1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
|
Network Working Group K. Scott
Request for Comments: 5050 The MITRE Corporation
Category: Experimental S. Burleigh
NASA Jet Propulsion Laboratory
November 2007
Bundle Protocol Specification
Status of This Memo
This memo defines an Experimental Protocol for the Internet
community. It does not specify an Internet standard of any kind.
Discussion and suggestions for improvement are requested.
Distribution of this memo is unlimited.
IESG Note
This RFC is not a candidate for any level of Internet Standard. The
IETF disclaims any knowledge of the fitness of this RFC for any
purpose and in particular notes that the decision to publish is not
based on IETF review for such things as security, congestion control,
or inappropriate interaction with deployed protocols. The RFC Editor
has chosen to publish this document at its discretion. Readers of
this document should exercise caution in evaluating its value for
implementation and deployment. See RFC 3932 for more information.
Abstract
This document describes the end-to-end protocol, block formats, and
abstract service description for the exchange of messages (bundles)
in Delay Tolerant Networking (DTN).
This document was produced within the IRTF's Delay Tolerant
Networking Research Group (DTNRG) and represents the consensus of all
of the active contributors to this group. See http://www.dtnrg.org
for more information.
Scott & Burleigh Experimental [Page 1]
^L
RFC 5050 Bundle Protocol Specification November 2007
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Requirements Notation . . . . . . . . . . . . . . . . . . . . 4
3. Service Description . . . . . . . . . . . . . . . . . . . . . 5
3.1. Definitions . . . . . . . . . . . . . . . . . . . . . . . 5
3.2. Implementation Architectures . . . . . . . . . . . . . . . 9
3.3. Services Offered by Bundle Protocol Agents . . . . . . . . 11
4. Bundle Format . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1. Self-Delimiting Numeric Values (SDNVs) . . . . . . . . . . 12
4.2. Bundle Processing Control Flags . . . . . . . . . . . . . 13
4.3. Block Processing Control Flags . . . . . . . . . . . . . . 15
4.4. Endpoint IDs . . . . . . . . . . . . . . . . . . . . . . . 16
4.5. Formats of Bundle Blocks . . . . . . . . . . . . . . . . . 17
4.5.1. Primary Bundle Block . . . . . . . . . . . . . . . . . 19
4.5.2. Canonical Bundle Block Format . . . . . . . . . . . . 22
4.5.3. Bundle Payload Block . . . . . . . . . . . . . . . . . 23
4.6. Extension Blocks . . . . . . . . . . . . . . . . . . . . . 24
4.7. Dictionary Revision . . . . . . . . . . . . . . . . . . . 24
5. Bundle Processing . . . . . . . . . . . . . . . . . . . . . . 24
5.1. Generation of Administrative Records . . . . . . . . . . . 25
5.2. Bundle Transmission . . . . . . . . . . . . . . . . . . . 26
5.3. Bundle Dispatching . . . . . . . . . . . . . . . . . . . . 26
5.4. Bundle Forwarding . . . . . . . . . . . . . . . . . . . . 27
5.4.1. Forwarding Contraindicated . . . . . . . . . . . . . . 28
5.4.2. Forwarding Failed . . . . . . . . . . . . . . . . . . 29
5.5. Bundle Expiration . . . . . . . . . . . . . . . . . . . . 29
5.6. Bundle Reception . . . . . . . . . . . . . . . . . . . . . 30
5.7. Local Bundle Delivery . . . . . . . . . . . . . . . . . . 31
5.8. Bundle Fragmentation . . . . . . . . . . . . . . . . . . . 32
5.9. Application Data Unit Reassembly . . . . . . . . . . . . . 33
5.10. Custody Transfer . . . . . . . . . . . . . . . . . . . . . 34
5.10.1. Custody Acceptance . . . . . . . . . . . . . . . . . . 34
5.10.2. Custody Release . . . . . . . . . . . . . . . . . . . 35
5.11. Custody Transfer Success . . . . . . . . . . . . . . . . . 35
5.12. Custody Transfer Failure . . . . . . . . . . . . . . . . . 35
5.13. Bundle Deletion . . . . . . . . . . . . . . . . . . . . . 36
5.14. Discarding a Bundle . . . . . . . . . . . . . . . . . . . 36
5.15. Canceling a Transmission . . . . . . . . . . . . . . . . . 36
5.16. Polling . . . . . . . . . . . . . . . . . . . . . . . . . 36
6. Administrative Record Processing . . . . . . . . . . . . . . . 37
6.1. Administrative Records . . . . . . . . . . . . . . . . . . 37
6.1.1. Bundle Status Reports . . . . . . . . . . . . . . . . 38
6.1.2. Custody Signals . . . . . . . . . . . . . . . . . . . 41
6.2. Generation of Administrative Records . . . . . . . . . . . 44
6.3. Reception of Custody Signals . . . . . . . . . . . . . . . 44
Scott & Burleigh Experimental [Page 2]
^L
RFC 5050 Bundle Protocol Specification November 2007
7. Services Required of the Convergence Layer . . . . . . . . . . 44
7.1. The Convergence Layer . . . . . . . . . . . . . . . . . . 44
7.2. Summary of Convergence Layer Services . . . . . . . . . . 45
8. Security Considerations . . . . . . . . . . . . . . . . . . . 45
9. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 47
10. References . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.1. Normative References . . . . . . . . . . . . . . . . . . . 47
10.2. Informative References . . . . . . . . . . . . . . . . . . 47
Appendix A. Contributors . . . . . . . . . . . . . . . . . . . . 49
Appendix B. Comments . . . . . . . . . . . . . . . . . . . . . . 49
1. Introduction
This document describes version 6 of the Delay Tolerant Networking
(DTN) "bundle" protocol (BP). Delay Tolerant Networking is an end-
to-end architecture providing communications in and/or through highly
stressed environments. Stressed networking environments include
those with intermittent connectivity, large and/or variable delays,
and high bit error rates. To provide its services, BP sits at the
application layer of some number of constituent internets, forming a
store-and-forward overlay network. Key capabilities of BP include:
o Custody-based retransmission
o Ability to cope with intermittent connectivity
o Ability to take advantage of scheduled, predicted, and
opportunistic connectivity (in addition to continuous
connectivity)
o Late binding of overlay network endpoint identifiers to
constituent internet addresses
For descriptions of these capabilities and the rationale for the DTN
architecture, see [ARCH] and [SIGC]. [TUT] contains a tutorial-level
overview of DTN concepts.
This is an experimental protocol, produced within the IRTF's Delay
Tolerant Networking Research Group (DTNRG) and represents the
consensus of all of the active contributors to this group. If this
protocol is used on the Internet, IETF standard protocols for
security and congestion control should be used.
BP's location within the standard protocol stack is as shown in
Figure 1. BP uses the "native" internet protocols for communications
within a given internet. Note that "internet" in the preceding is
used in a general sense and does not necessarily refer to TCP/IP.
The interface between the common bundle protocol and a specific
Scott & Burleigh Experimental [Page 3]
^L
RFC 5050 Bundle Protocol Specification November 2007
internetwork protocol suite is termed a "convergence layer adapter".
Figure 1 shows three distinct transport and network protocols
(denoted T1/N1, T2/N2, and T3/N3).
+-----------+ +-----------+
| BP app | | BP app |
+---------v-| +->>>>>>>>>>v-+ +->>>>>>>>>>v-+ +-^---------+
| BP v | | ^ BP v | | ^ BP v | | ^ BP |
+---------v-+ +-^---------v-+ +-^---------v-+ +-^---------+
| Trans1 v | + ^ T1/T2 v | + ^ T2/T3 v | | ^ Trans3 |
+---------v-+ +-^---------v-+ +-^---------v + +-^---------+
| Net1 v | | ^ N1/N2 v | | ^ N2/N3 v | | ^ Net3 |
+---------v-+ +-^---------v + +-^---------v-+ +-^---------+
| >>>>>>>>^ >>>>>>>>>>^ >>>>>>>>^ |
+-----------+ +-------------+ +-------------+ +-----------+
| | | |
|<--- An internet --->| |<--- An internet --->|
| | | |
Figure 1: The Bundle Protocol Sits at
the Application Layer of the Internet Model
This document describes the format of the protocol data units (called
bundles) passed between entities participating in BP communications.
The entities are referred to as "bundle nodes". This document does
not address:
o Operations in the convergence layer adapters that bundle nodes use
to transport data through specific types of internets. (However,
the document does discuss the services that must be provided by
each adapter at the convergence layer.)
o The bundle routing algorithm.
o Mechanisms for populating the routing or forwarding information
bases of bundle nodes.
2. Requirements Notation
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
Scott & Burleigh Experimental [Page 4]
^L
RFC 5050 Bundle Protocol Specification November 2007
3. Service Description
3.1. Definitions
Bundle - A bundle is a protocol data unit of the DTN bundle
protocol. Each bundle comprises a sequence of two or more
"blocks" of protocol data, which serve various purposes. Multiple
instances of the same bundle (the same unit of DTN protocol data)
might exist concurrently in different parts of a network --
possibly in different representations -- in the memory local to
one or more bundle nodes and/or in transit between nodes. In the
context of the operation of a bundle node, a bundle is an instance
of some bundle in the network that is in that node's local memory.
Bundle payload - A bundle payload (or simply "payload") is the
application data whose conveyance to the bundle's destination is
the purpose for the transmission of a given bundle. The terms
"bundle content", "bundle payload", and "payload" are used
interchangeably in this document. The "nominal" payload for a
bundle forwarded in response to a bundle transmission request is
the application data unit whose location is provided as a
parameter to that request. The nominal payload for a bundle
forwarded in response to reception of that bundle is the payload
of the received bundle.
Fragment - A fragment is a bundle whose payload block contains a
fragmentary payload. A fragmentary payload is either the first N
bytes or the last N bytes of some other payload -- either a
nominal payload or a fragmentary payload -- of length M, such that
0 < N < M.
Bundle node - A bundle node (or, in the context of this document,
simply a "node") is any entity that can send and/or receive
bundles. In the most familiar case, a bundle node is instantiated
as a single process running on a general-purpose computer, but in
general the definition is meant to be broader: a bundle node might
alternatively be a thread, an object in an object-oriented
operating system, a special-purpose hardware device, etc. Each
bundle node has three conceptual components, defined below: a
"bundle protocol agent", a set of zero or more "convergence layer
adapters", and an "application agent".
Bundle protocol agent - The bundle protocol agent (BPA) of a node is
the node component that offers the BP services and executes the
procedures of the bundle protocol. The manner in which it does so
is wholly an implementation matter. For example, BPA
functionality might be coded into each node individually; it might
be implemented as a shared library that is used in common by any
Scott & Burleigh Experimental [Page 5]
^L
RFC 5050 Bundle Protocol Specification November 2007
number of bundle nodes on a single computer; it might be
implemented as a daemon whose services are invoked via inter-
process or network communication by any number of bundle nodes on
one or more computers; it might be implemented in hardware.
