-
S2.
The following figure is an inter-area topology abstraction from the
perspective of routers in Area-1. The abstraction illustrates
reachability of TE networks and nodes within area to the external
areas in the same AS and to the external ASes. The abstraction also
illustrates pre-engineered TE circuit paths advertised by ABRs and
ASBRs.
Srisuresh & Joseph Experimental [Page 42]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
+-------+
|Area-1 |
+-------+
+-------------+ |
|Reachable TE | +--------+
|networks in |-------| ABR-A1 |
|backbone area| +--------+
+-------------+ | | |
+--------------+ | +-----------------+
| | |
+-----------------+ | +-----------------+
|Pre-engineered TE| +----------+ |Pre-engineered TE|
|circuit path(s) | | Backbone | |circuit path(s) |
|to ABR-A2 | | Area | |to ABR-A3 |
+-----------------+ +----------+ +-----------------+
| | | |
+----------+ | +--------------+ |
+-----------+ | | | | +-----------+
|Reachable | +--------+ +--------+ |Reachable |
|TE networks|------| ABR-A2 | | ABR-A3 |--|TE networks|
|in Area A2 | +--------+ +--------+ |in Area A3 |
+-----------+ | | | | | | +-----------+
+-------------+ | | +-----------------+ | +----------+
| | +-----------+ | | |
+-----------+ +--------------+ | | | +--------------+
|Reachable | |Pre-engineered| | | | |Pre-engineered|
|TE networks| |TE Ckt path(s)| +------+ +------+ |TE Ckt path(s)|
|in Area A3 | |to ASBR-S1 | |Area-2| |Area-3| |to ASBR-S2 |
+-----------+ +--------------+ +------+ +------+ +--------------+
| | | |
| +--------+ | +-----------+
+-------------+ | | | |
|AS external | +---------+ +---------+
|TE-network |----| ASBR-S1 | | ASBR-S2 |
|reachability | +---------+ +---------+
|from ASBR-S1 | | | |
+-------------+ +---+ +-------+ +-----------+
| | |
+-----------------+ +-------------+ +-----------------+
|Pre-engineered TE| |AS External | |Pre-engineered TE|
|circuit path(s) | |TE-Network | |circuit path(s) |
|reachable from | |reachability | |reachable from |
|ASBR-S1 | |from ASBR-S2 | |ASBR-S2 |
+-----------------+ +-------------+ +-----------------+
Figure 3: Inter-Area Abstraction as viewed by Area-1 TE-routers
Srisuresh & Joseph Experimental [Page 43]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
11. Changes to Data Structures in OSPF-xTE Nodes
11.1. Changes to Router Data Structure
An OSPF-xTE router must be able to include the router-TE capabilities
(as specified in section 8.1) in the router data structure. OSPF-xTE
routers providing proxy service to other TE routers must also track
the router and associated interface data structures for all the TE
client nodes for which the proxy service is being provided.
Presumably, the interaction between the Proxy server and the proxy
clients is out-of-band.
11.2. Two Sets of Neighbors
Two sets of neighbor data structures are required. TE-neighbors set
is used to advertise TE LSAs. Only the TE nodes will be members of
the TE-neighbor set. Native neighbors set will be used to advertise
native LSAs. All neighboring nodes supporting non-TE links are part
of the Native neighbors set.
11.3. Changes to Interface Data Structure
The following new fields are introduced to the interface data
structure.
TePermitted
If the value of the flag is TRUE, the interface may be advertised
as a TE-enabled interface.
NonTePermitted
If the value of the flag is TRUE, the interface permits non-TE
traffic on the interface. Specifically, this is applicable to
packet networks, where data links may permit both TE and IP
packets. For FSC and LSC TE networks, this flag is set to FALSE.
FloodingPermitted
If the value of the flag is TRUE, the interface may be used for
OSPF and OSPF-xTE packet exchange to synchronize the LSDB across
all adjacent neighbors. This is TRUE by default to all
NonTePermitted interfaces that are enabled for OSPF. However, it
is possible to set this to FALSE for some of the interfaces.
Srisuresh & Joseph Experimental [Page 44]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
TE-TLVs
Each interface may define any number of TLVS that describe the
link characteristics.
The following existing fields in Interface data structure will take
on additional values to support TE extensions.
Type
The OSPF interface type can also be of type "Positional-Ring".
The Positional-Ring type is different from other types (such as
broadcast and NBMA) in that the exact location of the nodes on
the ring is relevant, even though they are all on the same ring.
