1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
|
Network Working Group T. Clancy
Request for Comments: 5433 LTS
Category: Standards Track H. Tschofenig
Nokia Siemens Networks
February 2009
Extensible Authentication Protocol -
Generalized Pre-Shared Key (EAP-GPSK) Method
Status of This Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (c) 2009 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents in effect on the date of
publication of this document (http://trustee.ietf.org/license-info).
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document.
Abstract
This memo defines an Extensible Authentication Protocol (EAP) method
called EAP Generalized Pre-Shared Key (EAP-GPSK). This method is a
lightweight shared-key authentication protocol supporting mutual
authentication and key derivation.
Clancy & Tschofenig Standards Track [Page 1]
^L
RFC 5433 EAP-GPSK February 2009
Table of Contents
1. Introduction ....................................................3
2. Terminology .....................................................4
3. Overview ........................................................6
4. Key Derivation ..................................................8
5. Key Management .................................................11
6. Ciphersuites ...................................................11
7. Generalized Key Derivation Function (GKDF) .....................12
8. Ciphersuites Processing Rules ..................................13
8.1. Ciphersuite #1 ............................................13
8.1.1. Encryption .........................................13
8.1.2. Integrity ..........................................13
8.2. Ciphersuite #2 ............................................14
8.2.1. Encryption .........................................14
8.2.2. Integrity ..........................................14
9. Packet Formats .................................................15
9.1. Header Format .............................................15
9.2. Ciphersuite Formatting ....................................16
9.3. Payload Formatting ........................................16
9.4. Protected Data ............................................21
10. Packet Processing Rules .......................................24
11. Example Message Exchanges .....................................25
12. Security Considerations .......................................28
12.1. Security Claims ..........................................28
12.2. Mutual Authentication ....................................29
12.3. Protected Result Indications .............................29
12.4. Integrity Protection .....................................29
12.5. Replay Protection ........................................30
12.6. Reflection Attacks .......................................30
12.7. Dictionary Attacks .......................................30
12.8. Key Derivation and Key Strength ..........................31
12.9. Denial-of-Service Resistance .............................31
12.10. Session Independence ....................................32
12.11. Compromise of the PSK ...................................32
12.12. Fragmentation ...........................................32
12.13. Channel Binding .........................................32
12.14. Fast Reconnect ..........................................33
12.15. Identity Protection .....................................33
12.16. Protected Ciphersuite Negotiation .......................33
12.17. Confidentiality .........................................34
12.18. Cryptographic Binding ...................................34
13. IANA Considerations ...........................................34
14. Contributors ..................................................35
15. Acknowledgments ...............................................36
16. References ....................................................37
16.1. Normative References .....................................37
16.2. Informative References ...................................38
Clancy & Tschofenig Standards Track [Page 2]
^L
RFC 5433 EAP-GPSK February 2009
1. Introduction
EAP Generalized Pre-Shared Key (EAP-GPSK) is an EAP method defining a
generalized pre-shared key authentication technique. Mutual
authentication is achieved through a nonce-based exchange that is
secured by a pre-shared key.
EAP-GPSK addresses a large number of design goals with the intention
of being applicable in a broad range of usage scenarios.
The main design goals of EAP-GPSK are:
Simplicity:
EAP-GPSK should be easy to implement.
Security Model:
EAP-GPSK has been designed in a threat model where the attacker
has full control over the communication channel. This EAP threat
model is presented in Section 7.1 of [RFC3748].
Efficiency:
EAP-GPSK does not make use of public key cryptography and fully
relies of symmetric cryptography. The restriction of symmetric
cryptographic computations allows for low computational overhead.
Hence, EAP-GPSK is lightweight and well suited for any type of
device, especially those with processing power, memory, and
battery constraints. Additionally, it seeks to minimize the
number of round trips.
Flexibility:
EAP-GPSK offers cryptographic flexibility. At the beginning, the
EAP server proposes a list of ciphersuites. The client then
selects one. The current version of EAP-GPSK includes two
ciphersuites, but additional ones can be easily added.
Extensibility:
The design of EAP-GPSK allows to securely exchange information
between the EAP peer and the EAP server using protected data
fields. These fields might, for example, be used to exchange
channel binding information or to provide support for identity
confidentiality.
Clancy & Tschofenig Standards Track [Page 3]
^L
RFC 5433 EAP-GPSK February 2009
2. Terminology
In this document, several words are used to signify the requirements
of the specification. These words are often capitalized. The key
words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document
are to be interpreted as described in [RFC2119].
This section describes the various variables and functions used in
the EAP-GPSK method.
Variables:
CSuite_List: An octet array listing available ciphersuites (variable
length).
CSuite_Sel: Ciphersuite selected by the peer (6 octets).
ID_Peer: Peer Network Access Identifier (NAI) [RFC4282].
ID_Server: Server identity as an opaque blob.
KS: Integer representing the input key size, in octets, of the
selected ciphersuite CSuite_Sel. The key size is one of the
ciphersuite parameters.
ML: Integer representing the length of the Message Authentication
Code (MAC) output, in octets, of the selected ciphersuite
CSuite_Sel.
PD_Payload: Data carried within the protected data payload.
PD_Payload_Block: Block of possibly multiple PD_Payloads carried by
a GPSK packet.
PL: Integer representing the length of the PSK in octets (2 octets).
PL MUST be larger than or equal to KS.
RAND_Peer: Random integer generated by the peer (32 octets).
RAND_Server: Random integer generated by the server (32 octets).
Clancy & Tschofenig Standards Track [Page 4]
^L
RFC 5433 EAP-GPSK February 2009
Operations:
A || B: Concatenation of octet strings A and B.
A**B: Integer exponentiation.
truncate(A,B): Returns the first B octets of A.
ENC_X(Y): Encryption of message Y with a symmetric key X, using a
defined block cipher.
KDF-X(Y): Key Derivation Function that generates an arbitrary number
of octets of output using secret X and seed Y.
length(X): Function that returns the length of input X in octets,
encoded as a 2-octet integer in network byte order.
MAC_X(Y): Keyed message authentication code computed over Y with
symmetric key X.
SEC_X(Y): SEC is a function that provides integrity protection based
on the chosen ciphersuite. The function SEC uses the algorithm
defined by the selected ciphersuite and applies it to the message
content Y with key X. In short, SEC_X(Y) = Y || MAC_X(Y).
X[A..B]: Notation representing octets A through B of octet array X
where the first octet of the array has index zero.
The following abbreviations are used for the keying material:
EMSK: Extended Master Session Key is exported by the EAP method (64
octets).
MK: A session-specific Master Key between the peer and EAP server
from which all other EAP method session keys are derived (KS
octets).
MSK: Master Session Key exported by the EAP method (64 octets).
PK: Session key generated from the MK and used during protocol
exchange to encrypt protected data (KS octets).
PSK: Long-term key shared between the peer and the server (PL
octets).