Convergence layer adapters - A convergence layer adapter (CLA) sends
and receives bundles on behalf of the BPA, utilizing the services
of some 'native' internet protocol that is supported in one of the
internets within which the node is functionally located. The
manner in which a CLA sends and receives bundles is wholly an
implementation matter, exactly as described for the BPA.
Application agent - The application agent (AA) of a node is the node
component that utilizes the BP services to effect communication
for some purpose. The application agent in turn has two elements,
an administrative element and an application-specific element.
The application-specific element of an AA constructs, requests
transmission of, accepts delivery of, and processes application-
specific application data units; the only interface between the
BPA and the application-specific element of the AA is the BP
service interface. The administrative element of an AA constructs
and requests transmission of administrative records (status
reports and custody signals), and it accepts delivery of and
processes any custody signals that the node receives. In addition
to the BP service interface, there is a (conceptual) private
control interface between the BPA and the administrative element
of the AA that enables each to direct the other to take action
under specific circumstances. In the case of a node that serves
simply as a "router" in the overlay network, the AA may have no
application-specific element at all. The application-specific
elements of other nodes' AAs may perform arbitrarily complex
application functions, perhaps even offering multiplexed DTN
communication services to a number of other applications. As with
the BPA, the manner in which the AA performs its functions is
wholly an implementation matter; in particular, the administrative
element of an AA might be built into the library or daemon or
hardware that implements the BPA, and the application-specific
element of an AA might be implemented either in software or in
hardware.
Bundle endpoint - A bundle endpoint (or simply "endpoint") is a set
of zero or more bundle nodes that all identify themselves for BP
purposes by some single text string, called a "bundle endpoint ID"
(or, in this document, simply "endpoint ID"; endpoint IDs are
described in detail in Section 4.4 below). The special case of an
endpoint that never contains more than one node is termed a
"singleton" endpoint; every bundle node must be a member of at
least one singleton endpoint. Singletons are the most familiar
Scott & Burleigh Experimental [Page 6]
^L
RFC 5050 Bundle Protocol Specification November 2007
sort of endpoint, but in general the endpoint notion is meant to
be broader. For example, the nodes in a sensor network might
constitute a set of bundle nodes that identify themselves by a
single common endpoint ID and thus form a single bundle endpoint.
*Note* too that a given bundle node might identify itself by
multiple endpoint IDs and thus be a member of multiple bundle
endpoints.
Forwarding - When the bundle protocol agent of a node determines
that a bundle must be "forwarded" to an endpoint, it causes the
bundle to be sent to all of the nodes that the bundle protocol
agent currently believes are in the "minimum reception group" of
that endpoint. The minimum reception group of an endpoint may be
any one of the following: (a) ALL of the nodes registered in an
endpoint that is permitted to contain multiple nodes (in which
case forwarding to the endpoint is functionally similar to
"multicast" operations in the Internet, though possibly very
different in implementation); (b) ANY N of the nodes registered in
an endpoint that is permitted to contain multiple nodes, where N
is in the range from zero to the cardinality of the endpoint (in
which case forwarding to the endpoint is functionally similar to
"anycast" operations in the Internet); or (c) THE SOLE NODE
registered in a singleton endpoint (in which case forwarding to
the endpoint is functionally similar to "unicast" operations in
the Internet). The nature of the minimum reception group for a
given endpoint can be determined from the endpoint's ID (again,
see Section 4.4 below): for some endpoint ID "schemes", the nature
of the minimum reception group is fixed - in a manner that is
defined by the scheme - for all endpoints identified under the
scheme; for other schemes, the nature of the minimum reception
group is indicated by some lexical feature of the "scheme-specific
part" of the endpoint ID, in a manner that is defined by the
scheme.
Registration - A registration is the state machine characterizing a
given node's membership in a given endpoint. Any number of
registrations may be concurrently associated with a given
endpoint, and any number of registrations may be concurrently
associated with a given node. Any single registration must at any
time be in one of two states: Active or Passive. A registration
always has an associated "delivery failure action", the action
that is to be taken when a bundle that is "deliverable" (see
below) subject to that registration is received at a time when the
registration is in the Passive state. Delivery failure action
must be one of the following:
* defer "delivery" (see below) of the bundle subject to this
registration until (a) this bundle is the least recently
Scott & Burleigh Experimental [Page 7]
^L
RFC 5050 Bundle Protocol Specification November 2007
received of all bundles currently deliverable subject to this
registration and (b) either the registration is polled or else
the registration is in the Active state; or
* "abandon" (see below) delivery of the bundle subject to this
registration.
An additional implementation-specific delivery deferral procedure
may optionally be associated with the registration. While the
state of a registration is Active, reception of a bundle that is
deliverable subject to this registration must cause the bundle to
be delivered automatically as soon as it is the least recently
received bundle that is currently deliverable subject to the
registration. While the state of a registration is Passive,
reception of a bundle that is deliverable subject to this
registration must cause delivery of the bundle to be abandoned or
deferred as mandated by the registration's current delivery
failure action; in the latter case, any additional delivery
deferral procedure associated with the registration must also be
performed.
Delivery - Upon reception, the processing of a bundle that has been
sent to a given node depends on whether or not the receiving node
is registered in the bundle's destination endpoint. If it is, and
if the payload of the bundle is non-fragmentary (possibly as a
result of successful payload reassembly from fragmentary payloads,
including the original payload of the received bundle), then the
bundle is normally "delivered" to the node's application agent
subject to the registration characterizing the node's membership
in the destination endpoint. A bundle is considered to have been
delivered at a node subject to a registration as soon as the
application data unit that is the payload of the bundle, together
with the value of the bundle's "Acknowledgement by application is
requested" flag and any other relevant metadata (an implementation
matter), has been presented to the node's application agent in a
manner consistent with the state of that registration and, as
applicable, the registration's delivery failure action.
Deliverability, Abandonment - A bundle is considered "deliverable"
subject to a registration if and only if (a) the bundle's
destination endpoint is the endpoint with which the registration
is associated, (b) the bundle has not yet been delivered subject
to this registration, and (c) delivery of the bundle subject to
this registration has not been abandoned. To "abandon" delivery
of a bundle subject to a registration is simply to declare it no
longer deliverable subject to that registration; normally only
registrations' registered delivery failure actions cause
deliveries to be abandoned.
Scott & Burleigh Experimental [Page 8]
^L
RFC 5050 Bundle Protocol Specification November 2007
Deletion, Discarding - A bundle protocol agent "discards" a bundle
by simply ceasing all operations on the bundle and functionally
erasing all references to it; the specific procedures by which
this is accomplished are an implementation matter. Bundles are
discarded silently; i.e., the discarding of a bundle does not
result in generation of an administrative record. "Retention
constraints" are elements of the bundle state that prevent a
bundle from being discarded; a bundle cannot be discarded while it
has any retention constraints. A bundle protocol agent "deletes"
a bundle in response to some anomalous condition by notifying the
bundle's report-to endpoint of the deletion (provided such
notification is warranted; see Section 5.13 for details) and then
arbitrarily removing all of the bundle's retention constraints,
enabling the bundle to be discarded.
Transmission - A transmission is a sustained effort by a node's
bundle protocol agent to cause a bundle to be sent to all nodes in
the minimum reception group of some endpoint (which may be the
bundle's destination or may be some intermediate forwarding
endpoint) in response to a transmission request issued by the
node's application agent. Any number of transmissions may be
concurrently undertaken by the bundle protocol agent of a given
node.
Custody - To "accept custody" upon forwarding a bundle is to commit
to retaining a copy of the bundle -- possibly re-forwarding the
bundle when necessary -- until custody of that bundle is
"released". Custody of a bundle whose destination is a singleton
endpoint is released when either (a) notification is received that
some other node has accepted custody of the same bundle; (b)
notification is received that the bundle has been delivered at the
(sole) node registered in the bundle's destination endpoint; or
(c) the bundle is explicitly deleted for some reason, such as
lifetime expiration. The condition(s) under which custody of a
bundle whose destination is not a singleton endpoint may be
released are not defined in this specification. To "refuse
custody" of a bundle is to decide not to accept custody of the
bundle. A "custodial node" of a bundle is a node that has
accepted custody of the bundle and has not yet released that
custody. A "custodian" of a bundle is a singleton endpoint whose
sole member is one of the bundle's custodial nodes.
3.2. Implementation Architectures
The above definitions are intended to enable the bundle protocol's
operations to be specified in a manner that minimizes bias toward any
particular implementation architecture. To illustrate the range of
interoperable implementation models that might conform to this
Scott & Burleigh Experimental [Page 9]
^L
RFC 5050 Bundle Protocol Specification November 2007
specification, four example architectures are briefly described
below.
1. Bundle protocol application server
A single bundle protocol application server, constituting a
single bundle node, runs as a daemon process on each computer.
The daemon's functionality includes all functions of the bundle
protocol agent, all convergence layer adapters, and both the
administrative and application-specific elements of the
application agent. The application-specific element of the
application agent functions as a server, offering bundle protocol
service over a local area network: it responds to remote
procedure calls from application processes (on the same computer
and/or remote computers) that need to communicate via the bundle
protocol. The server supports its clients by creating a new
(conceptual) node for each one and registering each such node in
a client-specified endpoint. The conceptual nodes managed by the
server function as clients' bundle protocol service access
points.
2. Peer application nodes
Any number of bundle protocol application processes, each one
constituting a single bundle node, run in ad-hoc fashion on each
computer. The functionality of the bundle protocol agent, all
convergence layer adapters, and the administrative element of the
application agent is provided by a library to which each node
process is dynamically linked at run time. The application-
specific element of each node's application agent is node-
specific application code.
3. Sensor network nodes
Each node of the sensor network is the self-contained
implementation of a single bundle node. All functions of the
bundle protocol agent, all convergence layer adapters, and the
administrative element of the application agent are implemented
in simplified form in Application-Specific Integrated Circuits
(ASICs), while the application-specific element of each node's
application agent is implemented in a programmable
microcontroller. Forwarding is rudimentary: all bundles are
forwarded on a hard-coded default route.
Scott & Burleigh Experimental [Page 10]
^L
RFC 5050 Bundle Protocol Specification November 2007
4. Dedicated bundle router
Each computer constitutes a single bundle node that functions
solely as a high-performance bundle forwarder. Many standard
functions of the bundle protocol agent, the convergence layer
adapters, and the administrative element of the application agent
are implemented in ASICs, but some functions are implemented in a
high-speed processor to enable reprogramming as necessary. The
node's application agent has no application-specific element.
Substantial non-volatile storage resources are provided, and
arbitrarily complex forwarding algorithms are supported.
3.3. Services Offered by Bundle Protocol Agents
The bundle protocol agent of each node is expected to provide the
following services to the node's application agent:
o commencing a registration (registering a node in an endpoint);
o terminating a registration;
o switching a registration between Active and Passive states;
o transmitting a bundle to an identified bundle endpoint;
o canceling a transmission;
o polling a registration that is in the passive state;
o delivering a received bundle.
