1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
|
Network Working Group S. Turner
Request for Comments: 5275 IECA
Category: Standards Track June 2008
CMS Symmetric Key Management and Distribution
Status of This Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Abstract
This document describes a mechanism to manage (i.e., set up,
distribute, and rekey) keys used with symmetric cryptographic
algorithms. Also defined herein is a mechanism to organize users
into groups to support distribution of encrypted content using
symmetric cryptographic algorithms. The mechanism uses the
Cryptographic Message Syntax (CMS) protocol and Certificate
Management over CMS (CMC) protocol to manage the symmetric keys. Any
member of the group can then later use this distributed shared key to
decrypt other CMS encrypted objects with the symmetric key. This
mechanism has been developed to support Secure/Multipurpose Internet
Mail Extensions (S/MIME) Mail List Agents (MLAs).
Turner Standards Track [Page 1]
^L
RFC 5275 CMS SymKeyDist June 2008
Table of Contents
1. Introduction ....................................................4
1.1. Conventions Used in This Document ..........................4
1.2. Applicability to E-mail ....................................5
1.3. Applicability to Repositories ..............................5
1.4. Using the Group Key ........................................5
2. Architecture ....................................................6
3. Protocol Interactions ...........................................7
3.1. Control Attributes .........................................8
3.1.1. GL Use KEK .........................................10
3.1.2. Delete GL ..........................................14
3.1.3. Add GL Member ......................................14
3.1.4. Delete GL Member ...................................15
3.1.5. Rekey GL ...........................................16
3.1.6. Add GL Owner .......................................16
3.1.7. Remove GL Owner ....................................17
3.1.8. GL Key Compromise ..................................17
3.1.9. GL Key Refresh .....................................18
3.1.10. GLA Query Request and Response ....................18
3.1.10.1. GLA Query Request ........................18
3.1.10.2. GLA Query Response .......................19
3.1.10.3. Request and Response Types ...............19
3.1.11. Provide Cert ......................................19
3.1.12. Update Cert .......................................20
3.1.13. GL Key ............................................21
3.2. Use of CMC, CMS, and PKIX .................................23
3.2.1. Protection Layers ..................................23
3.2.1.1. Minimum Protection ........................23
3.2.1.2. Additional Protection .....................24
3.2.2. Combining Requests and Responses ...................24
3.2.3. GLA Generated Messages .............................26
3.2.4. CMC Control Attributes and CMS Signed Attributes ...27
3.2.4.1. Using cMCStatusInfoExt ....................27
3.2.4.2. Using transactionId .......................30
3.2.4.3. Using Nonces and signingTime ..............30
3.2.4.4. CMC and CMS Attribute Support
Requirements ..............................31
3.2.5. Resubmitted GL Member Messages .....................31
3.2.6. PKIX Certificate and CRL Profile ...................31
4. Administrative Messages ........................................32
4.1. Assign KEK to GL ..........................................32
4.2. Delete GL from GLA ........................................36
4.3. Add Members to GL .........................................38
4.3.1. GLO Initiated Additions ............................39
4.3.2. Prospective Member Initiated Additions .............47
4.4. Delete Members from GL ....................................49
4.4.1. GLO Initiated Deletions ............................50
Turner Standards Track [Page 2]
^L
RFC 5275 CMS SymKeyDist June 2008
4.4.2. Member Initiated Deletions .........................56
4.5. Request Rekey of GL .......................................57
4.5.1. GLO Initiated Rekey Requests .......................59
4.5.2. GLA Initiated Rekey Requests .......................62
4.6. Change GLO ................................................63
4.7. Indicate KEK Compromise ...................................65
4.7.1. GL Member Initiated KEK Compromise Message .........66
4.7.2. GLO Initiated KEK Compromise Message ...............67
4.8. Request KEK Refresh .......................................69
4.9. GLA Query Request and Response ............................70
4.10. Update Member Certificate ................................73
4.10.1. GLO and GLA Initiated Update Member Certificate ...73
4.10.2. GL Member Initiated Update Member Certificate .....75
5. Distribution Message ...........................................77
5.1. Distribution Process ......................................78
6. Algorithms .....................................................79
6.1. KEK Generation Algorithm ..................................79
6.2. Shared KEK Wrap Algorithm .................................79
6.3. Shared KEK Algorithm ......................................79
7. Message Transport ..............................................80
8. Security Considerations ........................................80
9. Acknowledgements ...............................................81
10. References ....................................................81
10.1. Normative References .....................................81
10.2. Informative References ...................................82
Appendix A. ASN.1 Module ..........................................83
Turner Standards Track [Page 3]
^L
RFC 5275 CMS SymKeyDist June 2008
1. Introduction
With the ever-expanding use of secure electronic communications
(e.g., S/MIME [MSG]), users require a mechanism to distribute
encrypted data to multiple recipients (i.e., a group of users).
There are essentially two ways to encrypt the data for recipients:
using asymmetric algorithms with public key certificates (PKCs) or
symmetric algorithms with symmetric keys.
With asymmetric algorithms, the originator forms an originator-
determined content-encryption key (CEK) and encrypts the content,
using a symmetric algorithm. Then, using an asymmetric algorithm and
the recipient's PKCs, the originator generates per-recipient
information that either (a) encrypts the CEK for a particular
recipient (ktri RecipientInfo CHOICE) or (b) transfers sufficient
parameters to enable a particular recipient to independently generate
the same KEK (kari RecipientInfo CHOICE). If the group is large,
processing of the per-recipient information may take quite some time,
not to mention the time required to collect and validate the PKCs for
each of the recipients. Each recipient identifies its per-recipient
information and uses the private key associated with the public key
of its PKC to decrypt the CEK and hence gain access to the encrypted
content.
With symmetric algorithms, the origination process is slightly
different. Instead of using PKCs, the originator uses a previously
distributed secret key-encryption key (KEK) to encrypt the CEK (kekri
RecipientInfo CHOICE). Only one copy of the encrypted CEK is
required because all the recipients already have the shared KEK
needed to decrypt the CEK and hence gain access to the encrypted
content.
The techniques to protect the shared KEK are beyond the scope of this
document. Only the members of the list and the key manager should
have the KEK in order to maintain confidentiality. Access control to
the information protected by the KEK is determined by the entity that
encrypts the information, as all members of the group have access.
If the entity performing the encryption wants to ensure that some
subset of the group does not gain access to the information, either a
different KEK should be used (shared only with this smaller group) or
asymmetric algorithms should be used.
1.1. Conventions Used in This Document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in BCP 14, RFC 2119
[RFC2119].
Turner Standards Track [Page 4]
^L
RFC 5275 CMS SymKeyDist June 2008
1.2. Applicability to E-mail
One primary audience for this distribution mechanism is e-mail.
Distribution lists, sometimes referred to as mail lists, support the
distribution of messages to recipients subscribed to the mail list.
There are two models for how the mail list can be used. If the
originator is a member of the mail list, the originator sends
messages encrypted with the shared KEK to the mail list (e.g.,
listserv or majordomo) and the message is distributed to the mail
list members. If the originator is not a member of the mail list
(does not have the shared KEK), the originator sends the message
(encrypted for the MLA) to the Mail List Agent (MLA), and then the
MLA uses the shared KEK to encrypt the message for the members. In
either case, the recipients of the mail list use the previously
distributed-shared KEK to decrypt the message.
1.3. Applicability to Repositories
Objects can also be distributed via a repository (e.g., Lightweight
Directory Access Protocol (LDAP) servers, X.500 Directory System
Agents (DSAs), Web-based servers). If an object is stored in a
repository encrypted with a symmetric key algorithm, anyone with the
shared KEK and access to that object can then decrypt that object.
The encrypted object and the encrypted, shared KEK can be stored in
the repository.
1.4. Using the Group Key
This document was written with three specific scenarios in mind: two
supporting Mail List Agents and one for general message distribution.
Scenario 1 depicts the originator sending a public key (PK) protected
message to an MLA who then uses the shared KEK(s) to redistribute the
message to the members of the list. Scenario 2 depicts the
originator sending a shared KEK protected message to an MLA who then
redistributes the message to the members of the list (the MLA only
adds additional recipients). The key used by the originator could be
a key shared either amongst all recipients or just between the member
and the MLA. Note that if the originator uses a key shared only with
the MLA, then the MLA will need to decrypt the message and reencrypt
the message for the list recipients. Scenario 3 shows an originator
sending a shared KEK protected message to a group of recipients
without an intermediate MLA.
Turner Standards Track [Page 5]
^L
RFC 5275 CMS SymKeyDist June 2008
+----> +----> +---->
PK +-----+ S | S +-----+ S | S |
----> | MLA | --+----> ----> | MLA | --+----> ----+---->
+-----+ | +-----+ | |
+----> +----> +---->
Scenario 1 Scenario 2 Scenario 3
2. Architecture
Figure 1 depicts the architecture to support symmetric key
distribution. The Group List Agent (GLA) supports two distinct
functions with two different agents:
- The Key Management Agent (KMA), which is responsible for
generating the shared KEKs.
- The Group Management Agent (GMA), which is responsible for
managing the Group List (GL) to which the shared KEKs are
distributed.
+----------------------------------------------+
| Group List Agent | +-------+
| +------------+ + -----------------------+ | | Group |
| | Key | | Group Management Agent | |<-->| List |
| | Management |<-->| +------------+ | | | Owner |
| | Agent | | | Group List | | | +-------+
| +------------+ | +------------+ | |
| | / | \ | |
| +------------------------+ |
+----------------------------------------------+
/ | \
/ | \
+----------+ +---------+ +----------+
| Member 1 | | ... | | Member n |
+----------+ +---------+ +----------+
Figure 1 - Key Distribution Architecture
A GLA may support multiple KMAs. A GLA in general supports only one
GMA, but the GMA may support multiple GLs. Multiple KMAs may support
a GMA in the same fashion as GLAs support multiple KMAs. Assigning a
particular KMA to a GL is beyond the scope of this document.
Modeling real-world GL implementations shows that there are very
restrictive GLs, where a human determines GL membership, and very
open GLs, where there are no restrictions on GL membership. To
support this spectrum, the mechanism described herein supports both
Turner Standards Track [Page 6]
^L
RFC 5275 CMS SymKeyDist June 2008
managed (i.e., where access control is applied) and unmanaged (i.e.,
where no access control is applied) GLs. The access control
mechanism for managed lists is beyond the scope of this document.
Note: If the distribution for the list is performed by an entity
other than the originator (e.g., an MLA distributing a mail message),
this entity can also enforce access control rules.
In either case, the GL must initially be constructed by an entity
hereafter called the Group List Owner (GLO). There may be multiple
entities who 'own' the GL and who are allowed to make changes to the
GL's properties or membership. The GLO determines if the GL will be
managed or unmanaged and is the only entity that may delete the GL.
GLO(s) may or may not be GL members. GLO(s) may also set up lists
that are closed, where the GLO solely determines GL membership.
Though Figure 1 depicts the GLA as encompassing both the KMA and GMA
functions, the two functions could be supported by the same entity or
they could be supported by two different entities. If two entities
are used, they could be located on one or two platforms. There is
however a close relationship between the KMA and GMA functions. If
the GMA stores all information pertaining to the GLs and the KMA
merely generates keys, a corrupted GMA could cause havoc. To protect
against a corrupted GMA, the KMA would be forced to double check the
requests it receives to ensure that the GMA did not tamper with them.
These duplicative checks blur the functionality of the two components
together. For this reason, the interactions between the KMA and GMA
are beyond the scope of this document.
Proprietary mechanisms may be used to separate the functions by
strengthening the trust relationship between the two entities.
Henceforth, the distinction between the two agents is not discussed
further; the term GLA will be used to address both functions. It
should be noted that a corrupt GLA can always cause havoc.
3. Protocol Interactions
There are existing mechanisms (e.g., listserv and majordomo) to
manage GLs; however, this document does not address securing these
mechanisms, as they are not standardized. Instead, it defines
protocol interactions, as depicted in Figure 2, used by the GL
members, GLA, and GLO(s) to manage GLs and distribute shared KEKs.
The interactions have been divided into administration messages and
distribution messages. The administrative messages are the request
and response messages needed to set up the GL, delete the GL, add
members to the GL, delete members of the GL, request a group rekey,
add owners to the GL, remove owners of the GL, indicate a group key
compromise, refresh a group key, interrogate the GLA, and update
members' and owners' public key certificates. The distribution
Turner Standards Track [Page 7]
^L
RFC 5275 CMS SymKeyDist June 2008
messages are the messages that distribute the shared KEKs. The
following sections describe the ASN.1 for both the administration and
distribution messages. Section 4 describes how to use the
administration messages, and Section 5 describes how to use the
distribution messages.
+-----+ +----------+
| GLO | <---+ +----> | Member 1 |
+-----+ | | +----------+
| |
+-----+ <------+ | +----------+
| GLA | <-------------+----> | ... |
+-----+ | +----------+
|
| +----------+
+----> | Member n |
+----------+
Figure 2 - Protocol Interactions
3.1. Control Attributes
To avoid creating an entirely new protocol, the Certificate
Management over CMS (CMC) protocol was chosen as the foundation of
this protocol. The main reason for the choice was the layering
aspect provided by CMC where one or more control attributes are
included in message, protected with CMS, to request or respond to a
desired action. The CMC PKIData structure is used for requests, and
the CMC PKIResponse structure is used for responses. The content-
types PKIData and PKIResponse are then encapsulated in CMS's
SignedData or EnvelopedData, or a combination of the two (see Section
3.2). The following are the control attributes defined in this
document:
Turner Standards Track [Page 8]
^L
RFC 5275 CMS SymKeyDist June 2008
Control
Attribute OID Syntax
------------------- ----------- -----------------
glUseKEK id-skd 1 GLUseKEK
glDelete id-skd 2 GeneralName
glAddMember id-skd 3 GLAddMember
glDeleteMember id-skd 4 GLDeleteMember
glRekey id-skd 5 GLRekey
glAddOwner id-skd 6 GLOwnerAdministration
glRemoveOwner id-skd 7 GLOwnerAdministration
glkCompromise id-skd 8 GeneralName
glkRefresh id-skd 9 GLKRefresh
glaQueryRequest id-skd 11 GLAQueryRequest
glaQueryResponse id-skd 12 GLAQueryResponse
glProvideCert id-skd 13 GLManageCert
glUpdateCert id-skd 14 GLManageCert
glKey id-skd 15 GLKey
In the following conformance tables, the column headings have the
following meanings: O for originate, R for receive, and F for
forward. There are three types of implementations: GLOs, GLAs, and
GL members. The GLO is an optional component, hence all GLO O and
GLO R messages are optional, and GLA F messages are optional. The
first table includes messages that conformant implementations MUST
support. The second table includes messages that MAY be implemented.
The second table should be interpreted as follows: if the control
attribute is implemented by a component, then it must be implemented
as indicated. For example, if a GLA is implemented that supports the
glAddMember control attribute, then it MUST support receiving the
glAddMember message. Note that "-" means not applicable.
Required
Implementation Requirement | Control
GLO | GLA | GL Member | Attribute
O R | O R F | O R |
------- | ----------------- | --------- | ----------
MAY - | MUST - MAY | - MUST | glProvideCert
MAY MAY | - MUST MAY | MUST - | glUpdateCert
- - | MUST - - | - MUST | glKey
Turner Standards Track [Page 9]
^L
RFC 5275 CMS SymKeyDist June 2008
Optional
Implementation Requirement | Control
GLO | GLA | GL Member | Attribute
O R | O R F | O R |
------- | ----------------- | --------- | ----------
MAY - | - MAY - | - - | glUseKEK
MAY - | - MAY - | - - | glDelete
MAY MAY | - MUST MAY | MUST - | glAddMember
MAY MAY | - MUST MAY | MUST - | glDeleteMember
MAY - | - MAY - | - - | glRekey
MAY - | - MAY - | - - | glAddOwner
MAY - | - MAY - | - - | glRemoveOwner
MAY MAY | - MUST MAY | MUST - | glkCompromise
MAY - | - MUST - | MUST - | glkRefresh
MAY - | - SHOULD - | MAY - | glaQueryRequest
- MAY | SHOULD - - | - MAY | glaQueryResponse
glaQueryResponse is carried in the CMC PKIResponse content-type, all
other control attributes are carried in the CMC PKIData content-type.
The exception is glUpdateCert, which can be carried in either PKIData
or PKIResponse.
Success and failure messages use CMC (see Section 3.2.4).
3.1.1. GL Use KEK
The GLO uses glUseKEK to request that a shared KEK be assigned to a
GL. glUseKEK messages MUST be signed by the GLO. The glUseKEK
control attribute has the syntax GLUseKEK:
GLUseKEK ::= SEQUENCE {
glInfo GLInfo,
glOwnerInfo SEQUENCE SIZE (1..MAX) OF GLOwnerInfo,
glAdministration GLAdministration DEFAULT 1,
glKeyAttributes GLKeyAttributes OPTIONAL }
GLInfo ::= SEQUENCE {
glName GeneralName,
glAddress GeneralName }
GLOwnerInfo ::= SEQUENCE {
glOwnerName GeneralName,
glOwnerAddress GeneralName,
certificate Certificates OPTIONAL }
Turner Standards Track [Page 10]
^L
RFC 5275 CMS SymKeyDist June 2008
Certificates ::= SEQUENCE {
pKC [0] Certificate OPTIONAL,
-- See [PROFILE]
aC [1] SEQUENCE SIZE (1.. MAX) OF
AttributeCertificate OPTIONAL,
-- See [ACPROF]
certPath [2] CertificateSet OPTIONAL }
-- From [CMS]
-- CertificateSet and CertificateChoices are included only
-- for illustrative purposes as they are imported from [CMS].
CertificateSet ::= SET SIZE (1..MAX) OF CertificateChoices
-- CertificateChoices supports X.509 public key certificates in
-- certificates and v2 attribute certificates in v2AttrCert.
GLAdministration ::= INTEGER {
unmanaged (0),
managed (1),
closed (2) }
GLKeyAttributes ::= SEQUENCE {
rekeyControlledByGLO [0] BOOLEAN DEFAULT FALSE,
recipientsNotMutuallyAware [1] BOOLEAN DEFAULT TRUE,
duration [2] INTEGER DEFAULT 0,
generationCounter [3] INTEGER DEFAULT 2,
requestedAlgorithm [4] AlgorithmIdentifier
DEFAULT { id-aes128-wrap } }
The fields in GLUseKEK have the following meaning:
- glInfo indicates the name of the GL in glName and the address of
the GL in glAddress. The glName and glAddress can be the same,
but this is not always the case. Both the name and address MUST
be unique for a given GLA.
- glOwnerInfo indicates:
-- glOwnerName indicates the name of the owner of the GL. One
of the names in glOwnerName MUST match one of the names in
the certificate (either the subject distinguished name or one
of the subject alternative names) used to sign this
SignedData.PKIData creating the GL (i.e., the immediate
signer).