SK: Session key generated from the MK and used during protocol
exchange to demonstrate knowledge of the PSK (KS octets).
Clancy & Tschofenig Standards Track [Page 5]
^L
RFC 5433 EAP-GPSK February 2009
3. Overview
The EAP framework (see Section 1.3 of [RFC3748]) defines three basic
steps that occur during the execution of an EAP conversation between
the EAP peer, the Authenticator, and the EAP server.
1. The first phase, discovery, is handled by the underlying
protocol, e.g., IEEE 802.1X as utilized by IEEE 802.11 [80211].
2. The EAP authentication phase with EAP-GPSK is defined in this
document.
3. The secure association distribution and secure association phases
are handled differently depending on the underlying protocol.
EAP-GPSK performs mutual authentication between the EAP peer ("Peer")
and EAP server ("Server") based on a pre-shared key (PSK). The
protocol consists of the message exchanges (GPSK-1, ..., GPSK-4) in
which both sides exchange nonces and their identities, and compute
and exchange a Message Authentication Code (MAC) over the previously
exchanged values, keyed with the pre-shared key. This MAC is
considered as proof of possession of the pre-shared key. Two further
messages, namely GPSK-Fail and GPSK-Protected-Fail, are used to deal
with error situations.
A successful protocol exchange is shown in Figure 1.
Clancy & Tschofenig Standards Track [Page 6]
^L
RFC 5433 EAP-GPSK February 2009
+--------+ +--------+
| | EAP-Request/Identity | |
| EAP |<------------------------------------| EAP |
| peer | | server |
| | EAP-Response/Identity | |
| |------------------------------------>| |
| | | |
| | EAP-Request/GPSK-1 | |
| |<------------------------------------| |
| | | |
| | EAP-Response/GPSK-2 | |
| |------------------------------------>| |
| | | |
| | EAP-Request/GPSK-3 | |
| |<------------------------------------| |
| | | |
| | EAP-Response/GPSK-4 | |
| |------------------------------------>| |
| | | |
| | EAP-Success | |
| |<------------------------------------| |
+--------+ +--------+
Figure 1: EAP-GPSK: Successful Exchange
The full EAP-GPSK protocol is as follows:
GPSK-1:
ID_Server, RAND_Server, CSuite_List
GPSK-2:
SEC_SK(ID_Peer, ID_Server, RAND_Peer, RAND_Server, CSuite_List,
CSuite_Sel, [ ENC_PK(PD_Payload_Block) ] )
GPSK-3:
SEC_SK(RAND_Peer, RAND_Server, ID_Server, CSuite_Sel, [
ENC_PK(PD_Payload_Block) ] )
GPSK-4:
SEC_SK( [ ENC_PK(PD_Payload_Block) ] )
Clancy & Tschofenig Standards Track [Page 7]
^L
RFC 5433 EAP-GPSK February 2009
The EAP server begins EAP-GPSK by selecting a random number
RAND_Server and encoding the supported ciphersuites into CSuite_List.
A ciphersuite consists of an encryption algorithm, a key derivation
function, and a message authentication code.
In GPSK-1, the EAP server sends its identity ID_Server, a random
number RAND_Server, and a list of supported ciphersuites CSuite_List.
The decision of which ciphersuite to offer and which ciphersuite to
pick is policy- and implementation-dependent and, therefore, outside
the scope of this document.
In GPSK-2, the peer sends its identity ID_Peer and a random number
RAND_Peer. Furthermore, it repeats the received parameters of the
GPSK-1 message (ID_Server, RAND_Server, CSuite_List) and the selected
ciphersuite. It computes a Message Authentication Code over all the
transmitted parameters.
The EAP server verifies the received Message Authentication Code and
the consistency of the identities, nonces, and ciphersuite parameters
transmitted in GPSK-1. In case of successful verification, the EAP
server computes a Message Authentication Code over the session
parameter and returns it to the peer (within GPSK-3). Within GPSK-2
and GPSK-3, the EAP peer and EAP server have the possibility to
exchange encrypted protected data parameters.
The peer verifies the received Message Authentication Code and the
consistency of the identities, nonces, and ciphersuite parameters
transmitted in GPSK-2. If the verification is successful, GPSK-4 is
prepared. This message can optionally contain the peer's protected
data parameters.
Upon receipt of GPSK-4, the server processes any included
PD_Payload_Block. Then, the EAP server sends an EAP Success message
to indicate the successful outcome of the authentication.
4. Key Derivation
EAP-GPSK provides key derivation in compliance to the requirements of
[RFC3748] and [RFC5247]. Note that this section provides an abstract
description for the key derivation procedure that needs to be
instantiated with a specific ciphersuite.
The long-term credential shared between EAP peer and EAP server
SHOULD be a strong pre-shared key PSK of at least 16 octets, though
its length and entropy are variable. While it is possible to use a
password or passphrase, doing so is NOT RECOMMENDED as EAP-GPSK is
vulnerable to dictionary attacks.
Clancy & Tschofenig Standards Track [Page 8]
^L
RFC 5433 EAP-GPSK February 2009
During an EAP-GPSK authentication, a Master Key MK, a Session Key SK,
and a Protected Data Encryption Key PK (if using an encrypting
ciphersuite) are derived using the ciphersuite-specified KDF and data
exchanged during the execution of the protocol, namely 'RAND_Peer ||
ID_Peer || RAND_Server || ID_Server', referred to as inputString in
its short-hand form.
In case of successful completion, EAP-GPSK derives and exports an MSK
and an EMSK, each 64 octets in length.
The following notation is used: KDF-X(Y, Z)[A..B], whereby
X is the length, in octets, of the desired output,
Y is a secret key,
Z is the inputString,
[A..B] extracts the string of octets starting with octet A and
finishing with octet B from the output of the KDF function.
This keying material is derived using the ciphersuite-specified KDF
as follows:
o inputString = RAND_Peer || ID_Peer || RAND_Server || ID_Server
o MK = KDF-KS(PSK[0..KS-1], PL || PSK || CSuite_Sel ||
inputString)[0..KS-1]
o MSK = KDF-{128+2*KS}(MK, inputString)[0..63]
o EMSK = KDF-{128+2*KS}(MK, inputString)[64..127]
o SK = KDF-{128+2*KS}(MK, inputString)[128..127+KS]
o PK = KDF-{128+2*KS}(MK, inputString)[128+KS..127+2*KS] (if using
an encrypting ciphersuite)
The value for PL (the length of the PSK in octets) is encoded as a
2-octet integer in network byte order. Recall that KS is the length
of the ciphersuite input key size in octets.
Additionally, the EAP keying framework [RFC5247] requires the
definition of a Method-ID, Session-ID, Peer-ID, and Server-ID. These
values are defined as:
o Method-ID = KDF-16(PSK[0..KS-1], "Method ID" || EAP_Method_Type ||
CSuite_Sel || inputString)[0..15]
Clancy & Tschofenig Standards Track [Page 9]
^L
RFC 5433 EAP-GPSK February 2009
o Session-ID = EAP_Method_Type || Method_ID
o Peer-ID = ID_Peer
o Server-ID = ID_Server
EAP_Method_Type refers to the 1-octet, IANA-allocated EAP Type code
value.