4. Bundle Format
Each bundle shall be a concatenated sequence of at least two block
structures. The first block in the sequence must be a primary bundle
block, and no bundle may have more than one primary bundle block.
Additional bundle protocol blocks of other types may follow the
primary block to support extensions to the bundle protocol, such as
the Bundle Security Protocol [BSP]. At most one of the blocks in the
sequence may be a payload block. The last block in the sequence must
have the "last block" flag (in its block processing control flags)
set to 1; for every other block in the bundle after the primary
block, this flag must be set to zero.
Scott & Burleigh Experimental [Page 11]
^L
RFC 5050 Bundle Protocol Specification November 2007
4.1. Self-Delimiting Numeric Values (SDNVs)
The design of the bundle protocol attempts to reconcile minimal
consumption of transmission bandwidth with:
o extensibility to address requirements not yet identified, and
o scalability across a wide range of network scales and payload
sizes.
A key strategic element in the design is the use of self-delimiting
numeric values (SDNVs). The SDNV encoding scheme is closely adapted
from the Abstract Syntax Notation One Basic Encoding Rules for
subidentifiers within an object identifier value [ASN1]. An SDNV is
a numeric value encoded in N octets, the last of which has its most
significant bit (MSB) set to zero; the MSB of every other octet in
the SDNV must be set to 1. The value encoded in an SDNV is the
unsigned binary number obtained by concatenating into a single bit
string the 7 least significant bits of each octet of the SDNV.
The following examples illustrate the encoding scheme for various
hexadecimal values.
0xABC : 1010 1011 1100
is encoded as
{1 00 10101} {0 0111100}
= 10010101 00111100
0x1234 : 0001 0010 0011 0100
= 1 0010 0011 0100
is encoded as
{1 0 100100} {0 0110100}
= 10100100 00110100
0x4234 : 0100 0010 0011 0100
= 100 0010 0011 0100
is encoded as
{1 000000 1} {1 0000100} {0 0110100}
= 10000001 10000100 00110100
0x7F : 0111 1111
= 111 1111
is encoded as
{0 1111111}
= 01111111
Figure 2: SDNV Example
Scott & Burleigh Experimental [Page 12]
^L
RFC 5050 Bundle Protocol Specification November 2007
Note: Care must be taken to make sure that the value to be encoded is
(in concept) padded with high-order zero bits to make its bitwise
length a multiple of 7 before encoding. Also note that, while there
is no theoretical limit on the size of an SDNV field, the overhead of
the SDNV scheme is 1:7, i.e., one bit of overhead for every 7 bits of
actual data to be encoded. Thus, a 7-octet value (a 56-bit quantity
with no leading zeroes) would be encoded in an 8-octet SDNV; an
8-octet value (a 64-bit quantity with no leading zeroes) would be
encoded in a 10-octet SDNV (one octet containing the high-order bit
of the value padded with six leading zero bits, followed by nine
octets containing the remaining 63 bits of the value). 148 bits of
overhead would be consumed in encoding a 1024-bit RSA encryption key
directly in an SDNV. In general, an N-bit quantity with no leading
zeroes is encoded in an SDNV occupying ceil(N/7) octets, where ceil
is the integer ceiling function.
Implementations of the bundle protocol may handle as an invalid
numeric value any SDNV that encodes an integer that is larger than
(2^64 - 1).
An SDNV can be used to represent both very large and very small
integer values. However, SDNV is clearly not the best way to
represent every numeric value. For example, an SDNV is a poor way to
represent an integer whose value typically falls in the range 128 to
255. In general, though, we believe that SDNV representation of
numeric values in bundle blocks yields the smallest block sizes
without sacrificing scalability.
4.2. Bundle Processing Control Flags
The bundle processing control flags field in the primary bundle block
of each bundle is an SDNV; the value encoded in this SDNV is a string
of bits used to invoke selected bundle processing control features.
The significance of the value in each currently defined position of
this bit string is described here. Note that in the figure and
descriptions, the bit label numbers denote position (from least
significant ('0') to most significant) within the decoded bit string,
and not within the representation of the bits on the wire. This is
why the descriptions in this section and the next do not follow
standard RFC conventions with bit 0 on the left; if fields are added
in the future, the SDNV will grow to the left, and using this
representation allows the references here to remain valid.
Scott & Burleigh Experimental [Page 13]
^L
RFC 5050 Bundle Protocol Specification November 2007
2 1 0
0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Status Report|Class of Svc.| General |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: Bundle Processing Control Flags Bit Layout
The bits in positions 0 through 6 are flags that characterize the
bundle as follows:
0 -- Bundle is a fragment.
1 -- Application data unit is an administrative record.
2 -- Bundle must not be fragmented.
3 -- Custody transfer is requested.
4 -- Destination endpoint is a singleton.
5 -- Acknowledgement by application is requested.
6 -- Reserved for future use.
The bits in positions 7 through 13 are used to indicate the bundle's
class of service. The bits in positions 8 and 7 constitute a two-bit
priority field indicating the bundle's priority, with higher values
being of higher priority: 00 = bulk, 01 = normal, 10 = expedited, 11
is reserved for future use. Within this field, bit 8 is the most
significant bit. The bits in positions 9 through 13 are reserved for
future use.
The bits in positions 14 through 20 are status report request flags.
These flags are used to request status reports as follows:
14 -- Request reporting of bundle reception.
15 -- Request reporting of custody acceptance.
16 -- Request reporting of bundle forwarding.
17 -- Request reporting of bundle delivery.
18 -- Request reporting of bundle deletion.
19 -- Reserved for future use.
Scott & Burleigh Experimental [Page 14]
^L
RFC 5050 Bundle Protocol Specification November 2007
20 -- Reserved for future use.
If the bundle processing control flags indicate that the bundle's
application data unit is an administrative record, then the custody
transfer requested flag must be zero and all status report request
flags must be zero. If the custody transfer requested flag is 1,
then the sending node requests that the receiving node accept custody
of the bundle. If the bundle's source endpoint ID is "dtn:none" (see
below), then the bundle is not uniquely identifiable and all bundle
protocol features that rely on bundle identity must therefore be
disabled: the bundle's custody transfer requested flag must be zero,
the "Bundle must not be fragmented" flag must be 1, and all status
report request flags must be zero.
4.3. Block Processing Control Flags
The block processing control flags field in every block other than
the primary bundle block is an SDNV; the value encoded in this SDNV
is a string of bits used to invoke selected block processing control
features. The significance of the values in all currently defined
positions of this bit string, in order from least significant
position in the decoded bit string (labeled '0') to most significant
(labeled '6'), is described here.
0
6 5 4 3 2 1 0
+-+-+-+-+-+-+-+
| Flags |
+-+-+-+-+-+-+-+
Figure 4: Block Processing Control Flags Bit Layout
0 - Block must be replicated in every fragment.
1 - Transmit status report if block can't be processed.
2 - Delete bundle if block can't be processed.
3 - Last block.
4 - Discard block if it can't be processed.
5 - Block was forwarded without being processed.
6 - Block contains an EID-reference field.
Scott & Burleigh Experimental [Page 15]
^L
RFC 5050 Bundle Protocol Specification November 2007
For each bundle whose primary block's bundle processing control flags
(see above) indicate that the bundle's application data unit is an
administrative record, the "Transmit status report if block can't be
processed" flag in the block processing flags field of every other
block in the bundle must be zero.
The 'Block must be replicated in every fragment' bit in the block
processing flags must be set to zero on all blocks that follow the
payload block.
4.4. Endpoint IDs
The destinations of bundles are bundle endpoints, identified by text
strings termed "endpoint IDs" (see Section 3.1). Each endpoint ID
conveyed in any bundle block takes the form of a Uniform Resource
Identifier (URI; [URI]). As such, each endpoint ID can be
characterized as having this general structure:
< scheme name > : < scheme-specific part, or "SSP" >
As used for the purposes of the bundle protocol, neither the length
of a scheme name nor the length of an SSP may exceed 1023 bytes.
Bundle blocks cite a number of endpoint IDs for various purposes of
the bundle protocol. Many, though not necessarily all, of the
endpoint IDs referred to in the blocks of a given bundle are conveyed
in the "dictionary" byte array in the bundle's primary block. This
array is simply the concatenation of any number of null-terminated
scheme names and SSPs.
"Endpoint ID references" are used to cite endpoint IDs that are
contained in the dictionary; all endpoint ID citations in the primary
bundle block are endpoint ID references, and other bundle blocks may
contain endpoint ID references as well. Each endpoint ID reference
is an ordered pair of SDNVs:
o The first SDNV contains the offset within the dictionary of the
first character of the referenced endpoint ID's scheme name.
o The second SDNV contains the offset within the dictionary of the
first character of the referenced endpoint ID's SSP.
This encoding enables a degree of block compression: when the source
and report-to of a bundle are the same endpoint, for example, the
text of that endpoint's ID may be cited twice yet appear only once in
the dictionary.
Scott & Burleigh Experimental [Page 16]
^L
RFC 5050 Bundle Protocol Specification November 2007
The scheme identified by the < scheme name > in an endpoint ID is a
set of syntactic and semantic rules that fully explain how to parse
and interpret the SSP. The set of allowable schemes is effectively
unlimited. Any scheme conforming to [URIREG] may be used in a bundle
protocol endpoint ID. In addition, a single additional scheme is
defined by the present document:
o The "dtn" scheme, which is used at minimum in the representation
of the null endpoint ID "dtn:none". The forwarding of a bundle to
the null endpoint is never contraindicated, and the minimum
reception group for the null endpoint is the empty set.
Note that, although the endpoint IDs conveyed in bundle blocks are
expressed as URIs, implementations of the BP service interface may
support expression of endpoint IDs in some internationalized manner
(e.g., Internationalized Resource Identifiers (IRIs); see [RFC3987]).
4.5. Formats of Bundle Blocks
This section describes the formats of the primary block and payload
block. Rules for processing these blocks appear in Section 5 of this
document.
Note that supplementary DTN protocol specifications (including, but
not restricted to, the Bundle Security Protocol [BSP]) may require
that BP implementations conforming to those protocols construct and
process additional blocks.
The format of the two basic BP blocks is shown in Figure 5 below.
