1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
|
Network Working Group J. Risson
Request for Comments: 4981 T. Moors
Category: Informational University of New South Wales
September 2007
Survey of Research towards Robust Peer-to-Peer Networks:
Search Methods
Status of This Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
IESG Note
This RFC is not a candidate for any level of Internet Standard. The
IETF disclaims any knowledge of the fitness of this RFC for any
purpose and notes that the decision to publish is not based on IETF
review apart from IESG review for conflict with IETF work. The RFC
Editor has chosen to publish this document at its discretion. See
RFC 3932 for more information.
Abstract
The pace of research on peer-to-peer (P2P) networking in the last
five years warrants a critical survey. P2P has the makings of a
disruptive technology -- it can aggregate enormous storage and
processing resources while minimizing entry and scaling costs.
Failures are common amongst massive numbers of distributed peers,
though the impact of individual failures may be less than in
conventional architectures. Thus, the key to realizing P2P's
potential in applications other than casual file sharing is
robustness.
P2P search methods are first couched within an overall P2P taxonomy.
P2P indexes for simple key lookup are assessed, including those based
on Plaxton trees, rings, tori, butterflies, de Bruijn graphs, and
skip graphs. Similarly, P2P indexes for keyword lookup, information
retrieval and data management are explored. Finally, early efforts
to optimize range, multi-attribute, join, and aggregation queries
over P2P indexes are reviewed. Insofar as they are available in the
primary literature, robustness mechanisms and metrics are highlighted
throughout. However, the low-level mechanisms that most affect
robustness are not well isolated in the literature. Recommendations
are given for future research.
Risson & Moors Informational [Page 1]
^L
RFC 4981 Survey of Research on P2P Search September 2007
Table of Contents
1. Introduction ....................................................3
1.1. Related Disciplines ........................................6
1.2. Structured and Unstructured Routing ........................7
1.3. Indexes and Queries ........................................9
2. Index Types ....................................................10
2.1. Local Index (Gnutella) ....................................10
2.2. Central Index (Napster) ...................................12
2.3. Distributed Index (Freenet) ...............................13
3. Semantic Free Index ............................................15
3.1. Origins ...................................................15
3.1.1. Plaxton, Rajaraman, and Richa (PRR) ................15
3.1.2. Consistent Hashing .................................16
3.1.3. Scalable Distributed Data Structures (LH*) .........16
3.2. Dependability .............................................17
3.2.1. Static Dependability ...............................17
3.2.2. Dynamic Dependability ..............................18
3.2.3. Ephemeral or Stable Nodes -- O(log n) or
O(1) Hops ..........................................19
3.2.4. Simulation and Proof ...............................20
3.3. Latency ...................................................21
3.3.1. Hop Count and the O(1)-Hop DHTs ....................21
3.3.2. Proximity and the O(log n)-Hop DHTs ................22
3.4. Multicasting ..............................................23
3.4.1. Multicasting vs. Broadcasting ......................23
3.4.2. Motivation for DHT-based Multicasting ..............23
3.4.3. Design Issues ......................................24
3.5. Routing Geometries ........................................25
3.5.1. Plaxton Trees (Pastry, Tapestry) ...................25
3.5.2. Rings (Chord, DKS) .................................27
3.5.3. Tori (CAN) .........................................28
3.5.4. Butterflies (Viceroy) ..............................29
3.5.5. de Bruijn (D2B, Koorde, Distance Halving, ODRI) ....30
3.5.6. Skip Graphs ........................................32
4. Semantic Index .................................................33
4.1. Keyword Lookup ............................................34
4.1.1. Gnutella Enhancements ..............................36
4.1.2. Partition-by-Document, Partition-by-Keyword ........38
4.1.3. Partial Search, Exhaustive Search ..................39
4.2. Information Retrieval .....................................39
4.2.1. Vector Model (PlanetP, FASD, eSearch) ..............41
4.2.2. Latent Semantic Indexing (pSearch) .................43
4.2.3. Small Worlds .......................................43
5. Queries ........................................................44
5.1. Range Queries .............................................45
5.2. Multi-Attribute Queries ...................................48
5.3. Join Queries ..............................................50
Risson & Moors Informational [Page 2]
^L
RFC 4981 Survey of Research on P2P Search September 2007
5.4. Aggregation Queries .......................................50
6. Security Considerations ........................................52
7. Conclusions ....................................................52
8. Acknowledgments ................................................53
9. References .....................................................54
9.1. Informative References ....................................54
1. Introduction
Peer-to-peer (P2P) networks are those that exhibit three
characteristics: self-organization, symmetric communication, and
distributed control [1]. A self-organizing P2P network
"automatically adapts to the arrival, departure and failure of nodes"
[2]. Communication is symmetric in that peers act as both clients
and servers. It has no centralized directory or control point.
USENET servers and BGP peers have these traits [3] but the emphasis
here is on the flurry of research since 2000. Leading examples
include Gnutella [4], Freenet [5], Pastry [2], Tapestry [6], Chord
[7], the Content Addressable Network (CAN) [8], pSearch [9], and
Edutella [10]. Some have suggested that peers are inherently
unreliable [11]. Others have assumed well-connected, stable peers
[12].
This critical survey of P2P academic literature is warranted, given
the intensity of recent research. At the time of writing, one
research database lists over 5,800 P2P publications [13]. One vendor
surveyed P2P products and deployments [14]. There is also a tutorial
survey of leading P2P systems [15]. DePaoli and Mariani recently
reviewed the dependability of some early P2P systems at a high level
[16]. The need for a critical survey was flagged in the peer-to-peer
research group of the Internet Research Task Force (IRTF) [17].
P2P is potentially a disruptive technology with numerous
applications, but this potential will not be realized unless it is
demonstrated to be robust. A massively distributed search technique
may yield numerous practical benefits for applications [18]. A P2P
system has potential to be more dependable than architectures relying
on a small number of centralized servers. It has potential to evolve
better from small configurations -- the capital outlays for high
performance servers can be reduced and spread over time if a P2P
assembly of general purpose nodes is used. A similar argument
motivated the deployment of distributed databases -- one thousand,
off-the-shelf PC processors are more powerful and much less expensive
than a large mainframe computer [19]. Storage and processing can be
aggregated to achieve massive scale. Wasteful partitioning between
servers or clusters can be avoided. As Gedik and Liu put it, if P2P
is to find its way into applications other than casual file sharing,
then reliability needs to be addressed [20].
Risson & Moors Informational [Page 3]
^L
RFC 4981 Survey of Research on P2P Search September 2007
The taxonomy of Figure 1 divides the entire body of P2P research
literature along four lines: search, storage, security, and
applications. This survey concentrates on search aspects. A P2P
search network consists of an underlying index (Sections 2 to 4) and
queries that propagate over that index (Section 5).
Search [18, 21-29]
Semantic-Free Indexes [2, 6, 7, 30-52]
Plaxton Trees
Rings
Tori
Butterflies
de Bruijn Graphs
Skip Graphs
Semantic Indexes [4, 53-71]
Keyword Lookup
Peer Information Retrieval
Peer Data Management
Queries [20, 22, 23, 25, 32, 38, 41, 56, 72-100]
Range Queries
Multi-Attribute Queries
Join Queries
Aggregation Queries
Continuous Queries
Recursive Queries
Adaptive Queries
Storage
Consistency & Replication [101-112]
Eventual consistency
Trade-offs
Distribution [39, 42, 90, 92, 113-131]
Epidemics, Bloom Filters
Fault Tolerance [40, 105, 132-139]
Erasure Coding
Byzantine Agreement
Locality [24, 43, 47, 140-160]
Load Balancing [37, 86, 100, 107, 151, 161-171]
Risson & Moors Informational [Page 4]
^L
RFC 4981 Survey of Research on P2P Search September 2007
Security
Character [172-182]
Identity
Reputation and Trust
Incentives
Goals [25, 27, 71, 183-197]
Availability
Authenticity
Anonymity
Access Control
Fair Trading
Applications [1, 198-200]
Memory [32, 90, 142, 201-222]
File Systems
Web
Content Delivery Networks
Directories
Service Discovery
Publish / Subscribe ...
Intelligence [223-228]
GRID
Security...
Communication [12, 92, 119, 229-247]
Multicasting
Streaming Media
Mobility
Sensors...
Figure 1: Classification of P2P Research Literature
This survey is concerned with two questions. The first, "How do P2P
search networks work?" This foundation is important given the pace
and breadth of P2P research in the last five years. In Section 2, we
classify indexes as local, centralized and distributed. Since
distributed indexes are becoming dominant, they are given closer
attention in Sections 3 and 4. Section 3 compares distributed P2P
indexes for simple key lookup; in particular, their origins (Section
3.1), dependability (Section 3.2), latency (Section 3.3), and their
support for multicast (Section 3.4). It classifies those indexes
according to their routing geometry (Section 3.5) -- Plaxton trees,
rings, tori, butterflies, de Bruijn graphs and skip graphs. Section
4 reviews distributed P2P indexes supporting keyword lookup (Section
4.1) and information retrieval (Section 4.2). Section 5 probes the
embryonic research on P2P queries; in particular, range queries
(Section 5.1), multi-attribute queries (Section 5.2), join queries
(Section 5.3), and aggregation queries (Section 5.4).
Risson & Moors Informational [Page 5]
^L
RFC 4981 Survey of Research on P2P Search September 2007
The second question, "How robust are P2P search networks?" Insofar
as it is available in the research literature, we tease out the
robustness mechanisms and metrics throughout Sections 2 to 5.
Unfortunately, robustness is often more sensitive to low-level design
choices than it is to the broad P2P index structure, yet these
underlying design choices are seldom isolated in the primary
literature [248]. Furthermore, there has been little consensus on
P2P robustness metrics (Section 3.2). Section 8 gives
recommendations to address these important gaps.
1.1. Related Disciplines
Peer-to-peer research draws upon numerous distributed systems
disciplines. Networking researchers will recognize familiar issues
of naming, routing, and congestion control. P2P designs need to
address routing and security issues across network region boundaries
[152]. Networking research has traditionally been host-centric. The
Web's Universal Resource Identifiers are naturally tied to specific
hosts, making object mobility a challenge [216].
P2P work is data-centric [249]. P2P systems for dynamic object
location and routing have borrowed heavily from the distributed
systems corpus. Some have used replication, erasure codes, and
Byzantine agreement [111]. Others have used epidemics for durable
peer group communication [39].
Similarly, P2P research is set to benefit from database research
[250]. Database researchers will recognize the need to reapply
Codd's principle of physical data independence, that is, to decouple
data indexes from the applications that use the data [23]. It was
the invention of appropriate indexing mechanisms and query
optimizations that enabled data independence. Database indexes like
B+ trees have an analog in P2P's distributed hash tables (DHTs).
Wide-area, P2P query optimization is a ripe, but challenging, area
for innovation.
More flexible distribution of objects comes with increased security
risks. There are opportunities for security researchers to deliver
new methods for availability, file authenticity, anonymity, and
access control [25]. Proactive and reactive mechanisms are needed to
deal with large numbers of autonomous, distributed peers. To build
robust systems from cooperating but self-interested peers, issues of
identity, reputation, trust, and incentives need to be tackled.
Although it is beyond the scope of this paper, robustness against
malicious attacks also ought to be addressed [195].
Possibly the largest portion of P2P research has majored on basic
routing structures [18], where research on algorithms comes to the
Risson & Moors Informational [Page 6]
^L
RFC 4981 Survey of Research on P2P Search September 2007
fore. Should the overlay be "structured" or "unstructured"? Are the
two approaches competing or complementary? Comparisons of the
"structured" approaches (hypercubes, rings, toroids, butterflies, de
Bruijn, and skip graphs) have weighed the amount of routing state per
peer and the number of links per peer against overlay hop counts.
While "unstructured" overlays initially used blind flooding and
random walks, overheads usually trigger some structure, for example,
super-peers and clusters.
P2P applications rely on cooperation between these disciplines.
Applications have included file sharing, directories, content
delivery networks, email, distributed computation, publish-subscribe
middleware, multicasting, and distributed authentication. Which
applications will be suited to which structures? Are there adaptable
mechanisms that can decouple applications from the underlying data
structures? What are the criteria for selection of applications
amenable to a P2P design [1]?
Robustness is emphasized throughout the survey. We are particularly
interested in two aspects. The first, dependability, was a leading
design goal for the original Internet [251]. It deserves the same
status in P2P. The measures of dependability are well established:
reliability, a measure of the mean-time-to-failure (MTTF);
availability, a measure of both the MTTF and the mean-time-to-repair
(MTTR); maintainability; and safety [252]. The second aspect is the
ability to accommodate variation in outcome, which one could call
adaptability. Its measures have yet to be defined. In the context
of the Internet, it was only recently acknowledged as a first-class
requirement [253]. In P2P, it means planning for the tussles over
resources and identity. It means handling different kinds of queries
and accommodating changeable application requirements with minimal
intervention. It means "organic scaling" [22], whereby the system
grows gracefully, without a priori data center costs or architectural
breakpoints.
In the following section, we discuss one notable omission from the
taxonomy of P2P networking in Figure 1 -- routing.
1.2. Structured and Unstructured Routing
P2P routing algorithms have been classified as "structured" or
"unstructured". Peers in unstructured overlay networks join by
connecting to any existing peers [254]. In structured overlays, the
identifier of the joining peer determines the set of peers that it
connects to [254]. Early instantiations of Gnutella were
unstructured -- keyword queries were flooded widely [255]. Napster
[256] had decentralized content and a centralized index, so it only
partially satisfies the distributed control criteria for P2P systems.
Risson & Moors Informational [Page 7]
^L
RFC 4981 Survey of Research on P2P Search September 2007
Early structured algorithms included Plaxton, Rajaraman and Richa
(PRR) [30], Pastry [2], Tapestry [31], Chord [7], and the Content
Addressable Network [8]. Mishchke and Stiller recently classified
P2P systems by the presence or absence of structure in routing tables
and network topology [257].
Some have cast unstructured and structured algorithms as competing
alternatives. Unstructured approaches have been called "first
generation", implicitly inferior to the "second generation"
structured algorithms [2, 31]. When generic key lookups are
required, these structured, key-based routing schemes can guarantee
location of a target within a bounded number of hops [23]. The
broadcasting unstructured approaches, however, may have large routing
costs, or fail to find available content [22]. Despite the apparent
advantages of structured P2P, several research groups are still
pursuing unstructured P2P.
There have been two main criticisms of structured systems [61]. The
first relates to peer transience, which in turn, affects robustness.
Chawathe, et al. opined that highly transient peers are not well
supported by DHTs [61]. P2P systems often exhibit "churn", with
peers continually arriving and departing. One objection to concerns
about highly transient peers is that many applications use peers in
well-connected parts of the network. The Tapestry authors analyzed
the impact of churn in a network of 1000 nodes [31]. Others opined
that it is possible to maintain a robust DHT at relatively low cost
[258]. Very few papers have quantitatively compared the resilience
of structured systems. Loguinov, Kumar, et al. claimed that there
were only two such works [24, 36].
The second criticism of structured systems is that they do not
support keyword searches and complex queries as well as unstructured
systems. Given the current file-sharing deployments, keyword
searches seem more important than exact-match key searches in the
short term. Paraphrased, "most queries are for hay, not needles"
[61].
More recently, some have justifiably seen unstructured and structured
proposals as complementary, and have devised hybrid models [259].
Their starting point was the observation that unstructured flooding
or random walks are inefficient for data that is not highly
replicated across the P2P network. Structured graphs can find keys
efficiently, irrespective of replication. Castro, et al. proposed
Structella, a hybrid of Gnutella built on top of Pastry [259].
Another design used structured search for rare items and unstructured
search for massively replicated items [54].
Risson & Moors Informational [Page 8]
^L
RFC 4981 Survey of Research on P2P Search September 2007
However, the "structured versus unstructured routing" taxonomy is
becoming less useful, for two reasons, Firstly, most "unstructured"
proposals have evolved and incorporated structure. Consider the
classic "unstructured" system, Gnutella [4]. For scalability, its
peers are either ultrapeers or leaf nodes. This hierarchy is
augmented with a query routing protocol whereby ultrapeers receive a
hashed summary of the resource names available at leaf nodes.
Between ultrapeers, simple query broadcast is still used, though
methods to reduce the query load here have been considered [260].
Secondly, there are emerging schema-based P2P designs [59], with
super-node hierarchies and structure within documents. These are
quite distinct from the structured DHT proposals.
1.3. Indexes and Queries
Given that most, if not all, P2P designs today assume some structure,
a more instructive taxonomy would describe the structure. In this
survey, we use a database taxonomy in lieu of the networking
taxonomy, as suggested by Hellerstein, Cooper, and Garcia-Molina [23,
261]. The structure is determined by the type of index (Sections 2 ,
3, and 4). Queries feature in lieu of routing (Section 5). The DHT
algorithms implement a "semantic-free index" [216]. They are
oblivious of whether keys represent document titles, meta-data, or
text. Gnutella-like and schema-based proposals have a "semantic
index".
Index engineering is at the heart of P2P search methods. It captures
a broad range of P2P issues, as demonstrated by the Search/Index
Links model [261]. As Manber put it, "the most important of the
tools for information retrieval is the index -- a collection of terms
with pointers to places where information about documents can be
found" [262]. Sen and Wang noted that a "P2P network" usually
consists of connections between hosts for application-layer
signaling, rather than for the data transfer itself [263].
Similarly, we concentrate on the "signaled" indexes and queries.
Our focus here is the dependability and adaptability of the search
network. Static dependability is a measure of how well queries route
around failures in a network that is normally fault-free. Dynamic
dependability gives an indication of query success when nodes and
data are continually joining and leaving the P2P system. An
adaptable index accommodates change in the data and query
distribution. It enables data independence, in that it facilitates
changes to the data layout without requiring changes to the
applications that use the data [23]. An adaptable P2P system can
support rich queries for a wide range of applications. Some
applications benefit from simple, semantic-free key lookups [264].
Others require more complex, Structured Query Language (SQL)-like
Risson & Moors Informational [Page 9]
^L
RFC 4981 Survey of Research on P2P Search September 2007
queries to find documents with multiple keywords, or to aggregate or
join query results from distributed relations [22].
2. Index Types
A P2P index can be local, centralized, or distributed. With a local
index, a peer only keeps the references to its own data, and does not
receive references for data at other nodes. The very early Gnutella
design epitomized the local index (Section 2.1). In a centralized
index, a single server keeps references to data on many peers. The
classic example is Napster (Section 2.2). With distributed indexes,
pointers towards the target reside at several nodes. One very early
example is Freenet (Section 2.3). Distributed indexes are used in
most P2P designs nowadays -- they dominate this survey.
P2P indexes can also be classified as non-forwarding and forwarding.
When queries are guided by a non-forwarding index, they jump to the
node containing the target data in a single hop. There have been
semantic and semantic-free one-hop schemes [138, 265, 266]. Where
scalability to a massive number of peers is required, these schemes
have been extended to two hops [267, 268]. More common are the
forwarding P2Ps, where the number of hops varies with the total
number of peers, often logarithmically. The related trade-offs
between routing state, lookup latency, update bandwidth, and peer
churn are critical to total system dependability.
2.1. Local Index (Gnutella)
P2Ps with a purely local data index are becoming rare. In such
designs, peers flood queries widely and only index their own content.
They enable rich queries - the search is not limited to a simple key
lookup. However, they also generate a large volume of query traffic
with no guarantee that a match will be found, even if it does exist
on the network. For example, to find potential peers on the early
instantiations of Gnutella, 'ping' messages were broadcast over the
P2P network and the 'pong' responses were used to build the node
index. Then, small 'query' messages, each with a list of keywords,
are broadcast to peers that respond with matching filenames [4].
There have been numerous attempts to improve the scalability of
local-index P2P networks. Gnutella uses fixed time-to-live (TTL)
rings, where the query's TTL is set less than 7-10 hops [4]. Small
TTLs reduce the network traffic and the load on peers, but also
reduce the chances of a successful query hit. One paper reported,
perhaps a little too bluntly, that the fixed "TTL-based mechanism
does not work" [67]. To address this TTL selection problem, they
proposed an expanding ring, known elsewhere as iterative deepening
[29]. It uses successively larger TTL counters until there is a
Risson & Moors Informational [Page 10]
^L
RFC 4981 Survey of Research on P2P Search September 2007
match. The flooding, ring, and expanding ring methods all increase
network load with duplicated query messages. A random walk, whereby
an unduplicated query wanders about the network, does indeed reduce
the network load but massively increases the search latency. One
solution is to replicate the query k times at each peer. Called
random k-walkers, this technique can be coupled with TTL limits, or
periodic checks with the query originator, to cap the query load
[67]. Adamic, Lukose, et al. suggested that the random walk searches
be directed to nodes with a higher degree, that is, with larger
numbers of inter-peer connections [269]. They assumed that higher-
degree peers are also capable of higher query throughputs. However,
without some balancing design rule, such peers would be swamped with
the entire P2P signaling traffic. In addition to the above
approaches, there is the 'directed breadth-first' algorithm [29]. It
forwards queries within a subset of peers selected according to
heuristics on previous performance, like the number of successful
query results. Another algorithm, called probabilistic flooding, has
been modeled using percolation theory [270].
Several measurement studies have investigated locally indexed P2Ps.
Jovanovic noted Gnutella's power law behaviour [70]. Sen and Wang
compared the performance of Gnutella, Fasttrack [271], and Direct
Connect [263, 272, 273]. At the time, only Gnutella used local data
indexes. All three schemes now use distributed data indexes, with
hierarchy in the form of Ultrapeers (Gnutella), Super-Nodes
FastTrack), and Hubs (Direct Connect). It was found that a very
small percentage of peers have a very high degree and that the total
system dependability is at the mercy of such peers. While peer up-
time and bandwidth were heavy-tailed, they did not fit well with the
Zipf distribution. Fortunately for Internet Service Providers,
measures aggregated by IP prefix and Autonomous System (AS) were more
stable than for individual IP addresses. A study of University of
Washington traffic found that Gnutella and Kazaa together contributed
43% of the university's total TCP traffic [274]. They also reported
a heavy-tailed distribution, with 600 external peers (out of 281,026)
delivering 26% of Kazaa bytes to internal peers. Furthermore,
objects retrieved from the P2P network were typically three orders of
magnitude larger than Web objects -- 300 objects contributed to
almost half the total outbound Kazaa bandwidth. Others reported
Gnutella's topology mismatch, whereby only 2-5% of P2P connections
link peers in the same Autonomous System (AS), despite over 40% of
peers being in the top 10 ASs [65]. Together these studies
underscore the significance of multimedia sharing applications. They
motivate interesting caching and locality solutions to the topology
mismatch problem.
These same studies bear out one main dependability lesson: total
system dependability may be sensitive to the dependability of high-
Risson & Moors Informational [Page 11]
^L
RFC 4981 Survey of Research on P2P Search September 2007
degree peers. The designers of Scamp translated this observation to
the design heuristic, "have the degree of each node be of nearly
equal size" [153]. They analyzed a system of N peers, with mean
degree c.log(n), where link failures occur independently with
probability e. If d>0 is fixed and c>(1+d)/(-log(e)), then the
probability of graph disconnection goes to zero as N->infinity.
Otherwise, if c<(1-d)/(-log(e)), then the probability of
disconnection goes to one as N->infinity. They presented a
localizer, which finds approximate minima to a global function of
peer degree and arbitrary link costs using only local information.
The Scamp overlay construction algorithms could support any of the
flooding and walking routing schemes above, or other epidemic and
multicasting schemes for that matter. Resilience to high churn rates
was identified for future study.
2.2. Central Index (Napster)
Centralized schemes like Napster [256] are significant because they
were the first to demonstrate the P2P scalability that comes from
separating the data index from the data itself. Ultimately, 36
million Napster users lost their service not because of technical
failure, but because the single administration was vulnerable to the
legal challenges of record companies [275].
There has since been little research on P2P systems with central data
indexes. Such systems have also been called 'hybrid' since the index
is centralized but the data is distributed. Yang and Garcia-Molina
devised a four-way classification of hybrid systems [276]: unchained
servers, where users whose index is on one server do not see other
servers' indexes; chained servers, where the server that receives a
query forwards it to a list of servers if it does not own the index
itself; full replication, where all centralized servers keep a
complete index of all available metadata; and hashing, where keywords
are hashed to the server where the associated inverted list is kept.
The unchained architecture was used by Napster, but it has the
disadvantage that users do not see all indexed data in the system.
Strictly speaking, the other three options illustrate the distributed
data index, not the central index. The chained architecture was
recommended as the optimum for the music-swapping application at the
time. The methods by which clients update the central index were
classified as batch or incremental, with the optimum determined by
the query-to-login ratio. Measurements were derived from a clone of
Napster called OpenNap[277]. Another study of live Napster data
reported wide variation in the availability of peers, a general
unwillingness to share files (20-40% of peers share few or no files),
and a common understatement of available bandwidth so as to
discourage other peers from sharing one's link [202].