Figure 2 depicts the key derivation procedure of EAP-GPSK.
+-------------+ +-------------------------------+
| PL-octet | | RAND_Peer || ID_Peer || |
| PSK | | RAND_Server || ID_Server |
+-------------+ +-------------------------------+
| | |
| +------------+ | |
| | CSuite_Sel | | |
| +------------+ | |
| | | |
v v v |
+--------------------------------------------+ |
| KDF | |
+--------------------------------------------+ |
| |
v |
+-------------+ |
| KS-octet | |
| MK | |
+-------------+ |
| |
v v
+---------------------------------------------------+
| KDF |
+---------------------------------------------------+
| | | |
v v v v
+---------+ +---------+ +----------+ +----------+
| 64-octet| | 64-octet| | KS-octet | | KS-octet |
| MSK | | EMSK | | SK | | PK |
+---------+ +---------+ +----------+ +----------+
Figure 2: EAP-GPSK Key Derivation
Clancy & Tschofenig Standards Track [Page 10]
^L
RFC 5433 EAP-GPSK February 2009
5. Key Management
In order to be interoperable, PSKs must be entered in the same way on
both the peer and server. The management interface for entering PSKs
MUST support entering PSKs up to 64 octets in length as ASCII strings
and in hexadecimal encoding.
Additionally, the ID_Peer and ID_Server MUST be provisioned with the
PSK. Validation of these values is by an octet-wise comparison. The
management interface SHOULD support entering non-ASCII octets for the
ID_Peer and ID_Server up to 254 octets in length. For more
information, the reader is advised to read Section 2.4 of RFC 4282
[RFC4282].
6. Ciphersuites
The design of EAP-GPSK allows cryptographic algorithms and key sizes,
called ciphersuites, to be negotiated during the protocol run. The
ability to specify block-based and hash-based ciphersuites is
offered. Extensibility is provided with the introduction of new
ciphersuites; this document specifies an initial set. The CSuite/
Specifier column in Figure 3 uniquely identifies a ciphersuite.
For a vendor-specific ciphersuite, the first four octets are the
vendor-specific enterprise number that contains the IANA-assigned
"SMI Network Management Private Enterprise Codes" value (see
[ENTNUM]), encoded in network byte order. The last two octets are
vendor assigned for the specific ciphersuite. A vendor code of
0x00000000 indicates ciphersuites standardized by the IETF in an
IANA-maintained registry.
The following ciphersuites are specified in this document (recall
that KS is the length of the ciphersuite input key length in octets,
and ML is the length of the MAC output in octets):
+-----------+----+-------------+----+--------------+----------------+
| CSuite/ | KS | Encryption | ML | Integrity / | Key Derivation |
| Specifier | | | | KDF MAC | Function |
+-----------+----+-------------+----+--------------+----------------+
| 0x0001 | 16 | AES-CBC-128 | 16 | AES-CMAC-128 | GKDF |
+-----------+----+-------------+----+--------------+----------------+
| 0x0002 | 32 | NULL | 32 | HMAC-SHA256 | GKDF |
+-----------+----+-------------+----+--------------+----------------+
Figure 3: Ciphersuites
Clancy & Tschofenig Standards Track [Page 11]
^L
RFC 5433 EAP-GPSK February 2009
Ciphersuite 1, which is based on the Advanced Encryption Standard
(AES) as a cryptographic primitive, MUST be implemented. This
document specifies also a second ciphersuite, which MAY be
implemented. Both ciphersuites defined in this document make use of
the Generalized Key Derivation Function (GKDF), as defined in
Section 7. The following aspects need to be considered to ensure
that the PSK that is used as input to the GKDF is sufficiently long:
1. The PSK used with ciphersuite 1 MUST be 128 bits in length. Keys
longer than 128 bits will be truncated.
2. The PSK used with ciphersuite 2 MUST be 256 bits in length. Keys
longer than 256 bits will be truncated.
3. It is RECOMMENDED that 256 bit keys be provisioned in all cases
to provide enough entropy for all current and many possible
future ciphersuites.
Ciphersuites defined in the future that make use of the GKDF need to
specify a minimum PSK size (as is done with the ciphersuites listed
in this document).
7. Generalized Key Derivation Function (GKDF)
Each ciphersuite needs to specify a key derivation function. The
ciphersuites defined in this document make use of the Generalized Key
Derivation Function (GKDF) that utilizes the MAC function defined in
the ciphersuite. Future ciphersuites can use any other formally
specified KDF that takes as arguments a key and a seed value, and
produces at least 128+2*KS octets of output.
GKDF has the following structure:
GKDF-X(Y, Z)
X length, in octets, of the desired output
Y secret key
Z inputString
GKDF-X (Y, Z)
{
n = ceiling integer of ( X / ML );
/* determine number of output blocks */
Clancy & Tschofenig Standards Track [Page 12]
^L
RFC 5433 EAP-GPSK February 2009
result = "";
for i = 1 to n {
result = result || MAC_Y (i || Z);
}
return truncate(result, X)
}
Note that the variable 'i' in M_i is represented as a 2-octet value
in network byte order.
8. Ciphersuites Processing Rules
8.1. Ciphersuite #1
8.1.1. Encryption
With this ciphersuite, all cryptography is built around a single
cryptographic primitive, AES-128 ([AES]). Within the protected data
frames, AES-128 is used in the Cipher Block Chaining (CBC) mode of
operation (see [CBC]). This EAP method uses encryption in a single
payload, in the protected data payload (see Section 9.4).
In a nutshell, the CBC mode proceeds as follows. The IV is XORed
with the first plaintext block before it is encrypted. Then for
successive blocks, the previous ciphertext block is XORed with the
current plaintext, before it is encrypted.
8.1.2. Integrity
Ciphersuite 1 uses CMAC as Message Authentication Code. CMAC is
recommended by NIST. Among its advantages, CMAC is capable to work
with messages of arbitrary length. A detailed description of CMAC
can be found in [CMAC].
The following instantiation is used: AES-CMAC-128(SK, Input) denotes
the MAC of Input under the key SK where Input refers to the following
content:
o Parameter within SEC_SK(Parameter) in message GPSK-2
o Parameter within SEC_SK(Parameter) in message GPSK-3
o Parameter within SEC_SK(Parameter) in message GPSK-4
Clancy & Tschofenig Standards Track [Page 13]
^L
RFC 5433 EAP-GPSK February 2009
8.2. Ciphersuite #2
8.2.1. Encryption
Ciphersuite 2 does not include an algorithm for encryption. With a
NULL encryption algorithm, encryption is defined as:
E_X(Y) = Y
When using this ciphersuite, the data exchanged inside the protected
data block is not encrypted. Therefore, this mode MUST NOT be used
if confidential information appears inside the protected data block.