SONET ADM ring is a good example of this. Complete ring
positional-ring description may be provided by the GNE on a ring
as a TE-network LSA for the ring.
List of Neighbors
The list may be statically defined for an interface without
requiring the use of Hello protocol.
12. IANA Considerations
The IANA has assigned multicast address 224.0.0.24 to OSPFIGP-TE for
the exchange of TE database descriptors.
TE LSA types and TE TLVs will be maintained by the IANA, using the
following criteria.
12.1. TE LSA Type Values
LSA type is an 8-bit field required by each LSA. TE LSA types will
have the high bit set to 1. TE LSAs can range from 0x80 through
0xFF. The following values are defined in sections 8.0 and 9.0. The
remaining values are available for assignment by the IANA with IETF
Consensus [RFC2434].
Srisuresh & Joseph Experimental [Page 45]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
TE LSA Type Value
_________________________________________
TE-Router LSA 0x81
TE-Positional-ring-network LSA 0x82
TE-Summary Network LSA 0x83
TE-Summary router LSA 0x84
TE-AS-external LSAs 0x85
TE-Circuit-paths LSA 0x8C
TE-incremental-link-Update LSA 0x8d
TE-Router-Proxy LSA 0x8e
12.2. TE TLV Tag Values
TLV type is a 16-bit field required by each TE TLV. TLV type shall
be unique across the router and link TLVs. A TLV type can range from
0x0001 through 0xFFFF. TLV type 0 is reserved and unassigned. The
following TLV types are defined in sections 8.0 and 9.0. The
remaining values are available for assignment by the IANA with IETF
Consensus [RFC2434].
TE TLV Tag Reference Value
Section
_________________________________________________________
TE-LINK-TLV-SRLG Section 8.1.4.1 0x0001
TE-LINK-TLV-BANDWIDTH-MAX Section 8.1.4.2 0x0002
TE-LINK-TLV-BANDWIDTH-MAX-FOR-TE Section 8.1.4.3 0x0003
TE-LINK-TLV-BANDWIDTH-TE Section 8.1.4.4 0x0004
TE-LINK-TLV-LUG Section 8.1.4.5 0x0005
TE-LINK-TLV-COLOR Section 8.1.4.6 0x0006
TE-LINK-TLV-NULL Section 8.1.4.7 0x8888
TE-NODE-TLV-MPLS-SWITCHING Section 8.1.2.1 0x8001
TE-NODE-TLV-MPLS-SIG-PROTOCOLS Section 8.1.2.2 0x8002
TE-NODE-TLV-CSPF-ALG Section 8.1.2.3 0x8003
TE-NODE-TLV-NULL Section 8.1.2.4 0x8888
13. Acknowledgements
The authors wish to specially thank Chitti Babu and his team for
implementing the protocol specified in a packet network and verifying
several portions of the specification in a mixed packet network. The
authors also wish to thank Vishwas Manral, Riyad Hartani, and Tricci
So for their valuable comments and feedback on the document. Lastly,
the authors wish to thank Alex Zinin and Mike Shand for their
document (now defunct) titled "Flooding optimizations in link state
routing protocols". The document provided inspiration to the authors
to be sensitive to the high flooding rate, likely in TE networks.
Srisuresh & Joseph Experimental [Page 46]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
14. Security Considerations
Security considerations for the base OSPF protocol are covered in
[OSPF-V2] and [SEC-OSPF]. This memo does not create any new security
issues for the OSPF protocol. Security measures applied to the
native OSPF (refer [SEC-OSPF]) are directly applicable to the TE LSAs
described in the document. Discussed below are the security
considerations in processing TE LSAs.
Secure communication between OSPF-xTE nodes has a number of
components. Authorization, authentication, integrity and
confidentiality. Authorization refers to whether a particular OSPF-
xTE node is authorized to receive or propagate the TE LSAs to its
neighbors. Failing the authorization process might indicate a
resource theft attempt or unauthorized resource advertisement. In
either case, the OSPF-xTE nodes should take proper measures to
audit/log such attempts so as to alert the administrator to take
necessary action. OSPF-xTE nodes may refuse to communicate with the
neighboring nodes that fail to prompt the required credentials.