-- glOwnerAddress indicates the GL owner's address.
Turner Standards Track [Page 11]
^L
RFC 5275 CMS SymKeyDist June 2008
-- certificates MAY be included. It contains the following
three fields:
--- certificates.pKC includes the encryption certificate for
the GLO. It will be used to encrypt responses for the
GLO.
--- certificates.aC MAY be included to convey any attribute
certificate (see [ACPROF]) associated with the
encryption certificate of the GLO included in
certificates.pKC.
--- certificates.certPath MAY also be included to convey
certificates that might aid the recipient in
constructing valid certification paths for the
certificate provided in certificates.pKC and the
attribute certificates provided in certificates.aC.
Theses certificates are optional because they might
already be included elsewhere in the message (e.g., in
the outer CMS layer).
-- glAdministration indicates how the GL ought to be
administered. The default is for the list to be managed.
Three values are supported for glAdministration:
--- Unmanaged - When the GLO sets glAdministration to
unmanaged, it is allowing prospective members to request
addition and deletion from the GL without GLO
intervention.
--- Managed - When the GLO sets glAdministration to managed,
it is allowing prospective members to request addition
and deletion from the GL, but the request is redirected
by the GLA to GLO for review. The GLO makes the
determination as to whether to honor the request.
--- Closed - When the GLO sets glAdministration to closed,
it is not allowing prospective members to request
addition or deletion from the GL. The GLA will only
accept glAddMember and glDeleteMember requests from the
GLO.
-- glKeyAttributes indicates the attributes the GLO wants the
GLA to assign to the shared KEK. If this field is omitted,
GL rekeys will be controlled by the GLA, the recipients are
allowed to know about one another, the algorithm will be
AES-128 (see Section 7), the shared KEK will be valid for a
calendar month (i.e., first of the month until the last day
Turner Standards Track [Page 12]
^L
RFC 5275 CMS SymKeyDist June 2008
of the month), and two shared KEKs will be distributed
initially. The fields in glKeyAttributes have the following
meaning:
--- rekeyControlledByGLO indicates whether the GL rekey
messages will be generated by the GLO or by the GLA.
The default is for the GLA to control rekeys. If GL
rekey is controlled by the GLA, the GL will continue to
be rekeyed until the GLO deletes the GL or changes the
GL rekey to be GLO controlled.
--- recipientsNotMutuallyAware indicates that the GLO wants
the GLA to distribute the shared KEK individually for
each of the GL members (i.e., a separate glKey message
is sent to each recipient). The default is for separate
glKey message not to be required.
Note: This supports lists where one member does not know
the identities of the other members. For example, a
list is configured granting submit permissions to only
one member. All other members are 'listening'. The
security policy of the list does not allow the members
to know who else is on the list. If a glKey is
constructed for all of the GL members, information about
each of the members may be derived from the information
in RecipientInfos.
To make sure the glkey message does not divulge
information about the other recipients, a separate glKey
message would be sent to each GL member.
--- duration indicates the length of time (in days) during
which the shared KEK is considered valid. The value
zero (0) indicates that the shared KEK is valid for a
calendar month in the UTC Zulu time zone. For example,
if the duration is zero (0), if the GL shared KEK is
requested on July 24, the first key will be valid until
the end of July and the next key will be valid for the
entire month of August. If the value is not zero (0),
the shared KEK will be valid for the number of days
indicated by the value. For example, if the value of
duration is seven (7) and the shared KEK is requested on
Monday but not generated until Tuesday (13 May 2008);
the shared KEKs will be valid from Tuesday (13 May 2008)
to Tuesday (20 May 2008). The exact time of the day is
determined when the key is generated.
Turner Standards Track [Page 13]
^L
RFC 5275 CMS SymKeyDist June 2008
--- generationCounter indicates the number of keys the GLO
wants the GLA to distribute. To ensure uninterrupted
function of the GL, two (2) shared KEKs at a minimum
MUST be initially distributed. The second shared KEK is
distributed with the first shared KEK, so that when the
first shared KEK is no longer valid the second key can
be used. If the GLA controls rekey, then it also
indicates the number of shared KEKs the GLO wants
outstanding at any one time. See Sections 4.5 and 5 for
more on rekey.
--- requestedAlgorithm indicates the algorithm and any
parameters the GLO wants the GLA to use with the shared
KEK. The parameters are conveyed via the
SMIMECapabilities attribute (see [MSG]). See Section 6
for more on algorithms.
3.1.2. Delete GL
GLOs use glDelete to request that a GL be deleted from the GLA. The
glDelete control attribute has the syntax GeneralName. The glDelete
message MUST be signed by the GLO. The name of the GL to be deleted
is included in GeneralName:
DeleteGL ::= GeneralName
3.1.3. Add GL Member
GLOs use the glAddMember to request addition of new members, and
prospective GL members use the glAddMember to request their own
addition to the GL. The glAddMember message MUST be signed by either
the GLO or the prospective GL member. The glAddMember control
attribute has the syntax GLAddMember:
GLAddMember ::= SEQUENCE {
glName GeneralName,
glMember GLMember }
GLMember ::= SEQUENCE {
glMemberName GeneralName,
glMemberAddress GeneralName OPTIONAL,
certificates Certificates OPTIONAL }
The fields in GLAddMembers have the following meaning:
- glName indicates the name of the GL to which the member should be
added.
Turner Standards Track [Page 14]
^L
RFC 5275 CMS SymKeyDist June 2008
- glMember indicates the particulars for the GL member. Both of
the following fields must be unique for a given GL:
-- glMemberName indicates the name of the GL member.
-- glMemberAddress indicates the GL member's address. It MUST
be included.
Note: In some instances, the glMemberName and glMemberAddress
may be the same, but this is not always the case.
-- certificates MUST be included. It contains the following
three fields:
--- certificates.pKC includes the member's encryption
certificate. It will be used, at least initially, to
encrypt the shared KEK for that member. If the message
is generated by a prospective GL member, the pKC MUST be
included. If the message is generated by a GLO, the pKC
SHOULD be included.
--- certificates.aC MAY be included to convey any attribute
certificate (see [ACPROF]) associated with the member's
encryption certificate.
--- certificates.certPath MAY also be included to convey
certificates that might aid the recipient in
constructing valid certification paths for the
certificate provided in certificates.pKC and the
attribute certificates provided in certificates.aC.
These certificates are optional because they might
already be included elsewhere in the message (e.g., in
the outer CMS layer).
3.1.4. Delete GL Member
GLOs use the glDeleteMember to request deletion of GL members, and GL
members use the glDeleteMember to request their own removal from the
GL. The glDeleteMember message MUST be signed by either the GLO or
the GL member. The glDeleteMember control attribute has the syntax
GLDeleteMember:
GLDeleteMember ::= SEQUENCE {
glName GeneralName,
glMemberToDelete GeneralName }
Turner Standards Track [Page 15]
^L
RFC 5275 CMS SymKeyDist June 2008
The fields in GLDeleteMembers have the following meaning:
- glName indicates the name of the GL from which the member should
be removed.
- glMemberToDelete indicates the name or address of the member to
be deleted.
3.1.5. Rekey GL
GLOs use the glRekey to request a GL rekey. The glRekey message MUST
be signed by the GLO. The glRekey control attribute has the syntax
GLRekey:
GLRekey ::= SEQUENCE {
glName GeneralName,
glAdministration GLAdministration OPTIONAL,
glNewKeyAttributes GLNewKeyAttributes OPTIONAL,
glRekeyAllGLKeys BOOLEAN OPTIONAL }
GLNewKeyAttributes ::= SEQUENCE {
rekeyControlledByGLO [0] BOOLEAN OPTIONAL,
recipientsNotMutuallyAware [1] BOOLEAN OPTIONAL,
duration [2] INTEGER OPTIONAL,
generationCounter [3] INTEGER OPTIONAL,
requestedAlgorithm [4] AlgorithmIdentifier OPTIONAL }
The fields in GLRekey have the following meaning:
- glName indicates the name of the GL to be rekeyed.
- glAdministration indicates if there is any change to how the GL
should be administered. See Section 3.1.1 for the three options.
This field is only included if there is a change from the
previously registered glAdministration.
- glNewKeyAttributes indicates whether the rekey of the GLO is
controlled by the GLA or GL, what algorithm and parameters the
GLO wishes to use, the duration of the key, and how many keys
will be issued. The field is only included if there is a change
from the previously registered glKeyAttributes.
- glRekeyAllGLKeys indicates whether the GLO wants all of the
outstanding GL's shared KEKs rekeyed. If it is set to TRUE then
all outstanding KEKs MUST be issued. If it is set to FALSE then
all outstanding KEKs need not be reissued.
Turner Standards Track [Page 16]
^L
RFC 5275 CMS SymKeyDist June 2008
3.1.6. Add GL Owner
GLOs use the glAddOwner to request that a new GLO be allowed to
administer the GL. The glAddOwner message MUST be signed by a
registered GLO. The glAddOwner control attribute has the syntax
GLOwnerAdministration:
GLOwnerAdministration ::= SEQUENCE {
glName GeneralName,
glOwnerInfo GLOwnerInfo }
The fields in GLAddOwners have the following meaning:
- glName indicates the name of the GL to which the new GLO should
be associated.
- glOwnerInfo indicates the name, address, and certificates of the
new GLO. As this message includes names of new GLOs, the
certificates.pKC MUST be included, and it MUST include the
encryption certificate of the new GLO.
3.1.7. Remove GL Owner
GLOs use the glRemoveOwner to request that a GLO be disassociated
with the GL. The glRemoveOwner message MUST be signed by a
registered GLO. The glRemoveOwner control attribute has the syntax
GLOwnerAdministration:
GLOwnerAdministration ::= SEQUENCE {
glName GeneralName,
glOwnerInfo GLOwnerInfo }
The fields in GLRemoveOwners have the following meaning:
- glName indicates the name of the GL to which the GLO should be
disassociated.
- glOwnerInfo indicates the name and address of the GLO to be
removed. The certificates field SHOULD be omitted, as it will be
ignored.
3.1.8. GL Key Compromise
GL members and GLOs use glkCompromise to indicate that the shared KEK
possessed has been compromised. The glKeyCompromise control
attribute has the syntax GeneralName. This message is always
redirected by the GLA to the GLO for further action. The
glkCompromise MAY be included in an EnvelopedData generated with the
Turner Standards Track [Page 17]
^L
RFC 5275 CMS SymKeyDist June 2008
compromised shared KEK. The name of the GL to which the compromised
key is associated is placed in GeneralName:
GLKCompromise ::= GeneralName
3.1.9. GL Key Refresh
GL members use the glkRefresh to request that the shared KEK be
redistributed to them. The glkRefresh control attribute has the
syntax GLKRefresh.
GLKRefresh ::= SEQUENCE {
glName GeneralName,
dates SEQUENCE SIZE (1..MAX) OF Date }
Date ::= SEQUENCE {
start GeneralizedTime,
end GeneralizedTime OPTIONAL }
The fields in GLKRefresh have the following meaning:
- glName indicates the name of the GL for which the GL member wants
shared KEKs.
- dates indicates a date range for keys the GL member wants. The
start field indicates the first date the GL member wants and the
end field indicates the last date. The end date MAY be omitted
to indicate the GL member wants all keys from the specified start
date to the current date. Note that a procedural mechanism is
needed to restrict users from accessing messages that they are
not allowed to access.
3.1.10. GLA Query Request and Response
There are situations where GLOs and GL members may need to determine
some information from the GLA about the GL. GLOs and GL members use
the glaQueryRequest, defined in Section 3.1.10.1, to request
information and GLAs use the glaQueryResponse, defined in Section
3.1.10.2, to return the requested information. Section 3.1.10.3
includes one request and response type and value; others may be
defined in additional documents.
3.1.10.1. GLA Query Request
GLOs and GL members use the glaQueryRequest to ascertain information
about the GLA. The glaQueryRequest control attribute has the syntax
GLAQueryRequest:
Turner Standards Track [Page 18]
^L
RFC 5275 CMS SymKeyDist June 2008
GLAQueryRequest ::= SEQUENCE {
glaRequestType OBJECT IDENTIFIER,
glaRequestValue ANY DEFINED BY glaRequestType }
3.1.10.2. GLA Query Response
GLAs return the glaQueryResponse after receiving a GLAQueryRequest.
The glaQueryResponse MUST be signed by a GLA. The glaQueryResponse
control attribute has the syntax GLAQueryResponse:
GLAQueryResponse ::= SEQUENCE {
glaResponseType OBJECT IDENTIFIER,
glaResponseValue ANY DEFINED BY glaResponseType }
3.1.10.3. Request and Response Types
Requests and responses are registered as a pair under the following
object identifier arc:
id-cmc-glaRR OBJECT IDENTIFIER ::= { id-cmc 99 }
This document defines one request/response pair for GL members and
GLOs to query the GLA for the list of algorithm it supports. The
following Object Identifier (OID) is included in the glaQueryType
field:
id-cmc-gla-skdAlgRequest OBJECT IDENTIFIER ::={ id-cmc-glaRR 1 }
SKDAlgRequest ::= NULL
If the GLA supports GLAQueryRequest and GLAQueryResponse messages,
the GLA may return the following OID in the glaQueryType field:
id-cmc-gla-skdAlgResponse OBJECT IDENTIFIER ::= { id-cmc-glaRR 2 }
The glaQueryValue has the form of the smimeCapabilities attributes as
defined in [MSG].
3.1.11. Provide Cert
GLAs and GLOs use the glProvideCert to request that a GL member
provide an updated or new encryption certificate. The glProvideCert
message MUST be signed by either GLA or GLO. If the GL member's PKC
has been revoked, the GLO or GLA MUST NOT use it to generate the
EnvelopedData that encapsulates the glProvideCert request. The
glProvideCert control attribute has the syntax GLManageCert:
Turner Standards Track [Page 19]
^L
RFC 5275 CMS SymKeyDist June 2008
GLManageCert ::= SEQUENCE {
glName GeneralName,
glMember GLMember }
The fields in GLManageCert have the following meaning:
- glName indicates the name of the GL to which the GL member's new
certificate is to be associated.
- glMember indicates particulars for the GL member:
-- glMemberName indicates the GL member's name.
-- glMemberAddress indicates the GL member's address. It MAY be
omitted.
-- certificates SHOULD be omitted.
3.1.12 Update Cert
GL members and GLOs use the glUpdateCert to provide a new certificate
for the GL. GL members can generate an unsolicited glUpdateCert or
generate a response glUpdateCert as a result of receiving a
glProvideCert message. GL members MUST sign the glUpdateCert. If
the GL member's encryption certificate has been revoked, the GL
member MUST NOT use it to generate the EnvelopedData that
encapsulates the glUpdateCert request or response. The glUpdateCert
control attribute has the syntax GLManageCert:
GLManageCert ::= SEQUENCE {
glName GeneralName,
glMember GLMember }
The fields in GLManageCert have the following meaning:
- glName indicates the name of the GL to which the GL member's new
certificate should be associated.
- glMember indicates the particulars for the GL member:
-- glMemberName indicates the GL member's name.
-- glMemberAddress indicates the GL member's address. It MAY be
omitted.
-- certificates MAY be omitted if the GLManageCert message is
sent to request the GL member's certificate; otherwise, it
MUST be included. It includes the following three fields:
Turner Standards Track [Page 20]
^L
RFC 5275 CMS SymKeyDist June 2008
--- certificates.pKC includes the member's encryption
certificate that will be used to encrypt the shared KEK
for that member.
--- certificates.aC MAY be included to convey one or more
attribute certificates associated with the member's
encryption certificate.
--- certificates.certPath MAY also be included to convey
certificates that might aid the recipient in
constructing valid certification paths for the
certificate provided in certificates.pKC and the
attribute certificates provided in certificates.aC.
These certificates are optional because they might
already be included elsewhere in the message (e.g., in
the outer CMS layer).
3.1.13. GL Key
The GLA uses the glKey to distribute the shared KEK. The glKey
message MUST be signed by the GLA. The glKey control attribute has
the syntax GLKey:
GLKey ::= SEQUENCE {
glName GeneralName,
glIdentifier KEKIdentifier, -- See [CMS]
glkWrapped RecipientInfos, -- See [CMS]
glkAlgorithm AlgorithmIdentifier,
glkNotBefore GeneralizedTime,
glkNotAfter GeneralizedTime }
-- KEKIdentifier is included only for illustrative purposes as
-- it is imported from [CMS].
KEKIdentifier ::= SEQUENCE {
keyIdentifier OCTET STRING,
date GeneralizedTime OPTIONAL,
other OtherKeyAttribute OPTIONAL }
The fields in GLKey have the following meaning:
- glName is the name of the GL.
- glIdentifier is the key identifier of the shared KEK. See
Section 6.2.3 of [CMS] for a description of the subfields.
Turner Standards Track [Page 21]
^L
RFC 5275 CMS SymKeyDist June 2008
- glkWrapped is the wrapped shared KEK for the GL for a particular
duration. The RecipientInfos MUST be generated as specified in
Section 6.2 of [CMS]. The ktri RecipientInfo choice MUST be
supported. The key in the EncryptedKey field (i.e., the
distributed shared KEK) MUST be generated according to the
section concerning random number generation in the security
considerations of [CMS].
- glkAlgorithm identifies the algorithm with which the shared KEK
is used. Since no encrypted data content is being conveyed at
this point, the parameters encoded with the algorithm should be
the structure defined for smimeCapabilities rather than encrypted
content.
- glkNotBefore indicates the date at which the shared KEK is
considered valid. GeneralizedTime values MUST be expressed in
UTC (Zulu) and MUST include seconds (i.e., times are
YYYYMMDDHHMMSSZ), even where the number of seconds is zero.
GeneralizedTime values MUST NOT include fractional seconds.
- glkNotAfter indicates the date after which the shared KEK is
considered invalid. GeneralizedTime values MUST be expressed in
UTC (Zulu) and MUST include seconds (i.e., times are
YYYYMMDDHHMMSSZ), even where the number of seconds is zero.
GeneralizedTime values MUST NOT include fractional seconds.
If the glKey message is in response to a glUseKEK message:
- The GLA MUST generate separate glKey messages for each recipient
if glUseKEK.glKeyAttributes.recipientsNotMutuallyAware is set to
TRUE. For each recipient, you want to generate a message that
contains that recipient's key (i.e., one message with one
attribute).
- The GLA MUST generate the requested number of glKey messages.
The value in glUseKEK.glKeyAttributes.generationCounter indicates
the number of glKey messages requested.
If the glKey message is in response to a glRekey message:
- The GLA MUST generate separate glKey messages for each recipient
if glRekey.glNewKeyAttributes.recipientsNotMutuallyAware is set
to TRUE.
- The GLA MUST generate the requested number of glKey messages.