Risson & Moors Informational [Page 12]
^L
RFC 4981 Survey of Research on P2P Search September 2007
Influenced by Napster's early demise, the P2P research community may
have prematurely turned its back on centralized architectures.
Chawathe, Ratnasamy, et al. opined that Google and Yahoo demonstrate
the viability of a centralized index. They argued that "the real
barriers to Napster-like designs are not technical but legal and
financial" [61]. Even this view may be a little too harsh on the
centralized architectures -- it implies that they always have an up-
front capital hurdle that is steeper than for distributed
architectures. The closer one looks at scalable 'centralized'
architectures, the less the distinction with 'distributed'
architectures seems to matter. For example, it is clear that
Google's designers consider Google a distributed, not centralized,
file system [278]. Google demonstrates the scale and performance
possible on commodity hardware, but still has a centralized master
that is critical to the operation of each Google cluster. Time may
prove that the value of emerging P2P networks, regardless of the
centralized-versus-distributed classification, is that they smooth
the capital outlays and remove the single points of failure across
the spectra of scale and geographic distribution.
2.3. Distributed Index (Freenet)
An important early P2P proposal for a distributed index was Freenet
[5, 71, 279]. While its primary emphasis was the anonymity of peers,
it did introduce a novel indexing scheme. Files are identified by
low-level "content-hash" keys and by "secure signed-subspace" keys,
which ensure that only a file owner can write to a file while anyone
can read from it. To find a file, the requesting peer first checks
its local table for the node with keys closest to the target. When
that node receives the query, it too checks for either a match or
another node with keys close to the target. Eventually, the query
either finds the target or exceeds time-to-live (TTL) limits. The
query response traverses the successful query path in reverse,
depositing a new routing table entry (the requested key and the data
holder) at each peer. The insert message similarly steps towards the
target node, updating routing table entries as it goes, and finally
stores the file there. Whereas early versions of Gnutella used
breadth-first flooding, Freenet uses a more economic depth-first
search [280].
An initial assessment has been done of Freenet's robustness. It was
shown that in a network of 1000 nodes, the median query path length
stayed under 20 hops for a failure of 30% of nodes. While the
Freenet designers considered this as evidence that the system is
"surprisingly robust against quite large failures" [71], the same
datapoint may well be outside meaningful operating bounds. How many
applications are useful when the first quartile of queries have path
lengths of several hundred hops in a network of only 1000 nodes, per
Risson & Moors Informational [Page 13]
^L
RFC 4981 Survey of Research on P2P Search September 2007
Figure 4 of [71]? To date, there has been no analysis of Freenet's
dynamic robustness. For example, how does it perform when nodes are
continually arriving and departing?
There have been both criticisms and extensions of the early Freenet
work. Gnutella proponents acknowledged the merit in Freenet's
avoidance of query broadcasting [281]. However, they are critical on
two counts: the exact file name is needed to construct a query; and
exactly one match is returned for each query. P2P designs using
DHTs, per Section 3, share similar characteristics -- a precise query
yields a precise response. The similarity is not surprising since
Freenet also uses a hash function to generate keys. However, the
query routing used in the DHTs has firmer theoretical foundations.
Another difference with DHTs is that Freenet will take time, when a
new node joins the network, to build an index that facilitates
efficient query routing. By the inventor's own admission, this is
damaging for a user's first impressions [282]. It was proposed to
download a copy of routing tables from seed nodes at startup, even
though the new node might be far from the seed node. Freenet's slow
startup motivated Mache, Gilbert, et al. to amend the overlay after
failed requests and to place additional index entries on successful
requests -- they claim almost an order of magnitude reduction in
average query path length [280]. Clarke also highlighted the lack of
locality or bandwidth information available for efficient query
routing decisions [282]. He proposed that each node gather response
times, connection times, and proportion of successful requests for
each entry in the query routing table. When searching for a key that
is not in its own routing table, it was proposed to estimate response
times from the routing metrics for the nearest known keys and
consequently choose the node that can retrieve the data fastest. The
response time heuristic assumed that nodes close in the key space
have similar response times. This assumption stemmed from early
deployment observations that Freenet peers seemed to specialize in
parts of the keyspace -- it has not been justified analytically.
Kronfol drew attention to Freenet's inability to do keyword searches
[283]. He suggested that peers cache lists of weighted keywords in
order to route queries to documents, using Term Frequency Inverse
Document Frequency (TFIDF) measures and inverted indexes (Section
4.2.1). With these methods, a peer can route queries for simple
keyword lists or more complicated conjunctions and disjunctions of
keywords. Robustness analysis and simulation of Kronfol's proposal
remain open.
The vast majority of P2P proposals in following sections rely on a
distributed index.
Risson & Moors Informational [Page 14]
^L
RFC 4981 Survey of Research on P2P Search September 2007
3. Semantic Free Index
Many of today's distributed network indexes are semantic. The
semantic index is human-readable. For example, it might associate
information with other keywords, a document, a database key, or even
an administrative domain. It makes it easy to associate objects with
particular network providers, companies, or organizations, as
evidenced in the Domain Name System (DNS). However, it can also
trigger legal tussles and frustrate content replication and migration
[216].
Distributed Hash Tables (DHTs) have been proposed to provide
semantic-free, data-centric references. DHTs enable one to find an
object's persistent key in a very large, changing set of hosts. They
are typically designed for [23]:
a) low degree. If each node keeps routing information for only a
small number of other nodes, the impact of high node arrival and
departure rates is contained;
b) low hop count. The hops and delay introduced by the extra
indirection are minimized;
c) greedy routing. Nodes independently calculate a short path to the
target. At each hop, the query moves closer to the target; and
d) robustness. A path to the target can be found even when links or
nodes fail.
3.1. Origins
To understand the origins of recent DHTs, one needs to look to three
contributions from the 1990s. The first two -- Plaxton, Rajaraman,
and Richa (PRR) [30] and Consistent Hashing [49] -- were published
within one month of each other. The third, the Scalable Distributed
Data Structure (SDDS) [52], was curiously ignored in significant
structured P2P designs despite having some similar goals [2, 6, 7].
It has been briefly referenced in other P2P papers [46, 284-287].
3.1.1. Plaxton, Rajaraman, and Richa (PRR)
PRR is the most recent of the three. It influenced the designs of
Pastry [2], Tapestry [6], and Chord [7]. The value of PRR is that it
can locate objects using fixed-length routing tables [6]. Objects
and nodes are assigned a semantic-free address, for example a 160-bit
key. Every node is effectively the root of a spanning tree. A
message routes toward an object by matching longer address suffixes,
until it encounters either the object's root node or another node
Risson & Moors Informational [Page 15]
^L
RFC 4981 Survey of Research on P2P Search September 2007
with a 'nearby' copy. It can route around link and node failure by
matching nodes with a related suffix. The scheme has several
disadvantages [6]: global knowledge is needed to construct the
overlay; an object's root node is a single point of failure; nodes
cannot be inserted and deleted; and there is no mechanism for queries
to avoid congestion hot spots.
3.1.2. Consistent Hashing
Consistent Hashing [288] strongly influenced the designs of Chord [7]
and Koorde [37]. Karger, et al. introduced Consistent Hashing in the
context of the Web-caching problem [49]. Web servers could
conceivably use standard hashing to place objects across a network of
caches. Clients could use the approach to find the objects. For
normal hashing, most object references would be moved when caches are
added or deleted. On the other hand, Consistent Hashing is "smooth"
-- when caches are added or deleted, the minimum number of object
references move so as to maintain load balancing. Consistent Hashing
also ensures that the total number of caches responsible for a
particular object is limited. Whereas Litwin's Linear Hashing (LH*)
scheme requires 'buckets' to be added one at a time in sequence [50],
Consistent Hashing allows them to be added in any order [49]. There
is an open Consistent Hashing problem pertaining to the fraction of
items moved when a node is inserted [165]. Extended Consistent
Hashing was recently proposed to randomize queries over the spread of
caches to significantly reduce the load variance [289].
Interestingly, Karger [49] referred to an older DHT algorithm by
Devine that used "a novel autonomous location discovery algorithm
that learns the buckets' locations instead of using a centralized
directory" [51].
3.1.3. Scalable Distributed Data Structures (LH*)
In turn, Devine's primary point of reference was Litwin's work on
SDDSs and the associated LH* algorithm [52]. An SDDS satisfies three
design requirements: files grow to new servers only when existing
servers are well loaded; there is no centralized directory; and the
basic operations like insert, search, and split never require atomic
updates to multiple clients. Honicky and Miller suggested the first
requirement could be considered a limitation since expansion to new
servers is not under administrative control [286]. Litwin recently
noted numerous similarities and differences between LH* and Chord
[290]. He found that both implement key search. Although LH* refers
to clients and servers, nodes can operate as peers in both. Chord
'splits' nodes when a new node is inserted, while LH* schedules
'splits' to avoid overload. Chord requests travel O(log n) hops,
while LH* client requests need, at most, two hops to find the target.
Chord stores a small number of 'fingers' at each node. LH* servers
Risson & Moors Informational [Page 16]
^L
RFC 4981 Survey of Research on P2P Search September 2007
store N/2 to N addresses while LH* clients store 1 to N addresses.
This trade-off between hop count and the size of the index affects
system robustness, and bears striking similarity to recent one- and
two-hop P2P schemes in Section 2. The arrival and departure of LH*
clients does not disrupt LH* server metadata at all. Given the size
of the index, the arrival and departure of LH* servers are likely to
cause more churn than that of Chord nodes. Unlike Chord, LH* has a
single point of failure, the split coordinator. It can be
replicated. Alternatively, it can be removed in later LH* variants,
though details have not been progressed for lack of practical need
[290].
3.2. Dependability
We make four overall observations about their dependability.
Dependability metrics fall into two categories: static dependability,
a measure of performance before recovery mechanisms take over; and
dynamic dependability, for the most likely case in massive networks
where there is continual failure and recovery ("churn").
3.2.1. Static Dependability
Observation A: Static dependability comparisons show that no O(log n)
DHT geometry is significantly more dependable than the other O(log n)
geometries.
Gummadi, et al. compared the tree, hypercube, butterfly, ring, XOR,
and hybrid geometries. In such geometries, nodes generally know
about O(log n) neighbors and route to a destination in O(log n) hops,
where N is the number of nodes in the overlay. Gummadi, et al. asked
"Why not the ring?" They concluded that only the ring and XOR
geometries permit flexible choice of both neighbors and alternative
routes [24]. Loguinov, et al. added the de Bruijn graph to their
comparison [36]. They concluded that the classical analyses, for
example the probability that a particular node becomes disconnected,
yield no major differences between the resilience of Chord, CAN, and
de Bruijn graphs. Using bisection width (the minimum edge count
between two equal partitions) and path overlap (the likelihood that
backup paths will encounter the same failed nodes or links as the
primary path), they argued for the superior resilience of the de
Bruijn graph. In short, ring, XOR, and de Bruijn graphs all permit
flexible choice of alternative paths, but only in de Bruijn are the
alternate paths independent of each other [36].
Risson & Moors Informational [Page 17]
^L
RFC 4981 Survey of Research on P2P Search September 2007
3.2.2. Dynamic Dependability
Observation B: Dynamic dependability comparisons show that DHT
dependability is sensitive to the underlying topology maintenance
algorithms.
Li, et al. give the best comparison to date of several leading DHTs
during churn [291]. They relate the disparate configuration
parameters of Tapestry, Chord, Kademlia, Kelips, and OneHop to
fundamental design choices. For each of these DHTs, they plotted the
optimal performance in terms of lookup latency (milliseconds) and
fraction of failed lookups. The results led to several important
insights about the underlying algorithms, for example: increasing
routing table size is more cost-effective than increasing the rate of
periodic stabilization; learning about new nodes during the lookup
process sometimes eliminates the need for stabilization; and parallel
lookups reduce latency due to timeouts more effectively than faster
stabilization. Similarly, Zhuang, et al. compared keep-alive
algorithms for DHT failure detection [292]. Such algorithmic
comparisons can significantly improve the dependability of DHT
designs.
In Figure 2, we propose a taxonomy for the topology maintenance
algorithms that influence dependability. The algorithms can be
classified by how nodes join and leave, how they first detect
failures, how they share information about topology updates, and how
they react when they receive information about topology updates.
Risson & Moors Informational [Page 18]
^L
RFC 4981 Survey of Research on P2P Search September 2007
Normal Updates
Joins (passive; active) [293]
Leaves (passive; active) [293]
Fault Detection [292]
Maintenance
Proactive (periodic or keep-alive probes)
Reactive (correction-on-use, correction-on-failure) [294]
Report
Negative (all dead nodes, nodes recently failed)
Positive (all live nodes; nodes recently recovered) [292]
Topology Sharing: yes/ no [292]
Multicast Tree (explicit, implicit) [267, 295]
Gossip (timeouts; number of contacts) [39]
Corrective Action
Routing
Rerouting actions
(reroute once; route in parallel [291]; reject)
Routing timeouts
(TCP-style, virtual coordinates) [296]
Topology
Update action (evict/ replace/ tag node)
Update timeliness (immediate, periodic[296], delayed [297])
Figure 2: Topology Maintenance in Distributed Hash Tables
3.2.3. Ephemeral or Stable Nodes -- O(log n) or O(1) Hops
Observation C: Most DHTs use O(log n) geometries to suit ephemeral
nodes. The O(1) hop DHTs suit stable nodes and deserve more research
attention.
Most of the DHTs in Section 3.5 assume that nodes are ephemeral, with
expected lifetimes of one to two hours. Therefore, they mostly use
an O(log n) geometry. The common assumption is that maintenance of
full routing tables in the O(1) hop DHTs will consume excessive
bandwidth when nodes are continually joining and leaving. The
corollary is that, when they run on stable infrastructure servers
[298], most of the DHTs in Section 3.5 are less than optimal --
lookups take many more hops than necessary, wasting latency and
bandwidth budgets. The O(1) hop DHTs suit stable deployments and
high lookup rates. For a churning 1024-node network, Li, et al.
concluded that OneHop is superior to Chord, Tapestry, Kademlia, and
Kelips in terms of latency and lookup success rate [291]. For a
3000-node network, they concluded that "OneHop is only preferable to
Chord when the deployment scenario allows a communication cost
Risson & Moors Informational [Page 19]
^L
RFC 4981 Survey of Research on P2P Search September 2007
greater than 20 bytes per node per second" [291]. This apparent
limitation needs to be put in context. They assumed that each node
issues only one lookup every 10 minutes and has a lifetime of only 60
minutes. It seems reasonable to expect that in some deployments,
nodes will have a lifetime of weeks or more, a maintenance bandwidth
of tens of kilobits per second, and a load of hundreds of lookups per
second. O(1) hop DHTs are superior in such situations. OneHop can
scale at least to many tens of thousands of nodes [267]. The recent
O(1) hop designs [267, 295] are vastly outnumbered by the O(log n)
DHTs in Section 3.5. Research on the algorithms of Figure 2 will
also yield improvements in the dependability of the O(1) hop DHTs.
3.2.4. Simulation and Proof
Observation D: Although not yet a mature science, the study of DHT
dependability is helped by recent simulation and formal development
tools.
While there are recent reference architectures [294, 298], much of
the DHT literature in Section 3.5 does not lend itself to repeatable,
comparative studies. The best comparative work to date [291] relies
on the Peer-to-Peer Simulator (P2PSIM) [299]. At the time of
writing, it supports more DHT geometries than any other simulator.
As the study of DHTs matures, we can expect to see the simulation
emphasis shift from geometric comparison to a comparison of the
algorithms of Figure 2.
P2P correctness proofs generally rely on less-than-complete formal
specifications of system invariants and events [7, 45, 300]. Li and
Plaxton expressed concern that "when many joins and leaves happen
concurrently, it is not clear whether the neighbor tables will remain
in a 'good' state" [47]. While acknowledging that guaranteeing
consistency in a failure-prone network is impossible, Lynch, Malkhi,
et al. sketched amendments to the Chord algorithm to guarantee
atomicity [301]. More recently, Gilbert, Lynch, et al. gave a new
algorithm for atomic read/write memory in a churning distributed
network, suggesting it to be a good match for P2P [302]. Lynch and
Stoica show in an enhancement to Chord that lookups are provably
correct when there is a limited rate of joins and failures [303].
Fault Tolerant Active Rings is a protocol for active joins and leaves
that was formally specified and proven using B-method tools [304]. A
good starting point for a formal DHT development would be the
numerous informal API specifications [22, 305, 306]. Such work could
be informed by other efforts to formally specify routing invariants
[307, 308].
Risson & Moors Informational [Page 20]
^L
RFC 4981 Survey of Research on P2P Search September 2007
3.3. Latency
The key metrics for DHT latency are:
1) Shortest-Path Distance and Diameter. In graph theory, the
shortest-path distance is the minimum number of edges in any path
between two vertices of the graph. Diameter is the largest of all
shortest-path distances in a graph [309]. Networking synonyms for
distance on a DHT are "hop count" and "lookup length".
2) Latency and Latency Stretch. Two types of latency are relevant
here -- network-layer latency and overlay latency. Network-layer
latency has been referred to as "proximity" or "locality" [24].
Stretch is the cost of an overlay path between two nodes, divided
by the cost of the direct network path between those nodes [310].
Latency stretch is also known as the "relative delay penalty"
[311].
3.3.1. Hop Count and the O(1)-Hop DHTs
Hop count gives an approximate indication of path latency. O(1)-hop
DHTs have path latencies lower than the O(log n)-hop DHTs [291].
This significant advantage is often overlooked on account of concern
about the messaging costs to maintain large routing tables (Section
3.2.3). Such concern is justified when the mean node lifetime is
only a few hours and the mean lookup interval per node is more than a
few seconds (the classic profile of a P2P file-sharing node).
However, for a large, practical operating range (node lifetimes of
days or more, lookup rates of over tens of lookups per second per
node, up to ~100,000 nodes), the total messaging cost in O(1) hop
DHTs is lower than in O(log n) DHTs [312]. Lookups and routing table
maintenance contribute to the total messaging cost. If a deployment
fits this operating range, then O(1)-hop DHTs will give lower path
latencies and lower total messaging costs. An additional merit of
the O(1)-hop DHTs is that they yield lower lookup failure rates than
their O(log N)-hop counterparts [291].
Low hop count can be achieved in two ways: each node has a large O(N)
index of nodes; or the object references can be replicated on many
nodes. Beehive [313], Kelips [39], LAND [310], and Tulip [314] are
examples of the latter category. Beehive achieves O(1) hops on
average and O(log n) hops in the worst case, by proactive replication
of popular objects. Kelips replicates the 'file index'. It incurs
O(sqrt(N)) storage costs for both the node index and the file index.
LAND uses O(log n) reference pointers for each stored object and an
O(log n) index to achieve a worst-case 1+e stretch, where 0<e. The
Kelips-like Tulip [314] requires 2 hops per lookup. Each node
Risson & Moors Informational [Page 21]
^L
RFC 4981 Survey of Research on P2P Search September 2007
maintains 2sqrt(N)log(N) links to other nodes and objects are
replicated on O(sqrt(N)) nodes.
The DHTs with a large O(N) node index can be divided into two groups:
those for which the index is always O(N); and those for which the
index opportunistically ranges from O(log n) to O(N). Linear Hashing
(LH*) servers [52], OneHop [267], and 1h-Calot [295] fall into the
former category. EpiChord [315] and Accordion [316] are examples of
the latter.
3.3.2. Proximity and the O(log n)-Hop DHTs
If one chooses not to use single-hop DHTs, hop count is a weak
indicator of end-to-end path latency. Some hops may incur large
delays because of intercontinental or satellite links. Consequently,
numerous DHT designs minimize path latency by considering the
proximity of nodes. Gummadi, et al. classified the proximity methods
as follows [24]:
1) Proximity Neighbor Selection (PNS). The nodes in the routing
table are chosen based on the latency of the direct hop to those
nodes. The latency may be explicitly measured [317], or it may be
estimated using one of several synthetic coordinate systems [150,
154, 318]. As a lower bound on PNS performance, Dabek, et al.
showed that lookups on O(log n) DHTs take at least 1.5 times the
average roundtrip time of the underlying network [154].
2) Proximity Route Selection (PRS). At lookup time, the choice of
the next-hop node relies on the latency of the direct hop to that
node. PRS is less effective than PNS, though it may complement it
[24]. Some of the routing geometries in Section 3.5 do not
support PNS and/or PRS [24].
3) Proximity Identifier Selection (PIS). Node identifiers indicate
geographic position. PIS frustrates load balancing, increases the
risk of correlated failures, and is not often used [24].
The proximity study by Gummadi, et al. assumed recursive routing,
though they suggested that PNS would also be superior to PRS with
iterative routing [24]. Dabek, et al. found that recursive lookups
take 0.6 times as long as iterative lookups [150].
Beyond the explicit use of proximity information, redundancy can help
to avoid slow paths and servers. One may increase the number of
replicas [150], use parallel lookups [291, 316], use alternate routes
on failure [150], or use multiple gateway nodes to enter the DHT
[317].
Risson & Moors Informational [Page 22]
^L
RFC 4981 Survey of Research on P2P Search September 2007
3.4. Multicasting
3.4.1. Multicasting vs. Broadcasting
"Multicasting" here means sending a message to a subset of an
overlay's nodes. Nodes explicitly join and leave this subset, called
a "multicast group". "Broadcasting" here is a special case of
multicasting in which a message is sent to all nodes in the overlay.
Broadcasting relies on overlay membership messages -- it does not
need extra group membership messaging. Castro, et al. said
multicasting on structured overlays is either "flooding" (one overlay
per group) or "tree-based" (one tree per group) [319]. These are
synonyms for broadcasting and multicasting respectively.
The first DHT-based designs for multicasting were CAN multicast
[320], Scribe [241], Bayeux [242], and i3 [231]. They were based on
CAN [8], Pastry [2], Tapestry [31], and Chord [7] respectively. El-
Ansary, et al. devised the first DHT-based broadcasting scheme [321].
It was based on Chord.
Multicast trees can be constructed using reverse-path forwarding or
forward-path forwarding. Scribe uses reverse-path forwarding [241].
Bayeux uses forward-path forwarding [242]. Borg, a multicast design
based on Pastry, uses a combination of forward-path and reverse-path
forwarding to minimize latency [237].
3.4.2. Motivation for DHT-based Multicasting
Multicasting complements DHT search capability. DHTs naturally
support exact match queries. With multicasting, they can support
more complex queries. Multicasting also enables the dissemination
and collection of global information.
Consider, for example, aggregation queries like minimum, maximum,
count, sum, and average (Section 5.4). A node at the root of a
dissemination tree might multicast such a query [322]. The leaf
nodes return local results towards the root node. Successive parents
aggregate the result so that eventually the root node can compute the
global result. Such queries may help to monitor the capacity and
health of the overlay itself.
Why bother with structured overlays for multicasting? In Section
2.1, we saw that Gnutella can multicast complex queries without them
[4]. Castro, et al. posed the question, "Should we build Gnutella on
a structured overlay?" [259]. While acknowledging that their study
was preliminary, they did conclude that "we see no reason to build
Gnutella on top of an unstructured overlay" [259]. The supposedly
high maintenance costs of structured overlays were outweighed by
Risson & Moors Informational [Page 23]
^L
RFC 4981 Survey of Research on P2P Search September 2007
query cost savings. The structured overlay ensured that nodes were
only visited once during a complex query. It also helped to
accurately limit the total number of nodes visited. Pai, et al.
acknowledged that multicast trees based on structured overlays
contribute to simple routing rules, low delay and low delay variation
[323]. However, they opted for unstructured, gossip-based
multicasting for reliability reasons: data loss near the tree root
affects all subtended nodes; interior node failures must be repaired
quickly; interior nodes are obliged to disseminate more than their
fair share of traffic, giving leaf nodes a "free ride". The most
promising research direction is to improve on the Bimodal
Multicasting approach [324]. It combines the bandwidth efficiency
and low latency of structured, best-effort multicasting trees with
the reliability of unstructured gossip protocols.
3.4.3. Design Issues
None of the early structured overlay multicast designs addressed all
of the following issues [325]:
1) Heterogeneous Node Capacity. Nodes differ in their processing,
memory, and network capacity. Multicast throughput is largely
determined by the node with smallest throughput [325]. To limit
the multicasting load on a node, one might cap its out-degree. If
the same node receives further join requests, it refers them to
its children ("pushdown") [240]. Bharambe, et al. explored
several pushdown strategies but found them inadequate to deal with
heterogeneity [326]. They concluded that the heterogeneity issue
remains open, and should be addressed before deploying DHTs for
high-bandwidth multicasting applications. Independently, Zhang et
al. partially tackled heterogeneity by allowing nodes in their
CAM-Chord and CAM-Koorde designs to vary out-degree according to
the node's capacity [325]. However, they made no mention of the
"pushdown" issue -- they did not describe topology maintenance
when the out-degree limit is reached.