Scott & Burleigh Experimental [Page 17]
^L
RFC 5050 Bundle Protocol Specification November 2007
Primary Bundle Block
+----------------+----------------+----------------+----------------+
| Version | Proc. Flags (*) |
+----------------+----------------+----------------+----------------+
| Block length (*) |
+----------------+----------------+---------------------------------+
| Destination scheme offset (*) | Destination SSP offset (*) |
+----------------+----------------+----------------+----------------+
| Source scheme offset (*) | Source SSP offset (*) |
+----------------+----------------+----------------+----------------+
| Report-to scheme offset (*) | Report-to SSP offset (*) |
+----------------+----------------+----------------+----------------+
| Custodian scheme offset (*) | Custodian SSP offset (*) |
+----------------+----------------+----------------+----------------+
| Creation Timestamp time (*) |
+---------------------------------+---------------------------------+
| Creation Timestamp sequence number (*) |
+---------------------------------+---------------------------------+
| Lifetime (*) |
+----------------+----------------+----------------+----------------+
| Dictionary length (*) |
+----------------+----------------+----------------+----------------+
| Dictionary byte array (variable) |
+----------------+----------------+---------------------------------+
| [Fragment offset (*)] |
+----------------+----------------+---------------------------------+
| [Total application data unit length (*)] |
+----------------+----------------+---------------------------------+
Bundle Payload Block
+----------------+----------------+----------------+----------------+
| Block type | Proc. Flags (*)| Block length(*) |
+----------------+----------------+----------------+----------------+
/ Bundle Payload (variable) /
+-------------------------------------------------------------------+
Figure 5: Bundle Block Formats
(*) Notes:
The bundle processing control ("Proc.") flags field in the Primary
Bundle Block is an SDNV and is therefore variable length. A three-
octet SDNV is shown here for convenience in representation.
The block length field of the Primary Bundle Block is an SDNV and is
therefore variable length. A four-octet SDNV is shown here for
convenience in representation.
Scott & Burleigh Experimental [Page 18]
^L
RFC 5050 Bundle Protocol Specification November 2007
Each of the eight offset fields in the Primary Bundle Block is an
SDNV and is therefore variable length. Two-octet SDNVs are shown
here for convenience in representation.
The Creation Timestamp time field in the Primary Bundle Block is an
SDNV and is therefore variable length. A four-octet SDNV is shown
here for convenience in representation.
The Creation Timestamp sequence number field in the Primary Bundle
Block is an SDNV and is therefore variable length. A four-octet SDNV
is shown here for convenience in representation.
The Lifetime field in the Primary Bundle Block is an SDNV and is
therefore variable length. A four-octet SDNV is shown here for
convenience in representation.
The dictionary length field of the Primary Bundle Block is an SDNV
and is therefore variable length. A four-octet SDNV is shown here
for convenience in representation.
The fragment offset field of the Primary Bundle Block is present only
if the Fragment flag in the block's processing flags byte is set to
1. It is an SDNV and is therefore variable length; a four-octet SDNV
is shown here for convenience in representation.
The total application data unit length field of the Primary Bundle
Block is present only if the Fragment flag in the block's processing
flags byte is set to 1. It is an SDNV and is therefore variable
length; a four-octet SDNV is shown here for convenience in
representation.
The block processing control ("Proc.") flags field of the Payload
Block is an SDNV and is therefore variable length. A one-octet SDNV
is shown here for convenience in representation.
The block length field of the Payload Block is an SDNV and is
therefore variable length. A two-octet SDNV is shown here for
convenience in representation.
4.5.1. Primary Bundle Block
The primary bundle block contains the basic information needed to
route bundles to their destinations. The fields of the primary
bundle block are:
Scott & Burleigh Experimental [Page 19]
^L
RFC 5050 Bundle Protocol Specification November 2007
Version: A 1-byte field indicating the version of the bundle
protocol that constructed this block. The present document
describes version 0x06 of the bundle protocol.
Bundle Processing Control Flags: The Bundle Processing Control
Flags field is an SDNV that contains the bundle processing control
flags discussed in Section 4.2 above.
Block Length: The Block Length field is an SDNV that contains the
aggregate length of all remaining fields of the block.
Destination Scheme Offset: The Destination Scheme Offset field
contains the offset within the dictionary byte array of the scheme
name of the endpoint ID of the bundle's destination, i.e., the
endpoint containing the node(s) at which the bundle is to be
delivered.
Destination SSP Offset: The Destination SSP Offset field contains
the offset within the dictionary byte array of the scheme-specific
part of the endpoint ID of the bundle's destination.
Source Scheme Offset: The Source Scheme Offset field contains the
offset within the dictionary byte array of the scheme name of the
endpoint ID of the bundle's nominal source, i.e., the endpoint
nominally containing the node from which the bundle was initially
transmitted.
Source SSP Offset: The Source SSP Offset field contains the offset
within the dictionary byte array of the scheme-specific part of
the endpoint ID of the bundle's nominal source.
Report-to Scheme Offset: The Report-to Scheme Offset field contains
the offset within the dictionary byte array of the scheme name of
the ID of the endpoint to which status reports pertaining to the
forwarding and delivery of this bundle are to be transmitted.
Report-to SSP Offset: The Report-to SSP Offset field contains the
offset within the dictionary byte array of the scheme-specific
part of the ID of the endpoint to which status reports pertaining
to the forwarding and delivery of this bundle are to be
transmitted.
Custodian Scheme Offset: The "current custodian endpoint ID" of a
primary bundle block identifies an endpoint whose membership
includes the node that most recently accepted custody of the
bundle upon forwarding this bundle. The Custodian Scheme Offset
field contains the offset within the dictionary byte array of the
scheme name of the current custodian endpoint ID.
Scott & Burleigh Experimental [Page 20]
^L
RFC 5050 Bundle Protocol Specification November 2007
Custodian SSP Offset: The Custodian SSP Offset field contains the
offset within the dictionary byte array of the scheme-specific
part of the current custodian endpoint ID.
Creation Timestamp: The creation timestamp is a pair of SDNVs that,
together with the source endpoint ID and (if the bundle is a
fragment) the fragment offset and payload length, serve to
identify the bundle. The first SDNV of the timestamp is the
bundle's creation time, while the second is the bundle's creation
timestamp sequence number. Bundle creation time is the time --
expressed in seconds since the start of the year 2000, on the
Coordinated Universal Time (UTC) scale [UTC] -- at which the
transmission request was received that resulted in the creation of
the bundle. Sequence count is the latest value (as of the time at
which that transmission request was received) of a monotonically
increasing positive integer counter managed by the source node's
bundle protocol agent that may be reset to zero whenever the
current time advances by one second. A source Bundle Protocol
Agent must never create two distinct bundles with the same source
endpoint ID and bundle creation timestamp. The combination of
source endpoint ID and bundle creation timestamp therefore serves
to identify a single transmission request, enabling it to be
acknowledged by the receiving application (provided the source
endpoint ID is not "dtn:none").
Lifetime: The lifetime field is an SDNV that indicates the time at
which the bundle's payload will no longer be useful, encoded as a
number of seconds past the creation time. When the current time
is greater than the creation time plus the lifetime, bundle nodes
need no longer retain or forward the bundle; the bundle may be
deleted from the network.
Dictionary Length: The Dictionary Length field is an SDNV that
contains the length of the dictionary byte array.
Dictionary: The Dictionary field is an array of bytes formed by
concatenating the null-terminated scheme names and SSPs of all
endpoint IDs referenced by any fields in this Primary Block
together with, potentially, other endpoint IDs referenced by
fields in other TBD DTN protocol blocks. Its length is given by
the value of the Dictionary Length field.
Fragment Offset: If the Bundle Processing Control Flags of this
Primary block indicate that the bundle is a fragment, then the
Fragment Offset field is an SDNV indicating the offset from the
start of the original application data unit at which the bytes
comprising the payload of this bundle were located. If not, then
the Fragment Offset field is omitted from the block.
Scott & Burleigh Experimental [Page 21]
^L
RFC 5050 Bundle Protocol Specification November 2007
Total Application Data Unit Length: If the Bundle Processing
Control Flags of this Primary block indicate that the bundle is a
fragment, then the Total Application Data Unit Length field is an
SDNV indicating the total length of the original application data
unit of which this bundle's payload is a part. If not, then the
Total Application Data Unit Length field is omitted from the
block.
4.5.2. Canonical Bundle Block Format
Every bundle block of every type other than the primary bundle block
comprises the following fields, in this order:
o Block type code, expressed as an 8-bit unsigned binary integer.
Bundle block type code 1 indicates that the block is a bundle
payload block. Block type codes 192 through 255 are not defined
in this specification and are available for private and/or
experimental use. All other values of the block type code are
reserved for future use.
o Block processing control flags, an unsigned integer expressed as
an SDNV. The individual bits of this integer are used to invoke
selected block processing control features.
o Block EID reference count and EID references (optional). If and
only if the block references EID elements in the primary block's
dictionary, the 'block contains an EID-reference field' flag in
the block processing control flags is set to 1 and the block
includes an EID reference field consisting of a count of EID
references expressed as an SDNV followed by the EID references
themselves. Each EID reference is a pair of SDNVs. The first
SDNV of each EID reference contains the offset of a scheme name in
the primary block's dictionary, and the second SDNV of each
reference contains the offset of a scheme-specific part in the
dictionary.
o Block data length, an unsigned integer expressed as an SDNV. The
Block data length field contains the aggregate length of all
remaining fields of the block, i.e., the block-type-specific data
fields.
o Block-type-specific data fields, whose format and order are type-
specific and whose aggregate length in octets is the value of the
block data length field. All multi-byte block-type-specific data
fields are represented in network byte order.
Scott & Burleigh Experimental [Page 22]
^L
RFC 5050 Bundle Protocol Specification November 2007
+-----------+-----------+-----------+-----------+
|Block type | Block processing ctrl flags (SDNV)|
+-----------+-----------+-----------+-----------+
| Block length (SDNV) |
+-----------+-----------+-----------+-----------+
/ Block body data (variable) /
+-----------+-----------+-----------+-----------+
Figure 6: Block Layout without EID Reference List
+-----------+-----------+-----------+-----------+
|Block Type | Block processing ctrl flags (SDNV)|
+-----------+-----------+-----------+-----------+
| EID Reference Count (SDNV) |
+-----------+-----------+-----------+-----------+
| Ref_scheme_1 (SDNV) | Ref_ssp_1 (SDNV) |
+-----------+-----------+-----------+-----------+
| Ref_scheme_2 (SDNV) | Ref_ssp_2 (SDNV) |
+-----------+-----------+-----------+-----------+
| Block length (SDNV) |
+-----------+-----------+-----------+-----------+
/ Block body data (variable) /
+-----------+-----------+-----------+-----------+
Figure 7: Block Layout Showing Two EID References
4.5.3. Bundle Payload Block
The fields of the bundle payload block are:
Block Type: The Block Type field is a 1-byte field that indicates
the type of the block. For the bundle payload block, this field
contains the value 1.
Block Processing Control Flags: The Block Processing Control Flags
field is an SDNV that contains the block processing control flags
discussed in Section 4.3 above.
Block Length: The Block Length field is an SDNV that contains the
aggregate length of all remaining fields of the block - which is
to say, the length of the bundle's payload.
Payload: The Payload field contains the application data carried by
this bundle.
That is, bundle payload blocks follow the canonical format of the
previous section with the restriction that the 'block contains an
Scott & Burleigh Experimental [Page 23]
^L
RFC 5050 Bundle Protocol Specification November 2007
EID-reference field' bit of the block processing control flags is
never set. The block body data for payload blocks is the application
data carried by the bundle.