8.2.2. Integrity
Ciphersuite 2 uses the keyed MAC function HMAC, with the SHA256 hash
algorithm (see [RFC4634]).
For integrity protection, the following instantiation is used:
HMAC-SHA256(SK, Input) denotes the MAC of Input under the key SK
where Input refers to the following content:
o Parameter within SEC_SK(Parameter) in message GPSK-2
o Parameter within SEC_SK(Parameter) in message GPSK-3
o Parameter within SEC_SK(Parameter) in message GPSK-4
Clancy & Tschofenig Standards Track [Page 14]
^L
RFC 5433 EAP-GPSK February 2009
9. Packet Formats
This section defines the packet format of the EAP-GPSK messages.
9.1. Header Format
The EAP-GPSK header has the following structure:
--- bit offset --->
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Code | Identifier | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | OP-Code | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
| |
... Payload ...
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 4: EAP-GPSK Header
The Code, Identifier, Length, and Type fields are all part of the EAP
header and are defined in [RFC3748]. The Type field in the EAP
header MUST be the value allocated by IANA for EAP-GPSK.
The OP-Code field is one of 6 values:
o 0x00 : Reserved
o 0x01 : GPSK-1
o 0x02 : GPSK-2
o 0x03 : GPSK-3
o 0x04 : GPSK-4
o 0x05 : GPSK-Fail
o 0x06 : GPSK-Protected-Fail
All other values of this OP-Code field are available via IANA
registration.
Clancy & Tschofenig Standards Track [Page 15]
^L
RFC 5433 EAP-GPSK February 2009
9.2. Ciphersuite Formatting
Ciphersuites are encoded as 6-octet arrays. The first four octets
indicate the CSuite/Vendor field. For vendor-specific ciphersuites,
this represents the vendor enterprise number and contains the IANA-
assigned "SMI Network Management Private Enterprise Codes" value (see
[ENTNUM]), encoded in network byte order. The last two octets
indicate the CSuite/Specifier field, which identifies the particular
ciphersuite. The 4-octet CSuite/Vendor value 0x00000000 indicates
ciphersuites allocated by the IETF.
Graphically, they are represented as:
--- bit offset --->
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| CSuite/Vendor = 0x00000000 or enterprise number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| CSuite/Specifier |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 5: Ciphersuite Formatting
CSuite_Sel is encoded as a 6-octet ciphersuite CSuite/Vendor and
CSuite/Specifier pair.
CSuite_List is a variable-length octet array of ciphersuites. It is
encoded by concatenating encoded ciphersuite values. Its length in
octets MUST be a multiple of 6.
9.3. Payload Formatting
Payload formatting is based on the protocol exchange description in
Section 3.
Clancy & Tschofenig Standards Track [Page 16]
^L
RFC 5433 EAP-GPSK February 2009
The GPSK-1 payload format is defined as follows:
--- bit offset --->
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| length(ID_Server) | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
| |
... ID_Server ...
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
... 32-octet RAND_Server ...
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| length(CSuite_List) | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
| |
... CSuite_List ...
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 6: GPSK-1 Payload
Clancy & Tschofenig Standards Track [Page 17]
^L
RFC 5433 EAP-GPSK February 2009
The GPSK-2 payload format is defined as follows:
--- bit offset --->
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| length(ID_Peer) | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
| |
... ID_Peer ...
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| length(ID_Server) | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
| |
... ID_Server ...
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
... 32-octet RAND_Peer ...
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
... 32-octet RAND_Server ...
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| length(CSuite_List) | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
| |
... CSuite_List ...
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| CSuite_Sel |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | length(PD_Payload_Block) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
... optional PD_Payload_Block ...
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
... ML-octet payload MAC ...
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 7: GPSK-2 Payload
Clancy & Tschofenig Standards Track [Page 18]
^L
RFC 5433 EAP-GPSK February 2009
If the optional protected data payload is not included, then
length(PD_Payload_Block)=0 and the PD payload is excluded. The
payload MAC covers the entire packet, from the ID_Peer length through
the optional PD_Payload_Block.
The GPSK-3 payload is defined as follows:
--- bit offset --->
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
... 32-octet RAND_Peer ...
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
... 32-octet RAND_Server ...
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| length(ID_Server) | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
| |
... ID_Server ...
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| CSuite_Sel |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | length(PD_Payload_Block) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
... optional PD_Payload_Block ...
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
... ML-octet payload MAC ...
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 8: GPSK-3 Payload
If the optional protected data payload is not included, then
length(PD_Payload_Block)=0 and the PD payload is excluded. The
payload MAC covers the entire packet, from the RAND_Peer through the
optional PD_Payload_Block.
Clancy & Tschofenig Standards Track [Page 19]
^L
RFC 5433 EAP-GPSK February 2009
The GPSK-4 payload format is defined as follows:
--- bit offset --->
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| length(PD_Payload_Block) | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
| |
... optional PD_Payload_Block ...
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
... ML-octet payload MAC ...
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 9: GPSK-4 Payload
If the optional protected data payload is not included, then
length(PD_Payload_Block)=0 and the PD payload is excluded. The MAC
MUST always be included, regardless of the presence of
PD_Payload_Block. The payload MAC covers the entire packet, from the
PD_Payload_Block length through the optional PD_Payload_Block.
The GPSK-Fail payload format is defined as follows:
--- bit offset --->
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Failure-Code |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 10: GPSK-Fail Payload
Clancy & Tschofenig Standards Track [Page 20]
^L
RFC 5433 EAP-GPSK February 2009
The GPSK-Protected-Fail payload format is defined as follows:
--- bit offset --->
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Failure-Code |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
... ML-octet payload MAC ...
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 11: GPSK-Protected-Fail Payload
The Failure-Code field is one of three values, but can be extended:
o 0x00000000 : Reserved
o 0x00000001 : PSK Not Found
o 0x00000002 : Authentication Failure
o 0x00000003 : Authorization Failure
All other values of this field are available via IANA registration.
"PSK Not Found" indicates a key for a particular user could not be
located, making authentication impossible. "Authentication Failure"
indicates a MAC failure due to a PSK mismatch. "Authorization
Failure" indicates that while the PSK being used is correct, the user
is not authorized to connect.
9.4. Protected Data
The protected data blocks are a generic mechanism for the peer and
server to securely exchange data. If the specified ciphersuite has a
NULL encryption primitive, then this channel only offers
authenticity, not confidentiality.
These payloads are encoded as the concatenation of type-length-value
(TLV) triples called PD_Payloads.
Type values are encoded as a 6-octet string and represented by a
4-octet vendor and a 2-octet specifier field. The vendor field
indicates the type as either standards-specified or vendor-specific.
