1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
|
Independent Submission M. Blanchet
Request for Comments: 5572 Viagenie
Category: Experimental F. Parent
ISSN: 2070-1721 Beon Solutions
February 2010
IPv6 Tunnel Broker with the Tunnel Setup Protocol (TSP)
Abstract
A tunnel broker with the Tunnel Setup Protocol (TSP) enables the
establishment of tunnels of various inner protocols, such as IPv6 or
IPv4, inside various outer protocols packets, such as IPv4, IPv6, or
UDP over IPv4 for IPv4 NAT traversal. The control protocol (TSP) is
used by the tunnel client to negotiate the tunnel with the broker. A
mobile node implementing TSP can be connected to both IPv4 and IPv6
networks whether it is on IPv4 only, IPv4 behind a NAT, or on IPv6
only. A tunnel broker may terminate the tunnels on remote tunnel
servers or on itself. This document describes the TSP within the
model of the tunnel broker model.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for examination, experimental implementation, and
evaluation.
This document defines an Experimental Protocol for the Internet
community. This is a contribution to the RFC Series, independently
of any other RFC stream. The RFC Editor has chosen to publish this
document at its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by
the RFC Editor are not a candidate for any level of Internet
Standard; see Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc5572.
IESG Note
The content of this RFC was at one time considered by the IETF, and
therefore it may resemble a current IETF work in progress or a
published IETF work.
Blanchet & Parent Experimental [Page 1]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
Copyright Notice
Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.
Blanchet & Parent Experimental [Page 2]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
Table of Contents
1. Introduction ....................................................4
2. Description of the TSP Framework ................................4
2.1. NAT Discovery ..............................................6
2.2. Any Encapsulation ..........................................6
2.3. Mobility ...................................................6
3. Advantages of TSP ...............................................7
4. Protocol Description ............................................7
4.1. Terminology ................................................7
4.2. Topology ...................................................8
4.3. Overview ...................................................8
4.4. TSP Signaling ..............................................9
4.4.1. Signaling Transport .................................9
4.4.2. Authentication Phase ...............................11
4.4.3. Command and Response Phase .........................14
4.5. Tunnel Establishment ......................................16
4.5.1. IPv6-over-IPv4 Tunnels .............................16
4.5.2. IPv6-over-UDP Tunnels ..............................16
4.6. Tunnel Keep-Alive .........................................16
4.7. XML Messaging .............................................17
4.7.1. Tunnel .............................................17
4.7.2. Client Element .....................................18
4.7.3. Server Element .....................................19
4.7.4. Broker Element .....................................19
5. Tunnel Request Examples ........................................19
5.1. Host Tunnel Request and Reply .............................19
5.2. Router Tunnel Request with a /48 Prefix Delegation
and Reply .................................................20
5.3. IPv4 over IPv6 Tunnel Request .............................22
5.4. NAT Traversal Tunnel Request ..............................23
6. Applicability of TSP in Different Networks .....................24
6.1. Provider Networks with Enterprise Customers ...............24
6.2. Provider Networks with Home/Small Office Customers ........25
6.3. Enterprise Networks .......................................25
6.4. Wireless Networks .........................................25
6.5. Unmanaged Networks ........................................26
6.6. Mobile Hosts and Mobile Networks ..........................26
7. IANA Considerations ............................................26
8. Security Considerations ........................................27
9. Conclusion .....................................................27
10. Acknowledgements ..............................................27
11. References ....................................................28
11.1. Normative References .....................................28
11.2. Informative References ...................................28
Appendix A. The TSP DTD ..........................................30
Appendix B. Error Codes ..........................................31
Blanchet & Parent Experimental [Page 3]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
1. Introduction
This document first describes the TSP framework, the protocol
details, and the different profiles used. It then describes the
applicability of TSP in different environments, some of which were
described in the v6ops scenario documents.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
2. Description of the TSP Framework
Tunnel Setup Protocol (TSP) is a signaling protocol to set up tunnel
parameters between two tunnel endpoints. TSP is implemented as a
tiny client code in the requesting tunnel endpoint. The other
endpoint is the server that will set up the tunnel service. TSP uses
XML [W3C.REC-xml-2004] basic messaging over TCP or UDP. The use of
XML gives extensibility and easy option processing.
TSP negotiates tunnel parameters between the two tunnel endpoints.
Parameters that are always negotiated are:
o Authentication of the users, using any kind of authentication
mechanism (through Simple Authentication and Security Layer (SASL)
[RFC4422]) including anonymous
o Tunnel encapsulation:
* IPv6 over IPv4 tunnels [RFC4213]
* IPv4 over IPv6 tunnels [RFC2473]
* IPv6 over UDP-IPv4 tunnels for NAT traversal
o IP address assignment for the tunnel endpoints
o DNS registration of the IP endpoint address (AAAA)
Other tunnel parameters that may be negotiated are:
o Tunnel keep-alive
o IPv6 prefix assignment when the client is a router
o DNS delegation of the inverse tree, based on the IPv6 prefix
assigned
Blanchet & Parent Experimental [Page 4]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
o Routing protocols
The tunnel encapsulation can be explicitly specified by the client,
or can be determined during the TSP exchange by the broker. The
latter is used to detect the presence of NAT in the path and select
IPv6 over UDP-IPv4 encapsulation.
The TSP connection can be established between two nodes, where each
node can control a tunnel endpoint.
The nodes involved in the framework are:
1. the TSP client
2. the client tunnel endpoint
3. the TSP server
4. the server tunnel endpoint
1,3, and 4 form the tunnel broker model [RFC3053], where 3 is the
tunnel broker and 4 is the tunnel server (Figure 1). The tunnel
broker may control one or many tunnel servers.