4.6. Extension Blocks
"Extension blocks" are all blocks other than the primary and payload
blocks. Because extension blocks are not defined in the Bundle
Protocol specification (the present document), not all nodes
conforming to this specification will necessarily instantiate Bundle
Protocol implementations that include procedures for processing (that
is, recognizing, parsing, acting on, and/or producing) all extension
blocks. It is therefore possible for a node to receive a bundle that
includes extension blocks that the node cannot process.
Whenever a bundle is forwarded that contains one or more extension
blocks that could not be processed, the "Block was forwarded without
being processed" flag must be set to 1 within the block processing
flags of each such block. For each block flagged in this way, the
flag may optionally be cleared (i.e., set to zero) by another node
that subsequently receives the bundle and is able to process that
block; the specifications defining the various extension blocks are
expected to define the circumstances under which this flag may be
cleared, if any.
4.7. Dictionary Revision
Any strings (scheme names and SSPs) in a bundle's dictionary that are
referenced neither from the bundle's primary block nor from the block
EID reference field of any extension block may be removed from the
dictionary at the time the bundle is forwarded.
Whenever removal of a string from the dictionary causes the offsets
(within the dictionary byte array) of any other strings to change,
all endpoint ID references that refer to those strings must be
adjusted at the same time. Note that these references may be in the
primary block and/or in the block EID reference fields of extension
blocks.
5. Bundle Processing
The bundle processing procedures mandated in this section and in
Section 6 govern the operation of the Bundle Protocol Agent and the
Application Agent administrative element of each bundle node. They
are neither exhaustive nor exclusive. That is, supplementary DTN
protocol specifications (including, but not restricted to, the Bundle
Security Protocol [BSP]) may require that additional measures be
taken at specified junctures in these procedures. Such additional
Scott & Burleigh Experimental [Page 24]
^L
RFC 5050 Bundle Protocol Specification November 2007
measures shall not override or supersede the mandated bundle protocol
procedures, except that they may in some cases make these procedures
moot by requiring, for example, that implementations conforming to
the supplementary protocol terminate the processing of a given
incoming or outgoing bundle due to a fault condition recognized by
that protocol.
5.1. Generation of Administrative Records
All initial transmission of bundles is in response to bundle
transmission requests presented by nodes' application agents. When
required to "generate" an administrative record (a bundle status
report or a custody signal), the bundle protocol agent itself is
responsible for causing a new bundle to be transmitted, conveying
that record. In concept, the bundle protocol agent discharges this
responsibility by directing the administrative element of the node's
application agent to construct the record and request its
transmission as detailed in Section 6 below. In practice, the manner
in which administrative record generation is accomplished is an
implementation matter, provided the constraints noted in Section 6
are observed.
Under some circumstances, the requesting of status reports could
result in an unacceptable increase in the bundle traffic in the
network. For this reason, the generation of status reports is
mandatory only in one case, the deletion of a bundle for which
custody transfer is requested. In all other cases, the decision on
whether or not to generate a requested status report is left to the
discretion of the bundle protocol agent. Mechanisms that could
assist in making such decisions, such as pre-placed agreements
authorizing the generation of status reports under specified
circumstances, are beyond the scope of this specification.
Notes on administrative record terminology:
o A "bundle reception status report" is a bundle status report with
the "reporting node received bundle" flag set to 1.
o A "custody acceptance status report" is a bundle status report
with the "reporting node accepted custody of bundle" flag set to
1.
o A "bundle forwarding status report" is a bundle status report with
the "reporting node forwarded the bundle" flag set to 1.
o A "bundle delivery status report" is a bundle status report with
the "reporting node delivered the bundle" flag set to 1.
Scott & Burleigh Experimental [Page 25]
^L
RFC 5050 Bundle Protocol Specification November 2007
o A "bundle deletion status report" is a bundle status report with
the "reporting node deleted the bundle" flag set to 1.
o A "Succeeded" custody signal is a custody signal with the "custody
transfer succeeded" flag set to 1.
o A "Failed" custody signal is a custody signal with the "custody
transfer succeeded" flag set to zero.
o The "current custodian" of a bundle is the endpoint identified by
the current custodian endpoint ID in the bundle's primary block.
5.2. Bundle Transmission
The steps in processing a bundle transmission request are:
Step 1: If custody transfer is requested for this bundle
transmission and, moreover, custody acceptance by the source node
is required, then either the bundle protocol agent must commit to
accepting custody of the bundle -- in which case processing
proceeds from Step 2 -- or the request cannot be honored and all
remaining steps of this procedure must be skipped. The bundle
protocol agent must not commit to accepting custody of a bundle if
the conditions under which custody of the bundle may be accepted
are not satisfied. The conditions under which a node may accept
custody of a bundle whose destination is not a singleton endpoint
are not defined in this specification.
Step 2: Transmission of the bundle is initiated. An outbound
bundle must be created per the parameters of the bundle
transmission request, with current custodian endpoint ID set to
the null endpoint ID "dtn:none" and with the retention constraint
"Dispatch pending". The source endpoint ID of the bundle must be
either the ID of an endpoint of which the node is a member or the
null endpoint ID "dtn:none".
Step 3: Processing proceeds from Step 1 of Section 5.4.
5.3. Bundle Dispatching
The steps in dispatching a bundle are:
Step 1: If the bundle's destination endpoint is an endpoint of
which the node is a member, the bundle delivery procedure defined
in Section 5.7 must be followed.
Step 2: Processing proceeds from Step 1 of Section 5.4.
Scott & Burleigh Experimental [Page 26]
^L
RFC 5050 Bundle Protocol Specification November 2007
5.4. Bundle Forwarding
The steps in forwarding a bundle are:
Step 1: The retention constraint "Forward pending" must be added to
the bundle, and the bundle's "Dispatch pending" retention
constraint must be removed.
Step 2: The bundle protocol agent must determine whether or not
forwarding is contraindicated for any of the reasons listed in
Figure 12. In particular:
* The bundle protocol agent must determine which endpoint(s) to
forward the bundle to. The bundle protocol agent may choose
either to forward the bundle directly to its destination
endpoint (if possible) or to forward the bundle to some other
endpoint(s) for further forwarding. The manner in which this
decision is made may depend on the scheme name in the
destination endpoint ID but in any case is beyond the scope of
this document. If the agent finds it impossible to select any
endpoint(s) to forward the bundle to, then forwarding is
contraindicated.
* Provided the bundle protocol agent succeeded in selecting the
endpoint(s) to forward the bundle to, the bundle protocol agent
must select the convergence layer adapter(s) whose services
will enable the node to send the bundle to the nodes of the
minimum reception group of each selected endpoint. The manner
in which the appropriate convergence layer adapters are
selected may depend on the scheme name in the destination
endpoint ID but in any case is beyond the scope of this
document. If the agent finds it impossible to select
convergence layer adapters to use in forwarding this bundle,
then forwarding is contraindicated.
Step 3: If forwarding of the bundle is determined to be
contraindicated for any of the reasons listed in Figure 12, then
the Forwarding Contraindicated procedure defined in Section 5.4.1
must be followed; the remaining steps of Section 5 are skipped at
this time.
Step 4: If the bundle's custody transfer requested flag (in the
bundle processing flags field) is set to 1, then the custody
transfer procedure defined in Section 5.10.2 must be followed.
Scott & Burleigh Experimental [Page 27]
^L
RFC 5050 Bundle Protocol Specification November 2007
Step 5: For each endpoint selected for forwarding, the bundle
protocol agent must invoke the services of the selected
convergence layer adapter(s) in order to effect the sending of the
bundle to the nodes constituting the minimum reception group of
that endpoint. Determining the time at which the bundle is to be
sent by each convergence layer adapter is an implementation
matter.
To keep from possibly invalidating bundle security, the sequencing
of the blocks in a forwarded bundle must not be changed as it
transits a node; received blocks must be transmitted in the same
relative order as that in which they were received. While blocks
may be added to bundles as they transit intermediate nodes,
removal of blocks that do not have their 'Discard block if it
can't be processed' flag in the block processing control flags set
to 1 may cause security to fail.
Step 6: When all selected convergence layer adapters have informed
the bundle protocol agent that they have concluded their data
sending procedures with regard to this bundle:
* If the "request reporting of bundle forwarding" flag in the
bundle's status report request field is set to 1, then a bundle
forwarding status report should be generated, destined for the
bundle's report-to endpoint ID. If the bundle has the
retention constraint "custody accepted" and all of the nodes in
the minimum reception group of the endpoint selected for
forwarding are known to be unable to send bundles back to this
node, then the reason code on this bundle forwarding status
report must be "forwarded over unidirectional link"; otherwise,
the reason code must be "no additional information".
* The bundle's "Forward pending" retention constraint must be
removed.
5.4.1. Forwarding Contraindicated
The steps in responding to contraindication of forwarding for some
reason are:
Step 1: The bundle protocol agent must determine whether or not to
declare failure in forwarding the bundle for this reason. Note:
this decision is likely to be influenced by the reason for which
forwarding is contraindicated.
Scott & Burleigh Experimental [Page 28]
^L
RFC 5050 Bundle Protocol Specification November 2007
Step 2: If forwarding failure is declared, then the Forwarding
Failed procedure defined in Section 5.4.2 must be followed.
Otherwise, (a) if the bundle's custody transfer requested flag (in
the bundle processing flags field) is set to 1, then the custody
transfer procedure defined in Section 5.10 must be followed; (b)
when -- at some future time - the forwarding of this bundle ceases
to be contraindicated, processing proceeds from Step 5 of
Section 5.4.
5.4.2. Forwarding Failed
The steps in responding to a declaration of forwarding failure for
some reason are:
Step 1: If the bundle's custody transfer requested flag (in the
bundle processing flags field) is set to 1, custody transfer
failure must be handled. Procedures for handling failure of
custody transfer for a bundle whose destination is not a singleton
endpoint are not defined in this specification. For a bundle
whose destination is a singleton endpoint, the bundle protocol
agent must handle the custody transfer failure by generating a
"Failed" custody signal for the bundle, destined for the bundle's
current custodian; the custody signal must contain a reason code
corresponding to the reason for which forwarding was determined to
be contraindicated. (Note that discarding the bundle will not
delete it from the network, since the current custodian still has
a copy.)
Step 2: If the bundle's destination endpoint is an endpoint of
which the node is a member, then the bundle's "Forward pending"
retention constraint must be removed. Otherwise, the bundle must
be deleted: the bundle deletion procedure defined in Section 5.13
must be followed, citing the reason for which forwarding was
determined to be contraindicated.
5.5. Bundle Expiration
A bundle expires when the current time is greater than the bundle's
creation time plus its lifetime as specified in the primary bundle
block. Bundle expiration may occur at any point in the processing of
a bundle. When a bundle expires, the bundle protocol agent must
delete the bundle for the reason "lifetime expired": the bundle
deletion procedure defined in Section 5.13 must be followed.
Scott & Burleigh Experimental [Page 29]
^L
RFC 5050 Bundle Protocol Specification November 2007
5.6. Bundle Reception
The steps in processing a bundle received from another node are:
Step 1: The retention constraint "Dispatch pending" must be added
to the bundle.