2) Reliability (Dynamic Membership). If a multicast tree is to be
resilient, it must survive dynamic membership. There are several
ways to deal with dynamic membership: ensure that the root node of
the multicasting tree does not handle all requests to join or
leave the multicast group [242]; use multiple interior-node-
disjoint trees to avoid single points of failure in tree
structures [322]; and split the root node into several replicas
and partition members across them [241]. For example, Bayeux
requires the root node to track all group membership changes
whereas Scribe does not [241]. CAN-multicast uses a single,
well-known host to bootstrap the join operations [320]. The
earliest DHT-based broadcasting work by El-Ansary, et al. did not
Risson & Moors Informational [Page 24]
^L
RFC 4981 Survey of Research on P2P Search September 2007
address the issue of dynamic membership [321]. Ghodsi, et al.
addressed it in a subsequent paper, though, giving two broadcast
algorithms that accommodate routing table inconsistencies [327].
One algorithm achieves a more optimal multicasting network at the
expense of greater correction overhead. Splitstream, based on
Scribe and Pastry, redundantly striped content across multiple
interior-node-disjoint multicast trees -- if one interior node
fails, then only one stripe is lost [240].
3) Large Any-Source Multicast Groups. Any group member should be
allowed to send multicast messages. The group should scale to a
very large number of hosts. CAN-based multicast was the first
application-level multicast scheme to scale to groups of several
thousands of nodes without restricting the service model to a
single source [320]. Bayeux scales to large groups but has a
single root node for each multicast group. It supports the any-
source model only by having the root node operate as a reflector
for multiple senders [242].
3.5. Routing Geometries
In Sections 3.5.1 to 3.5.6, we introduce the main geometries for
simple key lookup and survey their robustness mechanisms.
3.5.1. Plaxton Trees (Pastry, Tapestry)
Work began in March 2000 on a structured, fault-tolerant, wide-area
Dynamic Object Location and Routing (DOLR) system called Tapestry [6,
155]. While DHTs fix replica locations, a DOLR API enables
applications to control object placement [31]. Tapestry's basic
location and routing scheme follows Plaxton, Rajaraman, and Richa
(PRR) [30], but it remedies PRR's robustness shortcomings described
in Section 3.1. Whereas each object has one root node in PRR,
Tapestry uses several to avoid a single point of failure. Unlike
PRR, it allows nodes to be inserted and deleted. Whereas PRR
required a total ordering of nodes, Tapestry uses 'surrogate routing'
to incrementally choose root nodes. The PRR algorithm does not
address congestion, but Tapestry can put object copies close to nodes
generating high query loads. PRR nodes only know of the nearest
replica, whereas Tapestry nodes enable selection from a set of
replicas (for example, to retrieve the most up to date). To detect
routing faults, Tapestry uses TCP timeouts and UDP heartbeats for
detection, sequential secondary neighbours for rerouting, and a
'second chance' window so that recovery can occur without the
overhead of a full node insertion. Tapestry's dependability has been
measured on a testbed of about 100 machines and on simulations of
Risson & Moors Informational [Page 25]
^L
RFC 4981 Survey of Research on P2P Search September 2007
about 1000 nodes. Successful routing rates and maintenance
bandwidths were measured during instantaneous failures and ongoing
churn [31].
Pastry, like Tapestry, uses Plaxton-like prefix routing [2]. As in
Tapestry, Pastry nodes maintain O(log n) neighbours and route to a
target in O(log n) hops. Pastry differs from Tapestry only in the
method by which it handles network locality and replication [2].
Each Pastry node maintains a 'leaf set' and a 'routing table'. The
leaf set contains l/2 node IDs on either side of the local node ID in
the node ID space. The routing table, in row r, column c, points to
the node ID with the same r-digit prefix as the local node, but with
an r+1 digit of c. A Pastry node periodically probes leaf set and
routing table nodes, with periodicity of Tls and Trt and a timeout
Tout. Mahajan, Castry, et al. analyzed the reliability versus
maintenance cost trade-offs in terms of the parameters l, Tls, Trt,
and Tout [328]. They concluded that earlier concerns about excessive
maintenance cost in a churning P2P network were unfounded, but
suggested follow-up work for a wider range of reliability targets,
maintenance costs, and probe periods. Rhea Geels, et al. concluded
that existing DHTs fail at high churn rates [329]. Building on a
Pastry implementation from Rice University, they found that most
lookups fail to complete when there is excessive churn. They
conjectured that short-lived nodes often leave the network with
lookups that have not yet timed out, but no evidence was provided to
confirm the theory. They identified three design issues that affect
DHT performance under churn: reactive versus periodic recovery of
peers; lookup timeouts; and choice of nearby neighbours. Since
reactive recovery was found to add traffic to already congested
links, the authors used periodic recovery in their design. For
lookup timeouts, they advocated an exponentially weighted moving
average of each neighbour's response time, over alternative fixed
timeout or 'virtual coordinate' schemes. For selection of nearby
neighbours, they found that 'global sampling' was more effective than
simply sampling a 'neighbour's neighbours' or 'inverse neighbours'.
Castro, Costa, et al. have refuted the suggestion that DHTs cannot
cope with high churn rates [330]. By implementing methods for
continuous detection and repair, their MSPastry implementation
achieved shorter routing paths and a maintenance overhead of less
than half a message per second per node.
There have been more recent proposals based on these early Plaxton-
like schemes. Kademlia uses a bit-wise exclusive or (XOR) metric for
the 'distance' between 160-bit node identifiers [45]. Each node
keeps a list of contact nodes for each section of the node space that
is between 2^i and 2^(i+1) from itself (0.i<160). Longer-lived nodes
are deliberately given preference on this list -- it has been found
in Gnutella that the longer a node has been active, the more likely
Risson & Moors Informational [Page 26]
^L
RFC 4981 Survey of Research on P2P Search September 2007
it is to remain active. Like Kademlia, Willow uses the XOR metric
[32]. It implements a Tree Maintenance Protocol to 'zipper' together
broken segments of a tree. Where other schemes use DHT routing to
inefficiently add new peers, Willow can merge disjoint or broken
trees in O(log n) parallel operations.
3.5.2. Rings (Chord, DKS)
Chord is the prototypical DHT ring, so we first sketch its operation.
Chord maps nodes and keys to an identifier ring [7, 34]. Chord
supports one main operation: find a node with the given key. It uses
Consistent Hashing (Section 3.1) to minimize disruption of keys when
nodes join and leave the network. However, Chord peers need only
track O(log n) other peers, not all peers as in the original
consistent hashing proposal [49]. It enables concurrent node
insertions and deletions, improving on PRR. Compared to Pastry, it
has a simpler join protocol. Each Chord peer tracks its predecessor,
a list of successors, and a finger table. Using the finger table,
each hop is at least half the remaining distance around the ring to
the target node, giving an average lookup hop count of (1/2)log
n(base 2). Each Chord node runs a periodic stabilization routine
that updates predecessor and successor pointers to cater to newly
added nodes. All successors of a given node need to fail for the
ring to fail. Although a node departure could be treated the same as
a failure, a departing Chord node first notifies the predecessor and
successors, so as to improve performance.
In their definitive paper, Chord's inventors critiqued its
dependability under churn [34]. They provided proofs on the
behaviour of the Chord network when nodes in a stable network fail,
stressing that such proofs are inadequate in the general case of a
perpetually churning network. An earlier paper had posed the
question, "For lookups to be successful during churn, how regularly
do the Chord stabilization routines need to run?" [331]. Stoica,
Morris, et al. modeled a range of node join/departure rates and
stabilization periods for a Chord network of 1000 nodes. They
measured the number of timeouts (caused by a finger pointing to a
departed node) and lookup failures (caused by nodes that temporarily
point to the wrong successor during churn). They also modeled the
'lookup stretch', the ratio of the Chord lookup time to optimal
lookup time on the underlying network. They demonstrated the latency
advantage of recursive lookups over iterative lookups, but there
remains room for delay reduction. For further work, the authors
proposed to improve resilience to network partitions, using a small
set of known nodes or 'remembered' random nodes. To reduce the
number of messages per lookup, they suggested an increase in the size
of each step around the ring, accomplished via a larger number of
fingers at each node. Much of the paper assumed independent, equally
Risson & Moors Informational [Page 27]
^L
RFC 4981 Survey of Research on P2P Search September 2007
likely node failures. Analysis of correlated node failures, caused
by massive site or backbone failures, will be more important in some
deployments. The paper did not attempt to recommend a fixed optimal
stabilization rate. Liben-Nowell, Balakrishnan, et al. had suggested
that optimum stabilization rate might evolve according to
measurements of peers' behaviour [331] -- such a mechanism has yet to
be devised.
Alima, El-Ansary, et al. considered the communication costs of
Chord's stabilization routines, referred to as 'active correction',
to be excessive [332]. Two other robustness issues also motivated
their Distributed K-ary Search (DKS) design, which is similar to
Chord. Firstly, the total system should evolve for an optimum
balance between the number of peers, the lookup hop count, and the
size of the routing table. Secondly, lookups should be reliable --
P2P algorithms should be able to guarantee a successful lookup for
key/value pairs that have been inserted into the system. A similar
lookup-correctness issue was raised elsewhere by one of Chord's
authors; "Is it possible to augment the data structure to work even
when nodes (and their associated finger lists) just disappear?" [333]
Alima, El-Ansary, et al. asserted that P2Ps using active correction,
like Chord, Pastry, and Tapestry, are unable to give such a
guarantee. They propose an alternate 'correction-on-use' scheme,
whereby expired routing entries are corrected by information
piggybacking lookups and insertions. A prerequisite is that lookup
and insertion rates are significantly higher than node arrival,
departure, and failure rates. Correct lookups are guaranteed in the
presence of simultaneous node arrivals or up to f concurrent node
departures, where f is configurable.
3.5.3. Tori (CAN)
Ratnasamy, Francis, et al. developed the Content-Addressable Network
(CAN), another early DHT widely referenced alongside Tapestry,
Pastry, and Chord [8, 334]. It is arranged as a virtual
d-dimensional Cartesian coordinate space on a d-torus. Each node is
responsible for a zone in this coordinate space. The designers used
a heuristic thought to be important for large, churning P2P networks:
keep the number of neighbours independent of system size.
Consequently, its design differs significantly from Pastry, Tapestry,
and Chord. Whereas they have O(log n) neighbours per node and O(log
n) hops per lookup, CAN has O(d) neighbours and O(dn^(1/d)) hop
count. When CAN's system-wide parameter d is set to log(n), CAN
converges to their profile. If the number of nodes grows, a major
rearrangement of the CAN network may be required [151]. The CAN
designers considered building on PRR, but opted for the simple, low-
state-per-node CAN algorithm instead. They had reasoned that a PRR-
based design would not perform well under churn, given node
Risson & Moors Informational [Page 28]
^L
RFC 4981 Survey of Research on P2P Search September 2007
departures and arrivals would affect a logarithmic number of nodes
[8].
There have been preliminary assessments of CAN's resilience. When a
node leaves the CAN in an orderly fashion, it passes its own Virtual
ID (VID), its neighbours' VIDs and IP addresses, and its key/value
pairs to a takeover node. If a node leaves abruptly, its neighbours
send recovery messages towards the designated takeover node. CAN
ensures the recovery messages reach the takeover node, even if nodes
die simultaneously, by maintaining a VID chain with Chord's
stabilization algorithm. Some initial 'proof of concept' resilience
simulations were run using the Network Simulator (NS) [335] for up to
a few hundred nodes. Average hop counts and lookup failure
probabilities were plotted against the total number of nodes for
various node failure rates [8]. The CAN team documented several open
research questions pertaining to state/hop count trade-offs,
resilience, load, locality, and heterogeneous peers [44, 334].
3.5.4. Butterflies (Viceroy)
Viceroy approximates a butterfly network [46]. It generally has
constant degree like CAN. Like Chord, Tapestry, and Pastry, it has
logarithmic diameter. It improves on these systems, inasmuch as its
diameter is better than CAN and its degree is better than Chord,
Tapestry, and Pastry. As with most DHTs, it utilizes Consistent
Hashing. When a peer joins the Viceroy network, it takes a random
but permanent 'identity' and selects its 'level' within the network.
Each peer maintains general ring pointers ('predecessor' and
'successor'), level ring pointers ('nextonlevel' and 'prevonlevel'),
and butterfly pointers ('left', 'right', and 'up'). When a peer
departs, it normally passes its key pairs to a successor, and
notifies other peers to find a replacement peer.
The Viceroy paper scoped out the issue of robustness. It explicitly
assumed that peers do not fail [46]. It assumed that join and leave
operations do not overlap, so as to avoid the complication of
concurrency mechanisms like locking. Kaashoek and Karger were
somewhat critical of Viceroy's complexity [37]. They also pointed to
its fault-tolerance blind spot. Li and Plaxton suggested that such
constant-degree algorithms deserve further consideration [47]. They
offered several pros and cons. The limited degree may increase the
risk of a network partition, or inhibit use of local neighbours (for
the simple reason that there are less of them). On the other hand,
it may be easier to reason about the correctness of fixed-degree
networks. One of the Viceroy authors has since proposed constant-
degree peers in a two-tier, locality-aware DHT [310] -- the lower
degree maintained by each lower-tier peer purportedly improves
network adaptability. Another Viceroy author has since explored an
Risson & Moors Informational [Page 29]
^L
RFC 4981 Survey of Research on P2P Search September 2007
alternative bounded-degree graph for P2P, namely the de Bruijn graph
[336].
3.5.5. de Bruijn (D2B, Koorde, Distance Halving, ODRI)
De Bruijn graphs have had numerous refinements since their inception
[337, 338]. Schlumberger was the first to use them for networking
[339]. Two research teams independently devised the 'generalized' de
Bruijn graph that accommodates a flexible number of nodes in the
system [340, 341]. Rowley and Bose studied fault-tolerant rings
overlaid on the de Bruijn graph [342]. Lee, Liu, et al. devised a
two-level de Bruijn hierarchy, whereby clusters of local nodes are
interconnected by a second-tier ring [343].
Many of the algorithms discussed previously are 'greedy' in that each
time a query is forwarded, it moves closer to the destination.
Unfortunately, greedy algorithms are generally suboptimal -- for a
given degree, the routing distance is longer than necessary [344].
Unlike these earlier P2P designs, de Bruijn graphs of degree k
achieve an asymptotically optimal diameter log n, where n is the
number of nodes in the system and k can be varied to improve
resilience. If there are O(log n) neighbours per node, the de Bruijn
hop count is O(log n/log log n). To illustrate de Bruijn's practical
advantage, consider a network with one million nodes of degree 20:
Chord has a diameter of 20, while de Bruijn has a diameter of 5 [36].
In 2003, there were a quick succession of de Bruijn proposals -- D2B
[345], Koorde [37], Distance Halving [132, 336], and the Optimal
Diameter Routing Infrastructure (ODRI) [36].
Fraigniaud and Gauron began the D2B design by laying out an informal
problem statement: keys should be evenly distributed; lookup latency
should be small; traffic load should be evenly distributed; updates
of routing tables and redistribution of keys should be fast when
nodes join or leave the network. They defined a node's "congestion"
to be the probability that a lookup will traverse it. Apart from its
optimal de Bruijn diameter, they highlighted D2B's merits: a constant
expected update time when nodes join and leave (O(log n) with high
probability (w.h.p.)); the expected node congestion is O((log n)/n)
(O(((log n)^2)/n) w.h.p.) [345]. D2B's resilience was discussed only
in passing.
Koorde extends Chord to attain the optimal de Bruijn degree/diameter
trade-off above [37]. Unlike D2B, Koorde does not constrain the
selection of node identifiers. Also unlike D2B, it caters to
concurrent joins, by extension of Chord's functionality. Kaashoek
and Karger investigated Koorde's resilience to a rather harsh failure
scenario: "in order for a network to stay connected when all nodes
fail with probability of 1/2, some nodes must have degree
Risson & Moors Informational [Page 30]
^L
RFC 4981 Survey of Research on P2P Search September 2007
omega(log n)" [37]. They sketched a mechanism to increase Koorde's
degree for this more stringent fault tolerance, losing de Bruijn's
constant degree advantage. Similarly, to achieve a constant-factor
load balance, Koorde would have to sacrifice its degree optimality.
They suggested that the ability to trade the degree, and hence the
maintenance overhead, against the expected hop count may be important
for churning systems. They also identified an open problem: find a
load-balanced, degree optimal DHT. Datta, Girdzijauskas, et al.
showed that for arbitrary key distributions, de Bruijn graphs fail to
meet the dual goals of load balancing and search efficiency [346].
They posed the question, "(Is there) a constant routing table sized
DHT which meets the conflicting goals of storage load balancing and
search efficiency for an arbitrary and changing key distribution?"
Distance Halving was also inspired by de Bruijn [336] and shares its
optimal diameter. Naor and Wieder argued for a two-step
"continuous-discrete" approach for its design. The correctness of
its algorithms is proven in a continuous setting. The algorithms are
then mapped to a discrete space. The source x and target y are
points on the continuous interval [0,1). Data items are hashed to
this same interval. <str> is a string that determines how messages
leave any point on the ring: if bit t of the string is 0, the left
leg is taken; if it is 1, the right leg is taken. <str> increases by
one bit each hop, giving a sequence by which to step around the ring.
A lookup has two phases. In the first, the lookup message containing
the source, target, and the random string hops toward the midpoint of
the source and target. On each hop, the distance between <str>(x)
and <str>(y) is halved, by virtue of the specific 'left' and 'right'
functions. In the second phase, the message steps 'backward' from
the midpoint to the target, removing the last bit in <str> at each
hop. 'Join' and 'leave' algorithms were outlined but there was no
consideration of recovery times or message load on churn. Using the
Distance Halving properties, the authors devised a caching scheme to
relieve congestion in a large P2P network. They have also modified
the algorithm to be more robust in the presence of random faults
[132].
Solid comparisons of DHT resilience are scarce, but Loguinov, Kumar,
et al. give just that in their ODRI paper [36]. They compare Chord,
CAN, and de Bruijn in terms of routing performance, graph expansion
and clustering. At the outset, they give the optimal diameter (the
maximum hop count between any two nodes in the graph) and average hop
count for graphs of fixed degree. De Bruijn graphs converge to both
optima, and outperform Chord and CAN on both counts. These optima
impact both delay and aggregate lookup load. They present two
clustering measures (edge expansion and node expansion), which are
interesting for resilience. Unfortunately, after decades of de
Bruijn research, they have no exact solution. De Bruijn was shown to
Risson & Moors Informational [Page 31]
^L
RFC 4981 Survey of Research on P2P Search September 2007
be superior in terms of path overlap - "de Bruijn automatically
selects backup paths that do not overlap with the best shortest path
or with each other" [36].
3.5.6. Skip Graphs
Skip Graphs have been pursued by two research camps [38, 41]. They
augment the earlier Skip Lists [347, 348]. Unlike earlier balanced
trees, the Skip List is probabilistic -- its insert and delete
operations do not require tree rearrangements and so are faster by a
constant factor. The Skip List consists of layers of ordered linked
lists. All nodes participate in the bottom layer 0 list. Some of
these nodes participate in the layer 1 list with some fixed
probability. A subset of layer 1 nodes participate in the layer 2
list, and so on. A lookup can proceed quickly through the list by
traversing the sparse upper layers until it is close to, or at, the
target. Unfortunately, nodes in the upper layers of a Skip List are
potential hot spots and single points of failure. Unlike Skip Lists,
Skip Graphs provide multiple lists at each level for redundancy, and
every node participates in one of the lists at each level.
Each node in a Skip Graph has theta(log n) neighbours on average,
like some of the preceding DHTs. The Skip Graph's primary edge over
the DHTs is its support for prefix and proximity search. DHTs hash
objects to a random point in the graph. Consequently, they give no
guarantees over where the data is stored. Nor do they guarantee that
the path to the data will stay within the one administration as far
as possible [38]. Skip graphs, on the other hand, provide for
location-sensitive name searches. For example, to find the document
docname on the node user.company.com, the Skip Graph might step
through its ordered lists for the prefix com.company.user [38].
Alternatively, to find an object with a numeric identifier, an
algorithm might search the lowest layer of the Skip Graph for the
first digit, the next layer for the next digit, in the same vein
until all digits are resolved. Being ordered, Skip Graphs also
facilitate range searches. In each of these examples, the Skip Graph
can be arranged such that the path to the target, as far as possible,
stays within an administrative boundary. If one administration is
detached from the rest of the Skip Graph, routing can continue within
each of the partitions. Mechanisms have been devised to merge
disconnected segments [157], though at this stage, segments are re-
merged one at a time. A parallel merge algorithm has been flagged
for future work.
The advantages of Skip Graphs come at a cost. To be able to provide
range queries and data placement flexibility, Skip Graph nodes
require many more pointers than their DHT counterparts. An increased
number of pointers implies increased maintenance traffic. Another
Risson & Moors Informational [Page 32]
^L
RFC 4981 Survey of Research on P2P Search September 2007
shortcoming of at least one of the early proposals was that no
algorithm was given to assign keys to machines. Consequently, there
are no guarantees on system-wide load balancing or on the distance
between adjacent keys [100]. Aspnes, Kirsch, et al. have recently
devised a scheme to reduce the inter-machine pointer count from
O(mlogm), where m is the number of data elements, to O(nlog n), where
n is the number of nodes [100]. They proposed a two-layer scheme --
one layer for the Skip Graph itself and the second 'bucket layer'.
Each machine is responsible for a number of buckets and each bucket
elects a representative key. Nodes locally adjust their load. They
accept additional keys if they are below their threshold or disperse
keys to nearby nodes if they are above threshold. There appear to be
numerous open issues: simulations have been done but analysis is
outstanding; mechanisms are required to handle the arrival and
departure of nodes; there were only brief hints as to how to handle
nodes with different capacities.
4. Semantic Index
Semantic indexes capture object relationships. While the semantic-
free methods (DHTs) have firmer theoretic foundations and guarantee
that a key can be found if it exists, they do not capture the
relationships between the document name and its content or metadata
on their own. Semantic P2P designs do. However, since their design
is often driven by heuristics, they may not guarantee that scarce
items will be found.
So what might the semantically indexed P2Ps add to an already crowded
field of distributed information architectures? At one extreme,
there are the distributed relational database management systems
(RDBMSs), with their strong consistency guarantees [284]. They
provide strong data independence, the flexibility of SQL queries, and
strong transactional semantics -- Atomicity, Consistency, Isolation
and Durability (ACID) [349]. They guarantee that the query response
is complete -- all matching results are returned. The price is
performance. They scale to perhaps 1000 nodes, as evidenced in
Mariposa [350, 351], or require query caching front ends to constrain
the load [284]. Database research has "arguably been cornered into
traditional, high-end, transactional applications" [72]. Then there
are distributed file systems, like the Network File System (NFS) or
the Serverless Network File Systems (xFS), with little data
independence, low-level file retrieval interfaces, and varied
consistency [284]. Today's eclectic mix of Content Distribution
Networks (CDNs) generally deload primary servers by redirecting Web
requests to a nearby replica. Some intercept the HTTP requests at
the DNS level and then use consistent hashing to find a replica [23].
Since this same consistent hashing was a forerunner to the DHT
Risson & Moors Informational [Page 33]
^L
RFC 4981 Survey of Research on P2P Search September 2007
approaches above, CDNs are generally constrained to the same simple
key lookups.
The opportunity for semantically indexed P2Ps, then, is to provide:
a) graduated data independence, consistency, and query flexibility,
and
b) probabilistically complete query responses, across
c) very large numbers of low-cost, geographically distributed,
dynamic nodes.
4.1. Keyword Lookup
P2P keyword lookup is best understood by considering the structure of
the underlying index and the algorithms by which queries are routed
over that index. Figure 3 summarizes the following paragraphs by
classifying the keyword query algorithms, index structures, and
metrics. The research has largely focused on scalability, not
dependability. There have been very few studies that quantify the
impact of network churn. One exception is the work by Chawathe, et
al. on the Gia system [61]. Gia's combination of algorithms from
Figure 3 (receiver-based flow control, biased random walk, and one-
hop replication) gave 2-4 orders of magnitude improvement in query
success rates in churning networks.
Risson & Moors Informational [Page 34]
^L
RFC 4981 Survey of Research on P2P Search September 2007
QUERY
Query routing
Flooding: Peers only index local files so queries must propagate
widely [4]
Policy-based: Choice of the next hop node: random; most/least
recently used; most files shared; most results [265, 352]
Random walks: Parallel [67] or biased random walks [61, 66]
Query forwarding
Iterative: Nodes perform iterative unicast searches of ultrapeers,
until the desired number of results is achieved. See Gnutella
UDP Extension for Scalable Searches (GUESS) [265, 353]
Recursive
Query flow control
Receiver-controlled: Receivers grant query tokens to senders, so
as to avoid overload [61]
Reactive: sender throttles queries when it notices receivers are
discarding packets [61, 66]
Dynamic Time To Live: In the Dynamic Query Protocol, the sender
adjusts the time-to-live on each iteration based on the number
of results received, the number of connections left, and the
number of nodes already theoretically reached by the search [354]
INDEX
Distribution
Compression: Leaf nodes periodically send ultrapeers compressed
query routing tables, as in the Query Routing Protocol [260]
One hop replication: Nodes maintain an index of content on their
nearest neighbors [61, 352]
Partitioning
By document [210]
By keyword: Use an inverted list to find a matching document,
either locally or at another peer [21]. Partition by keyword
sets [355]
By document and keyword: Also called Multi-Level Partitioning [21]
METRIC
Query load: Queries per second per node/link [65, 265]
Degree: The number of links per node [66, 352]. Early P2P networks
approximated power-law networks, where the number of nodes with L
links is proportional to L^(-k), where k is a constant [65]
Query delay: Reported in terms of time and hop count [61, 66]
Query success rate: The "Collapse Point" is the per-node query rate
at which the query success rate drops below 90% [61]. See
also [61, 265, 352].
