1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
|
Network Working Group J. Laganier
Request for Comments: 5204 DoCoMo Euro-Labs
Category: Experimental L. Eggert
Nokia
April 2008
Host Identity Protocol (HIP) Rendezvous Extension
Status of This Memo
This memo defines an Experimental Protocol for the Internet
community. It does not specify an Internet standard of any kind.
Discussion and suggestions for improvement are requested.
Distribution of this memo is unlimited.
Abstract
This document defines a rendezvous extension for the Host Identity
Protocol (HIP). The rendezvous extension extends HIP and the HIP
registration extension for initiating communication between HIP nodes
via HIP rendezvous servers. Rendezvous servers improve reachability
and operation when HIP nodes are multi-homed or mobile.
Laganier & Eggert Experimental [Page 1]
^L
RFC 5204 HIP Rendezvous Extension April 2008
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 3
3. Overview of Rendezvous Server Operation . . . . . . . . . . . 4
3.1. Diagram Notation . . . . . . . . . . . . . . . . . . . . . 5
3.2. Rendezvous Client Registration . . . . . . . . . . . . . . 6
3.3. Relaying the Base Exchange . . . . . . . . . . . . . . . . 6
4. Rendezvous Server Extensions . . . . . . . . . . . . . . . . . 7
4.1. RENDEZVOUS Registration Type . . . . . . . . . . . . . . . 7
4.2. Parameter Formats and Processing . . . . . . . . . . . . . 8
4.2.1. RVS_HMAC Parameter . . . . . . . . . . . . . . . . . . 8
4.2.2. FROM Parameter . . . . . . . . . . . . . . . . . . . . 9
4.2.3. VIA_RVS Parameter . . . . . . . . . . . . . . . . . . 10
4.3. Modified Packets Processing . . . . . . . . . . . . . . . 10
4.3.1. Processing Outgoing I1 Packets . . . . . . . . . . . . 10
4.3.2. Processing Incoming I1 Packets . . . . . . . . . . . . 11
4.3.3. Processing Outgoing R1 Packets . . . . . . . . . . . . 11
4.3.4. Processing Incoming R1 Packets . . . . . . . . . . . . 11
5. Security Considerations . . . . . . . . . . . . . . . . . . . 12
6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 12
7. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 13
8. References . . . . . . . . . . . . . . . . . . . . . . . . . . 13
8.1. Normative References . . . . . . . . . . . . . . . . . . . 13
8.2. Informative References . . . . . . . . . . . . . . . . . . 14
Laganier & Eggert Experimental [Page 2]
^L
RFC 5204 HIP Rendezvous Extension April 2008
1. Introduction
The Host Identity Protocol (HIP) Architecture [RFC4423] introduces
the rendezvous mechanism to help a HIP node to contact a frequently
moving HIP node. The rendezvous mechanism involves a third party,
the rendezvous server (RVS), which serves as an initial contact point
("rendezvous point") for its clients. The clients of an RVS are HIP
nodes that use the HIP Registration Extension [RFC5203] to register
their HIT->IP address mappings with the RVS. After this
registration, other HIP nodes can initiate a base exchange using the
IP address of the RVS instead of the current IP address of the node
they attempt to contact. Essentially, the clients of an RVS become
reachable at the RVS's IP address. Peers can initiate a HIP base
exchange with the IP address of the RVS, which will relay this
initial communication such that the base exchange may successfully
complete.
2. Terminology
This section defines terms used throughout the remainder of this
specification.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].
In addition to the terminology defined in the HIP specification
[RFC5201] and the HIP Registration Extension [RFC5203], this document
defines and uses the following terms:
Rendezvous Service
A HIP service provided by a rendezvous server to its rendezvous
clients. The rendezvous server offers to relay some of the
arriving base exchange packets between the initiator and
responder.
Rendezvous Server (RVS)
A HIP registrar providing rendezvous service.
Rendezvous Client
A HIP requester that has registered for rendezvous service at a
rendezvous server.
Rendezvous Registration
A HIP registration for rendezvous service, established between a
rendezvous server and a rendezvous client.
Laganier & Eggert Experimental [Page 3]
^L
RFC 5204 HIP Rendezvous Extension April 2008
3. Overview of Rendezvous Server Operation
Figure 1 shows a simple HIP base exchange without a rendezvous
server, in which the initiator initiates the exchange directly with
the responder by sending an I1 packet to the responder's IP address,
as per the HIP specification [RFC5201].