The value in glUseKEK.glKeyAttributes.generationCounter indicates
the number of glKey messages requested.
Turner Standards Track [Page 22]
^L
RFC 5275 CMS SymKeyDist June 2008
- The GLA MUST generate one glKey message for each outstanding
shared KEKs for the GL when glRekeyAllGLKeys is set to TRUE.
If the glKey message was not in response to a glRekey or glUseKEK
(e.g., where the GLA controls rekey):
- The GLA MUST generate separate glKey messages for each recipient
when glUseKEK.glNewKeyAttributes.recipientsNotMutuallyAware that
set up the GL was set to TRUE.
- The GLA MAY generate glKey messages prior to the duration on the
last outstanding shared KEK expiring, where the number of glKey
messages generated is generationCounter minus one (1). Other
distribution mechanisms can also be supported to support this
functionality.
3.2. Use of CMC, CMS, and PKIX
The following sections outline the use of CMC, CMS, and the PKIX
certificate and CRL profile.
3.2.1. Protection Layers
The following sections outline the protection required for the
control attributes defined in this document.
Note: There are multiple ways to encapsulate SignedData and
EnvelopedData. The first is to use a MIME wrapper around each
ContentInfo, as specified in [MSG]. The second is not to use a MIME
wrapper around each ContentInfo, as specified in Transporting S/MIME
Objects in X.400 [X400TRANS].
3.2.1.1. Minimum Protection
At a minimum, a SignedData MUST protect each request and response
encapsulated in PKIData and PKIResponse. The following is a
depiction of the minimum wrappings:
Minimum Protection
------------------
SignedData
PKIData or PKIResponse
controlSequence
Prior to taking any action on any request or response SignedData(s)
MUST be processed according to [CMS].
Turner Standards Track [Page 23]
^L
RFC 5275 CMS SymKeyDist June 2008
3.2.1.2. Additional Protection
An additional EnvelopedData MAY also be used to provide
confidentiality of the request and response. An additional
SignedData MAY also be added to provide authentication and integrity
of the encapsulated EnvelopedData. The following is a depiction of
the optional additional wrappings:
Authentication and Integrity
Confidentiality Protection of Confidentiality Protection
-------------------------- -----------------------------
EnvelopedData SignedData
SignedData EnvelopedData
PKIData or PKIResponse SignedData
controlSequence PKIData or PKIResponse
controlSequence
If an incoming message is encrypted, the confidentiality of the
message MUST be preserved. All EnvelopedData objects MUST be
processed as specified in [CMS]. If a SignedData is added over an
EnvelopedData, a ContentHints attribute SHOULD be added. See Section
2.9 of Extended Security Services for S/MIME [ESS].
If the GLO or GL member applies confidentiality to a request, the
EnvelopedData MUST include the GLA as a recipient. If the GLA
forwards the GL member request to the GLO, then the GLA MUST decrypt
the EnvelopedData content, strip the confidentiality layer, and apply
its own confidentiality layer as an EnvelopedData with the GLO as a
recipient.
3.2.2. Combining Requests and Responses
Multiple requests and responses corresponding to a GL MAY be included
in one PKIData.controlSequence or PKIResponse.controlSequence.
Requests and responses for multiple GLs MAY be combined in one
PKIData or PKIResponse by using PKIData.cmsSequence and
PKIResponse.cmsSequence. A separate cmsSequence MUST be used for
different GLs. That is, requests corresponding to two different GLs
are included in different cmsSequences. The following is a diagram
depicting multiple requests and responses combined in one PKIData and
PKIResponse:
Turner Standards Track [Page 24]
^L
RFC 5275 CMS SymKeyDist June 2008
Multiple Requests and Responses
Request Response
------- --------
SignedData SignedData
PKIData PKIResponse
cmsSequence cmsSequence
SignedData SignedData
PKIData PKIResponse
controlSequence controlSequence
One or more requests One or more responses
corresponding to one GL corresponding to one GL
SignedData SignedData
PKIData PKIResponse
controlSequence controlSequence
One or more requests One or more responses
corresponding to another GL corresponding to another GL
When applying confidentiality to multiple requests and responses, all
of the requests/responses MAY be included in one EnvelopedData. The
following is a depiction:
Confidentiality of Multiple Requests and Responses
Wrapped Together
----------------
EnvelopedData
SignedData
PKIData
cmsSequence
SignedData
PKIResponse
controlSequence
One or more requests
corresponding to one GL
SignedData
PKIData
controlSequence
One or more requests
corresponding to one GL
Turner Standards Track [Page 25]
^L
RFC 5275 CMS SymKeyDist June 2008
Certain combinations of requests in one PKIData.controlSequence and
one PKIResponse.controlSequence are not allowed. The invalid
combinations listed here MUST NOT be generated:
Invalid Combinations
---------------------------
glUseKEK & glDeleteMember
glUseKEK & glRekey
glUseKEK & glDelete
glDelete & glAddMember
glDelete & glDeleteMember
glDelete & glRekey
glDelete & glAddOwner
glDelete & glRemoveOwner
To avoid unnecessary errors, certain requests and responses SHOULD be
processed prior to others. The following is the priority of message
processing, if not listed it is an implementation decision as to
which to process first: glUseKEK before glAddMember, glRekey before
glAddMember, and glDeleteMember before glRekey. Note that there is a
processing priority, but it does not imply an ordering within the
content.
3.2.3. GLA Generated Messages
When the GLA generates a success or fail message, it generates one
for each request. SKDFailInfo values of unsupportedDuration,
unsupportedDeliveryMethod, unsupportedAlgorithm, noGLONameMatch,
nameAlreadyInUse, alreadyAnOwner, and notAnOwner are not returned to
GL members.
If GLKeyAttributes.recipientsNotMutuallyAware is set to TRUE, a
separate PKIResponse.cMCStatusInfoExt and PKIData.glKey MUST be
generated for each recipient. However, it is valid to send one
message with multiple attributes to the same recipient.
If the GL has multiple GLOs, the GLA MUST send cMCStatusInfoExt
messages to the requesting GLO. The mechanism to determine which GLO
made the request is beyond the scope of this document.
If a GL is managed and the GLA receives a glAddMember,
glDeleteMember, or glkCompromise message, the GLA redirects the
request to the GLO for review. An additional, SignedData MUST be
applied to the redirected request as follows:
Turner Standards Track [Page 26]
^L
RFC 5275 CMS SymKeyDist June 2008
GLA Forwarded Requests
----------------------
SignedData
PKIData
cmsSequence
SignedData
PKIData
controlSequence
3.2.4. CMC Control Attributes and CMS Signed Attributes
CMC carries control attributes as CMS signed attributes. These
attributes are defined in [CMC] and [CMS]. Some of these attributes
are REQUIRED; others are OPTIONAL. The required attributes are as
follows: cMCStatusInfoExt transactionId, senderNonce, recipientNonce,
queryPending, and signingTime. Other attributes can also be used;
however, their use is beyond the scope of this document. The
following sections specify requirements in addition to those already
specified in [CMC] and [CMS].
3.2.4.1. Using cMCStatusInfoExt
cMCStatusInfoExt is used by GLAs to indicate to GLOs and GL members
that a request was unsuccessful. Two classes of failure codes are
used within this document. Errors from the CMCFailInfo list, found
in Section 5.1.4 of CMC, are encoded as defined in CMC. Error codes
defined in this document are encoded using the ExtendedFailInfo field
of the cmcStatusInfoExt structure. If the same failure code applies
to multiple commands, a single cmcStatusInfoExt structure can be used
with multiple items in cMCStatusInfoExt.bodyList. The GLA MAY also
return other pertinent information in statusString. The SKDFailInfo
object identifier and value are:
id-cet-skdFailInfo OBJECT IDENTIFIER ::= { iso(1)
identified-organization(3) dod(6) internet(1) security(5)
mechanisms(5) pkix(7) cet(15) skdFailInfo(1) }
SKDFailInfo ::= INTEGER {
unspecified (0),
closedGL (1),
unsupportedDuration (2),
noGLACertificate (3),
invalidCert (4),
unsupportedAlgorithm (5),
noGLONameMatch (6),
invalidGLName (7),
nameAlreadyInUse (8),
noSpam (9),
Turner Standards Track [Page 27]
^L
RFC 5275 CMS SymKeyDist June 2008
-- obsolete (10),
alreadyAMember (11),
notAMember (12),
alreadyAnOwner (13),
notAnOwner (14) }
The values have the following meaning:
- unspecified indicates that the GLA is unable or unwilling to
perform the requested action and does not want to indicate the
reason.
- closedGL indicates that members can only be added or deleted by
the GLO.
- unsupportedDuration indicates that the GLA does not support
generating keys that are valid for the requested duration.
- noGLACertificate indicates that the GLA does not have a valid
certificate.
- invalidCert indicates that the member's encryption certificate
was not verifiable (i.e., signature did not validate,
certificate's serial number present on a CRL, the certificate
expired, etc.).
- unsupportedAlgorithm indicates the GLA does not support the
requested algorithm.
- noGLONameMatch indicates that one of the names in the certificate
used to sign a request does not match the name of a registered
GLO.
- invalidGLName indicates that the GLA does not support the glName
present in the request.
- nameAlreadyInUse indicates that the glName is already assigned on
the GLA.
- noSpam indicates that the prospective GL member did not sign the
request (i.e., if the name in glMember.glMemberName does not
match one of the names (either the subject distinguished name or
one of the subject alternative names) in the certificate used to
sign the request).
- alreadyAMember indicates that the prospective GL member is
already a GL member.
Turner Standards Track [Page 28]
^L
RFC 5275 CMS SymKeyDist June 2008
- notAMember indicates that the prospective GL member to be deleted
is not presently a GL member.
- alreadyAnOwner indicates that the prospective GLO is already a
GLO.
- notAnOwner indicates that the prospective GLO to be deleted is
not presently a GLO.
cMCStatusInfoExt is used by GLAs to indicate to GLOs and GL members
that a request was successfully completed. If the request was
successful, the GLA returns a cMCStatusInfoExt response with
cMCStatus.success and optionally other pertinent information in
statusString.
When the GL is managed and the GLO has reviewed GL member initiated
glAddMember, glDeleteMember, and glkComrpomise requests, the GLO uses
cMCStatusInfoExt to indicate the success or failure of the request.
If the request is allowed, cMCStatus.success is returned and
statusString is optionally returned to convey additional information.
If the request is denied, cMCStatus.failed is returned and
statusString is optionally returned to convey additional information.
Additionally, the appropriate SKDFailInfo can be included in
cMCStatusInfoExt.extendedFailInfo.
cMCStatusInfoExt is used by GLOs, GLAs, and GL members to indicate
that signature verification failed. If the signature failed to
verify over any control attribute except a cMCStatusInfoExt, a
cMCStatusInfoExt control attribute MUST be returned indicating
cMCStatus.failed and otherInfo.failInfo.badMessageCheck. If the
signature over the outermost PKIData failed, the bodyList value is
zero (0). If the signature over any other PKIData failed, the
bodyList value is the bodyPartId value from the request or response.
GLOs and GL members who receive cMCStatusInfoExt messages whose
signatures are invalid SHOULD generate a new request to avoid
badMessageCheck message loops.
cMCStatusInfoExt is also used by GLOs and GLAs to indicate that a
request could not be performed immediately. If the request could not
be processed immediately by the GLA or GLO, the cMCStatusInfoExt
control attribute MUST be returned indicating cMCStatus.pending and
otherInfo.pendInfo. When requests are redirected to the GLO for
approval (for managed lists), the GLA MUST NOT return a
cMCStatusInfoExt indicating query pending.
Turner Standards Track [Page 29]
^L
RFC 5275 CMS SymKeyDist June 2008
cMCStatusInfoExt is also used by GLAs to indicate that a
glaQueryRequest is not supported. If the glaQueryRequest is not
supported, the cMCStatusInfoExt control attribute MUST be returned
indicating cMCStatus.noSupport and statusString is optionally
returned to convey additional information.
cMCStatusInfoExt is also used by GL members, GLOs, and GLAs to
indicate that the signingTime (see Section 3.2.4.3) is not close
enough to the locally specified time. If the local time is not close
enough to the time specified in signingTime, a cMCStatus.failed and
otherInfo.failInfo.badTime MAY be returned.
3.2.4.2. Using transactionId
transactionId MAY be included by GLOs, GLAs, or GL members to
identify a given transaction. All subsequent requests and responses
related to the original request MUST include the same transactionId
control attribute. If GL members include a transactionId and the
request is redirected to the GLO, the GLA MAY include an additional
transactionId in the outer PKIData. If the GLA included an
additional transactionId in the outer PKIData, when the GLO generates
a cMCStatusInfoExt response it generates one for the GLA with the
GLA's transactionId and one for the GL member with the GL member's
transactionId.
3.2.4.3. Using Nonces and signingTime
The use of nonces (see Section 5.6 of [CMC]) and an indication of
when the message was signed (see Section 11.3 of [CMS]) can be used
to provide application-level replay prevention.
To protect the GL, all messages MUST include the signingTime
attribute. Message originators and recipients can then use the time
provided in this attribute to determine whether they have previously
received the message.
If the originating message includes a senderNonce, the response to
the message MUST include the received senderNonce value as the
recipientNonce and a new value as the senderNonce value in the
response.
If a GLA aggregates multiple messages together or forwards a message
to a GLO, the GLA MAY optionally generate a new nonce value and
include that in the wrapping message. When the response comes back
from the GLO, the GLA builds a response to the originator(s) of the
message(s) and deals with each of the nonce values from the
originating messages.
Turner Standards Track [Page 30]
^L
RFC 5275 CMS SymKeyDist June 2008
For these attributes, it is necessary to maintain state information
on exchanges to compare one result to another. The time period for
which this information is maintained is a local policy.
3.2.4.4. CMC and CMS Attribute Support Requirements
The following are the implementation requirements for CMC control
attributes and CMS signed attributes for an implementation to be
considered conformant to this specification:
Implementation Requirement |
GLO | GLA | GL Member | Attribute
O R | O R F | O R |
--------- | ------------- | --------- | ----------
MUST MUST | MUST MUST - | MUST MUST | cMCStatusInfoExt
MAY MAY | MUST MUST - | MAY MAY | transactionId
MAY MAY | MUST MUST - | MAY MAY | senderNonce
MAY MAY | MUST MUST - | MAY MAY | recepientNonce
MUST MUST | MUST MUST - | MUST MUST | SKDFailInfo
MUST MUST | MUST MUST - | MUST MUST | signingTime
3.2.5. Resubmitted GL Member Messages
When the GL is managed, the GLA forwards the GL member requests to
the GLO for GLO approval by creating a new request message containing
the GL member request(s) as a cmsSequence item. If the GLO approves
the request, it can either add a new layer of wrapping and send it
back to the GLA or create a new message and send it to the GLA.
(Note in this case there are now 3 layers of PKIData messages with
appropriate signing layers.)
3.2.6. PKIX Certificate and CRL Profile
Signatures, certificates, and CRLs are verified according to the PKIX
profile [PROFILE].
Name matching is performed according to the PKIX profile [PROFILE].
All distinguished name forms must follow the UTF8String convention
noted in the PKIX profile [PROFILE].
A certificate per GL would be issued to the GLA.
GL policy may mandate that the GL member's address be included in the
GL member's certificate.
Turner Standards Track [Page 31]
^L
RFC 5275 CMS SymKeyDist June 2008
4. Administrative Messages
There are a number of administrative messages that must be exchanged
to manage a GL. The following sections describe each request and
response message combination in detail. The procedures defined in
this section are not prescriptive.
4.1. Assign KEK to GL
Prior to generating a group key, a GL needs to be set up and a shared
KEK assigned to the GL. Figure 3 depicts the protocol interactions
to set up and assign a shared KEK. Note that error messages are not
depicted in Figure 3. Additionally, behavior for the optional
transactionId, senderNonce, and recipientNonce CMC control attributes
is not addressed in these procedures.
+-----+ 1 2 +-----+
| GLA | <-------> | GLO |
+-----+ +-----+
Figure 3 - Create Group List
The process is as follows:
1 - The GLO is the entity responsible for requesting the creation of
the GL. The GLO sends a
SignedData.PKIData.controlSequence.glUseKEK request to the GLA (1
in Figure 3). The GLO MUST include glName, glAddress,
glOwnerName, glOwnerAddress, and glAdministration. The GLO MAY
also include their preferences for the shared KEK in
glKeyAttributes by indicating whether the GLO controls the rekey
in rekeyControlledByGLO, whether separate glKey messages should
be sent to each recipient in recipientsNotMutuallyAware, the
requested algorithm to be used with the shared KEK in
requestedAlgorithm, the duration of the shared KEK, and how many
shared KEKs should be initially distributed in generationCounter.
The GLO MUST also include the signingTime attribute with this
request.
1.a - If the GLO knows of members to be added to the GL, the
glAddMember request(s) MAY be included in the same
controlSequence as the glUseKEK request (see Section 3.2.2).
The GLO indicates the same glName in the glAddMember request
as in glUseKEK.glInfo.glName. Further glAddMember procedures
are covered in Section 4.3.
Turner Standards Track [Page 32]
^L
RFC 5275 CMS SymKeyDist June 2008
1.b - The GLO can apply confidentiality to the request by
encapsulating the SignedData.PKIData in an EnvelopedData (see
Section 3.2.1.2).
1.c - The GLO can also optionally apply another SignedData over the
EnvelopedData (see Section 3.2.1.2).
2 - Upon receipt of the request, the GLA checks the signingTime and
verifies the signature on the innermost SignedData.PKIData. If
an additional SignedData and/or EnvelopedData encapsulates the
request (see Sections 3.2.1.2 and 3.2.2), the GLA verifies the
outer signature(s) and/or decrypts the outer layer(s) prior to
verifying the signature on the innermost SignedData.
2.a - If the signingTime attribute value is not within the locally
accepted time window, the GLA MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
2.b - Else if signature processing continues and if the signatures
do not verify, the GLA returns a cMCStatusInfoExt response
indicating cMCStatus.failed and
otherInfo.failInfo.badMessageCheck. Additionally, a
signingTime attribute is included with the response.
2.c - Else if the signatures do verify but the GLA does not have a
valid certificate, the GLA returns a cMCStatusInfoExt with
cMCStatus.failed and otherInfo.extendedFailInfo.SKDFailInfo
value of noValidGLACertificate. Additionally, a signingTime
attribute is included with the response. Instead of
immediately returning the error code, the GLA attempts to get
a certificate, possibly using [CMC].
2.d - Else the signatures are valid and the GLA does have a valid
certificate, the GLA checks that one of the names in the
certificate used to sign the request matches one of the names
in glUseKEK.glOwnerInfo.glOwnerName.
2.d.1 - If the names do not match, the GLA returns a response
indicating cMCStatusInfoExt with cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
noGLONameMatch. Additionally, a signingTime attribute is
included with the response.