Figure 3: Keyword Lookup in P2P Systems
Risson & Moors Informational [Page 35]
^L
RFC 4981 Survey of Research on P2P Search September 2007
4.1.1. Gnutella Enhancements
Perhaps the most widely referenced P2P system for simple keyword
match is Gnutella [4]. Gnutella queries contain a string of
keywords. Gnutella peers answer when they have files whose names
contain all the keywords. As discussed in Section 2.1, early
versions of Gnutella did not forward the document index. Queries
were flooded and peers searched their own local indexes for filename
matches. An early review highlighted numerous areas for improvement
[65]. It was estimated that the query traffic alone from 50,000
early-generation Gnutella nodes would amount to 1.7% of the total
U.S. Internet backbone traffic at December 2000 levels. It was
speculated that high-degree Gnutella nodes would impede
dependability. An unnecessarily high percentage of Gnutella traffic
crossed Autonomous System (AS) boundaries -- a locality mechanism may
have found suitable nearby peers.
Fortunately, there have since been numerous enhancements within the
Gnutella Developer Forum. At the time of writing, it has been
reported that Gnutella has almost 350,000 unique hosts, of which
nearly 90,000 accept incoming connections [356]. One of the main
improvements is that an index of filename keywords, called the Query
Routing Table (QRT), can now be forwarded from 'leaf peers' to its
'ultrapeers' [260]. Ultrapeers can then ensure that the leaves only
receive queries for which they have a match, dramatically reducing
the query traffic at the leaves. Ultrapeers can have connections to
many leaf nodes (~10-100) and a small number of other ultrapeers
(<10) [260]. Originally, a leaf node's QRT was not forwarded by the
parent ultrapeer to other ultrapeers. More recently, there has been
a proposal to distribute aggregated QRTs amongst ultrapeers [357].
To further limit traffic, QRTs are compressed by hashing, according
to the Query Routing Protocol (QRP) specification [281]. This same
specification claims QRP may reduce Gnutella traffic by orders of
magnitude, but cautions that simulation is required before mass
deployment. A known shortcoming of QRP was that the extent of query
propagation was independent of the popularity of the search terms.
The Dynamic Query Protocol addressed this [358]. It required leaf
nodes to send single queries to high-degree ultrapeers that adjust
the queries' time-to-live (TTL) bounds according to the number of
received query results. An earlier proposal, called the Gnutella UDP
Extension for Scalable Searches (GUESS) [353], similarly aimed to
reduce the number of queries for widely distributed files. GUESS
reuses the non-forwarding idea (Section 2). A GUESS peer repeatedly
queries single ultrapeers with a TTL of 1, with a small timeout on
each query to limit load. It chooses the number of iterations and
selects ultrapeers so as to satisfy its search needs. For
adaptability, a small number of experimental Gnutella nodes have
Risson & Moors Informational [Page 36]
^L
RFC 4981 Survey of Research on P2P Search September 2007
implemented eXtensible Markup Language (XML) schemas for richer
queries [359, 360]. None of the above Gnutella proposals explicitly
assess robustness.
The broader research community has recently been leveraging aspects
of the Gnutella design. Lv, Ratnasamy, et al. exposed one assumption
implicit in some of the early DHT work -- that designs "such as
Gnutella are inherently not scalable, and therefore should be
abandoned" [66]. They argued that by making better use of the more
powerful peers, Gnutella's scalability issues could be alleviated.
Instead of its flooding mechanism, they used random walks. Their
preliminary design to bias random walks towards high capacity nodes
did not go as far as the ultrapeer proposals in that the indexes did
not move to the high-capacity nodes. Chawathe, Ratnasamy, et al.
chose to extend the Gnutella design with their Gia system, in
response to the perceived shortcomings of DHTs in Section 1.2 [61].
Compared to the early Gnutella designs, they incorporated several
novel features. They devise a topology adaptation algorithm so that
most peers are attached to high-degree peers. They use a random walk
search algorithm, in lieu of flooding, and bias the query load
towards higher-degree peers. For 'one-hop replication', they require
all nodes to keep pointers to content on adjacent peers. To
implement a receiver-controlled token-based flow control, a peer must
have a token from its neighbouring peer before it sends a query to
it. Chawathe, Ratnasamy, et al. show by simulations that the
combination of these features provides a scalability improvement of
three to five orders of magnitude over Gnutella "while retaining
significant robustness". The main robustness metrics they used were
the 'collapse point' query rate (the per-node query rate at which the
successful query rate falls below 90%) and the average hop count
immediately prior to collapse. Their comparison with Gnutella did
not take into account the Gnutella enhancements above -- this was
left as future work. Castro, Costa, and Rowstron argued that if
Gnutella were built on top of a structured overlay, then both the
query and overlay maintenance traffic could be reduced [259]. Yang,
Vinograd, et al. explore various policies for peer selection in the
GUESS protocol, since the issue is left open in the original proposal
[265]. For example, the peer initiating the query could choose peers
that have been "most recently used" or that have the "most files
shared". Various policy pitfalls are identified. For example, good
peers could be overloaded, victims of their own success.
Alternatively, malicious peers could encourage the querying peer to
try inactive peers. They conclude that a "most results" policy gives
the best balance of robustness and efficiency. Like Castro, Costa,
and Rowstron, they concentrated on the static network scenario.
Cholvi, Felber, et al. very briefly describe how similar "least
recently used" and "most often used" heuristics can be used by a peer
to select peer 'acquaintances' [352]. They were motivated by the
Risson & Moors Informational [Page 37]
^L
RFC 4981 Survey of Research on P2P Search September 2007
congestion associated with Gnutella's TTL-limited flooding.
Recognizing that the busiest peers can quickly become overloaded
central hubs for the entire network, they limit the number of
acquaintances for any given peer to 25. They sketch a mechanism to
decrement a query's TTL multiple times when it traverses "interested
peers". In summary, these Gnutella-related investigations are
characterized by a bias for high-degree peers and very short directed
query paths, a disdain for flooding, and concern about excessive load
on the 'better' peers. Generally, the robustness analysis for
dynamic networks (content updates and node arrivals/departures)
remains open.
4.1.2. Partition-by-Document, Partition-by-Keyword
One aspect of P2P keyword search systems has received particular
attention: should the index be partitioned by document or by keyword?
The issue affects scalability. To be partitioned by document, each
node has a local index of documents for which it is responsible.
Gnutella is a prime example. Queries are generally flooded in
systems partitioned by document. On the other hand, a peer may
assume responsibility for a set of keywords. The peer uses an
inverted list to find a matching document, either locally or at
another peer. If the query contains several keywords, inverted lists
may need to be retrieved from several different peers to find the
intersection [21]. The initial assessment by Li, Loo, et al. was
that the partition-by-document approach was superior [210]. For one
scenario of a full-text Web search, they estimated the communications
costs to be about six times higher than the feasible budget.
However, wanting to exploit prior work on inverted list intersection,
they studied the partition-by-keyword strategy. They proposed
several optimizations that put the communication costs for a
partition-by-keyword system within an order of magnitude of
feasibility. There had been a couple of prior papers that suggested
partitioned-by-keyword designs incorporate DHTs to map keywords to
peers [355, 361]. In Gnawali's Keyword-set Search System (KSS), the
index is partitioned by sets of keywords [355]. Terpstra, Behnel, et
al. point out that by keeping keyword pairs or triples, the number of
lists per document in KSS is squared or tripled [362]. Shi,
Guangwen, et al. interpreted the approximations of Li, Loo, et al. to
mean that neither approach is feasible on its own [21]. Their
Multi-Level Partitioning (MLP) scheme incorporates both partitioning
approaches. They arrange nodes into a group hierarchy, with all
nodes in the single 'level 0' group, and with the same nodes sub-
divided into k logical subgroups on 'level 1'. The subgroups are
again divided, level by level, until level l. The inverted index is
partitioned by document between groups and by keyword within groups.
MLP avoids the query flooding normally associated with systems
partitioned by document, since a small number of nodes in each group
Risson & Moors Informational [Page 38]
^L
RFC 4981 Survey of Research on P2P Search September 2007
process the query. It reduces the bandwidth overheads associated
with inverted list intersection in systems partitioned solely by
keyword, since groups can calculate the intersection independently
over the documents for which they are responsible. MLP was overlaid
on SkipNet, per Section 3.5.6 [38]. Some initial analyses of
communications costs and query latencies were provided.
4.1.3. Partial Search, Exhaustive Search
Much of the research above addresses partial keyword search.
Daswani, et al. highlighted the open problem of efficient,
comprehensive keyword search [25]. How can exhaustive searches be
achieved without flooding queries to every peer in the network?
Terpstra, Behnel et al. couched the keyword search problem in
rendezvous terms: dynamic keyword queries need to 'meet' with static
document lists [362]. Their Bitzipper scheme is partitioned by
document. They improved on full flooding by putting document
metadata on 2sqrt(n) nodes and forwarding queries through only
6sqrt(n) nodes. They reported that Bitzipper nodes need only 1/166th
of the bandwidth of full-flooding Gnutella nodes for an exhaustive
search. An initial comparison of query load was given. There was
little consideration of either static or dynamic resilience; that is,
of nodes failing, of documents continually changing, or of nodes
continually joining and leaving the network.
4.2. Information Retrieval
The field of Information Retrieval (IR) has matured considerably
since its inception in the 1950s [363]. A taxonomy for IR models has
been formalized [262]. It consists of four elements: a
representation of documents in a collection; a representation of user
queries; a framework describing relationships between document
representations and queries; and a ranking function that quantifies
an ordering amongst documents for a particular query. Three main
issues motivate current IR research -- information relevance, query
response time, and user interaction with IR systems. The dominant IR
trends for searching large text collections are also threefold [262].
The size of collections is increasing dramatically. More complicated
search mechanisms are being found to exploit document structure, to
accommodate heterogeneous document collections, and to deal with
document errors. Compression is in favour -- it may be quicker to
search compact text or retrieve it from external devices. In a
distributed IR system, query processing has four parts. Firstly,
particular collections are targeted for the search. Secondly,
queries are sent to the targeted collections. Queries are then
evaluated at the individual collections. Finally, results from the
collections are collated.
Risson & Moors Informational [Page 39]
^L
RFC 4981 Survey of Research on P2P Search September 2007
So how do P2P networks differ from distributed IR systems? Bawa,
Manku, et al. presented four differences [62]. They suggested that a
P2P network is typically larger, with tens or hundreds of thousands
of nodes. It is usually more dynamic, with node lifetimes measured
in hours. They suggested that a P2P network is usually homogeneous,
with a common resource description language. It lacks the
centralized "mediators" found in many IR systems that assume
responsibility for selecting collections, for rewriting queries, and
for merging ranked results. These distinctions are generally aligned
with the peer characteristics in Section 1. One might add that P2P
nodes display more symmetry -- peers are often both information
consumers and producers. Daswani, Garcia-Molina, et al. pointed out
that, while there are IR techniques for ranked keyword search at
moderate scale, research is required so that ranking mechanisms are
efficient at the larger scale targeted by P2P designs [25]. Joseph
and Hoshiai surveyed several P2P systems using metadata techniques
from the IR toolkit [60]. They described an assortment of IR
techniques and P2P systems, including various metadata formats,
retrieval models, bloom filters, DHTs, and trust issues.
In the ensuing paragraphs, we survey P2P work that has incorporated
information retrieval models, particularly the Vector Model and the
Latent Semantic Indexing Model. We omit the P2P work based on
Bayesian models. Some have pointed to such work [60], but made no
explicit mention of the model [364]. One early paper on P2P
content-based image retrieval also leveraged the Bayesian model
[365]. For the former two models, we briefly describe the design,
then try to highlight robustness aspects. On robustness, we are
again stymied for lack of prior work. Indeed, a search across all
proceedings of the Annual ACM Conference on Research and Development
in Information Retrieval for the words "reliable", "available",
"dependable", or "adaptable" did not return any results at the time
of writing. In contrast, a standard text on distributed database
management systems [366] contains a whole chapter on reliability. IR
research concentrates on performance measures. Common performance
measures include recall, the fraction of the relevant documents that
has been retrieved and precision, the fraction of the retrieved
documents that is relevant [262]. Ideally, an IR system would have
high recall and high precision. Unfortunately techniques favouring
one often disadvantage the other [363].
Risson & Moors Informational [Page 40]
^L
RFC 4981 Survey of Research on P2P Search September 2007
4.2.1. Vector Model (PlanetP, FASD, eSearch)
The vector model [367] represents both documents and queries as term
vectors, where a term could be a word or a phrase. If a document or
query has a term, the weight of the corresponding dimension of the
vector is non-zero. The similarity of the document and query vectors
gives an indication of how well a document matches a particular
query.
The weighting calculation is critical across the retrieval models.
Amongst the numerous proposals for the probabilistic and vector
models, there are some commonly recurring weighting factors [363].
One is term frequency. The more a term is repeated in a document,
the more important the term is. Another is inverse document
frequency. Terms common to many documents give less information
about the content of a document. Then there is document length.
Larger documents can bias term frequencies, so weightings are
sometimes normalized against document length. The expression "TFIDF
weighting" refers to the collection of weighting calculations that
incorporate term frequency and inverse document frequency, not just
to one. Two weighting calculations have been particularly dominant
-- Okapi [368] and pivoted normalization [369]. A distributed
version of Google's Pagerank algorithm has also been devised for a
P2P environment [370]. It allows incremental, ongoing Pagerank
calculations while documents are inserted and deleted.
A couple of early P2P systems leveraged the vector model. Building
on the vector model, PlanetP divided the ranking problem into two
steps [215]. In the first, peers are ranked for the probability that
they have matching documents. In the second, higher-priority peers
are contacted and the matching documents are ranked. An Inverse Peer
Frequency, analogous to the Inverse Document Frequency, is used to
rank relevant peers. To further constrain the query traffic, PlanetP
contacts only the first group of m peers to retrieve a relevant set
of documents. In this way, it repeatedly contacts groups of m peers
until the top k document rankings are stable. While the PlanetP
designers first quantified recall and precision, they also considered
reliability. Each PlanetP peer has a global index with a list of all
other peers, their IP addresses, and their Bloom filters. This large
volume of shared information needs to be maintained. Klampanos and
Jose saw this as PlanetP's primary shortcoming [371]. Each Bloom
filter summarized the set of terms in the local index of each peer.
The time to propagate changes, be they new documents or peer
arrivals/departures, was studied by simulation for up to 1000 peers.
The reported propagation times were in the hundreds of seconds.
Design workarounds were required for PlanetP to be viable across
slower dial-up modem connections. For future work, the authors were
Risson & Moors Informational [Page 41]
^L
RFC 4981 Survey of Research on P2P Search September 2007
considering some sort of hierarchy to scale to larger numbers of
peers.
A second early system using the vector model is the Fault-tolerant,
Adaptive, Scalable Distributed (FASD) search engine [283], which
extended the Freenet design (Section 2.3) for richer queries. The
original Freenet design could find a document based on a globally
unique identifier. Kronfol's design added the ability to search, for
example, for documents about "apples AND oranges NOT bananas". It
uses a TFIDF weighting scheme to build a document's term vector.
Each peer calculates the similarity of the query vector and local
documents and forwards the query to the best downstream peer. Once
the best downstream peer returns a result, the second-best peer is
tried, and so on. Simulations with 1000 nodes gave an indication of
the query path lengths in various situations -- when routing queries
in a network with constant rates of node and document insertion, when
bootstrapping the network in a "worst-case" ring topology, or when
failing randomly and specifically selected peers. Kronfol claimed
excellent average-case performance -- less than 20 hops to retrieve
the same top n results as a centralized search engine. There were,
however, numerous cases where the worst-case path length was several
hundred hops in a network of only 1000 nodes.
In parallel, there have been some P2P designs based on the vector
model from the University of Rochester -- pSearch [9, 372] and
eSearch [373]. The early pSearch paper suggested a couple of
retrieval models, one of which was the Vector Space Model, to search
only the nodes likely to have matching documents. To obtain
approximate global statistics for the TFIDF calculation, a spanning
tree was constructed across a subset of the peers. For the m top
terms, the term-to-document index was inserted into a Content-
Addressable Network [334]. A variant that mapped terms to document
clusters was also suggested. eSearch is a hybrid of the partition-
by-document and partition-by-term approaches (Section 4.1.2) eSearch
nodes are primarily partitioned by term. Each is responsible for the
inverted lists for some top terms. For each document in the inverted
list, the node stores the complete term list. To reduce the size of
the index, the complete term lists for a document are only kept on
nodes that are responsible for top terms in the document. eSearch
uses the Okapi term weighting to select top terms. It relies on the
Chord DHT [34] to associate terms with nodes storing the inverted
lists. It also uses automatic query expansion. This takes the
significant terms from the top document matches and automatically
adds them to the user's query to find additional relevant documents.
The eSearch performance was quantified in terms of search precision,
the number of retrieved documents, and various load-balancing
metrics. Compared to the more common proposals for partitioning by
Risson & Moors Informational [Page 42]
^L
RFC 4981 Survey of Research on P2P Search September 2007
keywords, eSearch consumed 6.8 times the storage space to achieve
faster search times.
4.2.2. Latent Semantic Indexing (pSearch)
Another retrieval model used in P2P proposals is Latent Semantic
Indexing (LSI) [374]. Its key idea is to map both the document and
query vectors to a concept space with lower dimensions. The starting
point is a t*N weighting matrix, where t is the total number of
indexed terms, N is the total number of documents, and the matrix
elements could be TFIDF rankings. Using singular value
decomposition, this matrix is reduced to a smaller number of
dimensions, while retaining the more significant term-to-document
mappings. Baeza-Yates and Ribeiro-Neto suggested that LSI's value is
a novel theoretic framework, but that its practical performance
advantage for real document collections had yet to be proven [262].
pSearch incorporated LSI [9]. By placing the indices for
semantically similar documents close in the network, Tang, Xu, et al.
touted significant bandwidth savings relative to the early full-
flooding variant of Gnutella [372]. They plotted the number of nodes
visited by a query. They also explored the trade-off with accuracy,
the percentage match between the documents returned by the
distributed pSearch algorithm and those from a centralized LSI
baseline. In a more recent update to the pSearch work, Tang,
Dwarkadas, et al. summarized LSI's shortcomings [375]. Firstly, for
large document collections, its retrieval quality is inherently
inferior to Okapi. Secondly, singular value decomposition consumes
excessive memory and computation time. Consequently, the authors
used Okapi for searching while retaining LSI for indexing. With
Okapi, they selected the next node to be searched and selected
documents on searched nodes. With LSI, they ensured that similar
documents are clustered near each other, thereby optimizing the
network search costs. When retrieving a small number of top
documents, the precision of LSI+Okapi approached that of Okapi.
However, if retrieving a large number of documents, the LSI+Okapi
precision is inferior. The authors want to improve this in future
work.
4.2.3. Small Worlds
The "small world" concept originally described how people are
interconnected by short chains of acquaintances [376]. Kleinberg was
struck by the algorithmic lesson of the small world, namely "that
individuals using local information are collectively very effective
at constructing short paths between two points in a social network"
[377]. Small world networks have a small diameter and a large
clustering coefficient (a large number of connections amongst
relevant nodes) [378].
Risson & Moors Informational [Page 43]
^L
RFC 4981 Survey of Research on P2P Search September 2007
The small world idea has had a limited impact on peer-to-peer
algorithms. It has influenced only a few unstructured [62, 378-380]
and structured [344, 381] algorithms. The most promising work on
"small worlds" in P2P networks are those concerned with the
information retrieval metrics, precision and recall [62, 378, 380].
5. Queries
Database research suggests directions for P2P research. Hellerstein
observed that, while work on fast P2P indexes is well underway, P2P
query optimization remains a promising topic for future research
[23]. Kossman reviewed the state of the art of distributed query
processing, highlighting areas for future research: simulation and
query optimization for networks of tens of thousands of servers and
millions of clients; non-relational data types (e.g., XML, text, and
images); and partial query responses since on the Internet, "failure
is the rule rather than the exception" [19]. A primary motivation
for the P2P system, PIER, was to scale from the largest database
systems of a few hundred nodes to an Internet environment in which
there are over 160 million nodes [22]. Litwin and Sahri have also
considered ways to combine distributed hashing, more specifically the
Scalable Distributed Data Structures, with SQL databases, claiming to
be first to implement scalable distributed database partitioning
[382]. Motivated by the lack of transparent distribution in current
distributed databases, they measure query execution times for
Microsoft SQL servers aggregated by means of an SDDS layer. One of
their starting assumptions was that it is too challenging to change
the SQL query optimizer.
Database research also suggests the approach to P2P research.
Researchers of database query optimization were divided between those
looking for optimal solutions in special cases and those using
heuristics to answer all queries [383]. Gribble, et al. cast query
optimization in terms of the data placement problem, which is to
"distribute data and work so the full query workload is answered with
lowest cost under the existing bandwidth and resource constraints"
[250]. They pointed out that even the static version of this problem
is NP-complete in P2P networks. Consequently, research on massive,
dynamic P2P networks will likely progress using both strategies of
early database research - heuristics and special-case optimizations.
If P2P networks are going to be adaptable, if they are to support a
wide range of applications, then they need to accommodate many query
types [72]. Up to this point, we have reviewed queries for keys
(Section 3) and keywords (Sections 4.1. and 4.2). Unfortunately, a
major shortcoming of the DHTs in Section 3.5 is that they primarily
support exact-match, single-key queries. Skip Graphs support range
and prefix queries, but not aggregation queries. Here we probe below
Risson & Moors Informational [Page 44]
^L
RFC 4981 Survey of Research on P2P Search September 2007
the language syntax to identify the open research issues associated
with more expressive P2P queries [25]. Triantafillou and Pitoura
observed the disparate P2P designs for different types of queries and
so outlined a unifying framework [76]. To classify queries, they
considered the number of relations (single or multiple), the number
of attributes (single or multiple), and the type of query operator.
They described numerous operators: equality, range, join, and
"special functions". The latter referred to aggregation (like sum,
count, average, minimum, and maximum), grouping and ordering. The
following sections approximately fit their taxonomy -- range queries,
multi-attribute queries, join queries and aggregation queries. There
has been some initial P2P work on other query types -- continuous
queries [20, 22, 73], recursive queries [22, 74], and adaptive
queries [23, 75]. For these, we defer to the primary references.
5.1. Range Queries
The support of efficient range predicates in P2P networks was
identified as an important open research issue by Huebsch, et al.
[22]. Range partitioning has been important in parallel databases to
improve performance, so that a transaction commonly needs data from
only one disk or node [22]. One type of range search, longest prefix
match, is important because of its prevalence in routing schemes for
voice and data networks alike. In other applications, users may pose
broad, inexact queries, even though they require only a small number
of responses. Consequently, techniques to locate similar ranges are
also important [77]. Various proposals for range searches over P2P
networks are summarized in Figure 4. Since the Scalable Distributed
Data Structure (SDDS) has been an important influence on contemporary
Distributed Hash Tables (DHTs) [49-51], we also include ongoing work
on SDDS range searches.
PEER-TO-PEER (P2P)
Locality Sensitive Hashing (Chord) [77]
Prefix Hash Trees (unspecified DHT) [78, 79]
Space Filling Curves (CAN) [80]
Space Filling Curves (Chord) [81]
Quadtrees (Chord) [82]
Skip Graphs [38, 41, 83, 100]
Mercury [84]
P-Grid [85, 86]
SCALABLE DISTRIBUTED DATA STRUCTURES (SDDS)
RP* [87, 88]
Figure 4: Solutions for Range Queries on P2P and SDDS Indexes
Risson & Moors Informational [Page 45]
^L
RFC 4981 Survey of Research on P2P Search September 2007
The papers on P2P range search can be divided into those that rely on
an underlying DHT (the first five entries in Figure 4) and those that
do not (the subsequent three entries). Bharambe, Agrawal, et al.
argued that DHTs are inherently ill-suited to range queries [84].
The very feature that makes for their good load balancing properties,
randomized hash functions, works against range queries. One possible
solution would be to hash ranges, but this can require a priori
partitioning. If the partitions are too large, partitions risk
overload. If they are too small, there may be too many hops.
Despite these potential shortcomings, there have been several range
query proposals based on DHTs. If hashing ranges to nodes, it is
entirely possible that overlapping ranges map to different nodes.