Authentication refers to confirming the identity of an originator for
the datagrams received from the originator. Lack of strong
credentials for authentication of OSPF-xTE LSAs can seriously
jeopardize the TE service rendered by the network. A consequence of
not authenticating a neighbor would be that an attacker could spoof
the identity of a "legitimate" OSPF-xTE node and manipulate the
state, and the TE database including the topology and metrics
collected. This could potentially cause denial-of-service on the TE
network. Another consequence of not authenticating is that an
attacker could pose as OSPF-xTE neighbor and respond in a manner that
would divert TE data to the attacker.
Integrity is required to ensure that an OSPF-xTE message has not been
accidentally or maliciously altered or destroyed. The result of a
lack of data integrity enforcement in an untrusted environment could
be that an imposter will alter the messages sent by a legitimate
adjacent neighbor and bring the OSPF-xTE on a node and the whole
network to a halt or cause a denial of service for the TE circuit
paths effected by the alteration.
Confidentiality of OSPF-xTE messages ensures that the TE LSAs are
accessible only to the authorized entities. When OSPF-xTE is
deployed in an untrusted environment, lack of confidentiality will
allow an intruder to perform traffic flow analysis and snoop the TE
control network to monitor the traffic metrics and the rate at which
circuit paths are being setup and torn-down. The intruder could
cannibalize a lesser secure OSPF-xTE node and destroy or compromise
the state and TE-LSDB on the node. Needless to say, the least secure
Srisuresh & Joseph Experimental [Page 47]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
OSPF-xTE will become the Achilles heel and make the TE network
vulnerable to security attacks.
15. Normative References
[MPLS-ARCH] Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol
Label Switching Architecture", RFC 3031, Jaunary 2001.
[MPLS-TE] Awduche, D., Malcolm, J., Agogbua, J., O'Dell, M., and J.
McManus, "Requirements for Traffic Engineering Over
MPLS", RFC 2702, September 1999.
[OSPF-V2] Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.
[SEC-OSPF] Murphy, S., Badger, M., and B. Wellington, "OSPF with
Digital Signatures", RFC 2154, June 1997.
[OSPF-CAP] Lindem, A., Ed., Shen, N., Vasseur, J., Aggarwal, R., and
S. Schaffer, "Extensions to OSPF for Advertising
Optional Router Capabilities", RFC 4970, July 2007.
[RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", BCP 26, RFC 2434,
October 1998.
16. Informative References
[BGP-OSPF] Ferguson, D., "The OSPF External Attribute LSA",
unpublished.
[CR-LDP] Jamoussi, B., Andersson, L., Callon, R., Dantu, R., Wu,
L., Doolan, P., Worster, T., Feldman, N., Fredette, A.,
Girish, M., Gray, E., Heinanen, J., Kilty, T., and A.
Malis, "Constraint-Based LSP Setup using LDP", RFC 3212,
January 2002.
[GMPLS-TE] Berger, L., "Generalized Multi-Protocol Label Switching
(GMPLS) Signaling Functional Description", RFC 3471,
January 2003.
[MOSPF] Moy, J., "Multicast Extensions to OSPF", RFC 1584, March
1994.
[NSSA] Murphy, P., "The OSPF Not-So-Stubby Area (NSSA) Option",
RFC 3101, January 2003.
[OPAQUE] Coltun, R., "The OSPF Opaque LSA Option", RFC 2370, July
1998.
Srisuresh & Joseph Experimental [Page 48]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
[OPQLSA-TE] Katz, D., Yeung, D., and K. Kompella, "Traffic
Engineering Extensions to OSPF", RFC 3630, September
2003.
[RSVP-TE] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
Tunnels", RFC 3209, December 2001.
[SONET-SDH] Chow, M.-C., "Understanding SONET/SDH Standards and
Applications", Holmdel, N.J.: Andan Publisher, 1995.
Authors' Addresses
Pyda Srisuresh
Kazeon Systems, Inc.
1161 San Antonio Rd.
Mountain View, CA 94043
U.S.A.
Phone: (408) 836-4773
EMail: srisuresh@yahoo.com
Paul Joseph
Consultant
10100 Torre Avenue, # 121
Cupertino, CA 95014
U.S.A.
Phone: (408) 777-8493
EMail: paul_95014@yahoo.com
Srisuresh & Joseph Experimental [Page 49]
^L
RFC 4973 OSPF Traffic Engineering Extension July 2007
Full Copyright Statement
Copyright (C) The IETF Trust (2007).
This document is subject to the rights, licenses and restrictions
contained in BCP 78 and at www.rfc-editor.org/copyright.html, and
except as set forth therein, the authors retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Srisuresh & Joseph Experimental [Page 50]
^L
|