Step 2: If the "request reporting of bundle reception" flag in the
bundle's status report request field is set to 1, then a bundle
reception status report with reason code "No additional
information" should be generated, destined for the bundle's
report-to endpoint ID.
Step 3: For each block in the bundle that is an extension block
that the bundle protocol agent cannot process:
* If the block processing flags in that block indicate that a
status report is requested in this event, then a bundle
reception status report with reason code "Block unintelligible"
should be generated, destined for the bundle's report-to
endpoint ID.
* If the block processing flags in that block indicate that the
bundle must be deleted in this event, then the bundle protocol
agent must delete the bundle for the reason "Block
unintelligible"; the bundle deletion procedure defined in
Section 5.13 must be followed and all remaining steps of the
bundle reception procedure must be skipped.
* If the block processing flags in that block do NOT indicate
that the bundle must be deleted in this event but do indicate
that the block must be discarded, then the bundle protocol
agent must remove this block from the bundle.
* If the block processing flags in that block indicate NEITHER
that the bundle must be deleted NOR that the block must be
discarded, then the bundle protocol agent must set to 1 the
"Block was forwarded without being processed" flag in the block
processing flags of the block.
Step 4: If the bundle's custody transfer requested flag (in the
bundle processing flags field) is set to 1 and the bundle has the
same source endpoint ID, creation timestamp, and (if the bundle is
a fragment) fragment offset and payload length as another bundle
that (a) has not been discarded and (b) currently has the
retention constraint "Custody accepted", custody transfer
redundancy must be handled. Otherwise, processing proceeds from
Step 5. Procedures for handling redundancy in custody transfer
Scott & Burleigh Experimental [Page 30]
^L
RFC 5050 Bundle Protocol Specification November 2007
for a bundle whose destination is not a singleton endpoint are not
defined in this specification. For a bundle whose destination is
a singleton endpoint, the bundle protocol agent must handle
custody transfer redundancy by generating a "Failed" custody
signal for this bundle with reason code "Redundant reception",
destined for this bundle's current custodian, and removing this
bundle's "Dispatch pending" retention constraint.
Step 5: Processing proceeds from Step 1 of Section 5.3.
5.7. Local Bundle Delivery
The steps in processing a bundle that is destined for an endpoint of
which this node is a member are:
Step 1: If the received bundle is a fragment, the application data
unit reassembly procedure described in Section 5.9 must be
followed. If this procedure results in reassembly of the entire
original application data unit, processing of this bundle (whose
fragmentary payload has been replaced by the reassembled
application data unit) proceeds from Step 2; otherwise, the
retention constraint "Reassembly pending" must be added to the
bundle and all remaining steps of this procedure are skipped.
Step 2: Delivery depends on the state of the registration whose
endpoint ID matches that of the destination of the bundle:
* If the registration is in the Active state, then the bundle
must be delivered subject to this registration (see Section 3.1
above) as soon as all previously received bundles that are
deliverable subject to this registration have been delivered.
* If the registration is in the Passive state, then the
registration's delivery failure action must be taken (see
Section 3.1 above).
Step 3: As soon as the bundle has been delivered:
* If the "request reporting of bundle delivery" flag in the
bundle's status report request field is set to 1, then a bundle
delivery status report should be generated, destined for the
bundle's report-to endpoint ID. Note that this status report
only states that the payload has been delivered to the
application agent, not that the application agent has processed
that payload.
Scott & Burleigh Experimental [Page 31]
^L
RFC 5050 Bundle Protocol Specification November 2007
* If the bundle's custody transfer requested flag (in the bundle
processing flags field) is set to 1, custodial delivery must be
reported. Procedures for reporting custodial delivery for a
bundle whose destination is not a singleton endpoint are not
defined in this specification. For a bundle whose destination
is a singleton endpoint, the bundle protocol agent must report
custodial delivery by generating a "Succeeded" custody signal
for the bundle, destined for the bundle's current custodian.
5.8. Bundle Fragmentation
It may at times be necessary for bundle protocol agents to reduce the
sizes of bundles in order to forward them. This might be the case,
for example, if the endpoint to which a bundle is to be forwarded is
accessible only via intermittent contacts and no upcoming contact is
long enough to enable the forwarding of the entire bundle.
The size of a bundle can be reduced by "fragmenting" the bundle. To
fragment a bundle whose payload is of size M is to replace it with
two "fragments" -- new bundles with the same source endpoint ID and
creation timestamp as the original bundle -- whose payloads are the
first N and the last (M - N) bytes of the original bundle's payload,
where 0 < N < M. Note that fragments may themselves be fragmented,
so fragmentation may in effect replace the original bundle with more
than two fragments. (However, there is only one 'level' of
fragmentation, as in IP fragmentation.)
Any bundle whose primary block's bundle processing flags do NOT
indicate that it must not be fragmented may be fragmented at any
time, for any purpose, at the discretion of the bundle protocol
agent.
Fragmentation shall be constrained as follows:
o The concatenation of the payloads of all fragments produced by
fragmentation must always be identical to the payload of the
bundle that was fragmented. Note that the payloads of fragments
resulting from different fragmentation episodes, in different
parts of the network, may be overlapping subsets of the original
bundle's payload.
o The bundle processing flags in the primary block of each fragment
must be modified to indicate that the bundle is a fragment, and
both fragment offset and total application data unit length must
be provided at the end of each fragment's primary bundle block.
o The primary blocks of the fragments will differ from that of the
fragmented bundle as noted above.
Scott & Burleigh Experimental [Page 32]
^L
RFC 5050 Bundle Protocol Specification November 2007
o The payload blocks of fragments will differ from that of the
fragmented bundle as noted above.
o All blocks that precede the payload block at the time of
fragmentation must be replicated in the fragment with the lowest
offset.
o All blocks that follow the payload block at the time of
fragmentation must be replicated in the fragment with the highest
offset.
o If the 'Block must be replicated in every fragment' bit is set to
1, then the block must be replicated in every fragment.
o If the 'Block must be replicated in every fragment' bit is set to
zero, the block should be replicated in only one fragment.
o The relative order of all blocks that are present in a fragment
must be the same as in the bundle prior to fragmentation.
5.9. Application Data Unit Reassembly
If the concatenation -- as informed by fragment offsets and payload
lengths -- of the payloads of all previously received fragments with
the same source endpoint ID and creation timestamp as this fragment,
together with the payload of this fragment, forms a byte array whose
length is equal to the total application data unit length in the
fragment's primary block, then:
o This byte array -- the reassembled application data unit -- must
replace the payload of this fragment.
o The "Reassembly pending" retention constraint must be removed from
every other fragment whose payload is a subset of the reassembled
application data unit.
Note: reassembly of application data units from fragments occurs at
destination endpoints as necessary; an application data unit may also
be reassembled at some other endpoint on the route to the
destination.
Scott & Burleigh Experimental [Page 33]
^L
RFC 5050 Bundle Protocol Specification November 2007
5.10. Custody Transfer
The conditions under which a node may accept custody of a bundle
whose destination is not a singleton endpoint are not defined in this
specification.
The decision as to whether or not to accept custody of a bundle whose
destination is a singleton endpoint is an implementation matter that
may involve both resource and policy considerations; however, if the
bundle protocol agent has committed to accepting custody of the
bundle (as described in Step 1 of Section 5.2), then custody must be
accepted.
If the bundle protocol agent elects to accept custody of the bundle,
then it must follow the custody acceptance procedure defined in
Section 5.10.1.
5.10.1. Custody Acceptance
Procedures for acceptance of custody of a bundle whose destination is
not a singleton endpoint are not defined in this specification.
Procedures for acceptance of custody of a bundle whose destination is
a singleton endpoint are defined as follows.
The retention constraint "Custody accepted" must be added to the
bundle.
If the "request reporting of custody acceptance" flag in the bundle's
status report request field is set to 1, a custody acceptance status
report should be generated, destined for the report-to endpoint ID of
the bundle. However, if a bundle reception status report was
generated for this bundle (Step 1 of Section 5.6), then this report
should be generated by simply turning on the "Reporting node accepted
custody of bundle" flag in that earlier report's status flags byte.
The bundle protocol agent must generate a "Succeeded" custody signal
for the bundle, destined for the bundle's current custodian.
The bundle protocol agent must assert the new current custodian for
the bundle. It does so by changing the current custodian endpoint ID
in the bundle's primary block to the endpoint ID of one of the
singleton endpoints in which the node is registered. This may entail
appending that endpoint ID's null-terminated scheme name and SSP to
the dictionary byte array in the bundle's primary block, and in some
case it may also enable the (optional) removal of the current
custodian endpoint ID's scheme name and/or SSP from the dictionary.
Scott & Burleigh Experimental [Page 34]
^L
RFC 5050 Bundle Protocol Specification November 2007
The bundle protocol agent may set a custody transfer countdown timer
for this bundle; upon expiration of this timer prior to expiration of
the bundle itself and prior to custody transfer success for this
bundle, the custody transfer failure procedure detailed in
Section 5.12 must be followed. The manner in which the countdown
interval for such a timer is determined is an implementation matter.
The bundle should be retained in persistent storage if possible.
5.10.2. Custody Release
Procedures for release of custody of a bundle whose destination is
not a singleton endpoint are not defined in this specification.
When custody of a bundle is released, where the destination of the
bundle is a singleton endpoint, the "Custody accepted" retention
constraint must be removed from the bundle and any custody transfer
timer that has been established for this bundle must be destroyed.
5.11. Custody Transfer Success
Procedures for determining custody transfer success for a bundle
whose destination is not a singleton endpoint are not defined in this
specification.
Upon receipt of a "Succeeded" custody signal at a node that is a
custodial node of the bundle identified in the custody signal, where
the destination of the bundle is a singleton endpoint, custody of the
bundle must be released as described in Section 5.10.2.
5.12. Custody Transfer Failure
Procedures for determining custody transfer failure for a bundle
whose destination is not a singleton endpoint are not defined in this
specification. Custody transfer for a bundle whose destination is a
singleton endpoint is determined to have failed at a custodial node
for that bundle when either (a) that node's custody transfer timer
for that bundle (if any) expires or (b) a "Failed" custody signal for
that bundle is received at that node.
Upon determination of custody transfer failure, the action taken by
the bundle protocol agent is implementation-specific and may depend
on the nature of the failure. For example, if custody transfer
failure was inferred from expiration of a custody transfer timer or
was asserted by a "Failed" custody signal with the "Depleted storage"
reason code, the bundle protocol agent might choose to re-forward the
bundle, possibly on a different route (Section 5.4). Receipt of a
"Failed" custody signal with the "Redundant reception" reason code,
Scott & Burleigh Experimental [Page 35]
^L
RFC 5050 Bundle Protocol Specification November 2007
on the other hand, might cause the bundle protocol agent to release
custody of the bundle and to revise its algorithm for computing
countdown intervals for custody transfer timers.
5.13. Bundle Deletion
The steps in deleting a bundle are:
Step 1: If the retention constraint "Custody accepted" currently
prevents this bundle from being discarded, and the destination of
the bundle is a singleton endpoint, then:
* Custody of the node is released as described in Section 5.10.2.