Gupta, Agrawal, et al. rely on locality sensitive hashing to ensure
that, with high probability, similar ranges are mapped to the same
node [77]. They propose one particular family of locality sensitive
hash functions, called min-wise independent permutations. The number
of partitions per node and the path length were plotted against the
total numbers of peers in the system. For a network with 1000 nodes,
the hop count distribution was very similar to that of the exact-
matching Chord scheme. Was it load-balanced? For the same network
with 50,000 partitions, there were over two orders of magnitude
variation in the number of partitions at each node (first and
ninety-ninth percentiles). The Prefix Hash Tree is a trie in which
prefixes are hashed onto any DHT. The preliminary analysis suggests
efficient doubly logarithmic lookup, balanced load, and fault
resilience [78, 79]. Andrzejak and Xu were perhaps the first to
propose a mapping from ranges to DHTs [80]. They use one particular
Space Filling Curve, the Hilbert curve, over a Content Addressable
Network (CAN) construction (Section 3.5.3). They maintain two
properties: nearby ranges map to nearby CAN zones; if a range is
split into two sub-ranges, then the zones of the sub-ranges partition
the zone of the primary range. They plot path length and load proxy
measures (the total number of messages and nodes visited) for three
algorithms to propagate range queries: brute force, controlled
flooding, and directed controlled flooding. Schmidt and Parashar
also advocated Space Filling Curves to achieve range queries over a
DHT [81]. However, they point out that, while Andrzejak and Xu use
an inverse Space Filling Curve to map a one-dimensional space to d-
dimensional zones, they map a d-dimensional space back to a one-
dimensional index. Such a construction gives the ability to search
across multiple attributes (Section 5.2). Tanin, Harwood, et al.
suggested quadtrees over Chord [82], and gave preliminary simulation
results for query response times.
Because DHTs are naturally constrained to exact-match, single-key
queries, researchers have considered other P2P indexes for range
searches. Several were based on Skip Graphs [38, 41], which, unlike
Risson & Moors Informational [Page 46]
^L
RFC 4981 Survey of Research on P2P Search September 2007
the DHTs, do not necessitate randomizing hash functions and are
therefore capable of range searches. Unfortunately, they are not
load balanced [83]. For example, in SkipNet [48], hashing was added
to balance the load -- the Skip Graph could support range searches or
load balancing, but not both. One solution for load-balancing relies
on an increased number of 'virtual' servers [168] but, in their
search for a system that can both search for ranges and balance
loads, Bharambe, Agrawal, et al. rejected the idea [84]. The virtual
servers work assumed load imbalance stems from hashing; that is, by
skewed data insertions and deletions. In some situations, the
imbalance is triggered by a skewed query load. In such
circumstances, additional virtual servers can increase the number of
routing hops and increase the number of pointers that a Skip Graph
needs to maintain. Ganesan, Bawa, et al. devised an alternate method
to balance load [83]. They proposed two Skip Graphs, one to index
the data itself and the other to track load at each node in the
system. Each node is able to determine the load on its neighbours
and the most (least) loaded nodes in the system. They devise two
algorithms: NBRADJUST balances load on neighbouring nodes; using
REORDER, empty nodes can take over some of the tuples on heavily
loaded nodes. Their simulations focus on skewed storage load, rather
than on skewed query loads, but they surmise that the same approach
could be used for the latter.
Other proposals for range queries avoid both the DHT and the Skip
Graph. Bharambe, Agrawal, et al. distinguish their Mercury design by
its support for multi-attribute range queries and its explicit load
balancing [84]. In Mercury, nodes are grouped into routing hubs,
each of which is responsible for various query attributes. While it
does not use hashing, Mercury is loosely similar to the DHT
approaches: nodes within hubs are arranged into rings, like Chord
[34]; for efficient routing within hubs, k long-distance links are
used, like Symphony [381]. Range lookups require O(((log n)^2)/k)
hops. Random sampling is used to estimate the average load on nodes
and to find the parts of the overlay that are lightly loaded.
Whereas Symphony assumed that nodes are responsible for ranges of
approximately equal size, Mercury's random sampling can determine the
location of the start of the range, even for non-uniform ranges [84].
P-Grid [42] does provide for range queries, by virtue of the key
ordering in its tree structures. Ganesan, Bawa, et al. critiqued its
capabilities [83]: P-Grid assumes fixed-capacity nodes; there was no
formal characterization of imbalance ratios or balancing costs; every
P-Grid periodically contacts other nodes for load information.
The work on Scalable Distributed Data Structures (SDDSs) has
progressed in parallel with P2P work and has addressed range queries.
Like the DHTs above, the early SDDS Linear Hashing (LH*) schemes were
not order-preserving [52]. To facilitate range queries, Litwin,
Risson & Moors Informational [Page 47]
^L
RFC 4981 Survey of Research on P2P Search September 2007
Niemat, et al. devised a Range Parititioning variant, RP* [87].
There are options to dispense with the index, to add indexes to
clients, and to add them to servers. In the variant without an
index, every query is issued via multicasting. The other variants
also use some multicasting. The initial RP* paper suggested
scalability to thousands of sites, but a more recent RP* simulation
was capped at 140 servers [88]. In that work, Tsangou, Ndiaye, et
al. investigated TCP and UDP mechanisms by which servers could return
range query results to clients. The primary metrics were search and
response times. Amongst the commercial parallel database management
systems, they reported that the largest seems only to scale to 32
servers (SQL Server 2000). For future work, they planned to explore
aggregation of query results, rather than establishing a connection
between the client and every single server with a response.
All in all, it seems there are numerous open research questions on
P2P range queries. How realistic is the maintenance of global load
statistics considering the scale and dynamism of P2P networks?
Simulations at larger scales are required. Proposals should take
into account both the storage load (insert and delete messages) and
the query load (lookup messages). Simplifying assumptions need to be
attacked. For example, how well do the above solutions work in
networks with heterogeneous nodes, where the maximum message loads
and index sizes are node-dependent?
5.2. Multi-Attribute Queries
There has been some work on multi-attribute P2P queries. As late as
September 2003, it was suggested that there has not been an efficient
solution [76].
Again, an early significant work on multi-attribute queries over
aggregated commodity nodes germinated amongst SDDSs. k-RP* [89] uses
the multi-dimensional binary search tree (or k-d tree, where k
indicates the number of dimensions of the search index) [384]. It
builds on the RP* work from the previous section and inherits their
capabilities for range search and partial match. Like the other
SDDSs, k-RP* indexes can fit into RAM for very fast lookup. For
future work, Litwin and Neimat suggested a) a formal analysis of the
range search termination algorithm and the k-d paging algorithm, b) a
comparison with other multi-attribute data structures (quad-trees and
R-trees) and c) exploration of query processing, concurrency control,
and transaction management for k-RP* files [89]. On the latter
point, others have considered transactions to be inconsequential to
the core problem of supporting more complex queries in P2P networks
[72].
Risson & Moors Informational [Page 48]
^L
RFC 4981 Survey of Research on P2P Search September 2007
In architecting their secure wide-area Service Discovery Service
(SDS), Hodes, Czerwinski, et al. considered three possible designs
for multi-criteria search -- Centralization, Mapping and Flooding
[90]. These correlate to the index classifications of Section 2 --
Central, Distributed, and Local. They discounted the centralized,
Napster-like index for its risk of a single point of failure. They
considered the hash-based mappings of Section 3, but concluded that
it would not be possible to adequately partition data. A document
satisfying many criteria would be wastefully stored in many
partitions. They rejected full flooding for its lack of scalability.
Instead, they devised a query filtering technique, reminiscent of
Gnutella's query routing protocol (Section 4.1). Nodes push
proactive summaries of their data rather than waiting for a query.
Summaries are aggregated and stored throughout a server hierarchy, to
guide subsequent queries. Some initial prototype measurements were
provided for total load on the system, but not for load distribution.
They put several issues forward for future work. The indexing needs
to be flexible to change according to query and storage workloads. A
mesh topology might improve on their hierarchic topology since query
misses would not propagate to root servers. The choice is analogous
to BGP meshes and DNS trees.
More recently, Cai, Frank, et al. devised the Multi-Attribute
Addressable Network (MAAN) [91]. They built on Chord to provide both
multi-attribute and range queries, claiming to be the first to
service both query types in a structured P2P system. Each MAAN node
has O(log n) neighbours, where N is the number of nodes. MAAN
multi-attribute range queries require O(log n+N*Smin) hops, where
Smin is the minimum range selectivity across all attributes.
Selectivity is the ratio of the query range to the entire identifier
range. The paper assumed that a locality preserving hash function
would ensure balanced load. Per Section 5.1, the arguments by
Bharambe, Agrawal, et al. have highlighted the shortcomings of this
assumption [84]. MAAN required that the schema must be fixed and
known in advance -- adaptable schemas were recommended for subsequent
attention. The authors also acknowledged that there is a selectivity
breakpoint at which full flooding becomes more efficient than their
scheme. This begs for a query resolution algorithm that adapts to
the profile of queries. Cai and Frank followed up with RDFPeers
[55]. They differentiate their work from other RDF proposals by a)
guaranteeing to find query results if they exist and b) removing the
requirement of prior definition of a fixed schema. They hashed
<subject, predicate, object> triples onto the MAAN and reported
routing hop metrics for their implementation. Load imbalance across
nodes was reduced to less than one order of magnitude, but the
specific measure was the number of triples stored per node - skewed
query loads were not considered. They plan to improve load balancing
with the virtual servers of Section 5.1 [168].
Risson & Moors Informational [Page 49]
^L
RFC 4981 Survey of Research on P2P Search September 2007
5.3. Join Queries
Two research teams have done some initial work on P2P join
operations. Harren, Hellerstein, et al. initially described a
three-layer architecture -- storage, DHT and query processing. They
implemented the join operation by modifying an existing Content
Addressable Network (CAN) simulator, reporting "significant hot-spots
in all dimensions: storage, processing, and routing" [72]. They
progressed their design more recently in the context of PIER, a
distributed query engine based on CAN [22, 385]. They implemented
two equi-join algorithms. In their design, a key is constructed from
the "namespace" and the "resource ID". There is a namespace for each
relation and the resource ID is the primary key for base tuples in
that relation. Queries are multicast to all nodes in the two
namespaces (relations) to be joined. Their first algorithm is a DHT
version of the symmetric hash join. Each node in the two namespaces
finds the relevant tuples and hashes them to a new query namespace.
The resource ID in the new namespace is the concatenation of join
attributes. In the second algorithm, called "fetch matches", one of
the relations is already hashed on the join attributes. Each node in
the second namespace finds tuples matching the query and retrieves
the corresponding tuples from the first relation. They leveraged two
other techniques, namely the symmetric semi-join rewrite and the
Bloom filter rewrite, to reduce the high bandwidth overheads of the
symmetric hash join. For an overlay of 10,000 nodes, they simulated
the delay to retrieve tuples and the aggregate network bandwidth for
these four schemes. The initial prototype was on a cluster of 64
PCs, but it has more recently been expanded to PlanetLab.
Triantafillou and Pitoura considered multicasting to large numbers of
peers to be inefficient [76]. They therefore allocated a limited
number of special peers, called range guards. The domain of the join
attributes was divided, one partition per range guard. Join queries
were sent only to range guards, where the query was executed.
Efficient selection of range guards and a quantitive evaluation of
their proposal were left for future work.
5.4. Aggregation Queries
Aggregation queries invariable rely on tree-structures to combine
results from a large number of nodes. Examples of aggregation
queries are Count, Sum, Maximum, Minimum, Average, Median, and Top-K
[92, 386, 387]. Figure 5 summarizes the tree and query
characteristics that affect dependability.
Risson & Moors Informational [Page 50]
^L
RFC 4981 Survey of Research on P2P Search September 2007
Tree type: Doesn't use DHT [92], use internal DHT trees [95], use
independent trees on top of DHTs
Tree repair: Periodic [93], exceptional [32]
Tree count: One per key, one per overlay [56]
Tree flexibility: Static [92], dynamic
Query interface: install, update, probe [98]
Query distribution: multicast [98], gossip [92]
Query applications: leader election, voting, resource location,
object placement and error recovery [98, 388]
Query semantics
Consistency: Best-effort, eventual [92], snapshot / interval /
single-site validity [99]
Timeliness [388]
Lifetime: Continuous [97, 99], single-shot
No. attributes: Single, multiple
Query types: Count, sum, maximum, minimum, average, median, top k
[92, 386, 387]
Figure 5: Aggregation Trees and Queries in P2P Networks
Key: Astrolabe [92]; Cone [93]; Distributed Approximative System
Information Service (DASIS) [95]; Scalable Distributed Information
Management System (SDIMS) [98]; Self-Organized Metadata Overlay
(SOMO) [56]; Wildfire [99]; Willow [32]; Newscast [97]
The fundamental design choices for aggregation trees relate to how
the overlay uses DHTs, how it repairs itself when there are failures,
how many aggregation trees there are, and whether the tree is static
or dynamic (Figure 5). Astrolabe is one of the most influential P2P
designs included in Figure 5, yet it makes no use of DHTs [92].
Other designs make use of the internal trees of Plaxton-like DHTs.
Others build independent tree structures on top of DHTs. Most of the
designs repair the aggregation tree with periodic mechanisms similar
to those used in the DHTs themselves. Willow is an exception [32].
It uses a Tree Maintenance Protocol to "zip" disjoint aggregation
trees together when there are major failures. Yalagandula and Dahlin
found reconfigurations at the aggregation layer to be costly,
suggesting more research on techniques to reduce the cost and
frequency of such reconfigurations [98]. Many of the designs use
multiple aggregation trees, each rooted at the DHT node responsible
for the aggregation attribute. On the other hand, the Self-Organized
Metadata Overlay [56] uses a single tree and is vulnerable to a
single point of failure at its root.
Risson & Moors Informational [Page 51]
^L
RFC 4981 Survey of Research on P2P Search September 2007
At the time of writing, researchers have just begun exploring the
performance of queries in the presence of churn. Most designs are
for best-effort queries. Bawa, et al. devised a better consistency
model, called Single-Site Validity [99] to qualify the accuracy of
results when there is churn. Its price was a five-fold increase in
the message load, when compared to an efficient but best-effort
Spanning Tree. Gossip mechanisms are resilient to churn, but they
delay aggregation results and incur high message cost for aggregation
attributes with small read-to-write ratios.
6. Security Considerations
An initial list of references to research on P2P security is given in
Figure 1, Section 1. This document addresses P2P search. P2P
storage, security, and applications are recommended for further
investigation in Section 8.
7. Conclusions
Research on peer-to-peer networks can be divided into four categories
-- search, storage, security and applications. This critical survey
has focused on search methods. While P2P networks have been
classified by the existence of an index (structured or unstructured)
or the location of the index (local, centralized, and distributed),
this survey has shown that most have evolved to have some structure,
whether it is indexes at superpeers or indexes defined by DHT
algorithms. As for location, the distributed index is most common.
The survey has characterized indexes as semantic and semantic-free.
It has also critiqued P2P work on major query types. While much of
it addresses work from 2000 or later, we have traced important
building blocks from the 1990s.
The initial motivation in this survey was to answer the question,
"How robust are P2P search networks?" The question is key to the
deployment of P2P technology. Balakrishnan, Kaashoek, et al. argued
that the P2P architecture is appealing: the startup and growth
barriers are low; they can aggregate enormous storage and processing
resources; "the decentralized and distributed nature of P2P systems
gives them the potential to be robust to faults or intentional
attacks" [18]. If P2P is to be a disruptive technology in
applications other than casual file sharing, then robustness needs to
be practically verified [20].
The best comparative research on P2P dependability has been done in
the context of Distributed Hash Tables (DHTs) [291]. The entire body
of DHT research can be distilled to four main observations about
dependability (Section 3.2). Firstly, static dependability
comparisons show that no O(log n) DHT geometry is significantly more
Risson & Moors Informational [Page 52]
^L
RFC 4981 Survey of Research on P2P Search September 2007
dependable than the other O(log n) geometries. Secondly, dynamic
dependability comparisons show that DHT dependability is sensitive to
the underlying topology maintenance algorithms (Figure 2). Thirdly,
most DHTs use O(log n) geometries to suit ephemeral nodes, whereas
the O(1) hop DHTs suit stable nodes - they deserve more research
attention. Fourthly, although not yet a mature science, the study of
DHT dependability is helped by recent simulation tools that support
multiple DHTs [299].
We make the following four suggestions for future P2P research:
1) Complete the companion P2P surveys for storage, security, and
applications. A rough outline has been suggested in Figure 1,
along with references. The need for such surveys was highlighted
within the peer-to-peer research group of the Internet Research
Task Force (IRTF) [17].
2) P2P indexes are maturing. P2P queries are embryonic. Work on
more expressive queries over P2P indexes started to gain momentum
in 2003, but remains fraught with efficiency and load issues.
3) Isolate the low-level mechanisms affecting robustness. There is
limited value in comparing robustness of DHT geometries (like
rings versus de Bruijn graphs), when robustness is highly
sensitive to underlying topology maintenance algorithms (Figure
2).
4) Build consensus on robustness metrics and their acceptable ranges.
This paper has teased out numerous measures that impinge on
robustness, for example, the median query path length for a
failure of x% of nodes, bisection width, path overlap, the number
of alternatives available for the next hop, lookup latency,
average live bandwidth (bytes/node/sec), successful routing rates,
the number of timeouts (caused by a finger pointing to a departed
node), lookup failure rates (caused by nodes that temporarily
point to the wrong successor during churn), and clustering
measures (edge expansion and node expansion). Application-level
robustness metrics need to drive a consistent assessment of the
underlying search mechanics.
8. Acknowledgments
This document was adapted from a paper in Elsevier's Computer
Networks:
J. Risson & T. Moors, Survey of Research towards Robust Peer-to-
Peer Networks: Search Methods, Computer Networks 51(7)2007.
Risson & Moors Informational [Page 53]
^L
RFC 4981 Survey of Research on P2P Search September 2007
We thank Bill Yeager, Ali Ghodsi, and several anonymous reviewers for
thorough comments that significantly improved the quality of earlier
versions of this document.
9. References
9.1. Informative References
[1] M. Roussopoulos, M. Baker, D. Rosenthal, T. Guili, P. Maniatis,
and J. Mogul, 2 P2P of Not 2 P2P?, The 3rd Int'l Workshop on
Peer-to-Peer Systems, February 26-27 2004.
[2] A. Rowstron and P. Druschel, Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer
systems, IFIP/ACM Middleware 2001, Nov 2001.
[3] B. Yeager and B. Bhattacharjee, Peer-to-Peer Research Group
Charter, http://www.irtf.org/charters/p2prg.html (2003)
[4] T. Klingberg and R. Manfredi, Gnutella 0.6, (2002)
[5] I. Clarke, A Distributed Decentralised Information Storage and
Retrieval System, Undergraduate Thesis, 1999.
[6] B. Zhao, J. Kubiatowicz, and A. Joseph, Tapestry: an
infrastructure for fault-tolerant wide-area location and
routing, Report No. UCB/CSD-01-1141 2001.
[7] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek,
F. Dabek, and H. Balakrishnan, Chord: A scalable peer-to-peer
lookup service for internet applications, Proc. ACM SIGCOMM
2001 2001, pp. 149-160.
[8] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
A scalable content-addressable network, Proc. of the conf. on
Applications, technologies, architectures and protocols for
computer communications, August 27-31 2001, pp. 161-172.
[9] C. Tang, Z. Xu, and M. Mahalingam, pSearch: information
retrieval in structured overlays, First Workshop on Hot Topics
in Networks. Also Computer Communication Review, Volume 33,
Number 1, January 2003, Oct 28-29 2002.
[10] W. Nejdl, S. Decker, and W. Siberski, Edutella Project, RDF-
based Metadata Infrastructure for P2P Applications,
http://edutella.jxta.org/ (2003)
Risson & Moors Informational [Page 54]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[11] K. Aberer and M. Hauswirth, Peer-to-peer information systems:
concepts and models, state-of-the-art, and future systems, ACM
SIGSOFT Software Engineering Notes, Proc. 8th European software
engineering conference held jointly with 9th ACM SIGSOFT
international symposium on foundations of software engineering
26 (5) (2001)
[12] L. Zhou and R. van Renesse, P6P: a peer-to-peer approach to
internet infrastructure, The 3rd Int'l Workshop on Peer-to-Peer
Systems, February 26-27 2004.
[13] Citeseer, Citeseer Scientific Literature Digital Library,
http://citeseer.ist.psu.edu/ (2004)
[14] D. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne,
B. Richard, S. Rollins, and Z. Xu, Peer-to-Peer Computing, HP
Technical Report, HPL-2002-57 2002.
[15] K. Aberer and M. Hauswirth, An overview on peer-to-peer
information systems, Workshop on Distributed Data and
Structures WDAS-2002 2002.
[16] F. DePaoli and L. Mariani, Dependability in Peer-to-Peer
Systems, IEEE Internet Computing 8 (4) (2004) 54-61.
[17] B. Yeager, Proposed research tracks, Email to the Internet
Research Task Force IRTF P2P Research Group, Nov 10 2003.
[18] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I.
Stoica, Looking up data in P2P systems, Communications of the
ACM 46 (2) (2003) 43-48.
[19] D. Kossmann, The state of the art in distributed query
processing, ACM Computing Surveys 32 (4) (2000) 422-469.
[20] B. Gedik and L. Liu, Reliable peer-to-peer information
monitoring through replication, Proc. 22nd Int'l Symp. on
Reliable Distributed Systems, 6-8 Oct 2003, pp. 56-65.
[21] S.-M. Shi, Y. Guangwen, D. Wang, J. Yu, S. Qu, and M. Chen,
Making peer-to-peer keyword searching feasible using multi-
level partitioning, The 3rd Int'l Workshop on Peer-to-Peer
Systems, February 26-27 2004.
[22] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S.
Shenker, and I. Stoica, Querying the Internet with PIER, Proc.
29th Int'l Conf. on Very Large Databases VLDB'03, September
2003.
Risson & Moors Informational [Page 55]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[23] J. M. Hellerstein, Toward network data independence, ACM SIGMOD
Record 32 (3) (2003) 34-40.
[24] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker,
and I. Stoica, The impact of DHT routing geometry on resilience
and proximity, Proc. 2003 conference on Applications,
Technologies, Architectures and Protocols for Computer
Communications 2003, pp. 381-394.
[25] N. Daswani, H. Garcia-Molina, and B. Yang, Open Problems in
Data- sharing Peer-to-peer Systems, The 9th Int'l Conf. on
Database Theory (ICDT 2003), Siena, Italy, 8-10 January (2003)
[26] B. Cooper and H. Garcia-Molina, Studying search networks with
SIL, Second Int'l Workshop on Peer-to-Peer Systems IPTPS 03,
20- 21 February 2003.
[27] M. Bawa, Q. Sun, P. Vinograd, B. Yang, B. Cooper, A. Crespo, N.
Daswani, P. Ganesan, H. Garcia-Molina, S. Kamvar, S. Marti, and
M. Schlossed, Peer-to-peer research at Stanford, ACM SIGMOD
Record 32 (3) (2003) 23-28.
[28] B. Yang and H. Garcia-Molina, Improving search in peer-to-peer
networks, Proc. 22nd IEEE Int'l Conf. on Distributed Computing
Systems, July 2002.
[29] B. Yang and H. Garcia-Molina, Efficient search in peer-to-peer
networks, Proc. 22nd Int'l Conf. on Distributed Computing
Systems, July 2-5 2002.
[30] C. Plaxton, R. Rajaraman, and A. Richa, Accessing nearby copies
of replicated objects in a distributed environment, ACM Symp.
on Parallel Algorithms and Architectures (1997)
[31] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J.
Kubiatowicz, Tapestry: A Resilient Global-Scale overlay for
Service Deployment, IEEE Journal on Selected Areas in
Communications 22 (1) (2004) 41-53.
[32] R. van Renesse and A. Bozdog, Willow: DHT, aggregation and
publish/subscribe in one protocol, The 3rd Int'l Workshop on
Peer-to-Peer Systems, February 26-27 2004.
[33] P. Ganesan, G. Krishna, and H. Garcia-Molina, Canon in G Major:
Designing DHTs with Hierarchical Structure, Proc. Int'l Conf.
on Distributed Computing Systems ICDCS 2004 2004.
Risson & Moors Informational [Page 56]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[34] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek,
F. Dabek, and H. Balakrishnan, Chord: a scalable peer-to-peer
lookup protocol for Internet applications, IEEE/ACM Trans. on
Networking 11 (1) (2003) 17-32.
[35] S. Rhea, T. Roscoe, and J. Kubiatowicz, Structured Peer-to-Peer
Overlays Need Application-Driven Benchmarks, Proc. 2nd Int'l
Workshop on Peer-to-Peer Systems IPTPS'03, February 20-21 2003.
[36] D. Loguinov, A. Kumar, and S. Ganesh, Graph-theoretic analysis
of structured peer-to-peer systems: routing distances and
fault resilience, Proc. 2003 conference on Applications,
Technologies, Architectures and Protocols for Computer
Communications, August 25-29 2003, pp. 395-406.