+-----+ +-----+
| |-------I1------>| |
| I |<------R1-------| R |
| |-------I2------>| |
| |<------R2-------| |
+-----+ +-----+
Figure 1: HIP base exchange without rendezvous server.
The End-Host Mobility and Multihoming with the Host Identity Protocol
specification [RFC5206] allows a HIP node to notify its peers about
changes in its set of IP addresses. This specification presumes
initial reachability of the two nodes with respect to each other.
However, such a HIP node MAY also want to be reachable to other
future correspondent peers that are unaware of its location change.
The HIP Architecture [RFC4423] introduces rendezvous servers with
whom a HIP node MAY register its host identity tags (HITs) and
current IP addresses. An RVS relays HIP packets arriving for these
HITs to the node's registered IP addresses. When a HIP node has
registered with an RVS, it SHOULD record the IP address of its RVS in
its DNS record, using the HIP DNS resource record type defined in the
HIP DNS Extension [RFC5205].
+-----+
+--I1--->| RVS |---I1--+
| +-----+ |
| v
+-----+ +-----+
| |<------R1-------| |
| I |-------I2------>| R |
| |<------R2-------| |
+-----+ +-----+
Figure 2: HIP base exchange with a rendezvous server.
Figure 2 shows a HIP base exchange involving a rendezvous server. It
is assumed that HIP node R previously registered its HITs and current
IP addresses with the RVS, using the HIP Registration Extension
[RFC5203]. When the initiator I tries to establish contact with the
Laganier & Eggert Experimental [Page 4]
^L
RFC 5204 HIP Rendezvous Extension April 2008
responder R, it must send the I1 of the base exchange either to one
of R's IP addresses (if known via DNS or other means) or to one of
R's rendezvous servers. Here, I obtains the IP address of R's
rendezvous server from R's DNS record and then sends the I1 packet of
the HIP base exchange to RVS. RVS, noticing that the HIT contained
in the arriving I1 packet is not one of its own, MUST check its
current registrations to determine if it needs to relay the packets.
Here, it determines that the HIT belongs to R and then relays the I1
packet to the registered IP address. R then completes the base
exchange without further assistance from RVS by sending an R1
directly to the I's IP address, as obtained from the I1 packet. In
this specification, the client of the RVS is always the responder.
However, there might be reasons to allow a client to initiate a base
exchange through its own RVS, like NAT and firewall traversal. This
specification does not address such scenarios, which should be
specified in other documents.
3.1. Diagram Notation
Notation Significance
-------- ------------
I, R I and R are the respective source and destination IP
addresses in the IP header.
HIT-I, HIT-R HIT-I and HIT-R are the initiator's and the
responder's HITs in the packet, respectively.
REG_REQ A REG_REQUEST parameter is present in the HIP header.
REG_RES A REG_RESPONSE parameter is present in the HIP header.
FROM:I A FROM parameter containing the IP address I is
present in the HIP header.
RVS_HMAC An RVS_HMAC parameter containing an HMAC keyed with the
appropriate registration key is present in the HIP
header.
VIA:RVS A VIA_RVS parameter containing the IP address RVS of a
rendezvous server is present in the HIP header.
Laganier & Eggert Experimental [Page 5]
^L
RFC 5204 HIP Rendezvous Extension April 2008
3.2. Rendezvous Client Registration
Before a rendezvous server starts to relay HIP packets to a
rendezvous client, the rendezvous client needs to register with it to
receive rendezvous service by using the HIP Registration Extension
[RFC5203] as illustrated in the following schema:
+-----+ +-----+
| | I1 | |
| |--------------------------->| |
| |<---------------------------| |
| I | R1(REG_INFO) | RVS |
| | I2(REG_REQ) | |
| |--------------------------->| |
| |<---------------------------| |
| | R2(REG_RES) | |
+-----+ +-----+
Rendezvous client registering with a rendezvous server.
3.3. Relaying the Base Exchange
If a HIP node and one of its rendezvous servers have a rendezvous
registration, the rendezvous servers relay inbound I1 packets (that
contain one of the client's HITs) by rewriting the IP header. They
replace the destination IP address of the I1 packet with one of the
IP addresses of the owner of the HIT, i.e., the rendezvous client.