Turner Standards Track [Page 33]
^L
RFC 5275 CMS SymKeyDist June 2008
2.d.2 - Else if the names all match, the GLA checks that the
glName and glAddress are not already in use. The GLA
also checks any glAddMember included within the
controlSequence with this glUseKEK. Further processing
of the glAddMember is covered in Section 4.3.
2.d.2.a - If the glName is already in use, the GLA returns a
response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
nameAlreadyInUse. Additionally, a signingTime
attribute is included with the response.
2.d.2.b - Else if the requestedAlgorithm is not supported, the
GLA returns a response indicating cMCStatusInfoExt
with cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
unsupportedAlgorithm. Additionally, a signingTime
attribute is included with the response.
2.d.2.c - Else if the duration cannot be supported, determining
this is beyond the scope of this document, the GLA
returns a response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
unsupportedDuration. Additionally, a signingTime
attribute is included with the response.
2.d.2.d - Else if the GL cannot be supported for other reasons,
which the GLA does not wish to disclose, the GLA
returns a response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
unspecified. Additionally, a signingTime attribute
is included with the response.
2.d.2.e - Else if the glName is not already in use, the
duration can be supported, and the requestedAlgorithm
is supported, the GLA MUST return a cMCStatusInfoExt
indicating cMCStatus.success and a signingTime
attribute. (2 in Figure 3). The GLA also takes
administrative actions, which are beyond the scope of
this document, to store the glName, glAddress,
glKeyAttributes, glOwnerName, and glOwnerAddress.
The GLA also sends a glKey message as described in
section 5.
Turner Standards Track [Page 34]
^L
RFC 5275 CMS SymKeyDist June 2008
2.d.2.e.1 - The GLA can apply confidentiality to the response
by encapsulating the SignedData.PKIResponse in an
EnvelopedData if the request was encapsulated in
an EnvelopedData (see Section 3.2.1.2).
2.d.2.e.2 - The GLA can also optionally apply another
SignedData over the EnvelopedData (see Section
3.2.1.2).
3 - Upon receipt of the cMCStatusInfoExt responses, the GLO checks
the signingTime and verifies the GLA signature(s). If an
additional SignedData and/or EnvelopedData encapsulates the
response (see Section 3.2.1.2 or 3.2.2), the GLO verifies the
outer signature and/or decrypts the outer layer prior to
verifying the signature on the innermost SignedData.
3.a - If the signingTime attribute value is not within the locally
accepted time window, the GLO MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
3.b - Else if signature processing continues and if the signatures
do verify, the GLO MUST check that one of the names in the
certificate used to sign the response matches the name of the
GL.
3.b.1 - If the name of the GL does not match the name present in
the certificate used to sign the message, the GLO should
not believe the response.
3.b.2 - Else if the name of the GL does match the name present in
the certificate and:
3.b.2.a - If the signatures do verify and the response was
cMCStatusInfoExt indicating cMCStatus.success, the
GLO has successfully created the GL.
3.b.2.b - Else if the signatures are valid and the response is
cMCStatusInfoExt.cMCStatus.failed with any reason,
the GLO can reattempt to create the GL using the
information provided in the response. The GLO can
also use the glaQueryRequest to determine the
algorithms and other characteristics supported by the
GLA (see Section 4.9).
Turner Standards Track [Page 35]
^L
RFC 5275 CMS SymKeyDist June 2008
4.2. Delete GL from GLA
From time to time, there are instances when a GL is no longer needed.
In this case, the GLO deletes the GL. Figure 4 depicts the protocol
interactions to delete a GL. Note that behavior for the optional
transactionId, senderNonce, and recipientNonce CMC control attributes
is not addressed in these procedures.
+-----+ 1 2 +-----+
| GLA | <-------> | GLO |
+-----+ +-----+
Figure 4 - Delete Group List
The process is as follows:
1 - The GLO is responsible for requesting the deletion of the GL.
The GLO sends a SignedData.PKIData.controlSequence.glDelete
request to the GLA (1 in Figure 4). The name of the GL to be
deleted is included in GeneralName. The GLO MUST also include
the signingTime attribute and can also include a transactionId
and senderNonce attributes.
1.a - The GLO can optionally apply confidentiality to the request
by encapsulating the SignedData.PKIData in an EnvelopedData
(see Section 3.2.1.2).
1.b - The GLO MAY optionally apply another SignedData over the
EnvelopedData (see Section 3.2.1.2).
2 - Upon receipt of the request, the GLA checks the signingTime and
verifies the signature on the innermost SignedData.PKIData. If
an additional SignedData and/or EnvelopedData encapsulates the
request (see Section 3.2.1.2 or 3.2.2), the GLA verifies the
outer signature and/or decrypts the outer layer prior to
verifying the signature on the innermost SignedData.
2.a - If the signingTime attribute value is not within the locally
accepted time window, the GLA MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
2.b - Else if signature processing continues and if the signatures
cannot be verified, the GLA returns a cMCStatusInfoExt
response indicating cMCStatus.failed and
otherInfo.failInfo.badMessageCheck. Additionally, a
signingTime attribute is included with the response.
Turner Standards Track [Page 36]
^L
RFC 5275 CMS SymKeyDist June 2008
2.c - Else if the signatures verify, the GLA makes sure the GL is
supported by checking the name of the GL matches a glName
stored on the GLA.
2.c.1 - If the glName is not supported by the GLA, the GLA
returns a response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
invalidGLName. Additionally, a signingTime attribute is
included with the response.
2.c.2 - Else if the glName is supported by the GLA, the GLA
ensures that a registered GLO signed the glDelete request
by checking if one of the names present in the digital
signature certificate used to sign the glDelete request
matches a registered GLO.
2.c.2.a - If the names do not match, the GLA returns a response
indicating cMCStatusInfoExt with cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
noGLONameMatch. Additionally, a signingTime
attribute is included with the response.
2.c.2.b - Else if the names do match, but the GL cannot be
deleted for other reasons, which the GLA does not
wish to disclose, the GLA returns a response
indicating cMCStatusInfoExt with cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
unspecified. Additionally, a signingTime attribute
is included with the response. Actions beyond the
scope of this document must then be taken to delete
the GL from the GLA.
2.c.2.c - Else if the names do match, the GLA returns a
cMCStatusInfoExt indicating cMCStatus.success and a
signingTime attribute (2 in Figure 4). The GLA ought
not accept further requests for member additions,
member deletions, or group rekeys for this GL.
2.c.2.c.1 - The GLA can apply confidentiality to the response
by encapsulating the SignedData.PKIResponse in an
EnvelopedData if the request was encapsulated in
an EnvelopedData (see Section 3.2.1.2).
2.c.2.c.2 - The GLA MAY optionally apply another SignedData
over the EnvelopedData (see Section 3.2.1.2).
Turner Standards Track [Page 37]
^L
RFC 5275 CMS SymKeyDist June 2008
3 - Upon receipt of the cMCStatusInfoExt response, the GLO checks the
signingTime and verifies the GLA signature(s). If an additional
SignedData and/or EnvelopedData encapsulates the response (see
Section 3.2.1.2 or 3.2.2), the GLO verifies the outer signature
and/or decrypts the outer layer prior to verifying the signature
on the innermost SignedData.
3.a - If the signingTime attribute value is not within the locally
accepted time window, the GLO MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
3.b - Else if signature processing continues and if the signatures
verify, the GLO checks that one of the names in the
certificate used to sign the response matches the name of the
GL.
3.b.1 - If the name of the GL does not match the name present in
the certificate used to sign the message, the GLO should
not believe the response.
3.b.2 - Else if the name of the GL does match the name present in
the certificate and:
3.b.2.a - If the signatures verify and the response was
cMCStatusInfoExt indicating cMCStatus.success, the
GLO has successfully deleted the GL.
3.b.2.b - Else if the signatures do verify and the response was
cMCStatusInfoExt.cMCStatus.failed with any reason,
the GLO can reattempt to delete the GL using the
information provided in the response.
4.3. Add Members to GL
To add members to GLs, either the GLO or prospective members use the
glAddMember request. The GLA processes GLO and prospective GL member
requests differently though. GLOs can submit the request at any time
to add members to the GL, and the GLA, once it has verified the
request came from a registered GLO, should process it. If a
prospective member sends the request, the GLA needs to determine how
the GL is administered. When the GLO initially configured the GL, it
set the GL to be unmanaged, managed, or closed (see Section 3.1.1).
In the unmanaged case, the GLA merely processes the member's request.
In the managed case, the GLA forwards the requests from the
prospective members to the GLO for review. Where there are multiple
GLOs for a GL, which GLO the request is forwarded to is beyond the
scope of this document. The GLO reviews the request and either
Turner Standards Track [Page 38]
^L
RFC 5275 CMS SymKeyDist June 2008
rejects it or submits a reformed request to the GLA. In the closed
case, the GLA will not accept requests from prospective members. The
following sections describe the processing for the GLO(s), GLA, and
prospective GL members depending on where the glAddMeber request
originated, either from a GLO or from prospective members. Figure 5
depicts the protocol interactions for the three options. Note that
the error messages are not depicted. Additionally, note that
behavior for the optional transactionId, senderNonce, and
recipientNonce CMC control attributes is not addressed in these
procedures.
+-----+ 2,B{A} 3 +----------+
| GLO | <--------+ +-------> | Member 1 |
+-----+ | | +----------+
1 | |
+-----+ <--------+ | 3 +----------+
| GLA | A +-------> | ... |
+-----+ <-------------+ +----------+
|
| 3 +----------+
+-------> | Member n |
+----------+
Figure 5 - Member Addition
An important decision that needs to be made on a group-by-group basis
is whether to rekey the group every time a new member is added.
Typically, unmanaged GLs should not be rekeyed when a new member is
added, as the overhead associated with rekeying the group becomes
prohibitive, as the group becomes large. However, managed and closed
GLs can be rekeyed to maintain the confidentiality of the traffic
sent by group members. An option to rekeying managed or closed GLs
when a member is added is to generate a new GL with a different group
key. Group rekeying is discussed in Sections 4.5 and 5.
4.3.1. GLO Initiated Additions
The process for GLO initiated glAddMember requests is as follows:
1 - The GLO collects the pertinent information for the member(s) to
be added (this may be done through an out-of-bands means). The
GLO then sends a SignedData.PKIData.controlSequence with a
separate glAddMember request for each member to the GLA (1 in
Figure 5). The GLO includes the GL name in glName, the member's
name in glMember.glMemberName, the member's address in
glMember.glMemberAddress, and the member's encryption certificate
in glMember.certificates.pKC. The GLO can also include any
attribute certificates associated with the member's encryption
Turner Standards Track [Page 39]
^L
RFC 5275 CMS SymKeyDist June 2008
certificate in glMember.certificates.aC, and the certification
path associated with the member's encryption and attribute
certificates in glMember.certificates.certPath. The GLO MUST
also include the signingTime attribute with this request.
1.a - The GLO can optionally apply confidentiality to the request
by encapsulating the SignedData.PKIData in an EnvelopedData
(see Section 3.2.1.2).
1.b - The GLO can also optionally apply another SignedData over the
EnvelopedData (see Section 3.2.1.2).
2 - Upon receipt of the request, the GLA checks the signingTime and
verifies the signature on the innermost SignedData.PKIData. If
an additional SignedData and/or EnvelopedData encapsulates the
request (see Section 3.2.1.2 or 3.2.2), the GLA verifies the
outer signature and/or decrypts the outer layer prior to
verifying the signature on the innermost SignedData.
2.a - If the signingTime attribute value is not within the locally
accepted time window, the GLA MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
2.b - Else if signature processing continues and if the signatures
cannot be verified, the GLA returns a cMCStatusInfoExt
response indicating cMCStatus.failed and
otherInfo.failInfo.badMessageCheck. Additionally, a
signingTime attribute is included with the response.
2.c - Else if the signatures verify, the glAddMember request is
included in a controlSequence with the glUseKEK request, and
the processing in Section 4.1 item 2.d is successfully
completed, the GLA returns a cMCStatusInfoExt indicating
cMCStatus.success and a signingTime attribute (2 in Figure
5).
2.c.1 - The GLA can apply confidentiality to the response by
encapsulating the SignedData.PKIData in an EnvelopedData
if the request was encapsulated in an EnvelopedData (see
Section 3.2.1.2).
2.c.2 - The GLA can also optionally apply another SignedData over
the EnvelopedData (see Section 3.2.1.2).
Turner Standards Track [Page 40]
^L
RFC 5275 CMS SymKeyDist June 2008
2.d - Else if the signatures verify and the GLAddMember request is
not included in a controlSequence with the GLCreate request,
the GLA makes sure the GL is supported by checking that the
glName matches a glName stored on the GLA.
2.d.1 - If the glName is not supported by the GLA, the GLA
returns a response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
invalidGLName. Additionally, a signingTime attribute is
included with the response.
2.d.2 - Else if the glName is supported by the GLA, the GLA
checks to see if the glMemberName is present on the GL.
2.d.2.a - If the glMemberName is present on the GL, the GLA
returns a response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
alreadyAMember. Additionally, a signingTime
attribute is included with the response.
2.d.2.b - Else if the glMemberName is not present on the GL,
the GLA checks how the GL is administered.
2.d.2.b.1 - If the GL is closed, the GLA checks that a
registered GLO signed the request by checking
that one of the names in the digital signature
certificate used to sign the request matches a
registered GLO.
2.d.2.b.1.a - If the names do not match, the GLA returns a
response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value
of noGLONameMatch. Additionally, a
signingTime attribute is included with the
response.
2.d.2.b.1.b - Else if the names match, the GLA verifies the
member's encryption certificate.
2.d.2.b.1.b.1 - If the member's encryption certificate
cannot be verified, the GLA can return a
response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo
value of invalidCert to the GLO.
Turner Standards Track [Page 41]
^L
RFC 5275 CMS SymKeyDist June 2008
Additionally, a signingTime attribute is
included with the response. If the GLA
does not return a
cMCStatusInfoExt.cMCStatus.failed
response, the GLA issues a glProvideCert
request (see Section 4.10).
2.d.2.b.1.b.2 - Else if the member's certificate
verifies, the GLA returns a
cMCStatusInfoExt indicating
cMCStatus.success and a signingTime
attribute (2 in Figure 5). The GLA also
takes administrative actions, which are
beyond the scope of this document, to add
the member to the GL stored on the GLA.
The GLA also distributes the shared KEK
to the member via the mechanism described
in Section 5.
2.d.2.b.1.b.2.a - The GLA applies confidentiality to
the response by encapsulating the
SignedData.PKIData in an
EnvelopedData if the request was
encapsulated in an EnvelopedData (see
Section 3.2.1.2).
2.d.2.b.1.b.2.b - The GLA can also optionally apply
another SignedData over the
EnvelopedData (see Section 3.2.1.2).
2.d.2.b.2 - Else if the GL is managed, the GLA checks that
either a registered GLO or the prospective member
signed the request. For GLOs, one of the names
in the certificate used to sign the request needs
to match a registered GLO. For the prospective
member, the name in glMember.glMemberName needs
to match one of the names in the certificate used
to sign the request.
2.d.2.b.2.a - If the signer is neither a registered GLO nor
the prospective GL member, the GLA returns a
response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value
of noSpam. Additionally, a signingTime
attribute is included with the response.
Turner Standards Track [Page 42]
^L
RFC 5275 CMS SymKeyDist June 2008
2.d.2.b.2.b - Else if the signer is a registered GLO, the
GLA verifies the member's encryption
certificate.
2.d.2.b.2.b.1 - If the member's certificate cannot be
verified, the GLA can return a response
indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo
value of invalidCert. Additionally, a
signingTime attribute is included with
the response. If the GLA does not return
a cMCStatus.failed response, the GLA MUST
issue a glProvideCert request (see
Section 4.10).
2.d.2.b.2.b.2 - Else if the member's certificate
verifies, the GLA MUST return a
cMCStatusInfoExt indicating
cMCStatus.success and a signingTime
attribute to the GLO (2 in Figure 5).
The GLA also takes administrative
actions, which are beyond the scope of
this document, to add the member to the
GL stored on the GLA. The GLA also
distributes the shared KEK to the member
via the mechanism described in Section 5.
The GL policy may mandate that the GL
member's address be included in the GL
member's certificate.
2.d.2.b.2.b.2.a - The GLA applies confidentiality to
the response by encapsulating the
SignedData.PKIData in an
EnvelopedData if the request was
encapsulated in an EnvelopedData (see
Section 3.2.1.2).
2.d.2.b.2.b.2.b - The GLA can also optionally apply
another SignedData over the
EnvelopedData (see Section 3.2.1.2).
2.d.2.b.2.c - Else if the signer is the prospective member,
the GLA forwards the glAddMember request (see
Section 3.2.3) to a registered GLO (B{A} in
Figure 5). If there is more than one
registered GLO, the GLO to which the request
is forwarded is beyond the scope of this
Turner Standards Track [Page 43]
^L
RFC 5275 CMS SymKeyDist June 2008
document. Further processing of the
forwarded request by GLOs is addressed in 3
of Section 4.3.2.
2.d.2.b.2.c.1 - The GLA applies confidentiality to the
forwarded request by encapsulating the
SignedData.PKIData in an EnvelopedData if
the original request was encapsulated in
an EnvelopedData (see Section 3.2.1.2).
2.d.2.b.2.c.2 - The GLA can also optionally apply another
SignedData over the EnvelopedData (see
Section 3.2.1.2).
2.d.2.b.3 - Else if the GL is unmanaged, the GLA checks that
either a registered GLO or the prospective member
signed the request. For GLOs, one of the names
in the certificate used to sign the request needs
to match the name of a registered GLO. For the
prospective member, the name in
glMember.glMemberName needs to match one of the
names in the certificate used to sign the
request.
2.d.2.b.3.a - If the signer is neither a registered GLO nor
the prospective member, the GLA returns a
response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value
of noSpam. Additionally, a signingTime
attribute is included with the response.
2.d.2.b.3.b - Else if the signer is either a registered GLO
or the prospective member, the GLA verifies
the member's encryption certificate.
2.d.2.b.3.b.1 - If the member's certificate cannot be
verified, the GLA can return a response
indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo
value of invalidCert and a signingTime
attribute to either the GLO or the
prospective member depending on where the
request originated. If the GLA does not
return a cMCStatus.failed response, the
GLA issues a glProvideCert request (see
Turner Standards Track [Page 44]
^L
RFC 5275 CMS SymKeyDist June 2008
Section 4.10) to either the GLO or
prospective member depending on where the
request originated.
2.d.2.b.3.b.2 - Else if the member's certificate
verifies, the GLA returns a
cMCStatusInfoExt indicating
cMCStatus.success and a signingTime
attribute to the GLO (2 in Figure 5) if
the GLO signed the request and to the GL
member (3 in Figure 5) if the GL member
signed the request. The GLA also takes
administrative actions, which are beyond
the scope of this document, to add the
member to the GL stored on the GLA. The
GLA also distributes the shared KEK to
the member via the mechanism described in
Section 5.