Clancy & Tschofenig Standards Track [Page 21]
^L
RFC 5433 EAP-GPSK February 2009
If these four octets are 0x00000000, then the value is standards-
specified, and any other value represents a vendor-specific
enterprise number.
The specifier field indicates the actual type. For vendor field
0x00000000, the specifier field is maintained by IANA. For any other
vendor field, the specifier field is maintained by the vendor.
Length fields are specified as 2-octet integers in network byte
order, reflect only the length of the value, and do not include the
length of the type and length fields.
Graphically, this can be depicted as follows:
--- bit offset --->
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PData/Vendor |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
PData/Specifier | PData/Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
... PData/Value ...
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 12: Protected Data Payload (PD_Payload) Formatting
These PD_Payloads are concatenated together to form a
PD_Payload_Block. If the CSuite_Sel includes support for encryption,
then the PD_Payload_Block includes fields specifying an
Initialization Vector (IV) and the necessary padding. This can be
depicted as follows:
Clancy & Tschofenig Standards Track [Page 22]
^L
RFC 5433 EAP-GPSK February 2009
--- bit offset --->
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IV Length | |
+-+-+-+-+-+-+-+-+ Initialization Vector +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
... PD_Payload ...
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
... optional PD_Payload, etc ...
| |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | Padding (0-255 octets) |
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
| | Pad Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 13: Protected Data Block (PD_Payload_Block)
Formatting if Encryption is Supported
The Initialization Vector is a randomly chosen value whose length is
equal to the specified IV Length. The required length is defined by
the ciphersuite. Recipients MUST accept any value. Senders SHOULD
either pick this value pseudo-randomly and independently for each
message or use the final ciphertext block of the previous message
sent. Senders MUST NOT use the same value for each message, use a
sequence of values with low hamming distance (e.g., a sequence
number), or use ciphertext from a received message. IVs should be
selected per the security requirements of the underlying cipher. If
the data is not being encrypted, then the IV Length MUST be 0. If
the ciphersuite does not require an IV, or has a self-contained way
of communicating the IV, then the IV Length field MUST be 0. In
these cases, the ciphersuite definition defines how the IV is
encapsulated in the PD_Payload.
The concatenation of PD_Payloads along with the padding and padding
length are all encrypted using the negotiated block cipher. If no
block cipher is specified, then these fields are not encrypted.
The Padding field MAY contain any value chosen by the sender. For
block-based cipher modes, the padding MUST have a length that makes
the combination of the concatenation of PD_Payloads, the Padding, and
the Pad Length to be a multiple of the encryption block size. If the
Clancy & Tschofenig Standards Track [Page 23]
^L
RFC 5433 EAP-GPSK February 2009
underlying ciphersuite does not require padding (e.g., a stream-based
cipher mode) or no encryption is being used, then the padding length
MUST still be present and be 0.
The Pad Length field is the length of the Padding field. The sender
SHOULD set the Pad Length to the minimum value that makes the
combination of the PD_Payloads, the Padding, and the Pad Length a
multiple of the block size (in the case of block-based cipher modes),
but the recipient MUST accept any length that results in proper
alignment. This field is encrypted with the negotiated cipher.
If the negotiated ciphersuite does not support encryption, then the
IV field MUST be of length 0 and the padding field MUST be of length
0. The IV length and padding length fields MUST still be present,
and contain the value 0. The rationale for still requiring the
length fields is to allow for modular implementations where the
crypto processing is independent of the payload processing. This is
depicted in the following figure.
--- bit offset --->
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0x00 | |
+-+-+-+-+-+-+-+-+ PD_Payload ...
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
... optional PD_Payload, etc +-+-+-+-+-+-+-+-+
| | 0x00 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 14: Protected Data Block (PD_Payload_Block)
Formatting Without Encryption
For PData/Vendor field 0x00000000, the following PData/Specifier
fields are defined:
o 0x0000 : Reserved
All other values of this field are available via IANA registration.
10. Packet Processing Rules
This section defines how the EAP peer and EAP server MUST behave when
a received packet is deemed invalid.
Clancy & Tschofenig Standards Track [Page 24]
^L
RFC 5433 EAP-GPSK February 2009
Any EAP-GPSK packet that cannot be parsed by the EAP peer or the EAP
server MUST be silently discarded. An EAP peer or EAP server
receiving any unexpected packet (e.g., an EAP peer receiving GPSK-3
before receiving GPSK-1 or before transmitting GPSK-2) MUST silently
discard the packet.
GPSK-1 contains no MAC protection, so provided it properly parses, it
MUST be accepted by the peer. If the EAP peer has no ciphersuites in
common with the server or decides the ID_Server is that of an
Authentication, Authorization, and Accounting (AAA) server to which
it does not wish to authenticate, the EAP peer MUST respond with an
EAP-NAK.
For GPSK-2, if the ID_Peer is for an unknown user, the EAP server
MUST send either a "PSK Not Found" GPSK-Fail message or an
"Authentication Failure" GPSK-Fail, depending on its policy. If the
MAC validation fails, the server MUST transmit a GPSK-Fail message
specifying "Authentication Failure". If the RAND_Server or
CSuite_List field in GPSK-2 does not match the values in GPSK-1, the
server MUST silently discard the packet. If server policy determines
the peer is not authorized and the MAC is correct, the server MUST
transmit a GPSK-Protected-Fail message indicating "Authorization
Failure", and discard the received packet.
A peer receiving a GPSK-Fail / GPSK-Protected-Fail message in
response to a GPSK-2 message MUST replay the received GPSK-Fail /
GPSK-Protected-Fail message. Then, the EAP server returns an EAP-
Failure after receiving the GPSK-Fail / GPSK-Protected-Fail message
to correctly finish the EAP conversation. If MAC validation on a
GPSK-Protected-Fail packet fails, then the received packet MUST be
silently discarded.
For GPSK-3, a peer MUST silently discard messages where the
RAND_Peer, ID_Server, or the CSuite_Sel fields do not match those
transmitted in GPSK-2. An EAP peer MUST silently discard any packet
whose MAC fails.
For GPSK-4, a server MUST silently discard any packet whose MAC fails
validation.
If a decryption failure of a protected payload is detected, the
recipient MUST silently discard the GPSK packet.
11. Example Message Exchanges
This section shows a couple of example message flows.
A successful EAP-GPSK message exchange is shown in Figure 1.