In its simplest model, one node is the client configured as a tunnel
endpoint (1 and 2 on the same node), and the second node is the
server configured as the other tunnel endpoint (3 and 4 on the same
node). This model is shown in Figure 2:
_______________
| TUNNEL BROKER |--> Databases (DNS)
| |
| TSP |
| SERVER |
|_______________|
| |
__________ | | ________
| | | | | |
| TSP |--[TSP]-- +---------| |
| CLIENT | | TUNNEL |--[NETWORK]--
[HOST]--| |<==[CONFIGURED TUNNEL]==>| SERVER |
|___________| | |
|________|
Figure 1: Tunnel Setup Protocol Used on Tunnel Broker Model
Blanchet & Parent Experimental [Page 5]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
___________ ________
| | | TSP |
| TSP |-----------[TSP]---------| SERVER |
| CLIENT | | |--[NETWORK]--
[HOST]--| |<==[CONFIGURED TUNNEL]==>| TUNNEL |
|___________| | SERVER |
|________|
Figure 2: Tunnel Setup Protocol Used on Tunnel Server Model
From the point of view of an operating system, TSP is implemented as
a client application that is able to configure network parameters of
the operating system.
2.1. NAT Discovery
TSP is also used to discover if a NAT is in the path. In this
discovery mode, the client sends a TSP message over UDP, containing
its tunnel request information (such as its source IPv4 address) to
the TSP server. The TSP server compares the IPv4 source address of
the packet with the address in the TSP message. If they differ, one
or many IPv4 NATs are in the path.
If an IPv4 NAT is discovered, then IPv6 over UDP-IPv4 tunnel
encapsulation is selected. Once the TSP signaling is done, the
tunnel is established over the same UDP channel used for TSP, so the
same NAT address-port mapping is used for both the TSP session and
the IPv6 traffic. If no IPv4 NAT is detected in the path by the TSP
server, then IPv6 over IPv4 encapsulation is used.
A keep-alive mechanism is also included to keep the NAT mapping
active.
The IPv4 NAT discovery builds the most effective tunnel for all
cases, including in a dynamic situation where the client moves.
2.2. Any Encapsulation
TSP is used to negotiate IPv6 over IPv4 tunnels, IPv6 over UDP-IPv4
tunnels, and IPv4 over IPv6 tunnels. IPv4 over IPv6 tunnels is used
in the Dual-Stack Transition Mechanism (DSTM) together with TSP
[DSTM].
2.3. Mobility
When a node moves to a different IP network (i.e., change of its IPv4
address when doing IPv6 over IPv4 encapsulation), the TSP client
reconnects automatically to the broker to re-establish the tunnel
Blanchet & Parent Experimental [Page 6]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
(keep-alive mechanism). On the IPv6 layer, if the client uses user
authentication, the same IPv6 address and prefix are kept and re-
established, even if the IPv4 address or tunnel encapsulation type
changes.
3. Advantages of TSP
o Tunnels established by TSP are static tunnels, which are more
secure than automated tunnels [RFC3964]; no third-party relay
required.
o Stability of the IP address and prefix, enabling applications
needing stable address to be deployed and used. For example, when
tunneling IPv6, there is no dependency on the underlying IPv4
address.
o Prefix assignment supported. Can use provider address space.
o Signaling protocol flexible and extensible (XML, SASL)
o One solution to many encapsulation techniques: IPv6 in IPv4, IPv4
in IPv6, IPv6 over UDP over IPv4. Can be extended to other
encapsulation types, such as IPv6 in IPv6.
o Discovery of IPv4 NAT in the path, establishing the most optimized
tunneling technique depending on the discovery.
4. Protocol Description
4.1. Terminology
Tunnel Broker: In a tunnel broker model, the broker is taking charge
of all communication between tunnel servers (TSs) and tunnel
clients (TCs). Tunnel clients query brokers for a tunnel and the
broker finds a suitable tunnel server, asks the tunnel server to
set up the tunnel, and sends the tunnel information to the tunnel
Client.
Tunnel Server: Tunnel servers are providing the specific tunnel
service to a tunnel client. It can receive the tunnel request
from a tunnel broker (as in the tunnel broker model) or directly
from the tunnel client. The tunnel server is the tunnel endpoint.
Tunnel Client: The tunnel client is the entity that needs a tunnel
for a particular service or connectivity. A tunnel client can be
either a host or a router. The tunnel client is the other tunnel
endpoint.
Blanchet & Parent Experimental [Page 7]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
v6v4: IPv6-over-IPv4 tunnel encapsulation
v6udpv4: IPv6-over-UDP-over-IPv4 tunnel encapsulation
v4v6: IPv4-over-IPv6 tunnel encapsulation
4.2. Topology
The following diagrams describe typical TSP scenarios. The goal is
to establish a tunnel between tunnel client and tunnel server.
4.3. Overview
The Tunnel Setup Protocol is initiated from a client node to a tunnel
broker. The Tunnel Setup Protocol has three phases:
Authentication phase: The Authentication phase is when the tunnel
broker/server advertises its capability to a tunnel client and
when a tunnel client authenticate to the broker/server.
Command phase: The command phase is where the client requests or
updates a tunnel.
Response phase: The response phase is where the tunnel client
receives the request response from the tunnel broker/server, and
the client accepts or rejects the tunnel offered.
For each command sent by a tunnel client, there is an expected
response from the server.
After the response phase is completed, a tunnel is established as
requested by the client. If requested, periodic keep-alive packets
can be sent from the client to the server.
Blanchet & Parent Experimental [Page 8]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
tunnel tunnel
client broker
+| Send version +
||---------------------------------> ||
|| Send capabilities ||
||<--------------------------------- +| Authentication
|| SASL authentication || phase
||<--------------------------------> ||
TSP || Authentication OK ||
signaling||<--------------------------------- +
|| Tunnel request || Command
||---------------------------------> || phase
|| Tunnel response +
||<--------------------------------- || Response
|| Tunnel acknowledge || phase
||---------------------------------> +
+| |
|| Tunnel established |
Data ||===================================|
phase || |
+| (keep-alive) |
Figure 3: Tunnel Setup Protocol Exchange
4.4. TSP Signaling
The following sections describe in detail the TSP and the different
phases in the TSP signaling.