2.d.2.b.3.b.2.a - The GLA applies confidentiality to
the response by encapsulating the
SignedData.PKIData in an
EnvelopedData if the request was
encapsulated in an EnvelopedData (see
Section 3.2.1.2).
2.d.2.b.3.b.2.b - The GLA can also optionally apply
another SignedData over the
EnvelopedData (see Section 3.2.1.2).
3 - Upon receipt of the cMCStatusInfoExt response, the GLO checks the
signingTime and verifies the GLA signature(s). If an additional
SignedData and/or EnvelopedData encapsulates the response (see
Section 3.2.1.2 or 3.2.2), the GLO verifies the outer signature
and/or decrypts the outer layer prior to verifying the signature
on the innermost SignedData.
3.a - If the signingTime attribute value is not within the locally
accepted time window, the GLO MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
3.b - Else if signature processing continues and if the signatures
verify, the GLO checks that one of the names in the
certificate used to sign the response matches the name of the
GL.
Turner Standards Track [Page 45]
^L
RFC 5275 CMS SymKeyDist June 2008
3.b.1 - If the name of the GL does not match the name present in
the certificate used to sign the message, the GLO should
not believe the response.
3.b.2 - Else if the name of the GL matches the name present in
the certificate and:
3.b.2.a - If the signatures verify and the response is
cMCStatusInfoExt indicating cMCStatus.success, the
GLA has added the member to the GL. If the member
was added to a managed list and the original request
was signed by the member, the GLO sends a
cMCStatusInfoExt.cMCStatus.success and a signingTime
attribute to the GL member.
3.b.2.b - Else if the GLO received a
cMCStatusInfoExt.cMCStatus.failed with any reason,
the GLO can reattempt to add the member to the GL
using the information provided in the response.
4 - Upon receipt of the cMCStatusInfoExt response, the prospective
member checks the signingTime and verifies the GLA signatures or
GLO signatures. If an additional SignedData and/or EnvelopedData
encapsulates the response (see Section 3.2.1.2 or 3.2.2), the GLO
verifies the outer signature and/or decrypts the outer layer
prior to verifying the signature on the innermost SignedData.
4.a - If the signingTime attribute value is not within the locally
accepted time window, the prospective member MAY return a
response indicating cMCStatus.failed and
otherInfo.failInfo.badTime and a signingTime attribute.
4.b - Else if signature processing continues and if the signatures
verify, the GL member checks that one of the names in the
certificate used to sign the response matches the name of the
GL.
4.b.1 - If the name of the GL does not match the name present in
the certificate used to sign the message, the GL member
should not believe the response.
4.b.2 - Else if the name of the GL matches the name present in the
certificate and:
4.b.2.a - If the signatures verify, the prospective member has
been added to the GL.
Turner Standards Track [Page 46]
^L
RFC 5275 CMS SymKeyDist June 2008
4.b.2.b - Else if the prospective member received a
cMCStatusInfoExt.cMCStatus.failed, for any reason,
the prospective member MAY reattempt to add itself to
the GL using the information provided in the
response.
4.3.2. Prospective Member Initiated Additions
The process for prospective member initiated glAddMember requests is
as follows:
1 - The prospective GL member sends a
SignedData.PKIData.controlSequence.glAddMember request to the GLA
(A in Figure 5). The prospective GL member includes: the GL name
in glName, their name in glMember.glMemberName, their address in
glMember.glMemberAddress, and their encryption certificate in
glMember.certificates.pKC. The prospective GL member can also
include any attribute certificates associated with their
encryption certificate in glMember.certificates.aC, and the
certification path associated with their encryption and attribute
certificates in glMember.certificates.certPath. The prospective
member MUST also include the signingTime attribute with this
request.
1.a - The prospective GL member can optionally apply
confidentiality to the request by encapsulating the
SignedData.PKIData in an EnvelopedData (see Section 3.2.1.2).
1.b - The prospective GL member MAY optionally apply another
SignedData over the EnvelopedData (see Section 3.2.1.2).
2 - Upon receipt of the request, the GLA verifies the request as per
2 in Section 4.3.1.
3 - Upon receipt of the forwarded request, the GLO checks the
signingTime and verifies the prospective GL member signature on
the innermost SignedData.PKIData and the GLA signature on the
outer layer. If an EnvelopedData encapsulates the innermost
layer (see Section 3.2.1.2 or 3.2.2), the GLO decrypts the outer
layer prior to verifying the signature on the innermost
SignedData.
Note: For cases where the GL is closed and either a) a
prospective member sends directly to the GLO or b) the GLA has
mistakenly forwarded the request to the GLO, the GLO should first
determine whether to honor the request.
Turner Standards Track [Page 47]
^L
RFC 5275 CMS SymKeyDist June 2008
3.a - If the signingTime attribute value is not within the locally
accepted time window, the GLO MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime.
3.b - Else if signature processing continues and if the signatures
verify, the GLO checks to make sure one of the names in the
certificate used to sign the request matches the name in
glMember.glMemberName.
3.b.1 - If the names do not match, the GLO sends a
SignedData.PKIResponse.controlSequence message back to
the prospective member with
cMCStatusInfoExt.cMCStatus.failed indicating why the
prospective member was denied in
cMCStausInfo.statusString. This stops people from adding
people to GLs without their permission. Additionally, a
signingTime attribute is included with the response.
3.b.2 - Else if the names match, the GLO determines whether the
prospective member is allowed to be added. The mechanism
is beyond the scope of this document; however, the GLO
should check to see that the glMember.glMemberName is not
already on the GL.
3.b.2.a - If the GLO determines the prospective member is not
allowed to join the GL, the GLO can return a
SignedData.PKIResponse.controlSequence message back
to the prospective member with
cMCStatusInfoExt.cMCtatus.failed indicating why the
prospective member was denied in
cMCStatus.statusString. Additionally, a signingTime
attribute is included with the response.
3.b.2.b - Else if the GLO determines the prospective member is
allowed to join the GL, the GLO verifies the member's
encryption certificate.
3.b.2.b.1 - If the member's certificate cannot be verified,
the GLO returns a
SignedData.PKIResponse.controlSequence back to
the prospective member with
cMCStatusInfoExt.cMCtatus.failed indicating that
the member's encryption certificate did not
verify in cMCStatus.statusString. Additionally,
a signingTime attribute is included with the
response. If the GLO does not return a
cMCStatusInfoExt response, the GLO sends a
Turner Standards Track [Page 48]
^L
RFC 5275 CMS SymKeyDist June 2008
SignedData.PKIData.controlSequence.glProvideCert
message to the prospective member requesting a
new encryption certificate (see Section 4.10).
3.b.2.b.2 - Else if the member's certificate verifies, the
GLO resubmits the glAddMember request (see
Section 3.2.5) to the GLA (1 in Figure 5).
3.b.2.b.2.a - The GLO applies confidentiality to the new
GLAddMember request by encapsulating the
SignedData.PKIData in an EnvelopedData if the
initial request was encapsulated in an
EnvelopedData (see Section 3.2.1.2).
3.b.2.b.2.b - The GLO can also optionally apply another
SignedData over the EnvelopedData (see
Section 3.2.1.2).
4 - Processing continues as in 2 of Section 4.3.1.
4.4. Delete Members from GL
To delete members from GLs, either the GLO or members to be removed
use the glDeleteMember request. The GLA processes the GLO, and
members requesting their own removal make requests differently. The
GLO can submit the request at any time to delete members from the GL,
and the GLA, once it has verified the request came from a registered
GLO, should delete the member. If a member sends the request, the
GLA needs to determine how the GL is administered. When the GLO
initially configured the GL, it set the GL to be unmanaged, managed,
or closed (see Section 3.1.1). In the unmanaged case, the GLA merely
processes the member's request. In the managed case, the GLA
forwards the requests from the member to the GLO for review. Where
there are multiple GLOs for a GL, which GLO the request is forwarded
to is beyond the scope of this document. The GLO reviews the request
and either rejects it or submits a reformed request to the GLA. In
the closed case, the GLA will not accept requests from members. The
following sections describe the processing for the GLO(s), GLA, and
GL members depending on where the request originated, either from a
GLO or from members wanting to be removed. Figure 6 depicts the
protocol interactions for the three options. Note that the error
messages are not depicted. Additionally, behavior for the optional
transactionId, senderNonce, and recipientNonce CMC control attributes
is not addressed in these procedures.
Turner Standards Track [Page 49]
^L
RFC 5275 CMS SymKeyDist June 2008
+-----+ 2,B{A} 3 +----------+
| GLO | <--------+ +-------> | Member 1 |
+-----+ | | +----------+
1 | |
+-----+ <--------+ | 3 +----------+
| GLA | A +-------> | ... |
+-----+ <-------------+ +----------+
|
| 3 +----------+
+-------> | Member n |
+----------+
Figure 6 - Member Deletion
If the member is not removed from the GL, it will continue to receive
and be able to decrypt data protected with the shared KEK and will
continue to receive rekeys. For unmanaged lists, there is no point
to a group rekey because there is no guarantee that the member
requesting to be removed has not already added itself back on the GL
under a different name. For managed and closed GLs, the GLO needs to
take steps to ensure that the member being deleted is not on the GL
twice. After ensuring this, managed and closed GLs can be rekeyed to
maintain the confidentiality of the traffic sent by group members.
If the GLO is sure the member has been deleted, the group rekey
mechanism can be used to distribute the new key (see Sections 4.5 and
5).
4.4.1. GLO Initiated Deletions
The process for GLO initiated glDeleteMember requests is as follows:
1 - The GLO collects the pertinent information for the member(s) to
be deleted (this can be done through an out-of-band means). The
GLO then sends a SignedData.PKIData.controlSequence with a
separate glDeleteMember request for each member to the GLA (1 in
Figure 6). The GLO MUST include the GL name in glName and the
member's name in glMemberToDelete. If the GL from which the
member is being deleted is a closed or managed GL, the GLO MUST
also generate a glRekey request and include it with the
glDeletemember request (see Section 4.5). The GLO MUST also
include the signingTime attribute with this request.
1.a - The GLO can optionally apply confidentiality to the request
by encapsulating the SignedData.PKIData in an EnvelopedData
(see Section 3.2.1.2).
1.b - The GLO can also optionally apply another SignedData over the
EnvelopedData (see Section 3.2.1.2).
Turner Standards Track [Page 50]
^L
RFC 5275 CMS SymKeyDist June 2008
2 - Upon receipt of the request, the GLA checks the signingTime
attribute and verifies the signature on the innermost
SignedData.PKIData. If an additional SignedData and/or
EnvelopedData encapsulates the request (see Section 3.2.1.2 or
3.2.2), the GLA verifies the outer signature and/or decrypts the
outer layer prior to verifying the signature on the innermost
SignedData.
2.a - If the signingTime attribute value is not within the locally
accepted time window, the GLA MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
2.b - Else if signature processing continues and if the signatures
cannot be verified, the GLA returns a cMCStatusInfoExt
response indicating cMCStatus.failed and
otherInfo.failInfo.badMessageCheck. Additionally, a
signingTime attribute is included with the response.
2.c - Else if the signatures verify, the GLA makes sure the GL is
supported by the GLA by checking that the glName matches a
glName stored on the GLA.
2.c.1 - If the glName is not supported by the GLA, the GLA
returns a response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
invalidGLName. Additionally, a signingTime attribute is
included with the response.
2.c.2 - Else if the glName is supported by the GLA, the GLA
checks to see if the glMemberName is present on the GL.
2.c.2.a - If the glMemberName is not present on the GL, the GLA
returns a response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
notAMember. Additionally, a signingTime attribute is
included with the response.
2.c.2.b - Else if the glMemberName is already on the GL, the
GLA checks how the GL is administered.
2.c.2.b.1 - If the GL is closed, the GLA checks that the
registered GLO signed the request by checking
that one of the names in the digital signature
certificate used to sign the request matches the
registered GLO.
Turner Standards Track [Page 51]
^L
RFC 5275 CMS SymKeyDist June 2008
2.c.2.b.1.a - If the names do not match, the GLA returns a
response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value
of closedGL. Additionally, a signingTime
attribute is included with the response.
2.c.2.b.1.b - Else if the names do match, the GLA returns a
cMCStatusInfoExt.cMCStatus.success and a
signingTime attribute (2 in Figure 5). The
GLA also takes administrative actions, which
are beyond the scope of this document, to
delete the member with the GL stored on the
GLA. Note that the GL also needs to be
rekeyed as described in Section 5.
2.c.2.b.1.b.1 - The GLA applies confidentiality to the
response by encapsulating the
SignedData.PKIData in an EnvelopedData if
the request was encapsulated in an
EnvelopedData (see Section 3.2.1.2).
2.c.2.b.1.b.2 - The GLA can also optionally apply another
SignedData over the EnvelopedData (see
Section 3.2.1.2).
2.c.2.b.2 - Else if the GL is managed, the GLA checks that
either a registered GLO or the prospective member
signed the request. For GLOs, one of the names
in the certificate used to sign the request needs
to match a registered GLO. For the prospective
member, the name in glMember.glMemberName needs
to match one of the names in the certificate used
to sign the request.
2.c.2.b.2.a - If the signer is neither a registered GLO nor
the prospective GL member, the GLA returns a
response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value
of noSpam. Additionally, a signingTime
attribute is included with the response.
2.c.2.b.2.b - Else if the signer is a registered GLO, the
GLA returns a
cMCStatusInfoExt.cMCStatus.success and a
signingTime attribute(2 in Figure 6). The
GLA also takes administrative actions, which
Turner Standards Track [Page 52]
^L
RFC 5275 CMS SymKeyDist June 2008
are beyond the scope of this document, to
delete the member with the GL stored on the
GLA. Note that the GL will also be rekeyed
as described in Section 5.
2.c.2.b.2.b.1 - The GLA applies confidentiality to the
response by encapsulating the
SignedData.PKIData in an EnvelopedData if
the request was encapsulated in an
EnvelopedData (see Section 3.2.1.2).
2.c.2.b.2.b.2 - The GLA can also optionally apply another
SignedData over the EnvelopedData (see
Section 3.2.1.2).
2.c.2.b.2.c - Else if the signer is the prospective member,
the GLA forwards the glDeleteMember request
(see Section 3.2.3) to the GLO (B{A} in
Figure 6). If there is more than one
registered GLO, the GLO to which the request
is forwarded to is beyond the scope of this
document. Further processing of the
forwarded request by GLOs is addressed in 3
of Section 4.4.2.
2.c.2.b.2.c.1 - The GLA applies confidentiality to the
forwarded request by encapsulating the
SignedData.PKIData in an EnvelopedData if
the request was encapsulated in an
EnvelopedData (see Section 3.2.1.2).
2.c.2.b.2.c.2 - The GLA can also optionally apply another
SignedData over the EnvelopedData (see
Section 3.2.1.2).
2.c.2.b.3 - Else if the GL is unmanaged, the GLA checks that
either a registered GLO or the prospective member
signed the request. For GLOs, one of the names
in the certificate used to sign the request needs
to match the name of a registered GLO. For the
prospective member, the name in
glMember.glMemberName needs to match one of the
names in the certificate used to sign the
request.
Turner Standards Track [Page 53]
^L
RFC 5275 CMS SymKeyDist June 2008
2.c.2.b.3.a - If the signer is neither the GLO nor the
prospective member, the GLA returns a
response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value
of noSpam. Additionally, a signingTime
attribute is included with the response.
2.c.2.b.3.b - Else if the signer is either a registered GLO
or the member, the GLA returns a
cMCStatusInfoExt.cMCStatus.success and a
signingTime attribute to the GLO (2 in Figure
6) if the GLO signed the request and to the
GL member (3 in Figure 6) if the GL member
signed the request. The GLA also takes
administrative actions, which are beyond the
scope of this document, to delete the member
with the GL stored on the GLA.
2.c.2.b.3.b.1 - The GLA applies confidentiality to the
response by encapsulating the
SignedData.PKIData in an EnvelopedData if
the request was encapsulated in an
EnvelopedData (see Section 3.2.1.2).
2.c.2.b.3.b.2 - The GLA can also optionally apply another
SignedData over the EnvelopedData (see
Section 3.2.1.2).
3 - Upon receipt of the cMCStatusInfoExt response, the GLO checks the
signingTime and verifies the GLA signatures. If an additional
SignedData and/or EnvelopedData encapsulates the response (see
Section 3.2.1.2 or 3.2.2), the GLO verifies the outer signature
and/or decrypts the outer layer prior to verifying the signature
on the innermost SignedData.
3.a - If the signingTime attribute value is not within the locally
accepted time window, the GLO MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
3.b - Else if signature processing continues and if the signatures
do verify, the GLO checks that one of the names in the
certificate used to sign the response matches the name of the
GL.
Turner Standards Track [Page 54]
^L
RFC 5275 CMS SymKeyDist June 2008
3.b.1 - If the name of the GL does not match the name present in
the certificate used to sign the message, the GLO should
not believe the response.
3.b.2 - Else if the name of the GL matches the name present in
the certificate and:
3.b.2.a - If the signatures verify and the response is
cMCStatusInfoExt.cMCStatus.success, the GLO has
deleted the member from the GL. If member was
deleted from a managed list and the original request
was signed by the member, the GLO sends a
cMCStatusInfoExt.cMCStatus.success and a signingTime
attribute to the GL member.
3.b.2.b - Else if the GLO received a
cMCStatusInfoExt.cMCStatus.failed with any reason,
the GLO may reattempt to delete the member from the
GL using the information provided in the response.
4 - Upon receipt of the cMCStatusInfoExt response, the member checks
the signingTime and verifies the GLA signature(s) or GLO
signature(s). If an additional SignedData and/or EnvelopedData
encapsulates the response (see Section 3.2.1.2 or 3.2.2), the GLO
verifies the outer signature and/or decrypts the outer layer
prior to verifying the signature on the innermost SignedData.
4.a - If the signingTime attribute value is not within the locally
accepted time window, the prospective member MAY return a
response indicating cMCStatus.failed and
otherInfo.failInfo.badTime and a signingTime attribute.
4.b - Else if signature processing continues and if the signatures
verify, the GL member checks that one of the names in the
certificate used to sign the response matches the name of the
GL.
4.b.1 - If the name of the GL does not match the name present in
the certificate used to sign the message, the GL member
should not believe the response.
4.b.2 - Else if the name of the GL matches the name present in
the certificate and:
4.b.2.a - If the signature(s) verify, the member has been
deleted from the GL.
Turner Standards Track [Page 55]
^L
RFC 5275 CMS SymKeyDist June 2008
4.b.2.b - Else if the member received a
cMCStatusInfoExt.cMCStatus.failed with any reason,
the member can reattempt to delete itself from the GL
using the information provided in the response.