Clancy & Tschofenig Standards Track [Page 25]
^L
RFC 5433 EAP-GPSK February 2009
+--------+ +--------+
| | EAP-Request/Identity | |
| EAP |<------------------------------------| EAP |
| peer | | server |
| | EAP-Response/Identity | |
| |------------------------------------>| |
| | | |
| | EAP-Request/GPSK-1 | |
| |<------------------------------------| |
| | | |
| | EAP-Response/EAP-NAK | |
| |------------------------------------>| |
| | | |
| | EAP-Failure | |
| |<------------------------------------| |
+--------+ +--------+
Figure 15: EAP-GPSK: Unsuccessful Exchange
(Unacceptable AAA Server Identity; ID_Server)
+--------+ +--------+
| | EAP-Request/Identity | |
| EAP |<------------------------------------| EAP |
| peer | | server |
| | EAP-Response/Identity | |
| |------------------------------------>| |
| | | |
| | EAP-Request/GPSK-1 | |
| |<------------------------------------| |
| | | |
| | EAP-Response/GPSK-2 | |
| |------------------------------------>| |
| | | |
| | EAP-Request/GPSK-Fail | |
| | (PSK Not Found or Authentication | |
| | Failure) | |
| |<------------------------------------| |
| | | |
| | EAP-Response/GPSK-Fail | |
| | (PSK Not Found or Authentication | |
| | Failure) | |
| |------------------------------------>| |
| | | |
| | EAP-Failure | |
| |<------------------------------------| |
+--------+ +--------+
Figure 16: EAP-GPSK: Unsuccessful Exchange (Unknown User)
Clancy & Tschofenig Standards Track [Page 26]
^L
RFC 5433 EAP-GPSK February 2009
+--------+ +--------+
| | EAP-Request/Identity | |
| EAP |<------------------------------------| EAP |
| peer | | server |
| | EAP-Response/Identity | |
| |------------------------------------>| |
| | | |
| | EAP-Request/GPSK-1 | |
| |<------------------------------------| |
| | | |
| | EAP-Response/GPSK-2 | |
| |------------------------------------>| |
| | | |
| | EAP-Request/GPSK-Fail | |
| | (Authentication Failure) | |
| |<------------------------------------| |
| | | |
| | EAP-Response/GPSK-Fail | |
| | (Authentication Failure) | |
| |------------------------------------>| |
| | | |
| | EAP-Failure | |
| |<------------------------------------| |
+--------+ +--------+
Figure 17: EAP-GPSK: Unsuccessful Exchange (Invalid MAC in GPSK-2)
Clancy & Tschofenig Standards Track [Page 27]
^L
RFC 5433 EAP-GPSK February 2009
+--------+ +--------+
| | EAP-Request/Identity | |
| EAP |<------------------------------------| EAP |
| peer | | server |
| | EAP-Response/Identity | |
| |------------------------------------>| |
| | | |
| | EAP-Request/GPSK-1 | |
| |<------------------------------------| |
| | | |
| | EAP-Response/GPSK-2 | |
| |------------------------------------>| |
| | | |
| | EAP-Request/ | |
| | GPSK-Protected-Fail | |
| | (Authorization Failure) | |
| |<------------------------------------| |
| | | |
| | EAP-Request/ | |
| | GPSK-Protected-Fail | |
| | (Authorization Failure) | |
| |------------------------------------>| |
| | | |
| | EAP-Failure | |
| |<------------------------------------| |
+--------+ +--------+
Figure 18: EAP-GPSK: Unsuccessful Exchange (Authorization Failure)
12. Security Considerations
[RFC3748] highlights several attacks that are possible against EAP
since EAP itself does not provide any security.
This section discusses the claimed security properties of EAP-GPSK as
well as vulnerabilities and security recommendations in the threat
model of [RFC3748].
12.1. Security Claims
Authentication mechanism: Shared Keys
Ciphersuite negotiation: Yes (Section 12.16)
Mutual authentication: Yes (Section 12.2)
Integrity protection: Yes (Section 12.4)
Replay protection: Yes (Section 12.5)
Confidentiality: No (Section 12.17, Section 12.15)
Key derivation: Yes (Section 12.8)
Key strength: Varies (Section 12.8)
Clancy & Tschofenig Standards Track [Page 28]
^L
RFC 5433 EAP-GPSK February 2009
Dictionary attack protection: No (Section 12.7)
Fast reconnect: No (Section 12.14)
Cryptographic binding: N/A (Section 12.18)
Session independence: Yes (Section 12.10)
Fragmentation: No (Section 12.12)
Channel binding: Extensible (Section 12.13)
12.2. Mutual Authentication
EAP-GPSK provides mutual authentication.
The server believes that the peer is authentic when it successfully
verifies the MAC in the GPSK-2 message; the peer believes that the
server is authentic when it successfully verifies the MAC it receives
with the GPSK-3 message.
The key used for mutual authentication is derived based on the long-
term secret PSK, nonces contributed by both parties, and other
parameters. The long-term secret PSK has to provide sufficient
entropy and, therefore, sufficient strength. The nonces (RAND_Peer
and RAND_Server) need to be fresh and unique for every session. In
this way, EAP-GPSK is not different than other authentication
protocols based on pre-shared keys.
12.3. Protected Result Indications
EAP-GPSK supports protected result indications via the GPSK-
Protected-Fail message. This allows a server to provide additional
information to the peer as to why the session failed, and to do so in
an authenticated way (if possible). In particular, the server can
indicate the lack of PSK (account not present), failed authentication
(PSK incorrect), or authorization failure (account disabled or
unauthorized). Only the third message could be integrity protected.
It should be noted that these options make debugging network and
account errors easier, but they also leak information about accounts
to attackers. An attacker can determine if a particular ID_Peer is a
valid user on the network or not. Thus, implementers should use care
in enabling this particular option on their servers. If they are in
an environment where such attacks are of concern, then protected
result indication capabilities should be disabled.
12.4. Integrity Protection
EAP-GPSK provides integrity protection based on the ciphersuites
suggested in this document. Integrity protection is a minimum
feature every ciphersuite must provide.
Clancy & Tschofenig Standards Track [Page 29]
^L
RFC 5433 EAP-GPSK February 2009
12.5. Replay Protection
EAP-GPSK provides replay protection of its mutual authentication part
thanks to the use of random numbers RAND_Server and RAND_Peer. Since
RAND_Server is 32 octets long, one expects to have to record 2**64
(i.e., approximately 1.84*10**19) EAP-GPSK successful authentications
before a protocol run can be replayed. Hence, EAP-GPSK provides
replay protection of its mutual authentication part as long as
RAND_Server and RAND_Peer are chosen at random; randomness is
critical for replay protection. RFC 4086 [RFC4086] describes
techniques for producing random quantities.
12.6. Reflection Attacks
Reflection attacks occur in bi-directional, challenge-response,
mutual authentication protocols where an attacker, upon being issued
a challenge by an authenticator, responds by issuing the same
challenge back to the authenticator, obtaining the response, and then
"reflecting" that same response to the original challenge.
EAP-GPSK provides protection against reflection attacks because the
message formats for the challenges differ. The protocol does not
consist of two independent authentications, but rather the
authentications are tightly coupled.
Also note that EAP-GPSK does not provide MAC protection of the OP-
Code field, but again since each message is constructed differently,
it would not be possible to change the OP-Code of a valid message and
still have it be parseable and accepted by the recipient.