They MUST also recompute the IP checksum accordingly.
Because of egress filtering on the path from the RVS to the client
[RFC2827][RFC3013], a HIP rendezvous server SHOULD replace the source
IP address, i.e., the IP address of I, with one of its own IP
addresses. The replacement IP address SHOULD be chosen according to
relevant IPv4 and IPv6 specifications [RFC1122][RFC3484]. Because
this replacement conceals the initiator's IP address, the RVS MUST
append a FROM parameter containing the original source IP address of
the packet. This FROM parameter MUST be integrity protected by an
RVS_HMAC keyed with the corresponding rendezvous registration
integrity key [RFC5203].
Laganier & Eggert Experimental [Page 6]
^L
RFC 5204 HIP Rendezvous Extension April 2008
I1(RVS, R, HIT-I, HIT-R
I1(I, RVS, HIT-I, HIT-R) +---------+ FROM:I, RVS_HMAC)
+----------------------->| |--------------------+
| | RVS | |
| | | |
| +---------+ |
| V
+-----+ R1(R, I, HIT-R, HIT-I, VIA:RVS) +-----+
| |<---------------------------------------------| |
| | | |
| I | I2(I, R, HIT-I, HIT-R) | R |
| |--------------------------------------------->| |
| |<---------------------------------------------| |
+-----+ R2(R, I, HIT-R, HIT-I) +-----+
Rendezvous server rewriting IP addresses.
This modification of HIP packets at a rendezvous server can be
problematic because the HIP protocol uses integrity checks. Because
the I1 does not include HMAC or SIGNATURE parameters, these two end-
to-end integrity checks are unaffected by the operation of rendezvous
servers.
The RVS SHOULD verify the checksum field of an I1 packet before doing
any modifications. After modification, it MUST recompute the
checksum field using the updated HIP header, which possibly included
new FROM and RVS_HMAC parameters, and a pseudo-header containing the
updated source and destination IP addresses. This enables the
responder to validate the checksum of the I1 packet "as is", without
having to parse any FROM parameters.
4. Rendezvous Server Extensions
This section describes extensions to the HIP Registration Extension
[RFC5203], allowing a HIP node to register with a rendezvous server
for rendezvous service and notify the RVS aware of changes to its
current location. It also describes an extension to the HIP
specification [RFC5201] itself, allowing establishment of HIP
associations via one or more HIP rendezvous server(s).
4.1. RENDEZVOUS Registration Type
This specification defines an additional registration for the HIP
Registration Extension [RFC5203] that allows registering with a
rendezvous server for rendezvous service.
Laganier & Eggert Experimental [Page 7]
^L
RFC 5204 HIP Rendezvous Extension April 2008
Number Registration Type
------ -----------------
1 RENDEZVOUS
4.2. Parameter Formats and Processing
4.2.1. RVS_HMAC Parameter
The RVS_HMAC is a non-critical parameter whose only difference with
the HMAC parameter defined in the HIP specification [RFC5201] is its
"type" code. This change causes it to be located after the FROM
parameter (as opposed to the HMAC):
Type 65500
Length Variable. Length in octets, excluding Type, Length, and
Padding.
HMAC HMAC computed over the HIP packet, excluding the
RVS_HMAC parameter and any following parameters. The
HMAC is keyed with the appropriate HIP integrity key
(HIP-lg or HIP-gl) established when rendezvous
registration happened. The HIP "checksum" field MUST be set
to zero, and the HIP header length in the HIP common header
MUST be calculated not to cover any excluded parameter
when the HMAC is calculated. The size of the
HMAC is the natural size of the hash computation
output depending on the used hash function.
To allow a rendezvous client and its RVS to verify the integrity of
packets flowing between them, both SHOULD protect packets with an
added RVS_HMAC parameter keyed with the HIP-lg or HIP-gl integrity
key established while registration occurred. A valid RVS_HMAC SHOULD
be present on every packet flowing between a client and a server and
MUST be present when a FROM parameter is processed.
Laganier & Eggert Experimental [Page 8]
^L
RFC 5204 HIP Rendezvous Extension April 2008
4.2.2. FROM Parameter
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| Address |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type 65498
Length 16
Address An IPv6 address or an IPv4-in-IPv6 format IPv4 address.