[37] F. Kaashoek and D. Karger, Koorde: A simple degree-optimal
hash table, Second Int'l Workshop on Peer-to-Peer Systems
IPTPS'03, 20-21 February 2003.
[38] N. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman,
SkipNet: A Scalable Overlay Network with Practical Locality
Properties, Proc. Fourth USENIX Symp. on Internet Technologies
and Systems USITS'03, March 2003.
[39] I. Gupta, K. Birman, P. Linga, A. Demers, and R. Van Renesse,
Kelips: Building an efficient and stable P2P DHT through
increased memory and background overhead, Second Int'l Workshop
on Peer-to-Peer Systems IPTPS 03, Feb 20-21 2003.
[40] J. Cates, Robust and Efficient Data Management for a
Distributed Hash Table, Master's Thesis, May 2003.
[41] J. Aspnes and G. Shah, Skip graphs, Proc. 14th annual ACM-SIAM
symposium on discrete algorithms (2003) 384-393.
[42] K. Aberer, P. Cudre-Mauroux, A. Datta, Z. Despotovic, M.
Hauswirth, M. Punceva, and R. Schmidt, P-Grid: a self-
organizing structured P2P system, ACM SIGMOD Record 32 (3)
(2003) 29-33.
[43] B. Zhao, Y. Duan, L. Huang, A. Joseph, and J. Kubiatowicz,
Brocade: landmark routing on overlay networks, First Int'l
Workshop on Peer-to-Peer Systems IPTPS'02, March 2002.
[44] S. Ratnasamy, S. Shenker, and I. Stoica, Routing algorithms for
DHTs: some open questions, Proc. First Int'l Workshop on Peer
to Peer Systems, IPTPS 2002, March 2002.
Risson & Moors Informational [Page 57]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[45] P. Maymounkov and D. Mazieres, Kademlia: A peer-to-peer
information system based on the XOR metric, Proc. First Int'l
Workshop on Peer to Peer Systems, IPTPS 2002, March 7-8 2002.
[46] D. Malkhi, M. Naor, and D. Ratajczak, Viceroy: a scalable and
dynamic emulation of the butterfly, Proc. 21st annual symposium
on principles of distributed computing PODC, July 21-24 2002,
pp. 183-192.
[47] X. Li and C. Plaxton, On name resolution in peer to peer
networks, Proc. ACM SIGACT Annual Workshop on Principles of
Mobile Computing POMC'02 2002, pp. 82-89.
[48] N. Harvey, J. Dunagan, M. B. Jones, S. Saroiu, M. Theimer, and
A. Wolman, SkipNet: A Scalable overlay Network with Practical
Locality Properties, Microsoft Research Technical Report MSR-
TR- 2002-92 (2002)
[49] D. Karger, E. Lehman, T. Leighton, R. Panigraphy, M. Levin, and
D. Lewin, Consistent hashing and random trees: distributed
caching protocols for relieving hot spots on the World Wide
Web, ACM Symp. on Theory of Computing (1997)
[50] W. Litwin, M. Neimat, and D. Schneider, LH* - a scalable,
distributed data structure, ACM Trans. on Database Systems
(TODS) 21 (4) (1996) 480-525.
[51] R. Devine, Design and Implementation of DDH: A Distributed
Dynamic Hashing Algorithm, Proc. 4th Int'l Conf. on
Foundations of Data Organizations and Algorithms 1993.
[52] W. Litwin, M.-A. Niemat, and D. Schneider, LH* - Linear Hashing
for Distributed Files, Proc. ACM Int'l Conf. on Mngt. of Data
SIGMOD, May 1993, pp. 327-336.
[53] C. Tempich, S. Staab, and A. Wranik, Remindin': semantic query
routing in peer-to-peer networks, Proc. 13th conference on
World Wide Web, New York, NY, USA, May 17-20 (2004) 640-649.
[54] B. T. Loo, R. Huebsch, I. Stoica, and J. M. Hellerstein, The
case for a hybrid P2P search infrastructure, The 3rd Int'l
Workshop on Peer-to-Peer Systems, February 26-27 2004.
[55] M. Cai and M. Frank, RDFPeers: a scalable distributed RDF
repository based on a structured peer-to-peer network, Proc.
13th conference on World Wide Web, May 17-20 2004, pp. 650-657.
Risson & Moors Informational [Page 58]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[56] Z. Zhang, S.-M. Shi, and J. Zhu, SOMO: Self-organized metadata
overlay for resource management in P2P DHTs, Second Int'l
Workshop on Peer-to-Peer Systems IPTPS'03, Feb 20-21 2003.
[57] B. Yang and H. Garcia-Molina, Designing a super-peer network,
Proc. 19th Int'l Conf. on Data Engineering ICDE, March 2003.
[58] I. Tatarinov, P. Mork, Z. Ives, J. Madhavan, A. Halevy, D.
Suciu, N. Dalvi, X. Dong, Y. Kadiyska, and G. Miklau, The
Piazza peer data management project, ACM SIGMOD Record 32 (3)
(2003) 47-52.
[59] W. Nejdl, W. Siberski, and M. Sintek, Design Issues and
Challenges for RDF- and schema-based peer-to-peer systems, ACM
SIGMOD Record 32 (3) (2003) 41-46.
[60] S. Joseph and T. Hoshiai, Decentralized Meta-Data Strategies:
Effective Peer-to-Peer Search, IEICE Trans. Commun. E86-B (6
June) (2003) 1740-1753.
[61] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S.
Shenker, Making gnutella-like P2P systems scalable, Proc. 2003
conference on Applications, Technologies, Architectures and
Protocols for Computer Communications, August 25-29 2003, pp.
407-418.
[62] M. Bawa, G. S. Manku, and P. Raghavan, SETS: search enhanced by
topic segmentation, Proc. 26th annual international ACM SIGIR
conference on Research and Development in Information Retrieval
2003, pp. 306-313.
[63] H. Sunaga, M. Takemoto, and T. Iwata, Advanced peer to peer
network platform for various services - SIONet Semantic
Information Oriented Network, Proc. Second Int'l Conf. on Peer
to Peer Computing, Sept 5-7 2002, pp. 169-170.
[64] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl, HyperCuP -
Hypercubes, Ontologies and P2P Networks, Springer Lecture Notes
on Computer Science, Agents and Peer-to-Peer Systems Vol. 2530
(2002)
[65] M. Ripeanu, A. Iamnitchi, and P. Foster, Mapping the Gnutella
network, IEEE Internet Computing 6 (1) (2002) 50-57.
[66] Q. Lv, S. Ratnasamy, and S. Shenker, Can Heterogeneity Make
Gnutella Scalable?, Proc. 1st Int'l Workshop on Peer-to-Peer
Systems IPTPS2002, March 7-8 2002.
Risson & Moors Informational [Page 59]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[67] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, Search and
replication in unstructured peer to peer networks, Proc. 16th
international conference on supercomputing, June 22-26 2002,
pp. 84-95.
[68] V. Kalogaraki, D. Gunopulos, and D. Zeinalipour-Yasti, XML
schemas: integration and translation: A local search
mechanism for peer to peer networks, Proc. 11th ACM
international conference on Information and Knowledge
management 2002, pp. 300- 307.
[69] O. Babaoglu, H. Meling, and Montresor, Anthill: a framework
for the development of agent-based peer-to-peer systems, Proc.
IEEE Int'l Conf. on Distributed Computer systems 2002, pp. 15-
22.
[70] M. Jovanovic, Modeling large-scale peer-to-peer networks and a
case study of Gnutella, Master's Thesis 2001.
[71] I. Clarke, O. Sandberg, B. Wiley, and T. Hong, Freenet: A
Distributed Anonymous Information Storage and Retrieval System.
Springer, New York, USA, 2001.
[72] J. Harren, J. Hellerstein, R. Huebsch, B. Loo, S. Shenker, and
I. Stoica, Complex queries in DHT-based peer-to-peer networks,
Proc. First Int'l Workshop on Peer to Peer Systems IPTPS 2002,
March 2002.
[73] B. Gedik and L. Liu, PeerCQ: A Decentralized and Self-
Configuring Peer-to-Peer Information Monitoring System, Proc.
23rd Int'l Conf. on Distributed Computing Systems ICDCS2003,
May 19-22 2003.
[74] B. T. Loo, R. Huebsch, J. M. Hellerstein, T. Roscoe, and I.
Stoica, Analyzing P2P Overlays with Recursive Queries,
Technical Report, CSD-04-1301, January 14 2004.
[75] R. Avnur and J. Hellerstein, Eddies: continuously adaptive
query processing, Proc. 2000 ACM SIGMOD international
conference on Management of Data 2000, pp. 261-272.
[76] P. Triantafillou and T. Pitoura, Towards a unifying framework
for complex query processing over structured peer-to-peer data
networks, Proc. First Int'l Workshop on Databases, Information
Systems and Peer-to-Peer Computing DBISP2P, Sept 7-8 2003, pp.
169-183.
Risson & Moors Informational [Page 60]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[77] A. Gupta, D. Agrawal, and A. E. Abbadi, Approximate range
selection queries in peer-to-peer systems, Proc. First Biennial
Conf. on Innovative Data Systems Research CIDR 2003 2003.
[78] S. Ratnasamy, P. Francis, and M. Handley, Range queries in
DHTs, Technical Report IRB-TR-03-009, July 2003.
[79] S. Ramabhadran, S. Ratnasamy, J. Hellerstein, and S. Shenker,
Brief announcement: prefix hash tree, Proc. 23rd Annual ACM
SIGACT-SIGOPS Symp. on Principles of Distributed Computing,
PODC 2004, July 25-28 2004, pp. 368-368.
[80] A. Andrzejak and Z. Xu, Scalable, efficient range queries for
grid information services, Proc. Second IEEE Int'l Conf. on
Peer to Peer Computing, September 2002.
[81] C. Schmidt and M. Parashar, Enabling flexible queries with
guarantees in P2P systems, IEEE Internet Computing 8 (3) (2004)
19-26.
[82] E. Tanin, A. Harwood, and H. Samet, Indexing distributed
complex data for complex queries, Proc. National Conf. on
Digital Government Research 2004, pp. 81-90.
[83] P. Ganesan, M. Bawa, and H. Garcia-Molina, Online Balancing of
Range-Partitioned Data with Applications to Peer-to-Peer
Systems, Proc. 30th Int'l Conf. on Very Large Data Bases VLDB
2004, 29 August - 3 September 2004.
[84] A. Bharambe, M. Agrawal, and S. Seshan, Mercury: Supporting
Scalable Multi-Attribute Range Queries, SIGCOMM'04, Aug 30-Sept
3 2004.
[85] K. Aberer, Scalable Data Access in P2P Systems Using Unbalanced
Search Trees, Workshop on Distributed Data and Structures WDAS-
2002 2002.
[86] K. Aberer, A. Datta, and M. Hauswirth, The Quest for Balancing
Peer Load in Structured Peer-to-Peer Systems, Technical Report
IC/2003/32 2003.
[87] W. Litwin, M.-A. Neimat, and D. Schneider, RP*: a family of
order-preserving scalable distributed data structures, Proc.
20th Int'l Conf. on Very Large Data Bases VLDB'94, September
12-15 1994.
Risson & Moors Informational [Page 61]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[88] M. Tsangou, S. Ndiaye, M. Seck, and W. Litwin, Range queries to
scalable distributed data structure RP*, Proc. Fifth Workshop
on Distributed Data and Structures, WDAS 2003, June 2003.
[89] W. Litwin and M.-A. Neimat, k-RP*s: a scalable distributed data
structure for high-performance multi-attributed access, Proc.
Fourth Int'l Conf. on Parallel and Distributed Information
Systems (1996) 120-131.
[90] T. Hodes, S. Czerwinski, B. Zhao, A. Joseph, and R. Katz, An
architecture for secure wide-area service discovery, Wireless
Networks 8 (2/3) (2002) 213-230.
[91] M. Cai, M. Frank, J. Chen, and P. Szekely, MAAN: A Multi-
Attribute Addressable Network for Grid Information Services,
Proc. Int'l Workshop on Grid Computing, November 2003.
[92] R. van Renesse, K. P. Birman, and W. Vogels, Astrolabe: A
robust and scalable technology for distribute system
monitoring, management and data mining, ACM Trans. on Computer
Systems 21 (2) (2003) 164-206.
[93] R. Bhagwan, G. Varghese, and G. Voelker, Cone: Augmenting DHTs
to support distributed resource discovery, Technical Report,
CS2003- 0755, July 2003.
[94] K. Albrecht, R. Arnold, and R. Wattenhofer, Join and Leave in
Peer-to-Peer Systems: The DASIS Approach, Technical Report 427,
Department of Computer Science, November 2003.
[95] K. Albrecht, R. Arnold, and R. Wattenhofer, Aggregating
information in peer-to-peer systems for improved join and
leave, Proc. Fourth IEEE Int'l Conf. on Peer-to-Peer Computing,
25-27 August 2004.
[96] A. Montresor, M. Jelasity, and O. Babaoglu, Robust aggregation
protocol for large-scale overlay networks, Technical Report
UBLCS-2003-16, December 2003.
[97] M. Jelasity, W. Kowalczyk, and M. van Steen, An Approach to
Aggregation in Large and Fully Distributed Peer-to-Peer Overlay
Networks, Proc. 12th Euromicro Conf. on Parallel, Distributted
and Network based Processing PDP 2004, February 2004.
[98] P. Yalagandula and M. Dahlin, A scalable distributed
information management system, SIGCOMM'04, Aug 30-Sept 3 2004.
Risson & Moors Informational [Page 62]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[99] M. Bawa, A. Gionis, H. Garcia-Molina, and R. Motwani, The price
of validity in dynamic networks, Proc. 2004 ACM SIGMOD Int'l
Conf. on the management of data 2004, pp. 515-526.
[100] J. Aspnes, J. Kirsch, and A. Krishnamurthy, Load Balancing and
Locality in Range-Queriable Data Structures, Proc. 23rd Annual
ACM SIGACT-SIGOPS Symp. on Principles of Distributed Computing
PODC 2004, July 25-28 2004.
[101] G. On, J. Schmitt, and R. Steinmetz, The effectiveness of
realistic replication strategies on quality of availability for
peer-to-peer systems, Proc. Third Int'l IEEE Conf. on Peer-to-
Peer Computing, Sept 1-3 2003, pp. 57-64.
[102] D. Geels and J. Kubiatowicz, Replica management should be a
game, Proc. SIGOPS European Workshop, September 2003.
[103] E. Cohen and S. Shenker, Replication strategies in unstructured
peer to peer networks, Proc. 2002 conference on applications,
technologies, architectures and protocols for computer
communications 2002, pp. 177-190.
[104] E. Cohen and S. Shenker, P2P and multicast: replication
strategies in unstructured peer to peer networks, Proc. 2002
conference on applications, technologies, architectures and
protocols for computer communications 2002, pp. 177-190.
[105] H. Weatherspoon and J. Kubiatowicz, Erasure coding vs
replication: a quantative comparison, Proc. First Int'l
Workshop on Peer to Peer Systems IPTPS'02, March 2002.
[106] D. Lomet, Replicated indexes for distributed data, Proc. Fourth
Int'l Conf. on Parallel and Distributed Information Systems,
December 18-20 1996, pp. 108-119.
[107] V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee, and P.
Keleher, Adaptive Replication in Peer-to-Peer Systems, Proc.
24th Int'l Conf. on Distributed Computing Systems ICDCS 2004,
March 23-26 2004.
[108] S.-D. Lin, Q. Lian, M. Chen, and Z. Zhang, A practical
distributed mutual exclusion protocol in dynamic peer-to-peer
systems, The 3rd Int'l Workshop on Peer-to-Peer Systems,
February 26-27 2004.
Risson & Moors Informational [Page 63]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[109] A. Adya, R. Wattenhofer, W. Bolosky, M. Castro, G. Cermak, R.
Chaiken, J. Douceur, J. Howell, J. Lorch, and M. Thiemer,
Farsite: federated, available and reliable storage for an
incompletely trusted environment, ACM SIGOPS Operating Systems
Review, Special issue on Decentralized storage systems (2002)
1- 14.
[110] A. Rowstron and P. Druschel, Storage management and caching in
PAST, a large-scale, persistent peer-to-peer storage utility,
Proceedings ACM SOSP'01, October 2001, pp. 188-201.
[111] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H.
Weatherspoon, and J. Kubiatowicz, Maintenance-Free Global Data
Storage, IEEE Internet Computing 5 (5) (2001) 40-49.
[112] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D.
Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C.
Wells, and B. Zhao, Oceanstore: An Architecture for global-
scale persistent storage, Proc. Ninth Int'l Conf. on
Architecture Support for Programming Languages and Operating
Systems ASPLOS 2000, November 2000, pp. 190-201.
[113] K. Birman, The Surprising Power of Epidemic Communication,
Springer-Verlag Heidelberg Lecture Notes in Computer Science
Volume 2584/2003 (2003) 97-102.
[114] P. Costa, M. Migliavacca, G. P. Picco, and G. Cugola,
Introducing reliability in content-based publish-subscribe
through epidemic algorithms, Proc. 2nd international workshop
on Distributed event-based systems 2003, pp. 1-8.
[115] P. Costa, M. Migliavacca, G. P. Picco, and G. Cugola, Epidemic
Algorithms for Reliable Content-Based Publish-Subscribe: An
Evaluation, The 24th Int'l Conf. on Distributed Computing
Systems (ICDCS-2004), Mar 23-26, Tokyo University of
Technology, Hachioji, Tokyo, Japan (2004)
[116] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S.
Shenker, H. Sturgis, D. Swinehart, and D. Terry, Epidemic
algorithms for replicated data management, Proc. Sixth ACM
Symp. on Principles of Distributed Computing 1987, pp. 1-12.
[117] P. Eugster, R. Guerraoiu, A. Kermarrec, and L. Massoulie,
Epidemic information dissemination in distributed systems, IEEE
Computer 37 (5) (2004) 60-67.
Risson & Moors Informational [Page 64]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[118] W. Vogels, R. v. Renesse, and K. Birman, The power of
epidemics: robust communication for large-scale distributed
systems, ACM SIGCOMM Computer Communication Review 33 (1)
(2003) 131-135.
[119] S. Voulgaris and M. van Steen, An epidemic protocol for
managing routing tables in very large peer to peer networks,
Proc. 14th IFIP/IEEE Workshop on Distributed Systems:
Operations and Management, October 2003.
[120] I. Gupta, On the design of distributed protocols from
differential equations, Proc. 23rd Annual ACM SIGACT-SIGOPS
Symp. on Principles of Distributed Computing PODC 2004, July
25-28 2004, pp. 216-225.
[121] I. Gupta, K. Birman, and R. van Renesse, Fighting fire with
fire: using randomized gossip to combat stochastic scalability
limits, Cornell University Dept of Computer Science Technical
Report, March 2001.
[122] K. Birman and I. Gupta, Building Scalable Solutions to
Distributed Computing Problems using Probabilistic Components,
Submitted to the Int'l Conf. on Dependable Systems and Networks
DSN-2004, Dependable Computing and Computing Symp. DCCS, June
28- July 1 2004.
[123] A. Ganesh, A.-M. Kermarrec, and L. Massoulie, Peer-to-peer
membership management for gossip-based protocols, IEEE Trans.
on Computers 52 (2) (2003) 139-149.
[124] N. Bailey, Epidemic Theory of Infectious Diseases and its
Applications, Second Edition ed. Hafner Press, 1975.
[125] P. Eugster, R. Guerraoiu, S. Handurukande, P. Kouznetsov, and
A.- M. Kermarrec, Lightweight probabilistic broadcast, ACM
Trans. on Computer Systems 21 (4) (2003) 341-374.
[126] H. Weatherspoon and J. Kubiatowicz, Efficient heartbeats and
repair of softstate in decentralized object location and
routing systems, Proc. SIGOPS European Workshop, September
2002.
[127] G. Koloniari and E. Pitoura, Content-based Routing of Path
Queries in Peer-to-Peer Systems, Proc. 9th Int'l Conf. on
Extending DataBase Technology EDBT, March 14-18 2004.
Risson & Moors Informational [Page 65]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[128] A. Mohan and V. Kalogaraki, Speculative routing and update
propagation: a kundali centric approach, IEEE Int'l Conf. on
Communications ICC'03, May 2002.
[129] G. Koloniari, Y. Petrakis, and E. Pitoura, Content-Based
Overlay Networks for XML Peers Based on Multi-Level Bloom
Filters, Proc. First Int'l Workshop on Databases, Information
Systems and Peer-to-Peer Computing DBISP2P, Sept 7-8 2003, pp.
232-247.
[130] G. Koloniari and E. Pitoura, Bloom-Based Filters for
Hierarchical Data, Proc. 5th Workshop on Distributed Data and
Structures (WDAS) (2003)
[131] B. Bloom, Space/time trade-offs in hash coding with allowable
errors, Communications of the ACM 13 (7) (1970) 422-426.
[132] M. Naor and U. Wieder, A Simple Fault Tolerant Distributed Hash
Table, Second Int'l Workshop on Peer-to-Peer Systems (IPTPS
03), Berkeley, CA, USA, 20-21 February (2003)
[133] P. Maymounkov and D. Mazieres, Rateless codes and big
downloads, Second Int'l Workshop on Peer-to-Peer Systems,
IPTPS'03, February 20-21 2003.
[134] M. Krohn, M. Freedman, and D. Mazieres, On-the-fly verification
of rateless erasure codes for efficient content distribution,
Proc. IEEE Symp. on Security and Privacy, May 2004.
[135] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost, Informed
content delivery across adaptive overlay networks, Proc. 2002
conference on applications, technologies, architectures and
protocols for computer communications 2002, pp. 47-60.
[136] J. Plank, S. Atchley, Y. Ding, and M. Beck, Algorithms for High
Performance, Wide-Area Distributed File Downloads, Parallel
Processing Letters 13 (2) (2003) 207-223.
[137] M. Castro, P. Rodrigues, and B. Liskov, BASE: Using
abstraction to improve fault tolerance, ACM Trans. on Computer
Systems 21 (3) (2003) 236-269.
[138] R. Rodrigues, B. Liskov, and L. Shrira, The design of a robust
peer-to-peer system, 10th ACM SIGOPS European Workshop, Sep
2002.
Risson & Moors Informational [Page 66]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[139] H. Weatherspoon, T. Moscovitz, and J. Kubiatowicz,
Introspective failure analysis: avoiding correlated failures in
peer-to-peer systems, Proc. Int'l Workshop on Reliable Peer-
to-Peer Distributed Systems, Oct 2002.
[140] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, Vivaldi: A
Decentralized Network Coordinate System, SIGCOMM'04, Aug 30-
Sept 3 2004.
[141] E.-K. Lua, J. Crowcroft, and M. Pias, Highways: proximity
clustering for massively scaleable peer-to-peer network
routing, Proc. Fourth IEEE Int'l Conf. on Peer-to-Peer
Computing, August 25-27 2004.
[142] F. Fessant, S. Handurukande, A.-M. Kermarrec, and L. Massoulie,
Clustering in Peer-to-Peer File Sharing Workloads, The 3rd
Int'l Workshop on Peer-to-Peer Systems, February 26-27 2004.
[143] T. S. E. Ng and H. Zhang, Predicting internet network distance
with coordinates-based approaches, IEEE Infocom 2002, The 21st
Annual Joint Conf. of the IEEE Computer and Communication
Societies, June 23-27 2002.
[144] K. Hildrum, R. Krauthgamer, and J. Kubiatowicz, Object Location
in Realistic Networks, Proc. Sixteenth ACM Symp. on Parallel
Algorithms and Architectures (SPAA 2004), June 2004, pp. 25-35.
[145] P. Keleher, S. Bhattacharjee, and B. Silaghi, Are Virtualized
Overlay Networks Too Much of a Good Thing?, First Int'l
Workshop on Peer-to-Peer Systems IPTPS, March 2002.
[146] A. Mislove and P. Druschel, Providing administrative control
and autonomy in structured peer-to-peer overlays, The 3rd Int'l
Workshop on Peer-to-Peer Systems, June 9-12 2004.
[147] D. Karger and M. Ruhl, Diminished Chord: A Protocol for
Heterogeneous SubGroup Formation in Peer-to-Peer Networks, The
3rd Int'l Workshop on Peer-to-Peer Systems, February 26-27
2004.
[148] B. Awerbuch and C. Scheideler, Consistent, order-preserving
data management in distributed storage systems, Proc. Sixteenth
ACM Symp. on Parallel Algorithms and Architectures SPAA 2004,
June 27-30 2004, pp. 44-53.
[149] M. Freedman and D. Mazieres, Sloppy Hashing and Self-Organizing
Clusters, Proc. 2nd Int'l Workshop on Peer-to-Peer Systems
IPTPS
Risson & Moors Informational [Page 67]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[150] F. Dabek, J. Li, E. Sit, J. Robertson, F. Kaashoek, and R.
Morris, Designing a DHT for low latency and high throughput,
Proc. First Symp. on Networked Systems Design and
Implementation (NSDI'04), San Francisco, California, March
29-31 (2004) 85-98.