4.4.2. Member Initiated Deletions
The process for member initiated deletion of its own membership using
the glDeleteMember requests is as follows:
1 - The member sends a
SignedData.PKIData.controlSequence.glDeleteMember request to the
GLA (A in Figure 6). The member includes the name of the GL in
glName and the member's own name in glMemberToDelete. The GL
member MUST also include the signingTime attribute with this
request.
1.a - The member can optionally apply confidentiality to the
request by encapsulating the SignedData.PKIData in an
EnvelopedData (see Section 3.2.1.2).
1.b - The member can also optionally apply another SignedData over
the EnvelopedData (see Section 3.2.1.2).
2 - Upon receipt of the request, the GLA verifies the request as per
2 in Section 4.4.1.
3 - Upon receipt of the forwarded request, the GLO checks the
signingTime and verifies the member signature on the innermost
SignedData.PKIData and the GLA signature on the outer layer. If
an EnvelopedData encapsulates the innermost layer (see Section
3.2.1.2 or 3.2.2), the GLO decrypts the outer layer prior to
verifying the signature on the innermost SignedData.
Note: For cases where the GL is closed and either (a) a
prospective member sends directly to the GLO or (b) the GLA has
mistakenly forwarded the request to the GLO, the GLO should first
determine whether to honor the request.
3.a - If the signingTime attribute value is not within the locally
accepted time window, the GLO MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
Turner Standards Track [Page 56]
^L
RFC 5275 CMS SymKeyDist June 2008
3.b - Else if signature processing continues if the signatures
cannot be verified, the GLO returns a cMCStatusInfoExt
response indicating cMCStatus.failed and
otherInfo.failInfo.badMessageCheck and a signingTime
attribute.
3.c - Else if the signatures verify, the GLO checks to make sure
one of the names in the certificates used to sign the request
matches the name in glMemberToDelete.
3.c.1 - If the names do not match, the GLO sends a
SignedData.PKIResponse.controlSequence message back to
the prospective member with
cMCStatusInfoExt.cMCtatus.failed indicating why the
prospective member was denied in
cMCStatusInfoExt.statusString. This stops people from
adding people to GLs without their permission.
Additionally, a signingTime attribute is included with
the response.
3.c.2 - Else if the names match, the GLO resubmits the
glDeleteMember request (see Section 3.2.5) to the GLA (1
in Figure 6). The GLO makes sure the glMemberName is
already on the GL. The GLO also generates a glRekey
request and include it with the GLDeleteMember request
(see Section 4.5).
3.c.2.a - The GLO applies confidentiality to the new
GLDeleteMember request by encapsulating the
SignedData.PKIData in an EnvelopedData if the initial
request was encapsulated in an EnvelopedData (see
Section 3.2.1.2).
3.c.2.b - The GLO can also optionally apply another SignedData
over the EnvelopedData (see Section 3.2.1.2).
4 - Further processing is as in 2 of Section 4.4.1.
4.5. Request Rekey of GL
From time to time, the GL will need to be rekeyed. Some situations
follow:
- When a member is removed from a closed or managed GL. In this
case, the PKIData.controlSequence containing the glDeleteMember
ought to contain a glRekey request.
Turner Standards Track [Page 57]
^L
RFC 5275 CMS SymKeyDist June 2008
- Depending on policy, when a member is removed from an unmanaged
GL. If the policy is to rekey the GL, the
PKIData.controlSequence containing the glDeleteMember could also
contain a glRekey request or an out-of-bands means could be used
to tell the GLA to rekey the GL. Rekeying of unmanaged GLs when
members are deleted is not advised.
- When the current shared KEK has been compromised.
- When the current shared KEK is about to expire. Consider two
cases:
-- If the GLO controls the GL rekey, the GLA should not assume
that a new shared KEK should be distributed, but instead wait
for the glRekey message.
-- If the GLA controls the GL rekey, the GLA should initiate a
glKey message as specified in Section 5.
If the generationCounter (see Section 3.1.1) is set to a value
greater than one (1) and the GLO controls the GL rekey, the GLO may
generate a glRekey any time before the last shared KEK has expired.
To be on the safe side, the GLO ought to request a rekey one (1)
duration before the last shared KEK expires.
The GLA and GLO are the only entities allowed to initiate a GL rekey.
The GLO indicated whether they are going to control rekeys or whether
the GLA is going to control rekeys when they assigned the shared KEK
to GL (see Section 3.1.1). The GLO initiates a GL rekey at any time.
The GLA can be configured to automatically rekey the GL prior to the
expiration of the shared KEK (the length of time before the
expiration is an implementation decision). The GLA can also
automatically rekey GLs that have been compromised, but this is
covered in Section 5. Figure 7 depicts the protocol interactions to
request a GL rekey. Note that error messages are not depicted.
Additionally, behavior for the optional transactionId, senderNonce,
and recipientNonce CMC control attributes is not addressed in these
procedures.
+-----+ 1 2,A +-----+
| GLA | <-------> | GLO |
+-----+ +-----+
Figure 7 - GL Rekey Request
Turner Standards Track [Page 58]
^L
RFC 5275 CMS SymKeyDist June 2008
4.5.1. GLO Initiated Rekey Requests
The process for GLO initiated glRekey requests is as follows:
1 - The GLO sends a SignedData.PKIData.controlSequence.glRekey
request to the GLA (1 in Figure 7). The GLO includes the glName.
If glAdministration and glKeyNewAttributes are omitted then there
is no change from the previously registered GL values for these
fields. If the GLO wants to force a rekey for all outstanding
shared KEKs, it includes the glRekeyAllGLKeys set to TRUE. The
GLO MUST also include a signingTime attribute with this request.
1.a - The GLO can optionally apply confidentiality to the request
by encapsulating the SignedData.PKIData in an EnvelopedData
(see Section 3.2.1.2).
1.b - The GLO can also optionally apply another SignedData over the
EnvelopedData (see Section 3.2.1.2).
2 - Upon receipt of the request, the GLA checks the signingTime and
verifies the signature on the innermost SignedData.PKIData. If
an additional SignedData and/or EnvelopedData encapsulates the
request (see Section 3.2.1.2 or 3.2.2), the GLA verifies the
outer signature and/or decrypts the outer layer prior to
verifying the signature on the innermost SignedData.
2.a - If the signingTime attribute value is not within the locally
accepted time window, the GLA MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
2.b - Else if signature processing continues and if the signatures
do not verify, the GLA returns a cMCStatusInfoExt response
indicating cMCStatus.failed and
otherInfo.failInfo.badMessageCheck. Additionally, a
signingTime attribute is included with the response.
2.c - Else if the signatures do verify, the GLA makes sure the GL
is supported by the GLA by checking that the glName matches a
glName stored on the GLA.
2.c.1 - If the glName present does not match a GL stored on the
GLA, the GLA returns a response indicating
cMCStatusInfoExt with cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
invalidGLName. Additionally, a signingTime attribute is
included with the response.
Turner Standards Track [Page 59]
^L
RFC 5275 CMS SymKeyDist June 2008
2.c.2 - Else if the glName present matches a GL stored on the
GLA, the GLA checks that a registered GLO signed the
request by checking that one of the names in the
certificate used to sign the request is a registered GLO.
2.c.2.a - If the names do not match, the GLA returns a response
indicating cMCStatusInfoExt with cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
noGLONameMatch. Additionally, a signingTime
attribute is included with the response.
2.c.2.b - Else if the names match, the GLA checks the
glNewKeyAttribute values.
2.c.2.b.1 - If the new value for requestedAlgorithm is not
supported, the GLA returns a response indicating
cMCStatusInfoExt with cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
unsupportedAlgorithm. Additionally, a
signingTime attribute is included with the
response.
2.c.2.b.2 - Else if the new value duration is not supportable
(determining this is beyond the scope of this
document), the GLA returns a response indicating
cMCStatusInfoExt with cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
unsupportedDuration. Additionally, a signingTime
attribute is included with the response.
2.c.2.b.3 - Else if the GL is not supportable for other
reasons that the GLA does not wish to disclose,
the GLA returns a response indicating
cMCStatusInfoExt with cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
unspecified. Additionally, a signingTime
attribute is included with the response.
2.c.2.b.4 - Else if the new requestedAlgorithm and duration
are supportable or the glNewKeyAttributes was
omitted, the GLA returns a
cMCStatusInfoExt.cMCStatus.success and a
sigingTime attribute (2 in Figure 7). The GLA
also uses the glKey message to distribute the
rekey shared KEK (see Section 5).
Turner Standards Track [Page 60]
^L
RFC 5275 CMS SymKeyDist June 2008
2.c.2.b.4.a - The GLA applies confidentiality to response
by encapsulating the SignedData.PKIData in an
EnvelopedData if the request was encapsulated
in an EnvelopedData (see Section 3.2.1.2).
2.c.2.b.4.b - The GLA can also optionally apply another
SignedData over the EnvelopedData (see
Section 3.2.1.2).
3 - Upon receipt of the cMCStatusInfoExt response, the GLO checks the
signingTime and verifies the GLA signature(s). If an additional
SignedData and/or EnvelopedData encapsulates the forwarded
response (see Section 3.2.1.2 or 3.2.2), the GLO verifies the
outer signature and/or decrypts the forwarded response prior to
verifying the signature on the innermost SignedData.
3.a - If the signingTime attribute value is not within the locally
accepted time window, the GLA MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
3.b - Else if signature processing continues and if the signatures
verify, the GLO checks that one of the names in the
certificate used to sign the response matches the name of the
GL.
3.b.1 - If the name of the GL does not match the name present in
the certificate used to sign the message, the GLO should
not believe the response.
3.b.2 - Else if the name of the GL matches the name present in
the certificate and:
3.b.2.a - If the signatures verify and the response is
cMCStatusInfoExt.cMCStatus.success, the GLO has
successfully rekeyed the GL.
3.b.2.b - Else if the GLO received a
cMCStatusInfoExt.cMCStatus.failed with any reason,
the GLO can reattempt to rekey the GL using the
information provided in the response.
Turner Standards Track [Page 61]
^L
RFC 5275 CMS SymKeyDist June 2008
4.5.2. GLA Initiated Rekey Requests
If the GLA is in charge of rekeying the GL the GLA will automatically
issue a glKey message (see Section 5). In addition the GLA will
generate a cMCStatusInfoExt to indicate to the GL that a successful
rekey has occurred. The process for GLA initiated rekey is as
follows:
1 - The GLA generates for all GLOs a
SignedData.PKIData.controlSequence.cMCStatusInfoExt.cMCStatus
success and includes a signingTime attribute (A in Figure 7).
1.a - The GLA can optionally apply confidentiality to the request
by encapsulating the SignedData.PKIData in an EnvelopedData
(see Section 3.2.1.2).
1.b - The GLA can also optionally apply another SignedData over the
EnvelopedData (see Section 3.2.1.2).
2 - Upon receipt of the cMCStatusInfoExt.cMCStatus.success response,
the GLO checks the signingTime and verifies the GLA signature(s).
If an additional SignedData and/or EnvelopedData encapsulates the
forwarded response (see Section 3.2.1.2 or 3.2.2), the GLO MUST
verify the outer signature and/or decrypt the outer layer prior
to verifying the signature on the innermost SignedData.
2.a - If the signingTime attribute value is not within the locally
accepted time window, the GLO MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
2.b - Else if signature processing continues and if the signatures
verify, the GLO checks that one of the names in the
certificate used to sign the response matches the name of the
GL.
2.b.1 - If the name of the GL does not match the name present in
the certificate used to sign the message, the GLO ought
not believe the response.
2.b.2 - Else if the name of the GL does match the name present in
the certificate and the response is
cMCStatusInfoExt.cMCStatus.success, the GLO knows the GLA
has successfully rekeyed the GL.
Turner Standards Track [Page 62]
^L
RFC 5275 CMS SymKeyDist June 2008
4.6. Change GLO
Management of managed and closed GLs can become difficult for one GLO
if the GL membership grows large. To support distributing the
workload, GLAs support having GLs be managed by multiple GLOs. The
glAddOwner and glRemoveOwner messages are designed to support adding
and removing registered GLOs. Figure 8 depicts the protocol
interactions to send glAddOwner and glRemoveOwner messages and the
resulting response messages. Note that error messages are not shown.
Additionally, behavior for the optional transactionId, senderNonce,
and recipientNonce CMC control attributes is not addressed in these
procedures.
+-----+ 1 2 +-----+
| GLA | <-------> | GLO |
+-----+ +-----+
Figure 8 - GLO Add and Delete Owners
The process for glAddOwner and glDeleteOwner is as follows:
1 - The GLO sends a SignedData.PKIData.controlSequence.glAddOwner or
glRemoveOwner request to the GLA (1 in Figure 8). The GLO
includes the GL name in glName, and the name and address of the
GLO in glOwnerName and glOwnerAddress, respectively. The GLO
MUST also include the signingTime attribute with this request.
1.a - The GLO can optionally apply confidentiality to the request
by encapsulating the SignedData.PKIData in an EnvelopedData
(see Section 3.2.1.2).
1.b - The GLO can also optionally apply another SignedData over the
EnvelopedData (see Section 3.2.1.2).
2 - Upon receipt of the glAddOwner or glRemoveOwner request, the GLA
checks the signingTime and verifies the GLO signature(s). If an
additional SignedData and/or EnvelopedData encapsulates the
request (see Section 3.2.1.2 or 3.2.2), the GLA verifies the
outer signature and/or decrypts the outer layer prior to
verifying the signature on the innermost SignedData.
2.a - If the signingTime attribute value is not within the locally
accepted time window, the GLA MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
Turner Standards Track [Page 63]
^L
RFC 5275 CMS SymKeyDist June 2008
2.b - Else if signature processing continues and if the signatures
cannot be verified, the GLA returns a cMCStatusInfoExt
response indicating cMCStatus.failed and
otherInfo.failInfo.badMessageCheck. Additionally, a
signingTime attribute is included with the response.
2.c - Else if the signatures verify, the GLA makes sure the GL is
supported by checking that the glName matches a glName stored
on the GLA.
2.c.1 - If the glName is not supported by the GLA, the GLA
returns a response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
invalidGLName. Additionally, a signingTime attribute is
included with the response.
2.c.2 - Else if the glName is supported by the GLA, the GLA
ensures that a registered GLO signed the glAddOwner or
glRemoveOwner request by checking that one of the names
present in the digital signature certificate used to sign
the glAddOwner or glDeleteOwner request matches the name
of a registered GLO.
2.c.2.a - If the names do not match, the GLA returns a response
indicating cMCStatusInfoExt with cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
noGLONameMatch. Additionally, a signingTime
attribute is included with the response.
2.c.2.b - Else if the names match, the GLA returns a
cMCStatusInfoExt.cMCStatus.success and a signingTime
attribute (2 in Figure 4). The GLA also takes
administrative actions to associate the new
glOwnerName with the GL in the case of glAddOwner or
to disassociate the old glOwnerName with the GL in
the cased of glRemoveOwner.
2.c.2.b.1 - The GLA applies confidentiality to the response
by encapsulating the SignedData.PKIResponse in an
EnvelopedData if the request was encapsulated in
an EnvelopedData (see Section 3.2.1.2).
2.c.2.b.2 - The GLA can also optionally apply another
SignedData over the EnvelopedData (see Section
3.2.1.2).
Turner Standards Track [Page 64]
^L
RFC 5275 CMS SymKeyDist June 2008
3 - Upon receipt of the cMCStatusInfoExt response, the GLO checks the
signingTime and verifies the GLA's signature(s). If an
additional SignedData and/or EnvelopedData encapsulates the
response (see Section 3.2.1.2 or 3.2.2), the GLO verifies the
outer signature and/or decrypts the outer layer prior to
verifying the signature on the innermost SignedData.
3.a - If the signingTime attribute value is not within the locally
accepted time window, the GLO MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
3.b - Else if signature processing continues and if the signatures
verify, the GLO checks that one of the names in the
certificate used to sign the response matches the name of the
GL.
3.b.1 - If the name of the GL does not match the name present in
the certificate used to sign the message, the GLO should
not believe the response.
3.b.2 - Else if the name of the GL does match the name present in
the certificate and:
3.b.2.a - If the signatures verify and the response was
cMCStatusInfoExt.cMCStatus.success, the GLO has
successfully added or removed the GLO.
3.b.2.b - Else if the signatures verify and the response was
cMCStatusInfoExt.cMCStatus.failed with any reason,
the GLO can reattempt to add or delete the GLO using
the information provided in the response.
4.7. Indicate KEK Compromise
There will be times when the shared KEK is compromised. GL members
and GLOs use glkCompromise to tell the GLA that the shared KEK has
been compromised. Figure 9 depicts the protocol interactions for GL
Key Compromise. Note that error messages are not shown.
Additionally, behavior for the optional transactionId, senderNonce,
and recipientNonce CMC control attributes is not addressed in these
procedures.
Turner Standards Track [Page 65]
^L
RFC 5275 CMS SymKeyDist June 2008
+-----+ 2{1} 4 +----------+
| GLO | <----------+ +-------> | Member 1 |
+-----+ 5,3{1} | | +----------+
+-----+ <----------+ | 4 +----------+
| GLA | 1 +-------> | ... |
+-----+ <---------------+ +----------+
| 4 +----------+
+-------> | Member n |
+----------+
Figure 9 - GL Key Compromise
4.7.1. GL Member Initiated KEK Compromise Message
The process for GL member initiated glkCompromise messages is as
follows:
1 - The GL member sends a
SignedData.PKIData.controlSequence.glkCompromise request to the
GLA (1 in Figure 9). The GL member includes the name of the GL
in GeneralName. The GL member MUST also include the signingTime
attribute with this request.
1.a - The GL member can optionally apply confidentiality to the
request by encapsulating the SignedData.PKIData in an
EnvelopedData (see Section 3.2.1.2). The glkCompromise can
be included in an EnvelopedData generated with the
compromised shared KEK.
1.b - The GL member can also optionally apply another SignedData
over the EnvelopedData (see Section 3.2.1.2).
2 - Upon receipt of the glkCompromise request, the GLA checks the
signingTime and verifies the GL member signature(s). If an
additional SignedData and/or EnvelopedData encapsulates the
request (see Section 3.2.1.2 or 3.2.2), the GLA verifies the
outer signature and/or decrypts the outer layer prior to
verifying the signature on the innermost SignedData.
2.a - If the signingTime attribute value is not within the locally
accepted time window, the GLA MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
Turner Standards Track [Page 66]
^L
RFC 5275 CMS SymKeyDist June 2008
2.b - Else if signature processing continues and if the signatures
cannot be verified, the GLA returns a cMCStatusInfoExt
response indicating cMCStatus.failed and
otherInfo.failInfo.badMessageCheck. Additionally, a
signingTime attribute is included with the response.