4.4.1. Signaling Transport
TSP signaling can be transported over TCP or UDP, and over IPv4 or
IPv6. The tunnel client selects the transport according to the
tunnel encapsulation being requested. Figure 4 shows the transport
used for TSP signaling with possible tunnel encapsulation requested.
TSP signaling over UDP/v4 MUST be used if a v6 over UDP over IPv4
(v6udpv4) tunnel is to be requested (e.g., for NAT traversal).
Blanchet & Parent Experimental [Page 9]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
Tunnel
Encapsulation Valid Valid
Requested Transport Address family
------------------------------------------
v6anyv4 TCP UDP IPv4
v6v4 TCP UDP IPv4
v6udpv4 UDP IPv4
v4v6 TCP UDP IPv6
Figure 4: TSP Signaling Transport
Note that the TSP framework allows for other type of encapsulation to
be defined, such as IPv6 over Generic Routing Encapsulation (GRE) or
IPv6 over IPv6.
4.4.1.1. TSP Signaling over TCP
TSP over TCP is sent over port number 3653 (IANA assigned). TSP data
used during signaling is detailed in the next sections.
+------+-----------+----------+
| IP | TCP | TSP data |
| | port 3653 | |
+------+-----------+----------+
where IP is IPv4 or IPv6
Figure 5: Tunnel Setup Protocol Packet Format (TCP)
4.4.1.2. TSP Signaling over UDP/v4
While TCP provides the connection-oriented and reliable data delivery
features required during the TSP signaling session, UDP does not
offer any reliability. This reliability is added inside the TSP
session as an extra header at the beginning of the UDP payload.
+------+-----------+------------+----------+
| IPv4 | UDP | TSP header | TSP data |
| | port 3653 | | |
+------+-----------+------------+----------+
Figure 6: Tunnel Setup Protocol Packet Format (UDP)
The algorithm used to add reliability to TSP packets sent over UDP is
described in Section 22.5 of [UNP].
Blanchet & Parent Experimental [Page 10]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0xF | Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TSP data |
...
Figure 7: TSP Header for Reliable UDP
The 4-bit field (0-3) is set to 0xF. This marker is used by the
tunnel broker to identify a TSP signaling packet that is sent
after an IPv6 over UDP is established. This is explained in
Section 4.5.2
Sequence Number: 28-bit field. Set by the tunnel client. Value is
increased by one for every new packet sent to the tunnel broker.
The return packet from the broker contains the unaltered sequence
number.
Timestamp: 32-bit field. Set by the tunnel client. Generated from
the client local-time value. The return packet from the broker
contains the unaltered timestamp.
TSP data: Same as in the TCP/v4 case. Content described in later
sections.
The TSP client builds its UDP packet as described above and sends it
to the tunnel broker. When the tunnel broker responds, the same
values for the sequence number and timestamp MUST be sent back to the
client. The TSP client can use the timestamp to determine the
retransmission timeout (current time minus the packet timestamp).
The client SHOULD retransmit the packet when the retransmission
timeout is reached. The retransmitted packet MUST use the same
sequence number as the original packet so that the server can detect
duplicate packets. The client SHOULD use exponential backoff when
retransmitting packets to avoid network congestion.
4.4.2. Authentication Phase
The authentication phase has 3 steps:
o Client's protocol version identification
Blanchet & Parent Experimental [Page 11]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
o Server's capability advertisement
o Client authentication
When a TCP or UDP session is established to a tunnel broker, the
tunnel client sends the current protocol version it is supporting.
The version number syntax is:
VERSION=2.0.0 CR LF
Version 2.0.0 is the version number of this specification. Version
1.0.0 was defined in earlier documents.
If the server doesn't support the protocol version, it sends an error
message and closes the session. The server can optionally send a
server list that may support the protocol version of the client.
Example of an unsupported client version (without a server list):
-- Successful TCP Connection --
C:VERSION=0.1 CR LF
S:302 Unsupported client version CR LF
-- Connection closed --
Figure 8: Example of Unsupported Client Version
Example of a version not supported (with a server list):
-- Successful TCP Connection --
C:VERSION=1.1 CR LF
S:1302 Unsupported client version CR LF
<tunnel action="list" type="broker">
<broker>
<address type="ipv4">1.2.3.4</address>
</broker>
<broker>
<address type="dn">ts1.isp1.com</address>
</broker>
</tunnel>
-- Connection closed --
Figure 9: Example of Unsupported Client Version, with Server
Redirection
If the server supports the version sent by the client, then the
server sends a list of the capabilities supported for authentication
and tunnels.
Blanchet & Parent Experimental [Page 12]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
CAPABILITY TUNNEL=V6V4 TUNNEL=V6UDPV4 AUTH=ANONYMOUS AUTH=PLAIN
AUTH=DIGEST-MD5 CR LF
Tunnel types must be registered with IANA and their profiles are
defined in Section 7. Authentication is done using SASL [RFC4422].
Each authentication mechanism should be a registered SASL mechanism.
Description of such mechanisms is not in the scope of this document.
The tunnel client can then choose to close the session if none of the
capabilities fit its needs. If the tunnel client chooses to
continue, it authenticates to the server using one of the advertised
mechanisms using SASL. If the authentication fails, the server sends
an error message and closes the session.
The example in Figure 10 shows a failed authentication where the
tunnel client requests an anonymous authentication that is not
supported by the server.
Note that linebreaks and indentation within a "C:" or "S:" are
editorial and not part of the protocol.
-- Successful TCP Connection --
C:VERSION=2.0.0 CR LF
S:CAPABILITY TUNNEL=V6V4 AUTH=DIGEST-MD5 CR LF
C:AUTHENTICATE ANONYMOUS CR LF
S:300 Authentication failed CR LF
Figure 10: Example of Failed Authentication
Figure 11 shows a successful anonymous authentication.