* A bundle deletion status report citing the reason for deletion
must be generated, destined for the bundle's report-to endpoint
ID.
Otherwise, if the "request reporting of bundle deletion" flag in
the bundle's status report request field is set to 1, then a
bundle deletion status report citing the reason for deletion
should be generated, destined for the bundle's report-to endpoint
ID.
Step 2: All of the bundle's retention constraints must be removed.
5.14. Discarding a Bundle
As soon as a bundle has no remaining retention constraints it may be
discarded.
5.15. Canceling a Transmission
When requested to cancel a specified transmission, where the bundle
created upon initiation of the indicated transmission has not yet
been discarded, the bundle protocol agent must delete that bundle for
the reason "transmission cancelled". For this purpose, the procedure
defined in Section 5.13 must be followed.
5.16. Polling
When requested to poll a specified registration that is in the
Passive state, the bundle protocol agent must immediately deliver the
least recently received bundle that is deliverable subject to the
indicated registration, if any.
Scott & Burleigh Experimental [Page 36]
^L
RFC 5050 Bundle Protocol Specification November 2007
6. Administrative Record Processing
6.1. Administrative Records
Administrative records are standard application data units that are
used in providing some of the features of the Bundle Protocol. Two
types of administrative records have been defined to date: bundle
status reports and custody signals.
Every administrative record consists of a four-bit record type code
followed by four bits of administrative record flags, followed by
record content in type-specific format. Record type codes are
defined as follows:
+---------+--------------------------------------------+
| Value | Meaning |
+=========+============================================+
| 0001 | Bundle status report. |
+---------+--------------------------------------------+
| 0010 | Custody signal. |
+---------+--------------------------------------------+
| (other) | Reserved for future use. |
+---------+--------------------------------------------+
Figure 8: Administrative Record Type Codes
+---------+--------------------------------------------+
| Value | Meaning |
+=========+============================================+
| 0001 | Record is for a fragment; fragment |
| | offset and length fields are present. |
+---------+--------------------------------------------+
| (other) | Reserved for future use. |
+---------+--------------------------------------------+
Figure 9: Administrative Record Flags
All time values in administrative records are UTC times expressed in
"DTN time" representation. A DTN time consists of an SDNV indicating
the number of seconds since the start of the year 2000, followed by
an SDNV indicating the number of nanoseconds since the start of the
indicated second.
The contents of the various types of administrative records are
described below.
Scott & Burleigh Experimental [Page 37]
^L
RFC 5050 Bundle Protocol Specification November 2007
6.1.1. Bundle Status Reports
The transmission of 'bundle status reports' under specified
conditions is an option that can be invoked when transmission of a
bundle is requested. These reports are intended to provide
information about how bundles are progressing through the system,
including notices of receipt, custody transfer, forwarding, final
delivery, and deletion. They are transmitted to the Report-to
endpoints of bundles.
+----------------+----------------+----------------+----------------+
| Status Flags | Reason code | Fragment offset (*) (if
+----------------+----------------+----------------+----------------+
present) | Fragment length (*) (if present) |
+----------------+----------------+----------------+----------------+
| Time of receipt of bundle X (a DTN time, if present) |
+----------------+----------------+----------------+----------------+
| Time of custody acceptance of bundle X (a DTN time, if present) |
+----------------+----------------+----------------+----------------+
| Time of forwarding of bundle X (a DTN time, if present) |
+----------------+----------------+----------------+----------------+
| Time of delivery of bundle X (a DTN time, if present) |
+----------------+----------------+----------------+----------------+
| Time of deletion of bundle X (a DTN time, if present) |
+----------------+----------------+----------------+----------------+
| Copy of bundle X's Creation Timestamp time (*) |
+----------------+----------------+----------------+----------------+
| Copy of bundle X's Creation Timestamp sequence number (*) |
+----------------+----------------+----------------+----------------+
| Length of X's source endpoint ID (*) | Source
+----------------+---------------------------------+ +
endpoint ID of bundle X (variable) |
+----------------+----------------+----------------+----------------+
Figure 10: Bundle Status Report Format
(*) Notes:
The Fragment Offset field, if present, is an SDNV and is therefore
variable length. A three-octet SDNV is shown here for convenience in
representation.
The Fragment Length field, if present, is an SDNV and is therefore
variable length. A three-octet SDNV is shown here for convenience in
representation.
Scott & Burleigh Experimental [Page 38]
^L
RFC 5050 Bundle Protocol Specification November 2007
The Creation Timestamp fields replicate the Creation Timestamp fields
in the primary block of the subject bundle. As such they are SDNVs
(see Section 4.5.1 above) and are therefore variable length. Four-
octet SDNVs are shown here for convenience in representation.
The source endpoint ID length field is an SDNV and is therefore
variable length. A three-octet SDNV is shown here for convenience in
representation.
The fields in a bundle status report are:
Status Flags: A 1-byte field containing the following flags:
+----------+--------------------------------------------+
| Value | Meaning |
+==========+============================================+
| 00000001 | Reporting node received bundle. |
+----------+--------------------------------------------+
| 00000010 | Reporting node accepted custody of bundle.|
+----------+--------------------------------------------+
| 00000100 | Reporting node forwarded the bundle. |
+----------+--------------------------------------------+
| 00001000 | Reporting node delivered the bundle. |
+----------+--------------------------------------------+
| 00010000 | Reporting node deleted the bundle. |
+----------+--------------------------------------------+
| 00100000 | Unused. |
+----------+--------------------------------------------+
| 01000000 | Unused. |
+----------+--------------------------------------------+
| 10000000 | Unused. |
+----------+--------------------------------------------+
Figure 11: Status Flags for Bundle Status Reports
Reason Code: A 1-byte field explaining the value of the flags in
the status flags byte. The list of status report reason codes
provided here is neither exhaustive nor exclusive; supplementary
DTN protocol specifications (including, but not restricted to, the
Bundle Security Protocol [BSP]) may define additional reason
codes. Status report reason codes are defined as follows:
Scott & Burleigh Experimental [Page 39]
^L
RFC 5050 Bundle Protocol Specification November 2007
+---------+--------------------------------------------+
| Value | Meaning |
+=========+============================================+
| 0x00 | No additional information. |
+---------+--------------------------------------------+
| 0x01 | Lifetime expired. |
+---------+--------------------------------------------+
| 0x02 | Forwarded over unidirectional link. |
+---------+--------------------------------------------+
| 0x03 | Transmission canceled. |
+---------+--------------------------------------------+
| 0x04 | Depleted storage. |
+---------+--------------------------------------------+
| 0x05 | Destination endpoint ID unintelligible. |
+---------+--------------------------------------------+
| 0x06 | No known route to destination from here. |
+---------+--------------------------------------------+
| 0x07 | No timely contact with next node on route.|
+---------+--------------------------------------------+
| 0x08 | Block unintelligible. |
+---------+--------------------------------------------+
| (other) | Reserved for future use. |
+---------+--------------------------------------------+
Figure 12: Status Report Reason Codes
Fragment Offset: If the bundle fragment bit is set in the status
flags, then the offset (within the original application data unit)
of the payload of the bundle that caused the status report to be
generated is included here.
Fragment length: If the bundle fragment bit is set in the status
flags, then the length of the payload of the subject bundle is
included here.
Time of Receipt (if present): If the bundle-received bit is set in
the status flags, then a DTN time indicating the time at which the
bundle was received at the reporting node is included here.
Time of Custody Acceptance (if present): If the custody-accepted
bit is set in the status flags, then a DTN time indicating the
time at which custody was accepted at the reporting node is
included here.
Time of Forward (if present): If the bundle-forwarded bit is set in
the status flags, then a DTN time indicating the time at which the
bundle was first forwarded at the reporting node is included here.
Scott & Burleigh Experimental [Page 40]
^L
RFC 5050 Bundle Protocol Specification November 2007
Time of Delivery (if present): If the bundle-delivered bit is set
in the status flags, then a DTN time indicating the time at which
the bundle was delivered at the reporting node is included here.
Time of Deletion (if present): If the bundle-deleted bit is set in
the status flags, then a DTN time indicating the time at which the
bundle was deleted at the reporting node is included here.
Creation Timestamp of Subject Bundle: A copy of the creation
timestamp of the bundle that caused the status report to be
generated.
Length of Source Endpoint ID: The length in bytes of the source
endpoint ID of the bundle that caused the status report to be
generated.
Source Endpoint ID text: The text of the source endpoint ID of the
bundle that caused the status report to be generated.
6.1.2. Custody Signals
Custody signals are administrative records that effect custody
transfer operations. They are transmitted to the endpoints that are
the current custodians of bundles.
Custody signals have the following format.
Custody signal regarding bundle 'X':
+----------------+----------------+----------------+----------------+
| Status | Fragment offset (*) (if present) |
+----------------+----------------+----------------+----------------+
| Fragment length (*) (if present) |
+----------------+----------------+----------------+----------------+
| Time of signal (a DTN time) |
+----------------+----------------+----------------+----------------+
| Copy of bundle X's Creation Timestamp time (*) |
+----------------+----------------+----------------+----------------+
| Copy of bundle X's Creation Timestamp sequence number (*) |
+----------------+----------------+----------------+----------------+
| Length of X's source endpoint ID (*) | Source
+----------------+---------------------------------+ +
endpoint ID of bundle X (variable) |
+----------------+----------------+----------------+----------------+
Figure 13: Custody Signal Format
Scott & Burleigh Experimental [Page 41]
^L
RFC 5050 Bundle Protocol Specification November 2007
(*) Notes:
The Fragment Offset field, if present, is an SDNV and is therefore
variable length. A three-octet SDNV is shown here for convenience in
representation.
The Fragment Length field, if present, is an SDNV and is therefore
variable length. A four-octet SDNV is shown here for convenience in
representation.
The Creation Timestamp fields replicate the Creation Timestamp fields
in the primary block of the subject bundle. As such they are SDNVs
(see Section 4.5.1 above) and are therefore variable length. Four-
octet SDNVs are shown here for convenience in representation.
The source endpoint ID length field is an SDNV and is therefore
variable length. A three-octet SDNV is shown here for convenience in
representation.
The fields in a custody signal are:
Status: A 1-byte field containing a 1-bit "custody transfer
succeeded" flag followed by a 7-bit reason code explaining the
value of that flag. Custody signal reason codes are defined as
follows:
Scott & Burleigh Experimental [Page 42]
^L
RFC 5050 Bundle Protocol Specification November 2007
+---------+--------------------------------------------+
| Value | Meaning |
+=========+============================================+
| 0x00 | No additional information. |
+---------+--------------------------------------------+
| 0x01 | Reserved for future use. |
+---------+--------------------------------------------+
| 0x02 | Reserved for future use. |
+---------+--------------------------------------------+
| 0x03 | Redundant reception (reception by a node |
| | that is a custodial node for this bundle).|
+---------+--------------------------------------------+
| 0x04 | Depleted storage. |
+---------+--------------------------------------------+
| 0x05 | Destination endpoint ID unintelligible. |
+---------+--------------------------------------------+
| 0x06 | No known route to destination from here. |
+---------+--------------------------------------------+
| 0x07 | No timely contact with next node on route.|
+---------+--------------------------------------------+
| 0x08 | Block unintelligible. |
+---------+--------------------------------------------+
| (other) | Reserved for future use. |
+---------+--------------------------------------------+
Figure 14: Custody Signal Reason Codes
Fragment offset: If the bundle fragment bit is set in the status
flags, then the offset (within the original application data unit)
of the payload of the bundle that caused the status report to be
generated is included here.