12.7. Dictionary Attacks
EAP-GPSK relies on a long-term shared secret (PSK) that SHOULD be
based on at least 16 octets of entropy to be fully secure. The EAP-
GPSK protocol makes no special provisions to ensure keys based on
passwords are used securely. Users who use passwords as the basis of
their PSK are not protected against dictionary attacks. Derivation
of the long-term shared secret from a password is strongly
discouraged.
The success of a dictionary attack against EAP-GPSK depends on the
strength of the long-term shared secret (PSK) it uses. The PSK used
by EAP-GPSK SHOULD be drawn from a pool of secrets that is at least
2^128 bits large and whose distribution is uniformly random. Note
that this does not imply resistance to dictionary attacks -- only
that the probability of success in such an attack is acceptably
remote.
Clancy & Tschofenig Standards Track [Page 30]
^L
RFC 5433 EAP-GPSK February 2009
12.8. Key Derivation and Key Strength
EAP-GPSK supports key derivation as shown in Section 4.
Keys used within EAP-GPSK are all based on the security of the
originating PSK. PSKs SHOULD have at least 16 octets of entropy.
Independent of the protocol exchange (i.e., without knowing RAND_Peer
and RAND_Server), the keys have been derived with sufficient input
entropy to make them as secure as the underlying KDF output key
length.
12.9. Denial-of-Service Resistance
There are three forms of denial-of-service (DoS) attacks relevant for
this document, namely (1) attacks that lead to a vast amount of state
being allocated, (2) attacks that attempt to prevent communication
between the peer and server, and (3) attacks against computational
resources.
In an EAP-GPSK conversation the server has to maintain state, namely
the 32-octet RAND_Server, when transmitting the GPSK-1 message to the
peer. An adversary could therefore flood a server with a large
number of EAP-GPSK communication attempts. An EAP server may
therefore ensure that an established state times out after a
relatively short period of time when no further messages are
received. This enables a sort of garbage collection.
The client has to keep state information after receiving the GPSK-1
message. To prevent a replay attack, all the client needs to do is
ensure that the value of RAND_Peer is consistent between GPSK-2 and
GPSK-3. Message GPSK-3 contains all the material required to
re-compute the keying material. Thus, if a client chooses to
implement this client-side DoS protection mechanism, it may manage
RAND_Peer and CSuite_Sel on a per-server basis for servers it knows,
instead of on a per-message basis.
Attacks that disrupt communication between the peer and server are
mitigated by silently discarding messages with invalid MACs. Attacks
against computational resources are mitigated by having very light-
weight cryptographic operations required during each protocol round.
The security considerations of EAP itself, see Sections 5.2 and 7 of
RFC 3748 [RFC3748], are also applicable to this specification (e.g.,
for example concerning EAP-based notifications).
Clancy & Tschofenig Standards Track [Page 31]
^L
RFC 5433 EAP-GPSK February 2009
12.10. Session Independence
Thanks to its key derivation mechanisms, EAP-GPSK provides session
independence: passive attacks (such as capture of the EAP
conversation) or active attacks (including compromise of the MSK or
EMSK) do not enable compromise of subsequent or prior MSKs or EMSKs.
The assumption that RAND_Peer and RAND_Server are random is central
for the security of EAP-GPSK in general and session independence in
particular.
12.11. Compromise of the PSK
EAP-GPSK does not provide perfect forward secrecy. Compromise of the
PSK leads to compromise of recorded past sessions.
Compromise of the PSK enables the attacker to impersonate the peer
and the server, and it allows the adversary to compromise future
sessions.
EAP-GPSK provides no protection against a legitimate peer sharing its
PSK with a third party. Such protection may be provided by
appropriate repositories for the PSK, the choice of which is outside
the scope of this document. The PSK used by EAP-GPSK must only be
shared between two parties: the peer and the server. In particular,
this PSK must not be shared by a group of peers (e.g., those with
different ID_Peer values) communicating with the same server.
The PSK used by EAP-GPSK must be cryptographically separated from
keys used by other protocols, otherwise the security of EAP-GPSK may
be compromised.
12.12. Fragmentation
EAP-GPSK does not support fragmentation and reassembly since the
message size is relatively small. However, it should be noted that
this impacts the length of protected data payloads that can be
attached to messages. Also, if the EAP frame is larger than the MTU
of the underlying transport, and that transport does not support
fragmentation, the frame will most likely not be transported.
Consequently, implementers and deployers should take care to ensure
EAP-GPSK frames are short enough to work properly on the target
underlying transport mechanism.
12.13. Channel Binding
This document enables the ability to exchange channel binding
information. It does not, however, define the encoding of channel
binding information in the document.
Clancy & Tschofenig Standards Track [Page 32]
^L
RFC 5433 EAP-GPSK February 2009
12.14. Fast Reconnect
EAP-GPSK does not provide fast reconnect capability since this method
is already at (or close to) the lower limit of the number of
roundtrips and the cryptographic operations.
12.15. Identity Protection
Identity protection is not specified in this document. Extensions
can be defined that enhance this protocol to provide this feature.
12.16. Protected Ciphersuite Negotiation
EAP-GPSK provides protected ciphersuite negotiation via the
indication of available ciphersuites by the server in the first
message, and a confirmation by the peer in the subsequent message.
Note, however, that the GPSK-2 message may optionally contain a
payload, ENC_PK(PD_Payload_Block), protected with an algorithm based
on a selected ciphersuite before the ciphersuite list has actually
been authenticated. In the classical downgrading attack, an
adversary would choose a ciphersuite that is so weak that it can be
broken in real time or would attempt to disable cryptographic
protection altogether. The latter is not possible since any
ciphersuite defined for EAP-GPSK must at least provide authentication
and integrity protection. Confidentiality protection is optional.
When, at some time in the future, a ciphersuite contains algorithms
that can be broken in real-time, then a policy on peers and the
server needs to indicate that such a ciphersuite must not be selected
by any of parties.
Furthermore, an adversary may modify the selection of the ciphersuite
for the client to select a ciphersuite that does not provide
confidentiality protection. As a result, this would cause the
content of PD_Payload_Block to be transmitted in cleartext. When
protocol designers extend EAP-GPSK to carry information in the
PD_Payload_Block of the GPSK-2 message, then it must be indicated
whether confidentiality protection is mandatory. In case such an
extension requires a ciphersuite with confidentiality protection,
then the policy at the peer must be to not transmit information of
that extension in the PD_Payload_Block of the GPSK-2 message. The
peer may, if possible, delay the transmission of this information
element to the GPSK-4 message where the ciphersuite negotiation has
been confirmed already. In general, when a ciphersuite is selected
that does not provide confidentiality protection, then information
that demands confidentiality protection must not be included in any
of the PD_Payload_Block objects.
Clancy & Tschofenig Standards Track [Page 33]
^L
RFC 5433 EAP-GPSK February 2009
12.17. Confidentiality
Although EAP-GPSK provides confidentiality in its protected data
payloads, it cannot claim to do so, per Section 7.2.1 of [RFC3748],
since it does not support identity protection.