-- Successful TCP Connection --
C:VERSION=2.0.0 CR LF
S:CAPABILITY TUNNEL=V6V4 TUNNEL=V6UDPV4 AUTH=ANONYMOUS AUTH=PLAIN
AUTH=DIGEST-MD5 CR LF
C:AUTHENTICATE ANONYMOUS CR LF
S:200 Success CR LF
Figure 11: Successful Anonymous Authentication
Blanchet & Parent Experimental [Page 13]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
Digest-MD5 authentication with SASL follows [RFC2831]. Figure 12
shows a successful digest-MD5 SASL authentication.
-- Successful TCP Connection --
C:VERSION=2.0.0 CR LF
S:CAPABILITY TUNNEL=V6V4 TUNNEL=V6UDPV4 AUTH=ANONYMOUS AUTH=PLAIN
AUTH=DIGEST-MD5 CR LF
C:AUTHENTICATE DIGEST-MD5 CR LF
S:cmVhbG09aGV4b3Msbm9uY2U9MTExMzkwODk2OCxxb3A9YXV0aCxhbGdvcml0aG09bWQ
1LXNlc3MsY2hhcnNldD11dGY4
C:Y2hhcnNldD11dGY4LHVzZXJuYW1lPSJ1c2VybmFtZTEiLHJlYWxtPSJoZXhvcyIsbm9
uY2U9IjExMTM5MDg5NjgiLG5jPTAwMDAwMDAxLGNub25jZT0iMTExMzkyMzMxMSIsZG
lnZXN0LXVyaT0idHNwL2hleG9zIixyZXNwb25zZT1mOGU0MmIzYzUwYzU5NzcxODUzZ
jYyNzRmY2ZmZDFjYSxxb3A9YXV0aA==
S:cnNwYXV0aD03MGQ1Y2FiYzkyMzU1NjhiZTM4MGJhMmM5MDczODFmZQ==
S:200 Success CR LF
Figure 12: Successful Digest-MD5 Authentication
The base64-decoded version of the SASL exchange is:
S:realm="hexos",nonce="1113908968",qop="auth",algorithm=md5-sess,
charset=utf8
C:charset=utf8,username="username1",realm="hexos",nonce="1113908968",
nc=00000001,cnonce="1113923311",digest-uri="tsp/hexos",
response=f8e42b3c50c59771853f6274fcffd1ca,qop=auth
S:rspauth=70d5cabc9235568be380ba2c907381fe
Once the authentication succeeds, the server sends a success return
code and the protocol enters the Command phase.
4.4.3. Command and Response Phase
The Command phase is where the tunnel client sends a tunnel request
or a tunnel update to the server. In this phase, commands are sent
as XML messages. The first line is a "Content-length" directive that
indicates the size of the following XML message. When the server
sends a response, the first line is the "Content-length" directive,
the second is the return code, and third one is the XML message, if
any. The "Content-length" is calculated from the first character of
the return code line to the last character of the XML message,
inclusively.
Spaces can be inserted freely.
Blanchet & Parent Experimental [Page 14]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
-- UDP session established --
C:VERSION=2.0.0 CR LF
S:CAPABILITY TUNNEL=V6V4 TUNNEL=V6UDPV4 AUTH=ANONYMOUS
AUTH=PLAIN AUTH=DIGEST-MD5 CR LF
C:AUTHENTICATE ANONYMOUS CR LF
S:200 Success CR LF
C:Content-length: 205 CR LF
<tunnel action="create" type="v6udpv4">
<client>
<address type="ipv4">192.0.2.135</address>
<keepalive interval="30"></keepalive>
</client>
</tunnel> CR LF
S:Content-length: 501 CR LF
200 Success CR LF
<tunnel action="info" type="v6udpv4" lifetime="604800">
<server>
<address type="ipv4">192.0.2.115</address>
<address type="ipv6">
2001:db8:8000:0000:0000:0000:0000:38b2
</address>
</server>
<client>
<address type="ipv4">192.0.2.135</address>
<address type="ipv6">
2001:db8:8000:0000:0000:0000:0000:38b3
</address>
<keepalive interval="30">
<address type="ipv6">
2001:db8:8000:0000:0000:0000:0000:38b2
</address>
</keepalive>
</client>
</tunnel> CR LF
C:Content-length: 35 CR LF
<tunnel action="accept"></tunnel> CR LF
Figure 13: Example of a Command/Response Sequence
The example in Figure 13 shows a client requesting an anonymous
v6udpv4 tunnel, indicating that a keep-alive packet will be sent
every 30 seconds. The tunnel broker responds with the tunnel
Blanchet & Parent Experimental [Page 15]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
parameters and indicates its acceptance of the keep-alive period
(Section 4.6). Finally, the client sends an accept message to the
server.
Once the accept message has been sent, the server and client
configure their tunnel endpoint based on the negotiated tunnel
parameters.
4.5. Tunnel Establishment
4.5.1. IPv6-over-IPv4 Tunnels
Once the TSP signaling is complete, a tunnel can be established on
the tunnel server and client node. If a v6v4 tunnel has been
negotiated, then an IPv6-over-IPv4 tunnel [RFC4213] is established
using the operating system tunneling interface. On the client node,
this is accomplished by the TSP client calling the appropriate OS
commands or system calls.
4.5.2. IPv6-over-UDP Tunnels
If a v6udpv4 tunnel is configured, the same source/destination
address and port used during the TSP signaling are used to configure
the v6udpv4 tunnel. If a NAT is in the path between the TSP client
and the tunnel broker, the TSP signaling session will have created a
UDP state in the NAT. By reusing the same UDP socket parameters to
transport IPv6, the traffic will flow across the NAT using the same
state.