A rendezvous server MUST add a FROM parameter containing the original
source IP address of a HIP packet whenever the source IP address in
the IP header is rewritten. If one or more FROM parameters are
already present, the new FROM parameter MUST be appended after the
existing ones.
Whenever an RVS inserts a FROM parameter, it MUST insert an RVS_HMAC
protecting the packet integrity, especially the IP address included
in the FROM parameter.
Laganier & Eggert Experimental [Page 9]
^L
RFC 5204 HIP Rendezvous Extension April 2008
4.2.3. VIA_RVS Parameter
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| Address |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. . .
. . .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| Address |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type 65502
Length Variable
Address An IPv6 address or an IPv4-in-IPv6 format IPv4 address.
After the responder receives a relayed I1 packet, it can begin to
send HIP packets addressed to the initiator's IP address, without
further assistance from an RVS. For debugging purposes, it MAY
include a subset of the IP addresses of its RVSs in some of these
packets. When a responder does so, it MUST append a newly created
VIA_RVS parameter at the end of the HIP packet. The main goal of
using the VIA_RVS parameter is to allow operators to diagnose
possible issues encountered while establishing a HIP association via
an RVS.
4.3. Modified Packets Processing
The following subsections describe the differences of processing of
I1 and R1 while a rendezvous server is involved in the base exchange.
4.3.1. Processing Outgoing I1 Packets
An initiator SHOULD NOT send an opportunistic I1 with a NULL
destination HIT to an IP address that is known to be a rendezvous
server address, unless it wants to establish a HIP association with
the rendezvous server itself and does not know its HIT.
Laganier & Eggert Experimental [Page 10]
^L
RFC 5204 HIP Rendezvous Extension April 2008
When an RVS rewrites the source IP address of an I1 packet due to
egress filtering, it MUST add a FROM parameter to the I1 that
contains the initiator's source IP address. This FROM parameter MUST
be protected by an RVS_HMAC keyed with the integrity key established
at rendezvous registration.
4.3.2. Processing Incoming I1 Packets
When a rendezvous server receives an I1 whose destination HIT is not
its own, it consults its registration database to find a registration
for the rendezvous service established by the HIT owner. If it finds
an appropriate registration, it relays the packet to the registered
IP address. If it does not find an appropriate registration, it
drops the packet.
A rendezvous server SHOULD interpret any incoming opportunistic I1
(i.e., an I1 with a NULL destination HIT) as an I1 addressed to
itself and SHOULD NOT attempt to relay it to one of its clients.
When a rendezvous client receives an I1, it MUST validate any present
RVS_HMAC parameter. If the RVS_HMAC cannot be verified, the packet
SHOULD be dropped. If the RVS_HMAC cannot be verified and a FROM
parameter is present, the packet MUST be dropped.
A rendezvous client acting as responder SHOULD drop opportunistic I1s
that include a FROM parameter, because this indicates that the I1 has
been relayed.
4.3.3. Processing Outgoing R1 Packets
When a responder replies to an I1 relayed via an RVS, it MUST append
to the regular R1 header a VIA_RVS parameter containing the IP
addresses of the traversed RVSs.
4.3.4. Processing Incoming R1 Packets
The HIP specification [RFC5201] mandates that a system receiving an
R1 MUST first check to see if it has sent an I1 to the originator of
the R1 (i.e., the system is in state I1-SENT). When the R1 is
replying to a relayed I1, this check SHOULD be based on HITs only.
In case the IP addresses are also checked, then the source IP address
MUST be checked against the IP address included in the VIA_RVS
parameter.
Laganier & Eggert Experimental [Page 11]
^L
RFC 5204 HIP Rendezvous Extension April 2008
5. Security Considerations
This section discusses the known threats introduced by these HIP
extensions and the implications on the overall security of HIP. In
particular, it argues that the extensions described in this document
do not introduce additional threats to the Host Identity Protocol.
It is difficult to encompass the whole scope of threats introduced by
rendezvous servers because their presence has implications both at
the IP and HIP layers. In particular, these extensions might allow
for redirection, amplification, and reflection attacks at the IP
layer, as well as attacks on the HIP layer itself, for example, man-
in-the-middle attacks against the HIP base exchange.