12.18. Cryptographic Binding
Since EAP-GPSK does not tunnel another EAP method, it does not
implement cryptographic binding.
13. IANA Considerations
IANA has allocated a new EAP Type for EAP-GPSK (51).
IANA has created a new registry for ciphersuites, protected data
types, failure codes, and op-codes. IANA has added the specified
ciphersuites, protected data types, failure codes, and op-codes to
these registries as defined below. Values defining ciphersuites
(block-based or hash-based), protected data payloads, failure codes,
and op-codes can be added or modified per IETF Review [RFC5226].
Figure 3 represents the initial contents of the "EAP-GPSK
Ciphersuites" registry. The CSuite/Specifier field is 16 bits long.
All other values are available via IANA registration. Each
ciphersuite needs to provide processing rules and needs to specify
how the following algorithms are instantiated: encryption, integrity,
key derivation, and key length.
The following are the initial contents of the "EAP-GPSK Protected
Data Payloads" registry:
o 0x0000 : Reserved
The PData/Specifier field is 16 bits long, and all other values are
available via IANA registration. Each extension needs to indicate
whether confidentiality protection for transmission between the EAP
peer and the EAP server is mandatory.
The following are the initial contents of the "EAP-GPSK Failure
Codes" registry:
o 0x00000000 : Reserved
o 0x00000001 : PSK Not Found
o 0x00000002 : Authentication Failure
Clancy & Tschofenig Standards Track [Page 34]
^L
RFC 5433 EAP-GPSK February 2009
o 0x00000003 : Authorization Failure
The Failure-Code field is 32 bits long, and all other values are
available via IANA registration.
The following are the initial contents of the "EAP-GPSK OP Codes"
registry:
o 0x00 : Reserved
o 0x01 : GPSK-1
o 0x02 : GPSK-2
o 0x03 : GPSK-3
o 0x04 : GPSK-4
o 0x05 : GPSK-Fail
o 0x06 : GPSK-Protected-Fail
The OP-Code field is 8 bits long, and all other values are available
via IANA registration.
14. Contributors
This work is a joint effort of the EAP Method Update (EMU) design
team of the EMU Working Group that was created to develop a mechanism
based on strong shared secrets that meets RFC 3748 [RFC3748] and RFC
4017 [RFC4017] requirements. The design team members (in
alphabetical order) were:
o Jari Arkko
o Mohamad Badra
o Uri Blumenthal
o Charles Clancy
o Lakshminath Dondeti
o David McGrew
o Joe Salowey
o Sharma Suman
Clancy & Tschofenig Standards Track [Page 35]
^L
RFC 5433 EAP-GPSK February 2009
o Hannes Tschofenig
o Jesse Walker
Finally, we would like to thank Thomas Otto for his reviews,
feedback, and text contributions.
15. Acknowledgments
We would like to thank:
o Jouni Malinen and Bernard Aboba for their early comments on the
document in June 2006. Jouni Malinen developed the first
prototype implementation.
o Lakshminath Dondeti, David McGrew, Bernard Aboba, Michaela
Vanderveen, and Ray Bell for their input to the ciphersuite
discussions between July and August 2006.
o Lakshminath Dondeti for his detailed review (sent to the EMU
mailing list on 12 July 2006).
o Based on a review requested from NIST, Quynh Dang suggested
changes to the GKDF function (December 2006).
o Jouni Malinen and Victor Fajardo for their review in January 2007.
o Jouni Malinen for his suggestions regarding the examples and the
key derivation function in February 2007.
o Bernard Aboba and Jouni Malinen for their review in February 2007.
o Vidya Narayanan for her review in March 2007.
o Pasi Eronen for his IESG review in March and July 2008.
o Dan Harkins for his review in June 2008.
o Joe Salowey, the EMU working group chair, provided a document
review in April 2007. Jouni Malinen also reviewed the document
during the same month.
o We would like to thank Paul Rowe, Arnab Roy, Prof. Andre Scedrov,
and Prof. John C. Mitchell for their analysis of EAP-GPSK, for
their input to the key derivation function, and for pointing us to
a client-side DoS attack and to a downgrading attack. Based on
their input, the key derivation function has been modified and the
text in the security considerations section has been updated.
Clancy & Tschofenig Standards Track [Page 36]
^L
RFC 5433 EAP-GPSK February 2009
o Finally, we would like to thank our working group chair, Joe
Salowey, for his support and for the time he spent discussing open
issues with us.
16. References
16.1. Normative References
[AES] National Institute of Standards and Technology,
"Specification for the Advanced Encryption Standard
(AES)", Federal Information Processing Standards
(FIPS) 197, November 2001.
[CBC] National Institute of Standards and Technology,
"Recommendation for Block Cipher Modes of Encryption --
Methods and Techniques", Special Publication (SP) 800-38A,
December 2001.
[CMAC] National Institute of Standards and Technology,
"Recommendation for Block Cipher Modes of Operation: The
CMAC Mode for Authentication", Special Publication
(SP) 800-38B, May 2005.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
Levkowetz, "Extensible Authentication Protocol (EAP)",
RFC 3748, June 2004.
[RFC4282] Aboba, B., Beadles, M., Arkko, J., and P. Eronen, "The
Network Access Identifier", RFC 4282, December 2005.
[RFC4634] Eastlake, D. and T. Hansen, "US Secure Hash Algorithms
(SHA and HMAC-SHA)", RFC 4634, July 2006.
[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", BCP 26, RFC 5226,
May 2008.
[RFC5247] Aboba, B., Simon, D., and P. Eronen, "Extensible
Authentication Protocol (EAP) Key Management Framework",
RFC 5247, August 2008.
Clancy & Tschofenig Standards Track [Page 37]
^L
RFC 5433 EAP-GPSK February 2009
16.2. Informative References
[80211] "Information technology - Telecommunications and
Information Exchange Between Systems - Local and
Metropolitan Area Networks - Specific Requirements - Part
11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications", IEEE Standard 802.11-2007,
March 2007.
[ENTNUM] IANA, "SMI Network Management Private Enterprise Codes",
Private Enterprise Numbers, <http://www.iana.org>.
[RFC4017] Stanley, D., Walker, J., and B. Aboba, "Extensible
Authentication Protocol (EAP) Method Requirements for
Wireless LANs", RFC 4017, March 2005.
[RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
Requirements for Security", BCP 106, RFC 4086, June 2005.
Authors' Addresses
T. Charles Clancy
DoD Laboratory for Telecommunications Sciences
8080 Greenmead Drive
College Park, MD 20740
USA
EMail: clancy@ltsnet.net
Hannes Tschofenig
Nokia Siemens Networks
Linnoitustie 6
Espoo 02600
Finland
EMail: Hannes.Tschofenig@gmx.net
Clancy & Tschofenig Standards Track [Page 38]
^L
|