+------+-----------+--------+
| IPv4 | UDP | IPv6 |
| hdr. | port 3653 | |
+------+-----------+--------+
Figure 14: IPv6 Transport over UDP
At any time, a client may re-establish a TSP signaling session. The
client disconnects the current tunnel and starts a new TSP signaling
session as described in Section 4.4.1.2. If a NAT is present and the
new TSP session uses the same UDP mapping in the NAT as for the
tunnel, the tunnel broker will need to disconnect the client tunnel
before the client can establish a new TSP session.
4.6. Tunnel Keep-Alive
A TSP client may select to send periodic keep-alive messages to the
server in order to maintain its tunnel connectivity. This allows the
client to detect network changes and enable automatic tunnel
Blanchet & Parent Experimental [Page 16]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
re-establishment. In the case of IPv6-over-UDP tunnels, periodic
keep-alive messages can help refresh the connection state in a NAT if
such a device is in the tunnel path.
For IPv6-over-IPv4 and IPv6-over-UDP tunnels, the keep-alive message
is an ICMPv6 echo request [RFC4443] sent from the client to the
tunnel server. The IPv6 destination address of the echo message MUST
be the address from the 'keepalive' element sent in the tunnel
response during the TSP signaling (Section 4.4.3). The echo message
is sent over the configured tunnel.
The tunnel server responds to the ICMPv6 echo requests and can keep
track of which tunnel is active. Any client traffic can also be used
to verify if the tunnel is active. This can be used by the broker to
disconnect tunnels that are no longer in use.
The broker can send a different keep-alive interval from the value
specified in the client request. The client MUST conform to the
broker-specified keep-alive interval. The client SHOULD apply a
random "jitter" value to avoid synchronization of keep-alive messages
from many clients to the server [FJ93]. This is achieved by using an
interval value in the range of [0.75T - T], where T is the keep-alive
interval specified by the server.
4.7. XML Messaging
This section describes the XML messaging used in the TSP signaling
during the command and response phase. The XML elements and
attributes are listed in the DTD (Appendix A).
4.7.1. Tunnel
The client and server use the tunnel token with an action attribute.
Valid actions for this profile are: 'create', 'delete', 'info',
'accept', and 'reject'.
create: action used to request a new tunnel or update an existing
tunnel. Sent by the tunnel client.
delete: action used to remove an existing tunnel from the server.
Sent by the tunnel client.
info: action used to request current properties of an existing
tunnel. This action is also used by the tunnel broker to send
tunnel parameters following a client 'create' action.
Blanchet & Parent Experimental [Page 17]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
accept: action used by the client to acknowledge the server that the
tunnel parameters are accepted. The client will establish a
tunnel.
reject: action used by the client to signal the server that the
tunnel parameters offered are rejected and no tunnel will be
established.
The tunnel 'lifetime' attribute is set by the tunnel broker and
specifies the lifetime of the tunnel in minutes. The lifetime is an
administratively set value. When a tunnel lifetime has expired, it
is disconnected on the tunnel server.
The 'tunnel' message contains three elements:
<client>: Client's information
<server>: Server's information
<broker>: List of other servers
4.7.2. Client Element
The 'client' element contains 3 sub-elements: 'address', 'router',
and 'keepalive'. These elements are used to describe the client
request and will be used by the server to create the appropriate
tunnel. The client element is the only element sent by a client.
The 'address' element is used to identify the client IP endpoint of
the tunnel. When tunneling over IPv4, the client MUST send only its
IPv4 address to the server. When tunneling over IPv6, the client
MUST only send its IPv6 address to the server.
The broker then returns the assigned IPv6 or IPv4 address endpoint
and domain name inside the 'client' element when the tunnel is
created or updated. If supported by the broker, the 'client' element
MAY contain the registered DNS name for the address endpoint assigned
to the client.
Optionally, a client MAY send a 'router' element to ask for a prefix
delegation.
Optionally, a client MAY send a 'keepalive' element that contains the
keep-alive time interval requested by the client.
Blanchet & Parent Experimental [Page 18]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
4.7.3. Server Element
The 'server' element contains two elements: 'address' and 'router'.
These elements are used to describe the server's tunnel endpoint.
The 'address' element is used to provide both IPv4 and IPv6 addresses
of the server's tunnel endpoint, while the 'router' element provides
information for the routing method chosen by the client.
4.7.4. Broker Element
The 'broker' element is used by a tunnel broker to provide an
alternate list of brokers to a client in the case where the server is
not able to provide the requested tunnel.
The 'broker' element contains an 'address' element or a series of
'address' elements.
5. Tunnel Request Examples
This section presents multiple examples of requests.
5.1. Host Tunnel Request and Reply
A simple tunnel request consist of a 'tunnel' element that contains
only an 'address' element. The tunnel action is 'create', specifying
a 'v6v4' tunnel encapsulation type. The response sent by the tunnel
broker is an 'info' action. Note that the registered Fully-Qualified
Domain Name (FQDN) of the assigned client IPv6 address is also
returned to the tunnel client.
Blanchet & Parent Experimental [Page 19]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
-- Successful TCP Connection --
C:VERSION=2.0.0 CR LF
S:CAPABILITY TUNNEL=V6V4 AUTH=ANONYMOUS CR LF
C:AUTHENTICATE ANONYMOUS CR LF
S:200 Authentication successful CR LF
C:Content-length: 123 CR LF
<tunnel action="create" type="v6v4">
<client>
<address type="ipv4">1.1.1.1</address>
</client>
</tunnel> CR LF
S: Content-length: 234 CR LF
200 OK CR LF
<tunnel action="info" type="v6v4" lifetime="1440">
<server>
<address type="ipv4">192.0.2.114</address>
<address type="ipv6">
2001:db8:c18:ffff:0000:0000:0000:0000
</address>
</server>
<client>
<address type="ipv4">1.1.1.1</address>
<address type="ipv6">
2001:db8:c18:ffff::0000:0000:0000:0001
</address>
<address type="dn">userid.domain</address>
</client>
</tunnel> CR LF
C: Content-length: 35 CR LF
<tunnel action="accept"></tunnel> CR LF
Figure 15: Simple Tunnel Request Made by a Client
5.2. Router Tunnel Request with a /48 Prefix Delegation and Reply
A tunnel request with a prefix consists of a 'tunnel' element that
contains an 'address' element and a 'router' element. The 'router'
element also contains the 'dns_server' element that is used to
request a DNS delegation of the assigned IPv6 prefix. The
'dns_server' element lists the IP address of the DNS servers to be
registered for the reverse-mapping zone.