2.c - Else if the signatures verify, the GLA makes sure the GL is
supported by checking that the indicated GL name matches a
glName stored on the GLA.
2.c.1 - If the glName is not supported by the GLA, the GLA
returns a response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
invalidGLName. Additionally, a signingTime attribute is
included with the response.
2.c.2 - Else if the glName is supported by the GLA, the GLA
checks who signed the request. For GLOs, one of the
names in the certificate used to sign the request needs
to match a registered GLO. For the member, the name in
glMember.glMemberName needs to match one of the names in
the certificate used to sign the request.
2.c.2.a - If the GLO signed the request, the GLA generates a
glKey message as described in Section 5 to rekey the
GL (4 in Figure 9).
2.c.2.b - Else if someone other than the GLO signed the
request, the GLA forwards the glkCompromise message
(see Section 3.2.3) to the GLO (2{1} in Figure 9).
If there is more than one GLO, to which GLO the
request is forwarded is beyond the scope of this
document. Further processing by the GLO is discussed
in Section 4.7.2.
4.7.2. GLO Initiated KEK Compromise Message
The process for GLO initiated glkCompromise messages is as follows:
1 - The GLO either:
1.a - Generates the glkCompromise message itself by sending a
SignedData.PKIData.controlSequence.glkCompromise request to
the GLA (5 in Figure 9). The GLO includes the name of the GL
in GeneralName. The GLO MUST also include a signingTime
attribute with this request.
Turner Standards Track [Page 67]
^L
RFC 5275 CMS SymKeyDist June 2008
1.a.1 - The GLO can optionally apply confidentiality to the
request by encapsulating the SignedData.PKIData in an
EnvelopedData (see Section 3.2.1.2). The glkCompromise
can be included in an EnvelopedData generated with the
compromised shared KEK.
1.a.2 - The GLO can also optionally apply another SignedData over
the EnvelopedData (see Section 3.2.1.2).
1.b - Otherwise, checks the signingTime and verifies the GLA and GL
member signatures on the forwarded glkCompromise message. If
an additional SignedData and/or EnvelopedData encapsulates
the request (see Section 3.2.1.2 or 3.2.2), the GLO verifies
the outer signature and/or decrypts the outer layer prior to
verifying the signature on the innermost SignedData.
1.b.1 - If the signingTime attribute value is not within the
locally accepted time window, the GLO MAY return a
response indicating cMCStatus.failed and
otherInfo.failInfo.badTime and a signingTime attribute.
1.b.2 - Else if signature processing continues and if the
signatures cannot be verified, the GLO returns a
cMCStatusInfoExt response indicating cMCStatus.failed and
otherInfo.failInfo.badMessageCheck. Additionally, a
signingTime attribute is included with the response.
1.b.2.a - If the signatures verify, the GLO checks that the
names in the certificate match the name of the signer
(i.e., the name in the certificate used to sign the
GL member's request is the GL member).
1.b.2.a.1 - If either name does not match, the GLO ought not
trust the signer and it ought not forward the
message to the GLA.
1.b.2.a.2 - Else if the names match and the signatures
verify, the GLO determines whether to forward the
glkCompromise message back to the GLA (3{1} in
Figure 9). Further processing by the GLA is in 2
of Section 4.7.1. The GLO can also return a
response to the prospective member with
cMCStatusInfoExt.cMCtatus.success indicating that
the glkCompromise message was successfully
received.
Turner Standards Track [Page 68]
^L
RFC 5275 CMS SymKeyDist June 2008
4.8. Request KEK Refresh
There will be times when GL members have irrecoverably lost their
shared KEK. The shared KEK is not compromised and a rekey of the
entire GL is not necessary. GL members use the glkRefresh message to
request that the shared KEK(s) be redistributed to them. Figure 10
depicts the protocol interactions for GL Key Refresh. Note that
error messages are not shown. Additionally, behavior for the
optional transactionId, senderNonce, and recipientNonce CMC control
attributes is not addressed in these procedures.
+-----+ 1 2 +----------+
| GLA | <-----------> | Member |
+-----+ +----------+
Figure 10 - GL KEK Refresh
The process for glkRefresh is as follows:
1 - The GL member sends a
SignedData.PKIData.controlSequence.glkRefresh request to the GLA
(1 in Figure 10). The GL member includes name of the GL in
GeneralName. The GL member MUST also include a signingTime
attribute with this request.
1.a - The GL member can optionally apply confidentiality to the
request by encapsulating the SignedData.PKIData in an
EnvelopedData (see Section 3.2.1.2).
1.b - The GL member can also optionally apply another SignedData
over the EnvelopedData (see Section 3.2.1.2).
2 - Upon receipt of the glkRefresh request, the GLA checks the
signingTime and verifies the GL member signature(s). If an
additional SignedData and/or EnvelopedData encapsulates the
request (see Section 3.2.1.2 or 3.2.2), the GLA verifies the
outer signature and/or decrypt the outer layer prior to verifying
the signature on the innermost SignedData.
2.a - If the signingTime attribute value is not within the locally
accepted time window, the GLA MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
Turner Standards Track [Page 69]
^L
RFC 5275 CMS SymKeyDist June 2008
2.b - Else if signature processing continues and if the signatures
cannot be verified, the GLA returns a cMCStatusInfoExt
response indicating cMCStatus.failed and
otherInfo.failInfo.badMessageCheck. Additionally, a
signingTime attribute is included with the response.
2.c - Else if the signatures verify, the GLA makes sure the GL is
supported by checking that the GLGeneralName matches a glName
stored on the GLA.
2.c.1 - If the name of the GL is not supported by the GLA, the
GLA returns a response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
invalidGLName. Additionally, a signingTime attribute is
included with the response.
2.c.2 - Else if the glName is supported by the GLA, the GLA
ensures that the GL member is on the GL.
2.c.2.a - If the glMemberName is not present on the GL, the GLA
returns a response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
noSpam. Additionally, a signingTime attribute is
included with the response.
2.c.2.b - Else if the glMemberName is present on the GL, the
GLA returns a cMCStatusInfoExt.cMCStatus.success, a
signingTime attribute, and a glKey message (2 in
Figure 10) as described in Section 5.
4.9. GLA Query Request and Response
There will be certain times when a GLO is having trouble setting up a
GL because it does not know the algorithm(s) or some other
characteristic that the GLA supports. There can also be times when
prospective GL members or GL members need to know something about the
GLA (these requests are not defined in the document). The
glaQueryRequest and glaQueryResponse messages have been defined to
support determining this information. Figure 11 depicts the protocol
interactions for glaQueryRequest and glaQueryResponse. Note that
error messages are not shown. Additionally, behavior for the
optional transactionId, senderNonce, and recipientNonce CMC control
attributes is not addressed in these procedures.
Turner Standards Track [Page 70]
^L
RFC 5275 CMS SymKeyDist June 2008
+-----+ 1 2 +------------------+
| GLA | <-------> | GLO or GL Member |
+-----+ +------------------+
Figure 11 - GLA Query Request and Response
The process for glaQueryRequest and glaQueryResponse is as follows:
1 - The GLO, GL member, or prospective GL member sends a
SignedData.PKIData.controlSequence.glaQueryRequest request to the
GLA (1 in Figure 11). The GLO, GL member, or prospective GL
member indicates the information it is interested in receiving
from the GLA. Additionally, a signingTime attribute is included
with this request.
1.a - The GLO, GL member, or prospective GL member can optionally
apply confidentiality to the request by encapsulating the
SignedData.PKIData in an EnvelopedData (see Section 3.2.1.2).
1.b - The GLO, GL member, or prospective GL member can also
optionally apply another SignedData over the EnvelopedData
(see Section 3.2.1.2).
2 - Upon receipt of the glaQueryRequest, the GLA determines if it
accepts glaQueryRequest messages.
2.a - If the GLA does not accept glaQueryRequest messages, the GLA
returns a cMCStatusInfoExt response indicating
cMCStatus.noSupport and any other information in
statusString.
2.b - Else if the GLA does accept GLAQueryRequests, the GLA checks
the signingTime and verifies the GLO, GL member, or
prospective GL member signature(s). If an additional
SignedData and/or EnvelopedData encapsulates the request (see
Section 3.2.1.2 or 3.2.2), the GLA verifies the outer
signature and/or decrypts the outer layer prior to verifying
the signature on the innermost SignedData.
2.b.1 - If the signingTime attribute value is not within the
locally accepted time window, the GLA MAY return a
response indicating cMCStatus.failed and
otherInfo.failInfo.badTime and a signingTime attribute.
Turner Standards Track [Page 71]
^L
RFC 5275 CMS SymKeyDist June 2008
2.b.2 - Else if the signature processing continues and if the
signatures cannot be verified, the GLA returns a
cMCStatusInfoExt response indicating cMCStatus.failed and
otherInfo.failInfo.badMessageCheck. Additionally, a
signingTime attribute is included with the response.
2.b.3 - Else if the signatures verify, the GLA returns a
glaQueryResponse (2 in Figure 11) with the correct
response if the glaRequestType is supported or returns a
cMCStatusInfoExt response indicating cMCStatus.noSupport
if the glaRequestType is not supported. Additionally, a
signingTime attribute is included with the response.
2.b.3.a - The GLA applies confidentiality to the response by
encapsulating the SignedData.PKIResponse in an
EnvelopedData if the request was encapsulated in an
EnvelopedData (see Section 3.2.1.2).
2.b.3.b - The GLA can also optionally apply another SignedData
over the EnvelopedData (see Section 3.2.1.2).
3 - Upon receipt of the glaQueryResponse, the GLO, GL member, or
prospective GL member checks the signingTime and verifies the GLA
signature(s). If an additional SignedData and/or EnvelopedData
encapsulates the response (see Section 3.2.1.2 or 3.2.2), the
GLO, GL member, or prospective GL member verifies the outer
signature and/or decrypts the outer layer prior to verifying the
signature on the innermost SignedData.
3.a - If the signingTime attribute value is not within the locally
accepted time window, the GLO, GL member, or prospective GL
member MAY return a response indicating cMCStatus.failed and
otherInfo.failInfo.badTime and a signingTime attribute.
3.b - Else if signature processing continues and if the signatures
do not verify, the GLO, GL member, or prospective GL member
returns a cMCStatusInfoExt response indicating
cMCStatus.failed and otherInfo.failInfo.badMessageCheck.
Additionally, a signingTime attribute is included with the
response.
3.c - Else if the signatures verify, then the GLO, GL member, or
prospective GL member checks that one of the names in the
certificate used to sign the response matches the name of the
GL.
Turner Standards Track [Page 72]
^L
RFC 5275 CMS SymKeyDist June 2008
3.c.1 - If the name of the GL does not match the name present in
the certificate used to sign the message, the GLO ought
not believe the response.
3.c.2 - Else if the name of the GL matches the name present in
the certificate and the response was glaQueryResponse,
then the GLO, GL member, or prospective GL member may use
the information contained therein.
4.10. Update Member Certificate
When the GLO generates a glAddMember request, when the GLA generates
a glKey message, or when the GLA processes a glAddMember, there can
be instances when the GL member's certificate has expired or is
invalid. In these instances, the GLO or GLA may request that the GL
member provide a new certificate to avoid the GLA from being unable
to generate a glKey message for the GL member. There might also be
times when the GL member knows that its certificate is about to
expire or has been revoked, and GL member will not be able to receive
GL rekeys. Behavior for the optional transactionId, senderNonce, and
recipientNonce CMC control attributes is not addressed in these
procedures.
4.10.1. GLO and GLA Initiated Update Member Certificate
The process for GLO initiated glUpdateCert is as follows:
1 - The GLO or GLA sends a
SignedData.PKIData.controlSequence.glProvideCert request to the
GL member. The GLO or GLA indicates the GL name in glName and
the GL member name in glMemberName. Additionally, a signingTime
attribute is included with this request.
1.a - The GLO or GLA can optionally apply confidentiality to the
request by encapsulating the SignedData.PKIData in an
EnvelopedData (see Section 3.2.1.2). If the GL member's PKC
has been revoked, the GLO or GLA ought not use it to generate
the EnvelopedData that encapsulates the glProvideCert
request.
1.b - The GLO or GLA can also optionally apply another SignedData
over the EnvelopedData (see Section 3.2.1.2).
Turner Standards Track [Page 73]
^L
RFC 5275 CMS SymKeyDist June 2008
2 - Upon receipt of the glProvideCert message, the GL member checks
the signingTime and verifies the GLO or GLA signature(s). If an
additional SignedData and/or EnvelopedData encapsulates the
response (see Section 3.2.1.2 or 3.2.2), the GL member verifies
the outer signature and/or decrypts the outer layer prior to
verifying the signature on the innermost SignedData.
2.a - If the signingTime attribute value is not within the locally
accepted time window, the GL member MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
2.b - Else if signature processing continues and if the signatures
cannot be verified, the GL member returns a cMCStatusInfoExt
response indicating cMCStatus.failed and
otherInfo.failInfo.badMessageCheck. Additionally, a
signingTime attribute is included with the response.
2.c - Else if the signatures verify, the GL member generates a
Signed.PKIResponse.controlSequence.glUpdateCert that includes
the GL name in glName, the member's name in
glMember.glMemberName, the member's encryption certificate in
glMember.certificates.pKC. The GL member can also include
any attribute certificates associated with the member's
encryption certificate in glMember.certificates.aC, and the
certification path associated with the member's encryption
and attribute certificates in glMember.certificates.certPath.
Additionally, a signingTime attribute is included with the
response.
2.c.1 - The GL member can optionally apply confidentiality to the
request by encapsulating the SignedData.PKIResponse in an
EnvelopedData (see Section 3.2.1.2). If the GL member's
PKC has been revoked, the GL member ought not use it to
generate the EnvelopedData that encapsulates the
glProvideCert request.
2.c.2 - The GL member can also optionally apply another
SignedData over the EnvelopedData (see Section 3.2.1.2).
3 - Upon receipt of the glUpdateCert message, the GLO or GLA checks
the signingTime and verifies the GL member signature(s). If an
additional SignedData and/or EnvelopedData encapsulates the
response (see Section 3.2.1.2 or 3.2.2), the GL member verifies
the outer signature and/or decrypts the outer layer prior to
verifying the signature on the innermost SignedData.
Turner Standards Track [Page 74]
^L
RFC 5275 CMS SymKeyDist June 2008
3.a - If the signingTime attribute value is not within the locally
accepted time window, the GLO or GLA MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
3.b - Else if signature processing continues and if the signatures
cannot be verified, the GLO or GLA returns a cMCStatusInfoExt
response indicating cMCStatus.failed and
otherInfo.failInfo.badMessageCheck. Additionally, a
signingTime attribute is included with the response.
3.c - Else if the signatures verify, the GLO or GLA verifies the
member's encryption certificate.
3.c.1 - If the member's encryption certificate cannot be
verified, the GLO returns either another glProvideCert
request or a cMCStatusInfoExt with cMCStatus.failed and
the reason why in cMCStatus.statusString. glProvideCert
should be returned only a certain number of times is
because if the GL member does not have a valid
certificate it will never be able to return one.
Additionally, a signingTime attribute is included with
either response.
3.c.2 - Else if the member's encryption certificate cannot be
verified, the GLA returns another glProvideCert request
to the GL member or a cMCStatusInfoExt with
cMCStatus.failed and the reason why in
cMCStatus.statusString to the GLO. glProvideCert should
be returned only a certain number of times because if the
GL member does not have a valid certificate it will never
be able to return one. Additionally, a signingTime
attribute is included with the response.
3.c.3 - Else if the member's encryption certificate verifies, the
GLO or GLA will use it in subsequent glAddMember requests
and glKey messages associated with the GL member.
4.10.2. GL Member Initiated Update Member Certificate
The process for an unsolicited GL member glUpdateCert is as follows:
1 - The GL member sends a Signed.PKIData.controlSequence.glUpdateCert
that includes the GL name in glName, the member's name in
glMember.glMemberName, the member's encryption certificate in
glMember.certificates.pKC. The GL member can also include any
attribute certificates associated with the member's encryption
certificate in glMember.certificates.aC, and the certification
Turner Standards Track [Page 75]
^L
RFC 5275 CMS SymKeyDist June 2008
path associated with the member's encryption and attribute
certificates in glMember.certificates.certPath. The GL member
MUST also include a signingTime attribute with this request.
1.a - The GL member can optionally apply confidentiality to the
request by encapsulating the SignedData.PKIData in an
EnvelopedData (see Section 3.2.1.2). If the GL member's PKC
has been revoked, the GLO or GLA ought not use it to generate
the EnvelopedData that encapsulates the glProvideCert
request.
1.b - The GL member can also optionally apply another SignedData
over the EnvelopedData (see Section 3.2.1.2).
2 - Upon receipt of the glUpdateCert message, the GLA checks the
signingTime and verifies the GL member signature(s). If an
additional SignedData and/or EnvelopedData encapsulates the
response (see Section 3.2.1.2 or 3.2.2), the GLA verifies the
outer signature and/or decrypts the outer layer prior to
verifying the signature on the innermost SignedData.
2.a - If the signingTime attribute value is not within the locally
accepted time window, the GLA MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
2.b - Else if signature processing continues and if the signatures
cannot be verified, the GLA returns a cMCStatusInfoExt
response indicating cMCStatus.failed and
otherInfo.failInfo.badMessageCheck.
2.c - Else if the signatures verify, the GLA verifies the member's
encryption certificate.
2.c.1 - If the member's encryption certificate cannot be
verified, the GLA returns another glProvideCert request
to the GL member or a cMCStatusInfoExt with
cMCStatus.failed and the reason why in
cMCStatus.statusString to the GLO. glProvideCert ought
not be returned indefinitely; if the GL member does not
have a valid certificate it will never be able to return
one. Additionally, a signingTime attribute is included
with the response.
2.c.2 - Else if the member's encryption certificate verifies, the
GLA will use it in subsequent glAddMember requests and
glKey messages associated with the GL member. The GLA
also forwards the glUpdateCert message to the GLO.
Turner Standards Track [Page 76]
^L
RFC 5275 CMS SymKeyDist June 2008
5. Distribution Message
The GLA uses the glKey message to distribute new, shared KEK(s) after
receiving glAddMember, glDeleteMember (for closed and managed GLs),
glRekey, glkCompromise, or glkRefresh requests and returning a
cMCStatusInfoExt response for the respective request. Figure 12
depicts the protocol interactions to send out glKey messages. Unlike
the procedures defined for the administrative messages, the
procedures defined in this section MUST be implemented by GLAs for
origination and by GL members on reception. Note that error messages
are not shown. Additionally, behavior for the optional
transactionId, senderNonce, and recipientNonce CMC control attributes
is not addressed in these procedures.