Fragment length: If the bundle fragment bit is set in the status
flags, then the length of the payload of the subject bundle is
included here.
Time of Signal: A DTN time indicating the time at which the signal
was generated.
Creation Timestamp of Subject Bundle: A copy of the creation
timestamp of the bundle to which the signal applies.
Length of Source Endpoint ID: The length in bytes of the source
endpoint ID of the bundle to which the signal applied.
Scott & Burleigh Experimental [Page 43]
^L
RFC 5050 Bundle Protocol Specification November 2007
Source Endpoint ID text: The text of the source endpoint ID of the
bundle to which the signal applies.
6.2. Generation of Administrative Records
Whenever the application agent's administrative element is directed
by the bundle protocol agent to generate an administrative record
with reference to some bundle, the following procedure must be
followed:
Step 1: The administrative record must be constructed. If the
referenced bundle is a fragment, the administrative record must
have the Fragment flag set and must contain the fragment offset
and fragment length fields. The value of the fragment offset
field must be the value of the referenced bundle's fragment
offset, and the value of the fragment length field must be the
length of the referenced bundle's payload.
Step 2: A request for transmission of a bundle whose payload is
this administrative record must be presented to the bundle
protocol agent.
6.3. Reception of Custody Signals
For each received custody signal that has the "custody transfer
succeeded" flag set to 1, the administrative element of the
application agent must direct the bundle protocol agent to follow the
custody transfer success procedure in Section 5.11.
For each received custody signal that has the "custody transfer
succeeded" flag set to 0, the administrative element of the
application agent must direct the bundle protocol agent to follow the
custody transfer failure procedure in Section 5.12.
7. Services Required of the Convergence Layer
7.1. The Convergence Layer
The successful operation of the end-to-end bundle protocol depends on
the operation of underlying protocols at what is termed the
"convergence layer"; these protocols accomplish communication between
nodes. A wide variety of protocols may serve this purpose, so long
as each convergence layer protocol adapter provides a defined minimal
set of services to the bundle protocol agent. This convergence layer
service specification enumerates those services.
Scott & Burleigh Experimental [Page 44]
^L
RFC 5050 Bundle Protocol Specification November 2007
7.2. Summary of Convergence Layer Services
Each convergence layer protocol adapter is expected to provide the
following services to the bundle protocol agent:
o sending a bundle to all bundle nodes in the minimum reception
group of the endpoint identified by a specified endpoint ID that
are reachable via the convergence layer protocol; and
o delivering to the bundle protocol agent a bundle that was sent by
a remote bundle node via the convergence layer protocol.
The convergence layer service interface specified here is neither
exhaustive nor exclusive. That is, supplementary DTN protocol
specifications (including, but not restricted to, the Bundle Security
Protocol [BSP]) may expect convergence layer adapters that serve BP
implementations conforming to those protocols to provide additional
services.
8. Security Considerations
The bundle protocol has taken security into concern from the outset
of its design. It was always assumed that security services would be
needed in the use of the bundle protocol. As a result, the bundle
protocol security architecture and the available security services
are specified in an accompanying document, the Bundle Security
Protocol specification [BSP]; an informative overview of this
architecture is provided in [SECO].
The bundle protocol has been designed with the notion that it will be
run over networks with scarce resources. For example, the networks
might have limited bandwidth, limited connectivity, constrained
storage in relay nodes, etc. Therefore, the bundle protocol must
ensure that only those entities authorized to send bundles over such
constrained environments are actually allowed to do so. All
unauthorized entities should be prevented from consuming valuable
resources.
Likewise, because of the potentially long latencies and delays
involved in the networks that make use of the bundle protocol, data
sources should be concerned with the integrity of the data received
at the intended destination(s) and may also be concerned with
ensuring confidentiality of the data as it traverses the network.
Without integrity, the bundle payload data might be corrupted while
in transit without the destination able to detect it. Similarly, the
data source can be concerned with ensuring that the data can only be
used by those authorized, hence the need for confidentiality.
Scott & Burleigh Experimental [Page 45]
^L
RFC 5050 Bundle Protocol Specification November 2007
Internal to the bundle-aware overlay network, the bundle nodes should
be concerned with the authenticity of other bundle nodes as well as
the preservation of bundle payload data integrity as it is forwarded
between bundle nodes.
As a result, bundle security is concerned with the authenticity,
integrity, and confidentiality of bundles conveyed among bundle
nodes. This is accomplished via the use of three independent
security-specific bundle blocks, which may be used together to
provide multiple bundle security services or independently of one
another, depending on perceived security threats, mandated security
requirements, and security policies that must be enforced.
The Bundle Authentication Block (BAB) ensures the authenticity and
integrity of bundles on a hop-by-hop basis between bundle nodes. The
BAB allows each bundle node to verify a bundle's authenticity before
processing or forwarding the bundle. In this way, entities that are
not authorized to send bundles will have unauthorized transmissions
blocked by security-aware bundle nodes.
Additionally, to provide "security-source" to "security-destination"
bundle authenticity and integrity, the Payload Security Block (PSB)
is used. A "security-source" may not actually be the origination
point of the bundle but instead may be the first point along the path
that is security-aware and is able to apply security services. For
example, an enclave of networked systems may generate bundles but
only their gateway may be required and/or able to apply security
services. The PSB allows any security-enabled entity along the
delivery path, in addition to the "security-destination" (the
recipient counterpart to the "security-source"), to ensure the
bundle's authenticity.
Finally, to provide payload confidentiality, the use of the
Confidentiality Block (CB) is available. The bundle payload may be
encrypted to provide "security-source" to "security-destination"
payload confidentiality/privacy. The CB indicates the cryptographic
algorithm and key IDs that were used to encrypt the payload.
Note that removal of strings from the dictionary at a given point in
a bundle's end-to-end path, and attendant adjustment of endpoint ID
references in the blocks of that bundle, may make it necessary to re-
compute values in one or more of the bundle's security blocks.
Bundle security must not be invalidated by forwarding nodes even
though they themselves might not use the Bundle Security Protocol.
In particular, the sequencing of the blocks in a forwarded bundle
must not be changed as it transits a node; received blocks must be
transmitted in the same relative order as that in which they were
Scott & Burleigh Experimental [Page 46]
^L
RFC 5050 Bundle Protocol Specification November 2007
received. While blocks may be added to bundles as they transit
intermediate nodes, removal of blocks that do not have their 'Discard
block if it can't be processed' flag in the block processing control
flags set to 1 may cause security to fail.
Inclusion of the Bundle Security Protocol in any Bundle Protocol
implementation is RECOMMENDED. Use of the Bundle Security Protocol
in Bundle Protocol operations is OPTIONAL.
9. IANA Considerations
The "dtn:" URI scheme has been provisionally registered by IANA. See
http://www.iana.org/assignments/uri-schemes.html for the latest
details.
10. References
10.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[URI] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", RFC 3986,
STD 66, January 2005.
[URIREG] Hansen, T., Hardie, T., and L. Masinter, "Guidelines and
Registration Procedures for New URI Schemes", RFC 4395,
BCP 115, February 2006.
10.2. Informative References
[ARCH] V. Cerf et. al., "Delay-Tolerant Network Architecture",
RFC 4838, April 2007.
[ASN1] "Abstract Syntax Notation One (ASN.1), "ASN.1 Encoding
Rules: Specification of Basic Encoding Rules (BER),
Canonical Encoding Rules (CER) and Distinguished Encoding
Rules (DER)," ITU-T Rec. X.690 (2002) | ISO/IEC 8825-
1:2002", 2003.
[BSP] Symington, S., "Bundle Security Protocol Specification",
Work Progress, October 2007.
[RFC3987] Duerst, M. and M. Suignard, "Internationalized Resource
Identifiers (IRIs)", RFC 3987, January 2005.
Scott & Burleigh Experimental [Page 47]
^L
RFC 5050 Bundle Protocol Specification November 2007
[SECO] Farrell, S., Symington, S., Weiss, H., and P. Lovell,
"Delay-Tolerant Networking Security Overview",
Work Progress, July 2007.
[SIGC] Fall, K., "A Delay-Tolerant Network Architecture for
Challenged Internets", SIGCOMM 2003 .
[TUT] Warthman, F., "Delay-Tolerant Networks (DTNs): A
Tutorial", <http://www.dtnrg.org>.
[UTC] Arias, E. and B. Guinot, ""Coordinated universal time UTC:
historical background and perspectives" in Journees
systemes de reference spatio-temporels", 2004.
Scott & Burleigh Experimental [Page 48]
^L
RFC 5050 Bundle Protocol Specification November 2007
Appendix A. Contributors
This was an effort of the Delay Tolerant Networking Research Group.
The following DTNRG participants contributed significant technical
material and/or inputs: Dr. Vinton Cerf of Google, Scott Burleigh,
Adrian Hooke, and Leigh Torgerson of the Jet Propulsion Laboratory,
Michael Demmer of the University of California at Berkeley, Robert
Durst, Keith Scott, and Susan Symington of The MITRE Corporation,
Kevin Fall of Intel Research, Stephen Farrell of Trinity College
Dublin, Peter Lovell of SPARTA, Inc., Manikantan Ramadas of Ohio
University (most of Section 4.1), and Howard Weiss of SPARTA, Inc.
(text of Section 8).
Appendix B. Comments
Please refer comments to dtn-interest@mailman.dtnrg.org. The Delay
Tolerant Networking Research Group (DTNRG) Web site is located at
http://www.dtnrg.org.
Authors' Addresses
Keith L. Scott
The MITRE Corporation
7515 Colshire Drive
McLean, VA 21102
US
Phone: +1 703 983 6547
Fax: +1 703 983 7142
EMail: kscott@mitre.org
Scott Burleigh
NASA Jet Propulsion Laboratory
4800 Oak Grove Dr.
Pasadena, CA 91109-8099
US
Phone: +1 818 393 3353
Fax: +1 818 354 1075
EMail: Scott.Burleigh@jpl.nasa.gov
Scott & Burleigh Experimental [Page 49]
^L
RFC 5050 Bundle Protocol Specification November 2007
Full Copyright Statement
Copyright (C) The IETF Trust (2007).
This document is subject to the rights, licenses and restrictions
contained in BCP 78 and at www.rfc-editor.org/copyright.html, and
except as set forth therein, the authors retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Scott & Burleigh Experimental [Page 50]
^L
|