[151] M. Ruhl, Efficient algorithms for new computational models,
Doctoral Dissertation, September 2003.
[152] K. Sollins, Designing for scale and differentiation, Proc. ACM
SIGCOMM workshop on Future Directions in network architecture,
August 25-27 2003.
[153] L. Massoulie, A. Kermarrec, and A. Ganesh, Network awareness
and failure resilience in self-organizing overlay networks,
Proc. 22nd Int'l Symp. on Reliable Distributed Systems,
SRDS'03, Oct 6-8 2003, pp. 47-55.
[154] R. Cox, F. Dabek, F. Kaashoek, J. Li, and R. Morris,
Practical,distributed network coordinates, ACM SIGCOMM Computer
Communication Review 34 (1) (2004) 113-118.
[155] K. Hildrum, J. Kubiatowicz, S. Rao, and B. Zhao, Distributed
object location in a dynamic network, Proc. 14th annual ACM
symposium on parallel algorithms and architectures 2002, pp.
41- 52.
[156] X. Zhang, Q. Zhang, G. Song, and W. Zhu, A Construction of
Locality-Aware Overlay Network: mOverlay and its Performance,
IEEE Journal on Selected Areas in Communications 22 (1) (2004)
18-28.
[157] N. Harvey, M. B. Jones, M. Theimer, and A. Wolman, Efficient
recovery from organization disconnects in Skipnet, Second Int'l
Workshop on Peer-to-Peer Systems IPTPS'03, Feb 20-21 2003.
[158] M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti,
Lighthouses for scalable distributed location, Second Int'l
Workshop on Peer-to-Peer Systems IPTPS'03, February 20-21 2003.
[159] K. Gummadi, S. Saroui, S. Gribble, and D. King, Estimating
latency between arbitrary internet end hosts, Proc. SIGCOMM
IMW 2002, November 2002.
[160] Y. Liu, X. Liu, L. Xiao, L. Ni, and X. Zhang, Location-aware
topology matching in P2P systems, Proc. IEEE Infocomm, Mar
7-11 2004.
Risson & Moors Informational [Page 68]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[161] G. S. Manku, Balanced binary trees for ID management and load
balance in distributed hash tables, Proc. 23rd Annual ACM
SIGACT-SIGOPS Symp. on Principles of Distributed Computing,
PODC 2004, July 25-28 2004, pp. 197-205.
[162] J. Gao and P. Steenkiste, Design and Evaluation of a
Distributed Scalable Content Delivery System, IEEE Journal on
Selected Areas in Communications 22 (1) (2004) 54-66.
[163] X. Wang, Y. Zhang, X. Li, and D. Loguinov, On zone-balancing of
peer-to-peer networks: analysis of random node join, Proc.
joint international conference on measurement and modeling of
computer systems, June 2004.
[164] D. Karger and M. Ruhl, Simple efficient load balancing
algorithms for peer-to-peer systems, Proc. Sixteenth ACM Symp.
on Parallel Algorithms and Architectures SPAA 2004, June 27-30
2004.
[165] D. Karger and M. Ruhl, Simple efficient load balancing
algorithms for peer-to-peer systems, The 3rd Int'l Workshop on
Peer-to-Peer Systems, February 26-27 2004.
[166] M. Adler, E. Halperin, R. Karp, and V. Vazirani, A stochastic
process on the hypercube with applications to peer-to-peer
networks, Proc. 35th ACM symposium on Theory of Computing 2003,
pp. 575-584.
[167] C. Baquero and N. Lopes, Towards peer to peer content indexing,
ACM SIGOPS Operating Systems Review 37 (4) (2003) 90-96.
[168] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica,
Load balancing in structured P2P systems, Proc. 2nd Int'l
Workshop on Peer-to-Peer Systems, IPTPS'03, February 20-21
2003.
[169] J. Byers, J. Considine, and M. Mitzenmacher, Simple Load
Balancing for Distributed Hash Tables, Second Int'l Workshop on
Peer-to-Peer Systems IPTPS 03, 20-21 February 2003.
[170] P. Castro, J. Lee, and A. Misra, CLASH: A Protocol for
Internet- Scale Utility-Oriented Distributed Computing, Proc.
24th Int'l Conf. on Distributed Computing Systems ICDCS 2004,
March 23-26 2004.
[171] A. Stavrou, D. Rubenstein, and S. Sahu, A Lightwight, Robust
P2P System to Handle Flash Crowds, IEEE Journal on Selected
Areas in Communications 22 (1) (2004) 6-17.
Risson & Moors Informational [Page 69]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[172] A. Selcuk, E. Uzun, and M. R. Pariente, A reputation-based
trust management system for P2P networks, Fourth Int'l Workshop
on Global and Peer-to-Peer Computing, April 20-21 2004.
[173] T. Papaioannou and G. Stamoulis, Effective use of reputation in
peer-to-peer environments, Fourth Int'l Workshop on Global and
Peer-to-Peer Computing, April 20-21 2004.
[174] M. Blaze, J. Feigenbaum, and J. Lacy, Trust and Reputation in
P2P networks,
http://www.neurogrid.net/twiki/bin/view/Main/ReputationAndTrust
(2003)
[175] E. Damiani, D. C. di Vimercati, S. Paraboschi, P. Samarati, and
F. Violante, A reputation-based approach for choosing reliable
resources in peer to peer networks, Proc. 9th conference on
computer and communications security 2002, pp. 207-216.
[176] S. Marti, P. Ganesan, and H. Garcia-Molina, DHT routing using
social links, The 3rd Int'l Workshop on Peer-to-Peer Systems,
February 26-27 2004.
[177] G. Caronni and M. Waldvogel, Establishing trust in distributed
storage providers, Proc. Third Int'l IEEE Conf. on Peer-to-Peer
Computing, 1-3 Sept 2003, pp. 128-133.
[178] B. Sieka, A. Kshemkalyani, and M. Singhal, On the security of
polling protocols in peer-to-peer systems, Proc. Fourth IEEE
Int'l Conf. on Peer-to-Peer Computing, 25-27 August 2004.
[179] M. Feldman, K. Lai, I. Stoica, and J. Chuang, Robust Incentive
Techniques for Peer-to-Peer Networks, ACM E-Commerce Conf.
EC'04, May 2004.
[180] K. Anagnostakis and M. Greenwald, Exchange-based Incentive
Mechanism for Peer-to-Peer File Sharing, Proc. 24th Int'l Conf.
on Distributed Computing Systems ICDCS 2004, March 23-26 2004.
[181] J. Schneidman and D. Parkes, Rationality and self-Interest in
peer to peer networks, Second Int'l Workshop on Peer-to-Peer
Systems IPTPS'03, February 20-21 2003.
[182] C. Buragohain, D. Agrawal, and S. Subhash, A game theoretic
framework for incentives in P2P systems, Proc. Third Int'l IEEE
Conf. on Peer-to-Peer Computing, 1-3 Sept 2003, pp. 48-56.
Risson & Moors Informational [Page 70]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[183] W. Josephson, E. Sirer, and F. Schneider, Peer-to-Peer
Authentication with a Distributed Single Sign-On Service, The
3rd Int'l Workshop on Peer-to-Peer Systems, February 26-27
2004.
[184] A. Fiat and J. Saia, Censorship resistant peer to peer content
addressable networks, Proc. 13th annual ACM-SIAM symposium on
discrete algorithms 2002, pp. 94-103.
[185] N. Daswani and H. Garcia-Molina, Query-flood DoS attacks in
gnutella, Proc. 9th ACM Conf. on Computer and Communications
Security 2002, pp. 181-192.
[186] A. Singh and L. Liu, TrustMe: anonymous management of trust
relationships in decentralized P2P systems, Proc. Third Int'l
IEEE Conf. on Peer-to-Peer Computing, Sept 1-3 2003.
[187] A. Serjantov, Anonymizing censorship resistant systems, Proc.
Second Int'l Conf. on Peer to Peer Computing, March 2002.
[188] S. Hazel and B. Wiley, Achord: A Variant of the Chord Lookup
Service for Use in Censorship Resistant Peer-to-Peer Publishing
Systems, Proc. Second Int'l Conf. on Peer to Peer Computing,
March 2002.
[189] M. Freedman and R. Morris, Tarzan: a peer-to-peer anonymizing
network layer, Proc. 9th ACM Conf. on Computer and
Communications Security (2002) 193-206.
[190] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica, Free-
Riding and Whitewashing in Peer-to-Peer Systems, 3rd Annual
Workshop on Economics and Information Security WEIS04, May
2004.
[191] L. Ramaswamy and L. Liu, FreeRiding: a new challenge for peer-
to-peer file sharing systems, Proc. 2003 Hawaii Int'l Conf. on
System Sciences, P2P Track, HICSS2003, January 6-9 2003.
[192] T.-W. Ngan, D. Wallach, and P. Druschel, Enforcing fair sharing
of peer-to-peer resources, Second Int'l Workshop on Peer-to-
Peer Systems, IPTPS'03, 20-21 February 2003.
[193] L. Cox and B. D. Noble, Samsara: honor among thieves in peer-
to-peer storage, Proc. nineteenth ACM symposium on Operating
System Principles 2003, pp. 120-132.
Risson & Moors Informational [Page 71]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[194] M. Surridge and C. Upstill, Grid security: lessons for peer-to-
peer systems, Proc. Third Int'l IEEE Conf. on Peer-to-Peer
Computing, Sept 1-3 2003, pp. 2-6.
[195] E. Sit and R. Morris, Security considerations for peer-to-peer
distributed hash tables, First Int'l Workshop on Peer-to-Peer
Systems, March 2002.
[196] C. O'Donnel and V. Vaikuntanathan, Information leak in the
Chord lookup protocol, Proc. Fourth IEEE Int'l Conf. on Peer-
to-Peer Computing, 25-27 August 2004.
[197] K. Berket, A. Essiari, and A. Muratas, PKI-Based Security for
Peer-to-Peer Information Sharing, Proc. Fourth IEEE Int'l Conf.
on Peer-to-Peer Computing, 25-27 August 2004.
[198] B. Karp, S. Ratnasamy, S. Rhea, and S. Shenker, Spurring
adoption of DHTs with OpenHash, a public DHT service, The 3rd
Int'l Workshop on Peer-to-Peer Systems, February 26-27 2004.
[199] J. Considine, M. Walfish, and D. G. Andersen, A pragmatic
approach to DHT adoption, Technical Report,, December 2003.
[200] G. Li, Peer to Peer Networks in Action, IEEE Internet Computing
6 (1) (2002) 37-39.
[201] A. Mislove, A. Post, C. Reis, P. Willmann, P. Druschel, D.
Wallach, X. Bonnaire, P. Sens, J.-M. Busca, and L. Arantes-
Bezerra, POST: A Secure, Resilient, Cooperative Messaging
System, 9th Workshop on Hot Topics in Operating Systems, HotOS,
May 2003.
[202] S. Saroiu, P. Gummadi, and S. Gribble, A measurement study of
peer-to-peer file sharing systems, Proc. Multimedia Computing
and Networking 2002 MMCN'02, January 2002.
[203] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen, Ivy: a
read/write peer-to-peer file system, ACM SIGOPS Operating
Systems Review, Special issue on Decentralized storage systems,
December 2002, pp. 31-44.
[204] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen, A read/write
peer-to-peer file system, Proc. 5th Symp. on Operating System
Design and Implementation (OSDI 2002), Boston, MA, December
(2002)
Risson & Moors Informational [Page 72]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[205] F. Annexstein, K. Berman, M. Jovanovic, and K. Ponnavaikko,
Indexing techniques for file sharing in scalable peer to peer
networks, 11th IEEE Int'l Conf. on Computer Communications and
Networks (2002) 10-15.
[206] G. Kan and Y. Faybishenko, Introduction to Gnougat, First Int'l
Conf. on Peer-to-Peer Computing 2001 2001, pp. 4-12.
[207] R. Gold and D. Tidhar, Towards a content-based aggregation
network, Proc. First Int'l Conf. on Peer to Peer Compuuting
2001, pp. 62-68.
[208] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica,
Wide-area cooperative storage with CFS, Proc. 18th ACM
symposium on Operating System Principles 2001, pp. 202-215.
[209] M. Freedman, E. Freudenthal, and D. Mazieres, Democratizing
content publication with coral, Proc. First Symp. on Networked
Systems Design and Implementation NSDI'04, March 29-31 2004,
pp. 239-252.
[210] J. Li, B. T. Loo, J. Hellerstein, F. Kaashoek, D. Karger, and
R. Morris, On the Feasibility of Peer-to-Peer Web Indexing and
Search, Second Int'l Workshop on Peer-to-Peer Systems IPTPS 03,
20-21 February 2003.
[211] S. Iyer, A. Rowstron, and P. Druschel, Squirrel: a
decentralized peer-to-peer web cache, Proc. 21st annual
symposium on principles of distributed computing 2002, pp.
213-222.
[212] M. Bawa, R. Bayardo, S. Rajagopalan, and E. Shekita, Make it
fresh, make it quick: searching a network of personal
webservers, Proc. 12th international conference on World Wide
Web 2003, pp. 577-586.
[213] B. T. Loo, S. Krishnamurthy, and O. Cooper, Distributed web
crawling over DHTs, Technical Report, CSD-04-1305, February 9
2004.
[214] M. Junginger and Y. Lee, A self-organizing publish/subscribe
middleware for dynamic peer-to-peer networks, IEEE Network 18
(1) (2004) 38-43.
Risson & Moors Informational [Page 73]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[215] F. Cuenca-Acuna, C. Peery, R. Martin, and T. Nguyen, PlanetP:
Using Gossiping to Build Content Addressable Peer-to-Peer
Information Sharing Communities, Proc. 12th international
symposium on High Performance Distributed Computing (HPDC),
June 2002.
[216] M. Walfish, H. Balakrishnan, and S. Shenker, Untangling the web
from DNS, Proc. First Symp. on Networked Systems Design and
Implementation NSDI'04, March 29-31 2004, pp. 225-238.
[217] B. Awerbuch and C. Scheideler, Robust distributed name service,
The 3rd Int'l Workshop on Peer-to-Peer Systems, February 26-27
2004.
[218] A. Iamnitchi, Resource Discovery in Large Resource-Sharing
Environments, Doctoral Dissertation 2003.
[219] R. Cox, A. Muthitacharoen, and R. Morris, Serving DNS using a
Peer-to-Peer Lookup Service, First Int'l Workshop on Peer-to-
Peer Systems (IPTPS), March 2002.
[220] A. Chander, S. Dawson, P. Lincoln, and D. Stringer-Calvert,
NEVRLATE: scalable resource discovery, Second IEEE/ACM Int'l
Symp. on Cluster Computing and the Grid CCGRID2002 2002, pp.
56-65.
[221] M. Balazinska, H. Balakrishnan, and D. Karger, INS/Twine: A
scalable Peer-to-Peer architecture for Intentional Resource
Discovery, Proc. First Int'l Conf. on Pervasive Computing
(IEEE) (2002)
[222] J. Kangasharju, K. Ross, and D. Turner, Secure and resilient
peer-to-peer E-mail: design and implementation, Proc. Third
Int'l IEEE Conf. on Peer-to-Peer Computing, 1-3 Sept 2003.
[223] V. Lo, D. Zappala, D. Zhou, Y. Liu, and S. Zhao, Cluster
computing on the fly: P2P scheduling of idle cycles in the
internet, The 3rd Int'l Workshop on Peer-to-Peer Systems,
February 26-27 2004.
[224] A. Iamnitchi, I. Foster, and D. Nurmi, A peer-to-peer approach
to resource discovery in grid environments, IEEE High
Performance Distributed Computing 2002.
[225] I. Foster and A. Iamnitchi, On Death, Taxes and the Convergence
of Peer-to-Peer and Grid Computing, Second Int'l Workshop on
Peer-to-Peer Systems IPTPS 03, 20-21 February 2003.
Risson & Moors Informational [Page 74]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[226] W. Hoschek, Peer-to-Peer Grid Databases for Web Service
Discovery, Concurrency - Practice and Experience (2002) 1-7.
[227] K. Aberer, A. Datta, and M. Hauswirth, A decentralized public
key infrastructure for customer-to-customer e-commerce, Int'l
Journal of Business Process Integration and Management (2004)
[228] S. Ajmani, D. Clarke, C.-H. Moh, and S. Richman, ConChord:
Cooperative SDSI Certificate Storage and Name Resolution, First
Int'l Workshop on Peer-to-Peer Systems IPTPS, March 2002.
[229] E. Sit, F. Dabek, and J. Robertson, UsenetDHT: a low overhead
Usenet server, The 3rd Int'l Workshop on Peer-to-Peer Systems,
February 26-27 2004.
[230] H.-Y. Hsieh and R. Sivakumar, On transport layer support for
peer-to-peer networks, The 3rd Int'l Workshop on Peer-to-Peer
Systems, February 26-27 2004.
[231] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana,
Internet indirection infrastructure, Proc. 2002 conference on
applications, technologies, architectures and protocols for
computer communications, August 19-23 2002, pp. 73-86.
[232] E. Halepovic and R. Deters, Building a P2P forum system with
JXTA, Proc. Second IEEE Int'l Conf. on Peer to Peer Computing
P2P'02, September 5-7 2002.
[233] M. Wawrzoniak, L. Peterson, and T. Roscoe, Sophia: an
Information Plane for networked systems, ACM SIGCOMM Computer
Communication Review 34 (1) (2004) 15-20.
[234] D. Tran, K. Hua, and T. Do, A Peer-to-Peer Architecture for
Media Streaming, IEEE Journal on Selected Areas in
Communications 22 (1) (2004) 121-133.
[235] V. Padmanabhan, H. Wang, and P. Chou, Supporting heterogeneity
and congestion control in peer-to-peer multicast streaming, The
3rd Int'l Workshop on Peer-to-Peer Systems, February 26-27
2004.
[236] A. Nicolosi and D. Mazieres, Secure acknowledgment of multicast
messages in open peer-to-peer networks, The 3rd Int'l Workshop
on Peer-to-Peer Systems, February 26-27 2004.
Risson & Moors Informational [Page 75]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[237] R. Zhang and C. Hu, Borg: a hybrid protocol for scalable
application-level multicast in peer-to-peer networks, Proc.
13th international workshop on network and operating systems
for digital audio and video 2003, pp. 172-179.
[238] M. Sasabe, N. Wakamiya, M. Murata, and H. Miyahara, Scalable
and continuous media streaming on peer-to-peer networks, Proc.
Third Int'l IEEE Conf. on Peer-to-Peer Computing, Sept 1-3
2003, pp. 92-99.
[239] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava,
PROMISE: peer-to-peer media streaming using CollectCast, Proc.
eleventh ACM international conference on multimedia 2003, pp.
45-54.
[240] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, SplitStream: high-bandwidth multicast in
cooperative environments, Proc. 19th ACM symposium on operating
systems principles 2003, pp. 298-313.
[241] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron,
SCRIBE: a large-scale and decentralized application-level
multicast infrastructure, IEEE Journal on Selected Areas in
Communications 20 (8) (2002)
[242] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatowicz,
Bayeux: an architecture for scalable and fault-tolerant wide-
area data dissemination, Proc. 11th ACM international workshop
on network and operating systems support for digital audio and
video, Jan 2001.
[243] R. Lienhart, M. Holliman, Y.-K. Chen, I. Kozintsev, and M.
Yeung, Improving media services on P2P networks, IEEE Internet
Computing 6 (1) (2002) 58-67.
[244] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L.
Yin, and F. Yu, Data Centric Storage in Sensornets with GHT, a
geographic hash table, Mobile Networks and Applications 8 (4)
(2003) 427-442.
[245] M. Demirbas and H. Ferhatosmanoglu, Peer-to-peer spatial
queries in sensor networks, Proc. Third Int'l IEEE Conf. on
Peer-to-Peer Computing, 1-3 Sept 2003, pp. 32-39.
[246] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan,
and S. Shenker, GHT: a geographic hash table for data-centric
storage, Proc. First ACM Int'l Workshop on Wireless Sensor
Networks and Applications (Mobicom) 2002, pp. 78-87.
Risson & Moors Informational [Page 76]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[247] J. Hellerstein and W. Wang, Optimization of In-Network Data
Reduction, Proc. First Workshop on Data Management for Sensor
Networks DMSN 2004, August 30th 2004.
[248] J. Li, J. Stribling, T. Gil, R. Morris, and F. Kaashoek,
Comparing the performance of distributed hash tables under
churn, The 3rd Int'l Workshop on Peer-to-Peer Systems, February
26-27 2004.
[249] S. Shenker, The data-centric revolution in networking, Keynote
Speech, 29th Int'l Conf. on Very Large Data Bases, September
9-12 2003.
[250] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu, What
can databases do for P2P?, Proc. Fourth Int'l Workshop on
Databases and the Web, WebDB2001, May 24-25 2001.
[251] D. Clark, The design philosophy of the DARPA internet
protocols, ACM SIGCOMM Computer Communication Review, Symp.
proceedings on communications architectures and protocols 18
(4) (1988)
[252] J.-C. Laprie, Dependable Computing and Fault Tolerance:
Concepts and Terminology, Twenty-Fifth Int'l Symp. on Fault-
Tolerant Computing, Highlights from Twenty-Five Years 1995, pp.
2-13.
[253] D. Clark, J. Wroclawski, K. Sollins, and R. Braden, Tussle in
cyberspace: defining tomorrow's internet, Conf. on
Applications, Technologies, Architectures and Protocols for
Computer Communications 2002, pp. 347-356.
[254] L. O. Alima, A. Ghodsi, and S. Haridi, "A framework for
structured peer-to-peer overlay networks," in Global computing,
vol. 3267, Lecture Notes in Computer Science: Springer Berlin /
Heidelberg, 2005, pp. 223-249.
[255] Clip2, The Gnutella Protocol Specification,
http://www.clip2.com (2000)
[256] Napster, http://www.napster.com (1999)
[257] J. Mishchke and B. Stiller, A methodology for the design of
distributed search in P2P middleware, IEEE Network 18 (1)
(2004) 30-37.
Risson & Moors Informational [Page 77]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[258] J. Li and K. Sollins, Implementing aggregation and broadcast
over distributed hash tables. Full report,
http://krs.lcs.mit.edu/regions/docs.html (November) (2003)
[259] M. Castro, M. Costa, and A. Rowstron, Should we build Gnutella
on a structured overlay?, ACM SIGCOMM Computer Communication
Review 34 (1) (2004) 131-136.
[260] A. Singla and C. Rohrs, Ultrapeers: Another Step Towards
Gnutella Scalability,
http://groups.yahoo.com/group/the_gdf/files/Proposals/
Working%20Proposals/Ultrapeer/ Version 1.0, 26 November (2002)
[261] B. Cooper and H. Garcia-Molina, Ad hoc, Self-Supervising Peer-
to-Peer Search Networks, Technical Report,
http://www.cc.gatech.edu/~cooperb/odin/ 2003.
[262] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information
Retrieval. Addison Wesley, Essex, England, 1999.
[263] S. Sen and J. Wang, Analyzing peer-to-peer traffic across large
networks, IEEE/ACM Trans. on Networking 12 (2) (2004) 219-232.
[264] H. Balakrishnan, S. Shenker, and M. Walfish, Semantic-Free
Referencing in Linked Distributed Systems, Second Int'l
Workshop on Peer-to-Peer Systems IPTPS 03, 20-21 February 2003.
[265] B. Yang, P. Vinograd, and H. Garcia-Molina, Evaluating GUESS
and non-forwarding peer-to-peer search, The 24th Int'l Conf. on
Distributed Computing Systems ICDCS'04, Mar 23-26 2004.
[266] A. Gupta, B. Liskov, and R. Rodrigues, One Hop Lookups for
Peer-to-Peer Overlays, 9th Workshop on Hot Topics in Operating
Systems (HotOS), 18-21 May 2003.
[267] A. Gupta, B. Liskov, and R. Rodrigues, Efficient routing for
peer-to-peer overlays, First symp. on Networked Systems Design
and Implementation (NSDI), Mar 29-31 2004, pp. 113-126.
[268] A. Mizrak, Y. Cheng, V. Kumar, and S. Savage, Structured
superpeers: leveraging heterogeneity to provide constant-time
lookup, IEEE Workshop on Internet Applications, June 23-24
2003.
[269] L. Adamic, R. Lukose, A. Puniyani, and B. Huberman, Search in
power-law networks, Physical review E, The American Physical
Society 64 (046135) (2001)
Risson & Moors Informational [Page 78]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[270] F. Banaei-Kashani and C. Shahabi, Criticality-based analysis
and design of unstructured peer-to-peer networks as "complex
systems", Proc. 3rd IEEE/ACM Int'l Symp. on Cluster Computing
and the Grid 2003, pp. 351-358.
[271] KaZaa, KaZaa Media Desktop, www.kazaa.com (2001)
[272] S. Sen and J. Wang, Analyzing peer-to-peer traffic across large
networks, Proc. second ACM SIGCOMM workshop on Internet
measurement, November 06-08 2002, pp. 137-150.