Blanchet & Parent Experimental [Page 20]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
Tunnel request with prefix and static routes.
C: Content-length: 234 CR LF
<tunnel action="create" type="v6v4">
<client>
<address type="ipv4">192.0.2.9</address>
<router>
<prefix length="48"/>
<dns_server>
<address type="ipv4">192.0.2.5</address>
<address type="ipv4">192.0.2.4</address>
<address type="ipv6">2001:db8::1</address>
</dns_server>
</router>
</client>
</tunnel> CR LF
S: Content-length: 234 CR LF
200 OK CR LF
<tunnel action="info" type="v6v4" lifetime="1440">
<server>
<address type="ipv4">192.0.2.114</address>
<address type="ipv6">
2001:db8:c18:ffff:0000:0000:0000:0000
</address>
</server>
<client>
<address type="ipv4">192.0.2.9</address>
<address type="ipv6">
2001:db8:c18:ffff::0000:0000:0000:0001
</address>
<address type="dn">userid.domain</address>
<router>
<prefix length="48">2001:db8:c18:1234::</prefix>
<dns_server>
<address type="ipv4">192.0.2.5</address>
<address type="ipv4">192.0.2.4</address>
<address type="ipv6">2001:db8::1</address>
</dns_server>
</router>
</client>
</tunnel> CR LF
C: Content-length: 35 CR LF
<tunnel action="accept"></tunnel> CR LF
Figure 16: Tunnel Request with Prefix and DNS Delegation
Blanchet & Parent Experimental [Page 21]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
5.3. IPv4 over IPv6 Tunnel Request
This is similar to the previous 'create' action, but with the tunnel
type is set to 'v4v6'.
-- Successful TCP Connection --
C:VERSION=1.0 CR LF
S:CAPABILITY TUNNEL=V4V6 AUTH=DIGEST-MD5 AUTH=ANONYMOUS
CR LF
C:AUTHENTICATE ANONYMOUS CR LF
S:OK Authentication successful CR LF
C:Content-length: 228 CR LF
<tunnel action="create" type="v4v6">
<client>
<address type="ipv6">
2001:db8:0c18:ffff:0000:0000:0000:0001
</address>
</client>
</tunnel> CR LF
Figure 17: Simple Tunnel Request Made by a Client
If the allocation request is accepted, the broker will acknowledge
the allocation to the client by sending a 'tunnel' element with the
attribute 'action' set to 'info', 'type' set to 'v4v6' and the
'lifetime' attribute set to the period of validity or lease time of
the allocation. The 'tunnel' element contains 'server' and 'client'
elements.
Blanchet & Parent Experimental [Page 22]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
S: Content-length: 370 CR LF
200 OK CR LF
<tunnel action="info" type="v4v6" lifetime="1440">
<server>
<address type="ipv4" length="30">
192.0.2.2
</address>
<address type="ipv6">
2001:db8:c18:ffff:0000:0000:0000:0002
</address>
</server>
<client>
<address type="ipv4" length="30">
192.0.2.1
</address>
<address type="ipv6">
2001:db8:c18:ffff::0000:0000:0000:0001
</address>
</client>
</tunnel> CR LF
Figure 18: IPv4 over IPv6 Tunnel Response
In DSTM [DSTM] terminology, the DSTM server is the TSP broker and the
Tunnel Endpoint (TEP) is the tunnel server.
5.4. NAT Traversal Tunnel Request
When a client is capable of both IPv6 over IPv4 and IPv6 over UDP
over IPv4 encapsulation, it can request the broker, by using the
"v6anyv4" tunnel mode, to determine if it is behind a NAT and to send
the appropriate tunnel encapsulation mode as part of the response.
The client can also explicitly request an IPv6 over UDP over IPv4
tunnel by specifying "v6udpv4" in its request.
In the following example, the client informs the broker that it
requests to send keep-alives every 30 seconds. In its response, the
broker accepted the client-suggested keep-alive interval, and the
IPv6 destination address for the keep-alive packets is specified.
Blanchet & Parent Experimental [Page 23]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
C:VERSION=2.0.0 CR LF
S:CAPABILITY TUNNEL=V6V4 TUNNEL=V6UDPV4 AUTH=DIGEST-MD5 CR LF
C:AUTHENTICATE ... CR LF
S:200 Authentication successful CR LF
C:Content-length: ... CR LF
<tunnel action="create" type="v6anyv4">
<client>
<address type="ipv4">10.1.1.1</address>
<keepalive interval="30"></keepalive>
</client>
</tunnel> CR LF
S: Content-length: ... CR LF
200 OK CR LF
<tunnel action="info" type="v6udpv4" lifetime="1440">
<server>
<address type="ipv4">192.0.2.114</address>
<address type="ipv6">
2001:db8:c18:ffff:0000:0000:0000:0002
</address>
</server>
<client>
<address type="ipv4">10.1.1.1</address>
<address type="ipv6">
2001:db8:c18:ffff::0000:0000:0000:0003
</address>
<keepalive interval="30">
<address type="ipv6">
2001:db8:c18:ffff:0000:0000:0000:0002
</address>
</keepalive>
</client>
</tunnel> CR LF
Figure 19: Tunnel Request Using v6anyv4 Mode
6. Applicability of TSP in Different Networks
This section describes the applicability of TSP in different
networks.