1 +----------+
+-------> | Member 1 |
| +----------+
+-----+ | 1 +----------+
| GLA | ----+-------> | ... |
+-----+ | +----------+
| 1 +----------+
+-------> | Member n |
+----------+
Figure 12 - GL Key Distribution
If the GL was set up with GLKeyAttributes.recipientsNotMutuallyAware
set to TRUE, a separate glKey message MUST be sent to each GL member
so as not to divulge information about the other GL members.
When the glKey message is generated as a result of a:
- glAddMember request,
- glkComrpomise indication,
- glkRefresh request,
- glDeleteMember request with the GL's glAdministration set to
managed or closed, and
- glRekey request with generationCounter set to zero (0).
The GLA MUST use either the kari (see Section 12.3.2 of [CMS]) or
ktri (see Section 12.3.1 of [CMS]) choice in
glKey.glkWrapped.RecipientInfo to ensure that only the intended
recipients receive the shared KEK. The GLA MUST support the ktri
choice.
Turner Standards Track [Page 77]
^L
RFC 5275 CMS SymKeyDist June 2008
When the glKey message is generated as a result of a glRekey request
with generationCounter greater than zero (0) or when the GLA controls
rekeys, the GLA MAY use the kari, ktri, or kekri (see Section 12.3.3
of [CMS]) in glKey.glkWrapped.RecipientInfo to ensure that only the
intended recipients receive the shared KEK. The GLA MUST support the
RecipientInfo.ktri choice.
5.1. Distribution Process
When a glKey message is generated, the process is as follows:
1 - The GLA MUST send a SignedData.PKIData.controlSequence.glKey to
each member by including glName, glIdentifier, glkWrapped,
glkAlgorithm, glkNotBefore, and glkNotAfter. If the GLA cannot
generate a glKey message for the GL member because the GL
member's PKC has expired or is otherwise invalid, the GLA MAY
send a glUpdateCert to the GL member requesting a new certificate
be provided (see Section 4.10). The number of glKey messages
generated for the GL is described in Section 3.1.13.
Additionally, a signingTime attribute is included with the
distribution message(s).
1.a - The GLA MAY optionally apply another confidentiality layer to
the message by encapsulating the SignedData.PKIData in
another EnvelopedData (see Section 3.2.1.2).
1.b - The GLA MAY also optionally apply another SignedData over the
EnvelopedData.SignedData.PKIData (see Section 3.2.1.2).
2 - Upon receipt of the glKey message, the GL members MUST check the
signingTime and verify the signature over the innermost
SignedData.PKIData. If an additional SignedData and/or
EnvelopedData encapsulates the message (see Section 3.2.1.2 or
3.2.2), the GL member MUST verify the outer signature and/or
decrypt the outer layer prior to verifying the signature on the
SignedData.PKIData.controlSequence.glKey.
2.a - If the signingTime attribute value is not within the locally
accepted time window, the GLA MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
2.b - Else if signature processing continues and if the signatures
cannot be verified, the GL member MUST return a
cMCStatusInfoExt response indicating cMCStatus.failed and
otherInfo.failInfo.badMessageCheck. Additionally, a
signingTime attribute is included with the response.
Turner Standards Track [Page 78]
^L
RFC 5275 CMS SymKeyDist June 2008
2.c - Else if the signatures verify, the GL member processes the
RecipientInfos according to [CMS]. Once unwrapped, the GL
member should store the shared KEK in a safe place. When
stored, the glName, glIdentifier, and shared KEK should be
associated. Additionally, the GL member MUST return a
cMCStatusInfoExt indicating cMCStatus.success to tell the GLA
the KEK was received.
6. Algorithms
This section lists the algorithms that MUST be implemented.
Additional algorithms that SHOULD be implemented are also included.
Further algorithms MAY also be implemented.
6.1. KEK Generation Algorithm
Implementations MUST randomly generate content-encryption keys,
message-authentication keys, initialization vectors (IVs), and
padding. Also, the generation of public/private key pairs relies on
a random numbers. The use of inadequate pseudo-random number
generators (PRNGs) to generate cryptographic keys can result in
little or no security. An attacker may find it much easier to
reproduce the PRNG environment that produced the keys, searching the
resulting small set of possibilities, rather than brute force
searching the whole key space. The generation of quality random
numbers is difficult. RFC 4086 [RANDOM] offers important guidance in
this area, and Appendix 3 of FIPS Pub 186 [FIPS] provides one quality
PRNG technique.
6.2. Shared KEK Wrap Algorithm
In the mechanisms described in Section 5, the shared KEK being
distributed in glkWrapped MUST be protected by a key of equal or
greater length (e.g., if an AES 128-bit key is being distributed, a
key of 128 bits or greater must be used to protect the key).
The algorithm object identifiers included in glkWrapped are as
specified in [CMSALG] and [CMSAES].
6.3. Shared KEK Algorithm
The shared KEK distributed and indicated in glkAlgorithm MUST support
the symmetric key-encryption algorithms as specified in [CMSALG] and
[CMSAES].
Turner Standards Track [Page 79]
^L
RFC 5275 CMS SymKeyDist June 2008
7. Message Transport
SMTP [SMTP] MUST be supported. Other transport mechanisms MAY also
be supported.
8. Security Considerations
As GLOs control setting up and tearing down the GL and rekeying the
GL, and can control member additions and deletions, GLOs play an
important role in the management of the GL, and only "trusted" GLOs
should be used.
If a member is deleted or removed from a closed or a managed GL, the
GL needs to be rekeyed. If the GL is not rekeyed after a member is
removed or deleted, the member still possesses the group key and will
be able to continue to decrypt any messages that can be obtained.
Members who store KEKs MUST associate the name of the GLA that
distributed the key so that the members can make sure subsequent
rekeys are originated from the same entity.
When generating keys, care should be taken to ensure that the key
size is not too small and duration too long because attackers will
have more time to attack the key. Key size should be selected to
adequately protect sensitive business communications.
GLOs and GLAs need to make sure that the generationCounter and
duration are not too large. For example, if the GLO indicates that
the generationCounter is 14 and the duration is one year, then 14
keys are generated each with a validity period of a year. An
attacker will have at least 13 years to attack the final key.
Assume that two or more parties have a shared KEK, and the shared KEK
is used to encrypt a second KEK for confidential distribution to
those parties. The second KEK might be used to encrypt a third KEK,
the third KEK might be used to encrypt a fourth KEK, and so on. If
any of the KEKs in such a chain is compromised, all of the subsequent
KEKs in the chain MUST also be considered compromised.
An attacker can attack the group's shared KEK by attacking one
member's copy of the shared KEK or attacking multiple members' copies
of the shared KEK. For the attacker, it may be easier to either
attack the group member with the weakest security protecting its copy
of the shared KEK or attack multiple group members.
Turner Standards Track [Page 80]
^L
RFC 5275 CMS SymKeyDist June 2008
An aggregation of the information gathered during the attack(s) may
lead to the compromise of the group's shared KEK. Mechanisms to
protect the shared KEK should be commensurate with value of the data
being protected.
The nonce and signingTime attributes are used to protect against
replay attacks. However, these provisions are only helpful if
entities maintain state information about the messages they have sent
or received for comparison. If sufficient information is not
maintained on each exchange, nonces and signingTime are not helpful.
Local policy determines the amount and duration of state information
that is maintained. Additionally, without a unified time source,
there is the possibility of clocks drifting. Local policy determines
the acceptable difference between the local time and signingTime,
which must compensate for unsynchronized clocks. Implementations
MUST handle messages with siginingTime attributes that indicate they
were created in the future.
9. Acknowledgements
Thanks to Russ Housley and Jim Schaad for providing much of the
background and review required to write this document.
10. References
10.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[CMS] Housley, R., "Cryptographic Message Syntax (CMS)", RFC
3852, July 2004.
[CMC] Schaad, J. and M. Myers, "Certificate Management over
CMS (CMC)", RFC 5272, June 2008.
[PROFILE] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R., and W. Polk, "Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation
List (CRL) Profile", RFC 5280, May 2008.
[ACPROF] Farrell, S. and R. Housley, "An Internet Attribute
Certificate Profile for Authorization", RFC 3281, April
2002.
Turner Standards Track [Page 81]
^L
RFC 5275 CMS SymKeyDist June 2008
[MSG] Ramsdell, B., Ed., "Secure/Multipurpose Internet Mail
Extensions (S/MIME) Version 3.1 Message Specification",
RFC 3851, July 2004.
[ESS] Hoffman, P., Ed., "Enhanced Security Services for
S/MIME", RFC 2634, June 1999.
[CMSALG] Housley, R., "Cryptographic Message Syntax (CMS)
Algorithms", RFC 3370, August 2002.
[CMSAES] Schaad, J., "Use of the Advanced Encryption Standard
(AES) Encryption Algorithm in Cryptographic Message
Syntax (CMS)", RFC 3565, July 2003.
[SMTP] Klensin, J., Ed., "Simple Mail Transfer Protocol", RFC
2821, April 2001.
10.2. Informative References
[X400TRANS] Hoffman, P. and C. Bonatti, "Transporting
Secure/Multipurpose Internet Mail Extensions (S/MIME)
Objects in X.400", RFC 3855, July 2004.
[RANDOM] Eastlake, D., 3rd, Schiller, J., and S. Crocker,
"Randomness Requirements for Security", BCP 106, RFC
4086, June 2005.
[FIPS] National Institute of Standards and Technology, FIPS Pub
186-2: Digital Signature Standard, January 2000.
Turner Standards Track [Page 82]
^L
RFC 5275 CMS SymKeyDist June 2008
Appendix A. ASN.1 Module
SMIMESymmetricKeyDistribution
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
pkcs-9(9) smime(16) modules(0) symkeydist(12) }
DEFINITIONS IMPLICIT TAGS ::=
BEGIN
-- EXPORTS All --
-- The types and values defined in this module are exported for use
-- in the other ASN.1 modules. Other applications may use them for
-- their own purposes.
IMPORTS
-- PKIX Part 1 - Implicit [PROFILE]
GeneralName
FROM PKIX1Implicit88 { iso(1) identified-organization(3) dod(6)
internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
id-pkix1-implicit(19) }
-- PKIX Part 1 - Explicit [PROFILE]
AlgorithmIdentifier, Certificate
FROM PKIX1Explicit88 { iso(1) identified-organization(3) dod(6)
internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
id-pkix1-explicit(18) }
-- Cryptographic Message Syntax [CMS]
RecipientInfos, KEKIdentifier, CertificateSet
FROM CryptographicMessageSyntax2004 {iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) modules(0)
cms-2004(24) }
-- Advanced Encryption Standard (AES) with CMS [CMSAES]
id-aes128-wrap
FROM CMSAesRsaesOaep { iso(1) member-body(2) us(840)
rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) modules(0)
id-mod-cms-aes(19) }
-- Attribute Certificate Profile [ACPROF]
AttributeCertificate FROM
PKIXAttributeCertificate { iso(1) identified-organization(3)
dod(6) internet(1) security(5) mechanisms(5) pkix(7)
id-mod(0) id-mod-attribute-cert(12) };
Turner Standards Track [Page 83]
^L
RFC 5275 CMS SymKeyDist June 2008
-- This defines the GL symmetric key distribution object identifier
-- arc.
id-skd OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) skd(8) }
-- This defines the GL Use KEK control attribute.
id-skd-glUseKEK OBJECT IDENTIFIER ::= { id-skd 1 }
GLUseKEK ::= SEQUENCE {
glInfo GLInfo,
glOwnerInfo SEQUENCE SIZE (1..MAX) OF GLOwnerInfo,
glAdministration GLAdministration DEFAULT 1,
glKeyAttributes GLKeyAttributes OPTIONAL }
GLInfo ::= SEQUENCE {
glName GeneralName,
glAddress GeneralName }
GLOwnerInfo ::= SEQUENCE {
glOwnerName GeneralName,
glOwnerAddress GeneralName,
certificates Certificates OPTIONAL }
GLAdministration ::= INTEGER {
unmanaged (0),
managed (1),
closed (2) }
GLKeyAttributes ::= SEQUENCE {
rekeyControlledByGLO [0] BOOLEAN DEFAULT FALSE,
recipientsNotMutuallyAware [1] BOOLEAN DEFAULT TRUE,
duration [2] INTEGER DEFAULT 0,
generationCounter [3] INTEGER DEFAULT 2,
requestedAlgorithm [4] AlgorithmIdentifier
DEFAULT { id-aes128-wrap } }
-- This defines the Delete GL control attribute.
-- It has the simple type GeneralName.
id-skd-glDelete OBJECT IDENTIFIER ::= { id-skd 2 }
DeleteGL ::= GeneralName
-- This defines the Add GL Member control attribute.
id-skd-glAddMember OBJECT IDENTIFIER ::= { id-skd 3 }
Turner Standards Track [Page 84]
^L
RFC 5275 CMS SymKeyDist June 2008
GLAddMember ::= SEQUENCE {
glName GeneralName,
glMember GLMember }
GLMember ::= SEQUENCE {
glMemberName GeneralName,
glMemberAddress GeneralName OPTIONAL,
certificates Certificates OPTIONAL }
Certificates ::= SEQUENCE {
pKC [0] Certificate OPTIONAL,
-- See [PROFILE]
aC [1] SEQUENCE SIZE (1.. MAX) OF
AttributeCertificate OPTIONAL,
-- See [ACPROF]
certPath [2] CertificateSet OPTIONAL }
-- From [CMS]
-- This defines the Delete GL Member control attribute.
id-skd-glDeleteMember OBJECT IDENTIFIER ::= { id-skd 4 }
GLDeleteMember ::= SEQUENCE {
glName GeneralName,
glMemberToDelete GeneralName }
-- This defines the Delete GL Member control attribute.
id-skd-glRekey OBJECT IDENTIFIER ::= { id-skd 5 }
GLRekey ::= SEQUENCE {
glName GeneralName,
glAdministration GLAdministration OPTIONAL,
glNewKeyAttributes GLNewKeyAttributes OPTIONAL,
glRekeyAllGLKeys BOOLEAN OPTIONAL }
GLNewKeyAttributes ::= SEQUENCE {
rekeyControlledByGLO [0] BOOLEAN OPTIONAL,
recipientsNotMutuallyAware [1] BOOLEAN OPTIONAL,
duration [2] INTEGER OPTIONAL,
generationCounter [3] INTEGER OPTIONAL,
requestedAlgorithm [4] AlgorithmIdentifier OPTIONAL }
-- This defines the Add and Delete GL Owner control attributes.
id-skd-glAddOwner OBJECT IDENTIFIER ::= { id-skd 6 }
id-skd-glRemoveOwner OBJECT IDENTIFIER ::= { id-skd 7 }
Turner Standards Track [Page 85]
^L
RFC 5275 CMS SymKeyDist June 2008
GLOwnerAdministration ::= SEQUENCE {
glName GeneralName,
glOwnerInfo GLOwnerInfo }
-- This defines the GL Key Compromise control attribute.
-- It has the simple type GeneralName.
id-skd-glKeyCompromise OBJECT IDENTIFIER ::= { id-skd 8 }
GLKCompromise ::= GeneralName
-- This defines the GL Key Refresh control attribute.
id-skd-glkRefresh OBJECT IDENTIFIER ::= { id-skd 9 }
GLKRefresh ::= SEQUENCE {
glName GeneralName,
dates SEQUENCE SIZE (1..MAX) OF Date }
Date ::= SEQUENCE {
start GeneralizedTime,
end GeneralizedTime OPTIONAL }
-- This defines the GLA Query Request control attribute.
id-skd-glaQueryRequest OBJECT IDENTIFIER ::= { id-skd 11 }
GLAQueryRequest ::= SEQUENCE {
glaRequestType OBJECT IDENTIFIER,
glaRequestValue ANY DEFINED BY glaRequestType }
-- This defines the GLA Query Response control attribute.
id-skd-glaQueryResponse OBJECT IDENTIFIER ::= { id-skd 12 }
GLAQueryResponse ::= SEQUENCE {
glaResponseType OBJECT IDENTIFIER,
glaResponseValue ANY DEFINED BY glaResponseType }
-- This defines the GLA Request/Response (glaRR) arc for
-- glaRequestType/glaResponseType.
id-cmc-glaRR OBJECT IDENTIFIER ::= { iso(1)
identified-organization(3) dod(6) internet(1) security(5)
mechanisms(5) pkix(7) cmc(7) glaRR(99) }
Turner Standards Track [Page 86]
^L
RFC 5275 CMS SymKeyDist June 2008
-- This defines the Algorithm Request.
id-cmc-gla-skdAlgRequest OBJECT IDENTIFIER ::= { id-cmc-glaRR 1 }
SKDAlgRequest ::= NULL
-- This defines the Algorithm Response.
id-cmc-gla-skdAlgResponse OBJECT IDENTIFIER ::= { id-cmc-glaRR 2 }
-- Note that the response for algorithmSupported request is the
-- smimeCapabilities attribute as defined in MsgSpec [MSG].
-- This defines the control attribute to request an updated
-- certificate to the GLA.
id-skd-glProvideCert OBJECT IDENTIFIER ::= { id-skd 13 }
GLManageCert ::= SEQUENCE {
glName GeneralName,
glMember GLMember }
-- This defines the control attribute to return an updated
-- certificate to the GLA. It has the type GLManageCert.
id-skd-glManageCert OBJECT IDENTIFIER ::= { id-skd 14 }
-- This defines the control attribute to distribute the GL shared
-- KEK.
id-skd-glKey OBJECT IDENTIFIER ::= { id-skd 15 }
GLKey ::= SEQUENCE {
glName GeneralName,
glIdentifier KEKIdentifier, -- See [CMS]
glkWrapped RecipientInfos, -- See [CMS]
glkAlgorithm AlgorithmIdentifier,
glkNotBefore GeneralizedTime,
glkNotAfter GeneralizedTime }
-- This defines the CMC error types.
id-cet-skdFailInfo OBJECT IDENTIFIER ::= { iso(1)
identified-organization(3) dod(6) internet(1) security(5)
mechanisms(5) pkix(7) cet(15) skdFailInfo(1) }
Turner Standards Track [Page 87]
^L
RFC 5275 CMS SymKeyDist June 2008
SKDFailInfo ::= INTEGER {
unspecified (0),
closedGL (1),
unsupportedDuration (2),
noGLACertificate (3),
invalidCert (4),
unsupportedAlgorithm (5),
noGLONameMatch (6),
invalidGLName (7),
nameAlreadyInUse (8),
noSpam (9),
-- obsolete (10),
alreadyAMember (11),
notAMember (12),
alreadyAnOwner (13),
notAnOwner (14) }
END -- SMIMESymmetricKeyDistribution
Author's Address
Sean Turner
IECA, Inc.
3057 Nutley Street, Suite 106
Fairfax, VA 22031
USA
EMail: turners@ieca.com
Turner Standards Track [Page 88]
^L
RFC 5275 CMS SymKeyDist June 2008
Full Copyright Statement
Copyright (C) The IETF Trust (2008).
This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Turner Standards Track [Page 89]
^L
|