[273] DirectConnect, http:www.neo-modus.com (2001)
[274] S. Saroiu, K. Gummadi, R. Dunn, S. Gribble, and H. Levy, An
analysis of Internet content delivery systems, ACM SIGOPS
Operating Systems Review 36 (2002) 315-327.
[275] A. Loo, The Future or Peer-to-Peer Computing, Communications of
the ACM 46 (9) (2003) 56-61.
[276] B. Yang and H. Garcia-Molina, Comparing Hybrid Peer-to-Peer
Systems (extended), 27th Int'l Conf. on Very Large Data Bases,
September 11-14 2001.
[277] D. Scholl, OpenNap Home Page, http://opennap.sourceforge.net/
(2001)
[278] S. Ghemawat, H. Gobioff, and S.-T. Leung, The Google file
system, Proc. 19th ACM symposium on operating systems
principles 2003, pp. 29-43.
[279] I. Clarke, S. Miller, T. Hong, O. Sandberg, and B. Wiley,
Protecting Free Expression Online with Freenet, IEEE Internet
Computing 6 (1) (2002)
[280] J. Mache, M. Gilbert, J. Guchereau, J. Lesh, F. Ramli, and M.
Wilkinson, Request algorithms in Freenet-style peer-to-peer
systems, Proc. Second IEEE Int'l Conf. on Peer to Peer
Computing P2P'02, September 5-7 2002.
[281] C. Rohrs, Query Routing for the Gnutella Networks,
http://www.limewire.com/developer/query_routing/
keyword%20routing.htm Version 1.0 (2002)
Risson & Moors Informational [Page 79]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[282] I. Clarke, Freenet's Next Generation Routing Protocol,
http://freenetproject.org/index.php?page=ngrouting, 20th July
2003.
[283] A. Z. Kronfol, FASD: A fault-tolerant, adaptive scalable
distributed search engine, Master's Thesis
http://www.cs.princeton.edu/~akronfol/fasd/ 2002.
[284] S. Gribble, E. Brewer, J. M. Hellerstein, and D. Culler,
Scalable, Distributed Data Structures for Internet Service
Construction, Proc. 4th Symp. on Operating Systems Design and
Implementation OSDI 2000, October 2000.
[285] K. Aberer, Efficient Search in Unbalanced, Randomized Peer-to-
Peer Search Trees, EPFL Technical Report IC/2002/79 (2002)
[286] R. Honicky and E. Miller, A fast algorithm for online placement
and reorganization of replicated data, Proc. 17th Int'l
Parallel and Distributed Processing Symp., April 2003.
[287] G. S. Manku, Routing networks for distributed hash tables,
Proc. 22nd annual ACM Symp. on Principles of Distributed
Computing, PODC 2003, July 13-16 2003, pp. 133-142.
[288] D. Lewin, Consistent hashing and random trees: algorithms for
caching in distributed networks, Master's Thesis, Department of
Electrical Engineering and Computer Science, Massachusetts
Institute of Technology (1998)
[289] S. Lei and A. Grama, Extended consistent hashing: a framework
for distributed servers, Proc. 24th Int'l Conf. on Distributed
Computing Systems ICDCS 2004, March 23-26 2004.
[290] W. Litwin, Re: Chord & LH*, Email to Ion Stoica, March 23
2004a.
[291] J. Li, J. Stribling, R. Morris, F. Kaashoek, and T. Gil, A
performance vs. cost framework for evaluating DHT design
tradeoffs under churn, Proc. IEEE Infocom, Mar 13-17 2005.
[292] S. Zhuang, D. Geels, I. Stoica, and R. Katz, On failure
detection algorithms in overlay networks, Proc. IEEE Infocomm,
Mar 13-17 2005.
[293] X. Li, J. Misra, and C. G. Plaxton, Active and Concurrent
Topology Maintenance, The 18th Annual Conf. on Distributed
Computing (DISC 2004), Trippenhuis, Amsterdam, the Netherlands,
October 4 - October 7 (2004)
Risson & Moors Informational [Page 80]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[294] K. Aberer, L. O. Alima, A. Ghodsi, S. Girdzijauskas, M.
Hauswirth, and S. Haridi, The essence of P2P: a reference
architecture for overlay networks, Proc. of the 5th
international conference on peer-to-peer computing, Aug 31-Sep
2 2005.
[295] C. Tang, M. Buco, R. Chang, S. Dwarkadas, L. Luan, E. So, and
C. Ward, Low traffic overlay networks with large routing
tables, Proc. of ACM Sigmetrics Int'l Conf. on Measurement and
Modeling of Comp. Sys., Jun 6-10 2005, pp. 14-25.
[296] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, Handling
churn in a DHT, Proc. of the USENIX Annual Technical
Conference, June 2004.
[297] C. Blake and R. Rodrigues, High Availability, Scalable Storage,
Dynamic Peer Networks: Pick Two, 9th Workshop on Hot Topics in
Operating Systems (HotOS), Lihue, Hawaii, 18-21 May (2003)
[298] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S.
Shenker, I. Stoica, and H. Yu, OpenDHT: a public DHT service
and its uses, Proc. of the conf. on Applications, technologies,
architectures and protocols for computer communications, Aug
22-26 2005, pp. 73-84.
[299] T. Gil, F. Kaashoek, J. Li, R. Morris, and J. Stribling,
p2psim, a simulator for peer-to-peer protocols,
http://www.pdos.lcs.mit.edu/p2psim/ (2003)
[300] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao,
Distributed object location in a dynamic network, Theory of
Computing Systems (2004)
[301] N. Lynch, D. Malkhi, and D. Ratajczak, Atomic data access in
distributed hash tables, Proc. Int'l Peer-to-Peer Symp., March
7-8 2002.
[302] S. Gilbert, N. Lynch, and A. Shvartsman, RAMBO II: Rapidly
Reconfigurable Atomic Memory for Dynamic Networks, Technical
Report, MIT-CSAIL-TR-890 2004.
[303] N. Lynch and I. Stoica, MultiChord: A resilient namespace
management algorithm, Technical Memo MIT-LCS-TR-936 2004.
[304] J. Risson, K. Robinson, and T. Moors, Fault tolerant active
rings for structured peer-to-peer overlays, Proc. of the 30th
Annual IEEE Conf. on Local Computer Networks, Nov 15-17 2005,
pp. 18-25.
Risson & Moors Informational [Page 81]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[305] B. Awerbuch and C. Scheideler, Peer-to-peer systems for prefix
search, Proc. 22nd annual ACM Symp. on Principles of
Distributed Computing 2003, pp. 123-132.
[306] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica,
Towards a common API for structured P2P overlays, Proc. Second
Int'l Workshop on Peer to Peer Systems IPTPS 2003, February
2003.
[307] N. Feamster and H. Balakrishnan, Towards a logic for wide-area
Internet routing, Proc. ACM SIGCOMM workshop on Future
Directions in Network Architecture, August 25-27 2003, pp.
289-300.
[308] B. Ahlgren, M. Brunner, L. Eggert, R. Hancock, and S. Schmid,
Invariants: a new design methodology for network architectures,
Proc. ACM SIGCOMM workshop on Future Direction in Network
Architecture, August 30 2004, pp. 65-70.
[309] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction
to Algorithms, 2nd Edition. MIT Press, McGraw-Hill, Cambridge,
London, England, 2003.
[310] I. Abraham, D. Malkhi, and O. Dubzinski, LAND:Stretch
(1+epsilon) Locality Aware Networks for DHTs, Proc. ACM-SIAM
Symp. on Discrete Algorithms SODA-04 2004.
[311] S. Jain, R. Mahajan, and D. Wetherall, A study of the
performance potential of DHT-based overlays, Proc. of the 4th
Usenix symposium on internet technologies and systems (USITS),
Mar 2003.
[312] J. Risson, A. Harwood, and T. Moors, Stable high-capacity one-
hop distributed hash tables, Proc. of the IEEE Symposium on
Computers and Communications (ISCC'06), Jun 26-29 2006.
[313] V. Ramasubramanian and E. Sirer, Beehive: O(1) Lookup
Performance for Power-Law Query Distributions in Peer-to-Peer
Overlays, Proc. First Symp. on Networked Systems Design and
Implementation (NSDI'04), San Francisco, California, March
29-31 (2004) 99-112.
[314] I. Abraham, A. Badola, D. Bickson, D. Malkhi, S. Maloo, and S.
Ron, Practical locality-awareness for large scale information
sharing, Proc. 4th International Workshop on Peer-to-Peer
Systems, Feb 24-25 2005.
Risson & Moors Informational [Page 82]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[315] B. Leong, B. Liskov, and E. Demaine, Epichord: parallelizing
the Chord lookup algorithm with reactive routing state
management, Proc. of the 12th International Conference on
Networks, Nov 2004.
[316] J. Li, J. Stribling, R. Morris, and F. Kaashoek, Bandwidth-
efficient management of DHT routing tables, Proc. 2nd Symposium
on Networked Systems Design and Implementation, May 2-4 2005.
[317] S. Rhea, B.-G. Chun, J. Kubiatowicz, and S. Shenker, Fixing the
embarrassing slowness of OpenDHT on PlanetLab, Proc. of the
Second USENIX Workshop on Real, Large Distributed Systems, Dec
13 2005.
[318] M. Costa, M. Castro, A. Rowstron, and P. Key, PIC: Practical
Internet coordinates for distance estimation, Proc. of the 24th
international conference on distributed computing systems, Mar
2004.
[319] M. Castro, M. B. Jones, A.-M. Kermarrec, A. Rowstron, M.
Theimer, H. Wang, and A. Wolman, An evaluation of scalable
application- level multicast built using peer-to-peer overlays,
Proc. of the 22nd Annual Joint Conf. of the IEEE Comp. and
Comm. Soc. (INFOCOM), 30 Mar - 3 Apr 2003, pp. 1510-1520.
[320] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker,
Application-level multicast using content-addressable networks,
Proc. of the Third International Workshop on Networked Group
Communication, Nov 7-9 2001.
[321] S. El-Ansary, L. Alima, P. Brand, and S. Haridi, Efficient
broadcast in structured P2P networks, Second Int'l Workshop on
Peer-to-Peer Systems (IPTPS 03), Berkeley, CA, USA, 20-21
February (2003)
[322] J. Li, K. Sollins, and D.-Y. Lim, Implementing aggregation and
broadcast over Distributed Hash Tables, ACM Computer
Communication Reviews 35 (1) (2005) 81-92.
[323] V. Pai, K. Tamilmani, V. Sambamurthy, K. Kumar, and A. Mohr,
Chainsaw: eliminating trees from overlay multicast, Proc. 4th
Int'l Workshop on Peer-to-Peer Systems, February 24-25 2005.
[324] K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, and M. Budiu,
Bimodal Multicast, ACM Trans. on Computer Systems 17 (2) (1999)
41-88.
Risson & Moors Informational [Page 83]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[325] Z. Zhang, S. Chen, Y. Ling, and R. Chow, Resilient capacity-
aware multicasting based on overlay networks, Proc. of the 25th
IEEE Int'l Conf. on Distributed Computing Systems, 6-10 June
2005, pp. 565-574.
[326] A. Bharambe, S. Rao, V. Padmanabhan, S. Seshan, and H. Zhang,
The impact of heterogeneous bandwidth constraints on DHT-based
multicast protocols, Proc. 4th Int'l Workshop on Peer-to-Peer
Systems, February 24-25 2005.
[327] A. Ghodsi, L. O. Alima, S. El-Ansary, P. Brand, and S. Haridi,
Self-correcting broadcast in distributed hash tables, Proc. of
the 15th IASTED International Conf. on Parallel and Distributed
Computing and Systems, Nov 2003.
[328] R. Mahajan, M. Castro, and A. Rowstron, Controlling the cost of
reliability in peer-to-peer overlays, Second Int'l Workshop on
Peer-to-Peer Systems IPTPS'03, February 20-21 2003.
[329] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, Handling
churn in a DHT, Report No. UCB/CSD-03-1299, University of
California, also Proc. USENIX Annual Technical Conference, June
2003.
[330] M. Castro, M. Costa, and A. Rowstron, Performance and
dependability of structured peer-to-peer overlays, Microsoft
Research Technical Report MSR-TR-2003-94, December. Also 2004
Int'l Conf. on Dependable Systems and Networks, June 28-July 1
2003.
[331] D. Liben-Nowell, H. Balakrishnan, and D. Karger, Analysis of
the evolution of peer-to-peer systems, Annual ACM Symp. on
Principles of Distributed Computing 2002, pp. 233-242.
[332] L. Alima, S. El-Ansary, P. Brand, and S. Haridi, DKS(N,k,f): a
family of low communication, scalable and fault-tolerant
infrastructures for P2P applications, Proc. 3rd IEEE/ACM Int'l
Symp. on Cluster Computing and the Grid (2003) 344-350.
[333] D. Karger and M. Ruhl, Finding nearest neighbours in growth-
restricted metrics, Proc. 34th annual ACM symposium on Theory
of computing 2002, pp. 741-750.
[334] S. Ratnasamy, A Scalable Content-Addressable Network, Doctoral
Dissertation 2002.
[335] S. McCanne and S. Floyd, The LBNL/UCB Network Simulator.
Risson & Moors Informational [Page 84]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[336] M. Naor and U. Wieder, Novel architectures for P2P
applications: the continuous-discrete approach, Proc. fifteenth
annual ACM Symp. on Parallel Algorithms and Architectures, SPAA
2003, June 7-9 2003, pp. 50-59.
[337] N. D. de Bruijn, A combinatorial problem, Koninklijke
Netherlands: Academe Van Wetenschappen 49 (1946) 758-764.
[338] J.-W. Mao, "The Coloring and Routing Problems on de Bruijn
Interconnection Networks," in Doctoral Dissertation, National
Sun Yat-sen University, 2003.
[339] M. L. Schlumberger, De Bruijn communication networks, Doctoral
Dissertation 1974.
[340] M. Imase and M. Itoh, Design to minimize diameter on building-
block network, IEEE Trans. on Computers C-30 (6) (1981) 439-
442.
[341] S. M. Reddy, D. K. Pradhan, and J. G. Kuhl, Direct graphs with
minimal and maximal connectivity, Technical Report, School of
Engineering, Oakland University (1980)
[342] R. A. Rowley and B. Bose, Fault-tolerant ring embedding in de
Bruijn networks, IEEE Trans. on Computers 42 (12) (1993) 1480-
1486.
[343] K. Y. Lee, G. Liu, and H. F. Jordan, Hierarchical networks for
optical communications, Journal of Parallel and Distributed
Computing 60 (2000) 1-16.
[344] M. Naor and U. Wieder, Know thy neighbor's neighbor: better
routing for skip-graphs and small worlds, The 3rd Int'l
Workshop on Peer-to-Peer Systems, February 26-27 2004.
[345] P. Fraigniaud and P. Gauron, The content-addressable networks
D2B, Technical Report 1349, Laboratoire de Recherche en
Informatique, January 2003.
[346] A. Datta, S. Girdzijauskas, and K. Aberer, On de Bruijn routing
in distributed hash tables: there and back again, Proc. Fourth
IEEE Int'l Conf. on Peer-to-Peer Computing, , 25-27 August
2004.
[347] W. Pugh, Skip lists: a probabilistic alternative to balanced
trees, Proc. Workshop on Algorithms and Data Structures, August
17-19 1989, pp. 437-449.
Risson & Moors Informational [Page 85]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[348] W. Pugh, Skip lists: a probabilistic alternative to balanced
trees, Communications of the ACM 33 (6) (1990) 668-676.
[349] J. Gray, The transaction concept: Virtues and limitations,
Proc. VLDB, September 1981.
[350] B. T. Loo, J. M. Hellerstein, R. Huebsch, S. Shenker, and I.
Stoica, Enhancing P2P file-sharing with internet-scale query
processor, Proc. 30th Int'l Conf. on Very Large Data Bases VLDB
2004, 29 August-3 September 2004.
[351] M. Stonebraker, P. Aoki, W. Litwin, A. Pfeffer, A. Sah, J.
Sidell, C. Staelin, and A. Yu, Mariposa: a wide-area
distributed database system, THE VLDB Journal - The Int'l
Journal of Very Large Data Bases (5) (1996) 48-63.
[352] V. Cholvi, P. Felber, and E. Biersack, Efficient Search in
Unstructured Peer-to-Peer Networks, Proc. Symp. on Parallel
Algorithms and Architectures, July 2004.
[353] S. Daswani and A. Fisk, Gnutella UDP Extension for Scalable
Searches (GUESS) v0.1,
http://www.limewire.org/fisheye/viewrep/~raw,r=1.2/limecvs/
core/guess_01.html (2002)
[354] A. Fisk, Gnutella Dynamic Query Protocol v0.1, Gnutella
Developer Forum (2003)
[355] O. Gnawali, A Keyword Set Search System for Peer-to-Peer
Networks, Master's Thesis 2002.
[356] Limewire, Limewire Host Count,
http://www.limewire.com/english/content/netsize.shtml (2004)
[357] A. Fisk, Gnutella Ultrapeer Query Routing,
http://groups.yahoo.com/group/the_gdf/files/Proposals/
Working%20Proposals/search/Ultrapeer%20QRP/ v0.1 (2003)
[358] A. Fisk, Gnutella Dynamic Query Protocol,
http://groups.yahoo.com/group/the_gdf/files/Proposals/
Working%20Proposals/search/Dynamic%20Querying/ v0.1 (2003)
[359] S. Thadani, Meta Data searches on the Gnutella Network
(addendum), http://www.limewire.com/developer/MetaProposal2.htm
(2001)
Risson & Moors Informational [Page 86]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[360] S. Thadani, Meta Information Searches on the Gnutella Networks,
http://www.limewire.com/developer/metainfo_searches.html (2001)
[361] P. Reynolds and A. Vahdat, Efficient peer-to-peer keyword
searching, ACM/IFP/USENIX Int'l Middleware Conference,
Middleware 2003, June 16-20 2003.
[362] W. Terpstra, S. Behnel, L. Fiege, J. Kangasharju, and A.
Buchmann, Bit Zipper Rendezvous, optimal data placement for
general P2P queries, Proc. First Int'l Workshop on Peer-to-Peer
Computing and Databases, March 14 2004.
[363] A. Singhal, Modern Information Retrieval: A Brief Overview,
IEEE Data Engineering Bulletin 24 (4) (2001) 35-43.
[364] E. Cohen, A. Fiat, and H. Kaplan, Associative Search in Peer to
Peer Networks: Harnessing Latent Semantics, IEEE Infocom 2003,
The 22nd Annual Joint Conf. of the IEEE Computer and
Communications Societies, March 30-April 3 2003.
[365] W. Muller and A. Henrich, Fast retrieval of high-dimensional
feature vectors in P2P networks using compact peer data
summaries, Proc. 5th ACM SIGMM international workshop on
Multimedia Information Retrieval, November 7 2003, pp. 79-86.
[366] M. T. Ozsu and P. Valduriez, Principles of Distributed Database
Systems, 2nd edition ed. Prentice Hall, 1999.
[367] G. Salton, A. Wong, and C. S. Yang, A vector space model for
automatic indexing, Communications of the ACM 18 (11) (1975)
613- 620.
[368] S. E. Robertson, S. Walker, and M. Beaulieu, Okapi at TREC-7:
automatic ad hoc, filtering, VLC and filtering tracks, Proc.
Seventh Text REtrieval Conference, TREC-7, NIST Special
Publication 500-242, July 1999, pp. 253-264.
[369] A. Singhal, J. Choi, D. Hindle, D. Lewis, and F. Pereira, AT&T
at TREC-7, Proc. Seventh Text REtrieval Conf. TREC-7, July
1999, pp. 253-264.
[370] K. Sankaralingam, S. Sethumadhavan, and J. Browne, Distributed
Pagerank for P2P Systems, Proc. 12th international symposium on
High Performance Distributed Computing HPDC, June 22-24 2003.
[371] I. Klampanos and J. Jose, An architecture for information
retrieval over semi-collaborated peer-to-peer networks, Proc.
2004 ACM symposium on applied computing 2004, pp. 1078-1083.
Risson & Moors Informational [Page 87]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[372] C. Tang, Z. Xu, and S. Dwarkadas, Peer-to-peer information
retrieval using self-organizing semantic overlay networks,
Proc. 2003 conference on Applications, Technologies,
Architectures and Protocols for Computer Communications, August
25-29 2003, pp. 175-186.
[373] C. Tang and S. Dwarkadas, Hybrid global-local indexing for
efficient peer-to-peer information retrieval, Proc. First Symp.
on Networked Systems Design and Implementation NSDI'04, March
29-31 2004, pp. 211-224.
[374] G. W. Furnas, S. Deerwester, S. T. Dumais, T. K. Landauer, R.
A. Harshman, L. A. Streeter, and K. E. Lochbaum, Information
retrieval using a singular value decomposition model of latent
semantic structure, Proc. 11th Annual Int'l ACM SIGIR Conf. on
Research and Development in Information Retrieval 1988, pp.
465-480.
[375] C. Tang, S. Dwarkadas, and Z. Xu, On scaling latent semantic
indexing for large peer-to-peer systems, The 27th Annual Int'l
ACM SIGIR Conf. SIGIR'04, ACM Special Interest Group on
Information Retrieval, July 2004.
[376] S. Milgram, The small world problem, Psychology Today 1 (61)
(1967)
[377] J. Kleinberg, The small-world phenonemon: An algorithmic
perspective, Proc. 32nd ACM Symp. on Theory of Computing (2000)
[378] Y. Petrakis and E. Pitoura, "On constructing small worlds in
unstructured peer-to-peer systems," in Current trends in
database technology (Proc. First Int'l Workshop on Peer-to-Peer
Computing and Databases, Heraklion, Crete, Greece, March 14),
vol. 3268, Lecture Notes in Computer Science: Springer, 2004,
pp. 415-424.
[379] A. Iamnitchi, M. Ripeanu, and I. Foster, Locating Data in
(Small World?) P2P Scientific Collaborations, First Int'l
Workshop on Peer-to-Peer Systems (IPTPS), Cambridge, MA, March
(2002)
Risson & Moors Informational [Page 88]
^L
RFC 4981 Survey of Research on P2P Search September 2007
[380] Y. Ren, C. Sha, W. Qian, A. Zhou, B. Ooi, and K. Tan, Explore
the "small world phenomena" in pure P2P information sharing
systems, Proc. 3rd IEEE/ACM Int'l Symp. on Cluster Computing
and the Grid (2003) 232-239.
[381] G. S. Manku, M. Bawa, and P. Raghavan, Symphony: Distributed
Hashing in a Small World, Proc. 4th USENIX Symp. on Internet
Technologies and Systems, March 26-28 2003.
[382] W. Litwin and S. Sahri, Implementing SD-SQL Server: a Scalable
Distributed Database System, CERIA Research Rerpot 2004-04-02,
April 2004.
[383] M. Jarke and J. Koch, Query Optimization in Database Systems,
ACM Computing Surveys 16 (2) (1984) 111-152.
[384] J. L. Bentley, Multidimensional binary search trees used for
associative searching, Communications of the ACM 18 (9) (1975)
509-517.
[385] B. Chun, I. Stoica, J. Hellerstein, R. Huebsch, S. Jeffery, B.
T. Loo, S. Mardanbeigi, T. Roscoe, S. Rhea, and S. Schenker,
Querying at Internet Scale, Proc. 2004 ACM SIGMOD international
conference on management of data, demonstration session 2004,
pp. 935-936.
[386] P. Cao and Z. Wang, Efficient top-K query calculation in
distributed networks, Proc. 23rd Annual ACM SIGACT-SIGOPS Symp.
on Principles of Distributed Computing PODC 2004, July 25-28
2004, pp. 206-215.
[387] D. Psaltoulis, I. Kostoulas, I. Gupta, K. Birman, and A.
Demers, Practical algorithms for size estimation in large and
dynamic groups, Proc. Twenty-Third Annual ACM SIGACT-SIGOPS
Symp. on Principles of Distributed Computing, PODC 2004, July
25-28 2004.
[388] R. van Renesse, The importance of aggregation, Springer-Verlag
Lecture Notes in Computer Science "Future Directions in
Distributed Computing". A. Schiper, A. A. Shvartsman, H.
Weatherspoon, and B. Y. Zhao, editors. Springer-Verlag,
Heidelberg volume 2584 (2003)
Risson & Moors Informational [Page 89]
^L
RFC 4981 Survey of Research on P2P Search September 2007
Author's Addresses
John Risson
School of Elec Eng and Telecommunications
University of New South Wales
Sydney NSW 2052 Australia
EMail: jr@tuffit.com
Tim Moors
School of Elec Eng and Telecommunications
University of New South Wales
Sydney NSW 2052 Australia
EMail: t.moors@unsw.edu.au
Risson & Moors Informational [Page 90]
^L
RFC 4981 Survey of Research on P2P Search September 2007
Full Copyright Statement
Copyright (C) The IETF Trust (2007).
This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Risson & Moors Informational [Page 91]
^L
|