6.1. Provider Networks with Enterprise Customers
In a provider network where IPv4 is dominant, a tunneled
infrastructure can be used to provide IPv6 services to the enterprise
customers, before a full IPv6 native infrastructure is built. In
order to start deploying in a controlled manner and to give
enterprise customers a prefix, the TSP framework is used. The TSP
server can be in the core, in the aggregation points or in the Points
Blanchet & Parent Experimental [Page 24]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
of Presence (PoPs) to offer the service to the customers. IPv6 over
IPv4 encapsulation can be used. If the customers are behind an IPv4
NAT, then IPv6 over UDP-IPv4 encapsulation can be used. TSP can be
used in combination with other techniques.
6.2. Provider Networks with Home/Small Office Customers
In a provider network where IPv4 is dominant, a tunneled
infrastructure can be used to provide IPv6 services to the home/small
office customers, before a full IPv6 native infrastructure is built.
The small networks such as Home/Small offices have a non-upgradable
gateway with NAT. TSP with NAT traversal is used to offer IPv6
connectivity and a prefix to the internal network.
Automation of the prefix assignment and DNS delegation, done by TSP,
is a very important feature for a provider in order to substantially
decrease support costs. The provider can use the same
Authentication, Authorization, and Accounting (AAA) database that is
used to authenticate the IPv4 broadband users. Customers can deploy
home IPv6 networks without any intervention of the provider support
people.
With the NAT discovery function of TSP, providers can use the same
TSP infrastructure for both NAT and non-NAT parts of the network.
6.3. Enterprise Networks
In an enterprise network where IPv4 is dominant, a tunneled
infrastructure can be used to provide IPv6 services to the IPv6
islands (hosts or networks) inside the enterprise, before a full IPv6
native infrastructure is built [RFC4057]. TSP can be used to give
IPv6 connectivity, prefix, and routing for the islands. This gives
the enterprise a fully controlled deployment of IPv6 while
maintaining automation and permanence of the IPv6 assignments to the
islands.
6.4. Wireless Networks
In a wireless network where IPv4 is dominant, hosts and networks move
and change IPv4 address. TSP enables the automatic re-establishment
of the tunnel when the IPv4 address changes.
In a wireless network where IPv6 is dominant, hosts and networks
move. TSP enables the automatic re-establishment of the IPv4 over
IPv6 tunnel.
Blanchet & Parent Experimental [Page 25]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
6.5. Unmanaged Networks
An unmanaged network is where no network manager or staff is
available to configure network devices [RFC3904]. TSP is
particularly useful in this context where automation of all necessary
information for the IPv6 connectivity is handled by TSP: tunnel
endpoint parameters, prefix assignment, DNS delegation, and routing.
An unmanaged network may (or may not) be behind a NAT. With the NAT
discovery function, TSP works automatically in both cases.
6.6. Mobile Hosts and Mobile Networks
Mobile hosts are common and used. Laptops moving from wireless,
wired in an office, home, etc., are examples. They often have IPv4
connectivity, but not necessarily IPv6. The TSP framework enables
the mobile hosts to have IPv6 connectivity wherever they are, by
having the TSP client send updated information of the new environment
to the TSP server, when a change occurs. Together with NAT discovery
and traversal, the mobile host can always be IPv6 connected wherever
it is.
Mobile here means only the change of IPv4 address. Mobile-IP
mechanisms and fast hand-off take care of additional constraints in
mobile environments.
Mobile networks share the applicability of the mobile hosts.
Moreover, in the TSP framework, they also keep their prefix
assignment and can control the routing. NAT discovery can also be
used.
7. IANA Considerations
A tunnel type registry has been created by IANA. The following
strings are defined in this document:
o "v6v4" for IPv6 in IPv4 encapsulation (using IPv4 protocol 41)
o "v6udpv4" for IPv6 in UDP in IPv4 encapsulation
o "v6anyv4" for IPv6 in IPv4 or IPv6 in UDP in IPv4 encapsulation
o "v4v6" for IPv4 in IPv6 encapsulation
Registration of a new tunnel type can be obtained on a first come,
first served policy [RFC5226]. A new registration should provide a
point of contact, the tunnel type string, and a brief description on
the applicability.
Blanchet & Parent Experimental [Page 26]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
IANA assigned 3653 as the TSP port number.
8. Security Considerations
Authentication of the TSP session uses the SASL [RFC4422] framework,
where the authentication mechanism is negotiated between the client
and the server. The framework uses the level of authentication
needed for securing the session, based on the policies.
Static tunnels are created when the TSP negotiation is terminated.
Static tunnels are not open gateways and exhibit less security issues
than automated tunnels. Static IPv6 in IPv4 tunnel security
considerations are described in [RFC4213].
In order to help ensure that the traffic is traceable to its correct
source network, a tunnel server implementation should allow ingress
filtering on the user tunnel [RFC3704].
A customer A behind a NAT can use a large number of (private) IPv4
addresses and/or source ports and request multiple v6udpv4 tunnels.
That would quickly saturate the tunnel server capacity. The tunnel
broker implementation should offer a way to throttle and limit the
number of tunnel established to the same IPv4 address.
9. Conclusion
The Tunnel Setup Protocol (TSP) is applicable in many environments,
such as: providers, enterprises, wireless, unmanaged networks, mobile
hosts, and networks. TSP gives the two tunnel endpoints the ability
to negotiate tunnel parameters, as well as prefix assignment, DNS
delegation and routing in an authenticated session. It also provides
an IPv4 NAT discovery function by using the most effective
encapsulation. It also supports the IPv4 mobility of the nodes.
10. Acknowledgements
This document is the merge of many previous documents about TSP.
Octavio Medina has contributed to an earlier document (IPv4 in IPv6).
Thanks to the following people for comments on improving and
clarifying this document: Pekka Savola, Alan Ford, Jeroen Massar, and
Jean-Francois Tremblay.
Blanchet & Parent Experimental [Page 27]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
11. References
11.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to
Indicate Requirement Levels", BCP 14, RFC 2119,
March 1997.