If an initiator has a priori knowledge of the responder's host
identity when it first contacts the responder via an RVS, it has a
means to verify the signatures in the HIP base exchange, which
protects against man-in-the-middle attacks.
If an initiator does not have a priori knowledge of the responder's
host identity (so-called "opportunistic initiators"), it is almost
impossible to defend the HIP exchange against these attacks, because
the public keys exchanged cannot be authenticated. The only approach
would be to mitigate hijacking threats on HIP state by requiring an
R1 answering an opportunistic I1 to come from the same IP address
that originally sent the I1. This procedure retains a level of
security that is equivalent to what exists in the Internet today.
However, for reasons of simplicity, this specification does not allow
the establishment of a HIP association via a rendezvous server in an
opportunistic manner.
6. IANA Considerations
This section is to be interpreted according to the Guidelines for
Writing an IANA Considerations Section in RFCs [RFC2434].
This document updates the IANA Registry for HIP Parameters Types by
assigning new HIP Parameter Types values for the new HIP Parameters
defined in Section 4.2:
o RVS_HMAC (defined in Section 4.2.1)
o FROM (defined in Section 4.2.2)
o VIA_RVS (defined in Section 4.2.3)
Laganier & Eggert Experimental [Page 12]
^L
RFC 5204 HIP Rendezvous Extension April 2008
This document defines an additional registration for the HIP
Registration Extension [RFC5203] that allows registering with a
rendezvous server for rendezvous service.
Number Registration Type
------ -----------------
1 RENDEZVOUS
7. Acknowledgments
The following people have provided thoughtful and helpful discussions
and/or suggestions that have improved this document: Marcus Brunner,
Tom Henderson, Miika Komu, Mika Kousa, Pekka Nikander, Justino
Santos, Simon Schuetz, Tim Shepard, Kristian Slavov, Martin
Stiemerling, and Juergen Quittek.
8. References
8.1. Normative References
[RFC1122] Braden, R., "Requirements for Internet Hosts -
Communication Layers", STD 3, RFC 1122, October 1989.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", BCP 26, RFC 2434,
October 1998.
[RFC3484] Draves, R., "Default Address Selection for Internet
Protocol version 6 (IPv6)", RFC 3484, February 2003.
[RFC5201] Moskowitz, R., Nikander, P., Jokela, P., Ed., and T.
Henderson, "Host Identity Protocol", RFC 5201, April 2008.
[RFC5203] Laganier, J., Koponen, T., and L. Eggert, "Host Identity
Protocol (HIP) Registration Extension", RFC 5203,
April 2008.
[RFC5205] Nikander, P. and J. Laganier, "Host Identity Protocol
(HIP) Domain Name System (DNS) Extensions", RFC 5205,
April 2008.
Laganier & Eggert Experimental [Page 13]
^L
RFC 5204 HIP Rendezvous Extension April 2008
8.2. Informative References
[RFC2827] Ferguson, P. and D. Senie, "Network Ingress Filtering:
Defeating Denial of Service Attacks which employ IP Source
Address Spoofing", BCP 38, RFC 2827, May 2000.
[RFC3013] Killalea, T., "Recommended Internet Service Provider
Security Services and Procedures", BCP 46, RFC 3013,
November 2000.
[RFC4423] Moskowitz, R. and P. Nikander, "Host Identity Protocol
(HIP) Architecture", RFC 4423, May 2006.
[RFC5206] Henderson, T., Ed., "End-Host Mobility and Multihoming
with the Host Identity Protocol", RFC 5206, April 2008.
Authors' Addresses
Julien Laganier
DoCoMo Communications Laboratories Europe GmbH
Landsberger Strasse 312
Munich 80687
Germany
Phone: +49 89 56824 231
EMail: julien.ietf@laposte.net
URI: http://www.docomolab-euro.com/
Lars Eggert
Nokia Research Center
P.O. Box 407
Nokia Group 00045
Finland
Phone: +358 50 48 24461
EMail: lars.eggert@nokia.com
URI: http://research.nokia.com/people/lars_eggert/
Laganier & Eggert Experimental [Page 14]
^L
RFC 5204 HIP Rendezvous Extension April 2008
Full Copyright Statement
Copyright (C) The IETF Trust (2008).
This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Laganier & Eggert Experimental [Page 15]
^L
|