[RFC2473] Conta, A. and S. Deering, "Generic Packet
Tunneling in IPv6 Specification", RFC 2473,
December 1998.
[RFC2831] Leach, P. and C. Newman, "Using Digest
Authentication as a SASL Mechanism", RFC 2831,
May 2000.
[RFC4213] Nordmark, E. and R. Gilligan, "Basic Transition
Mechanisms for IPv6 Hosts and Routers", RFC 4213,
October 2005.
[RFC4422] Melnikov, A. and K. Zeilenga, "Simple
Authentication and Security Layer (SASL)",
RFC 4422, June 2006.
[RFC4443] Conta, A., Deering, S., and M. Gupta, "Internet
Control Message Protocol (ICMPv6) for the
Internet Protocol Version 6 (IPv6)
Specification", RFC 4443, March 2006.
[W3C.REC-xml-2004] Yergeau, F., Paoli, J., Sperberg-McQueen, C.,
Bray, T., and E. Maler, "Extensible Markup
Language (XML) 1.0 (Third Edition)", W3C REC REC-
xml-20040204, February 2004.
11.2. Informative References
[DSTM] Bound, J., Toutain, L., and JL. Richier, "Dual
Stack IPv6 Dominant Transition Mechanism", Work
in Progress, October 2005.
[FJ93] Floyd, S. and V. Jacobson, "The Synchronization
of Periodic Routing Messages", Proceedings of
ACM SIGCOMM, September 1993.
[RFC3053] Durand, A., Fasano, P., Guardini, I., and D.
Lento, "IPv6 Tunnel Broker", RFC 3053,
January 2001.
Blanchet & Parent Experimental [Page 28]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
[RFC3704] Baker, F. and P. Savola, "Ingress Filtering for
Multihomed Networks", BCP 84, RFC 3704,
March 2004.
[RFC3904] Huitema, C., Austein, R., Satapati, S., and R.
van der Pol, "Evaluation of IPv6 Transition
Mechanisms for Unmanaged Networks", RFC 3904,
September 2004.
[RFC3964] Savola, P. and C. Patel, "Security Considerations
for 6to4", RFC 3964, December 2004.
[RFC4057] Bound, J., "IPv6 Enterprise Network Scenarios",
RFC 4057, June 2005.
[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for
Writing an IANA Considerations Section in RFCs",
BCP 26, RFC 5226, May 2008.
[UNP] Stevens, R., Fenner, B., and A. Rudoff, "Unix
Network Programming, 3rd edition", Addison
Wesley ISBN 0-13-141155-1, 2004.
Blanchet & Parent Experimental [Page 29]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
Appendix A. The TSP DTD
<?xml version="1.0"?>
<!DOCTYPE tunnel [
<!ELEMENT tunnel (server?,client?,broker?)>
<!ATTLIST tunnel action
(create|delete|info|accept|reject) #REQUIRED >
<!ATTLIST tunnel type
(v6v4|v4v6|v6anyv4|v6udpv4) #REQUIRED >
<!ATTLIST tunnel lifetime CDATA "1440" >
<!ELEMENT server (address+,router?)>
<!ELEMENT client (address+,router?)>
<!ELEMENT broker (address+)>
<!ELEMENT router (prefix?,dns_server?)>
<!ELEMENT dns_server (address+)>
<!ELEMENT prefix (#PCDATA)>
<!ATTLIST prefix length CDATA #REQUIRED>
<!ELEMENT address (#PCDATA)>
<!ATTLIST address type (ipv4|ipv6|dn) #REQUIRED>
<!ATTLIST address length CDATA "">
<!ELEMENT keepalive (address?)>
<!ATTLIST keepalive interval CDATA #REQUIRED>
]>
Figure 20: TSP DTD
Blanchet & Parent Experimental [Page 30]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
Appendix B. Error Codes
Error codes are sent as a numeric value followed by a text message
describing the code, similar to SMTP. The codes are sent from the
broker to the client. The currently defined error codes are shown
below. Upon receiving an error, the client will display the
appropriate message to the user.
New error messages may be defined in the future. For
interoperability purpose, the error code range to use should be from
300 to 599.
The reply code 200 is used to inform the client that an action
successfully completed. For example, this reply code is used in
response to an authentication request and a tunnel creation request.
The server may redirect the client to another broker. The details on
how these brokers are known or discovered is beyond the scope of this
document. When a list of tunnel brokers follows the error code as a
referral service, then 1000 is added to the error code.
The predefined values are:
200 Success: Successful operation.
300 Authentication failed: Invalid userid, password, or
authentication mechanism.
301 No more tunnels available: The server has reached its capacity
limit.
302 Unsupported client version: The client version is not supported
by the server.
303 Unsupported tunnel type: The server does not provide the
requested tunnel type.
310 Server side error: Undefined server error.
500 Invalid request format or specified length: The received request
has invalid syntax or is truncated.
501 Invalid IPv4 address: The IPv4 address specified by the client
is invalid.
502 Invalid IPv6 address: The IPv6 address specified by the client
is invalid.
Blanchet & Parent Experimental [Page 31]
^L
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
506 IPv4 address already used for existing tunnel: An IPv6-over-IPv4
tunnel already exists using the same IPv4 address endpoints.
507 Requested prefix length cannot be assigned: The requested prefix
length cannot be allocated on the server.
521 Request already in progress: The client tunnel request is being
processed by the server. Temporary error.
530 Server too busy: Request cannot be processed, insufficient
resources. Temporary error.
Authors' Addresses
Marc Blanchet
Viagenie
2600 boul. Laurier, suite 625
Quebec, QC G1V 4W1
Canada
Phone: +1-418-656-9254
EMail: Marc.Blanchet@viagenie.ca
Florent Parent
Beon Solutions
Quebec, QC
Canada
Phone: +1 418 265 7357
EMail: Florent.Parent@beon.ca
Blanchet & Parent Experimental [Page 32]
^L
|