summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc5751.txt
blob: 8d1dd218438515b50d136f2a6aaf31e46e140473 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
Internet Engineering Task Force (IETF)                       B. Ramsdell
Request for Comments: 5751                              Brute Squad Labs
Obsoletes: 3851                                                S. Turner
Category: Standards Track                                           IECA
ISSN: 2070-1721                                             January 2010


   Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.2
                         Message Specification

Abstract

   This document defines Secure/Multipurpose Internet Mail Extensions
   (S/MIME) version 3.2.  S/MIME provides a consistent way to send and
   receive secure MIME data.  Digital signatures provide authentication,
   message integrity, and non-repudiation with proof of origin.
   Encryption provides data confidentiality.  Compression can be used to
   reduce data size.  This document obsoletes RFC 3851.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by
   the Internet Engineering Steering Group (IESG).  Further
   information on Internet Standards is available in Section 2 of
   RFC 5741.

   Information about the current status of this document, any
   errata, and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc5751.


















Ramsdell & Turner            Standards Track                    [Page 1]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


Copyright Notice

   Copyright (c) 2010 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

   This document may contain material from IETF Documents or IETF
   Contributions published or made publicly available before November
   10, 2008.  The person(s) controlling the copyright in some of this
   material may not have granted the IETF Trust the right to allow
   modifications of such material outside the IETF Standards Process.
   Without obtaining an adequate license from the person(s) controlling
   the copyright in such materials, this document may not be modified
   outside the IETF Standards Process, and derivative works of it may
   not be created outside the IETF Standards Process, except to format
   it for publication as an RFC or to translate it into languages other
   than English.

























Ramsdell & Turner            Standards Track                    [Page 2]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


Table of Contents

   1. Introduction ....................................................4
      1.1. Specification Overview .....................................4
      1.2. Definitions ................................................5
      1.3. Conventions Used in This Document ..........................6
      1.4. Compatibility with Prior Practice of S/MIME ................7
      1.5. Changes from S/MIME v3 to S/MIME v3.1 ......................7
      1.6. Changes since S/MIME v3.1 ..................................7
   2. CMS Options .....................................................9
      2.1. DigestAlgorithmIdentifier ..................................9
      2.2. SignatureAlgorithmIdentifier ...............................9
      2.3. KeyEncryptionAlgorithmIdentifier ..........................10
      2.4. General Syntax ............................................11
      2.5. Attributes and the SignerInfo Type ........................12
      2.6. SignerIdentifier SignerInfo Type ..........................16
      2.7. ContentEncryptionAlgorithmIdentifier ......................16
   3. Creating S/MIME Messages .......................................18
      3.1. Preparing the MIME Entity for Signing, Enveloping,
           or Compressing ............................................19
      3.2. The application/pkcs7-mime Media Type .....................23
      3.3. Creating an Enveloped-Only Message ........................25
      3.4. Creating a Signed-Only Message ............................26
      3.5. Creating a Compressed-Only Message ........................30
      3.6. Multiple Operations .......................................30
      3.7. Creating a Certificate Management Message .................31
      3.8. Registration Requests .....................................32
      3.9. Identifying an S/MIME Message .............................32
   4. Certificate Processing .........................................32
      4.1. Key Pair Generation .......................................33
      4.2. Signature Generation ......................................33
      4.3. Signature Verification ....................................34
      4.4. Encryption ................................................34
      4.5. Decryption ................................................34
   5. IANA Considerations ............................................34
      5.1. Media Type for application/pkcs7-mime .....................34
      5.2. Media Type for application/pkcs7-signature ................35
   6. Security Considerations ........................................36
   7. References .....................................................38
      7.1. Reference Conventions .....................................38
      7.2. Normative References ......................................39
      7.3. Informative References ....................................41
   Appendix A. ASN.1 Module ..........................................43
   Appendix B. Moving S/MIME v2 Message Specification to Historic
               Status ................................................45
   Appendix C. Acknowledgments .......................................45





Ramsdell & Turner            Standards Track                    [Page 3]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


1.  Introduction

   S/MIME (Secure/Multipurpose Internet Mail Extensions) provides a
   consistent way to send and receive secure MIME data.  Based on the
   popular Internet MIME standard, S/MIME provides the following
   cryptographic security services for electronic messaging
   applications:  authentication, message integrity and non-repudiation
   of origin (using digital signatures), and data confidentiality (using
   encryption).  As a supplementary service, S/MIME provides for message
   compression.

   S/MIME can be used by traditional mail user agents (MUAs) to add
   cryptographic security services to mail that is sent, and to
   interpret cryptographic security services in mail that is received.
   However, S/MIME is not restricted to mail; it can be used with any
   transport mechanism that transports MIME data, such as HTTP or SIP.
   As such, S/MIME takes advantage of the object-based features of MIME
   and allows secure messages to be exchanged in mixed-transport
   systems.

   Further, S/MIME can be used in automated message transfer agents that
   use cryptographic security services that do not require any human
   intervention, such as the signing of software-generated documents and
   the encryption of FAX messages sent over the Internet.

1.1.  Specification Overview

   This document describes a protocol for adding cryptographic signature
   and encryption services to MIME data.  The MIME standard [MIME-SPEC]
   provides a general structure for the content of Internet messages and
   allows extensions for new content-type-based applications.

   This specification defines how to create a MIME body part that has
   been cryptographically enhanced according to the Cryptographic
   Message Syntax (CMS) RFC 5652 [CMS], which is derived from PKCS #7
   [PKCS-7].  This specification also defines the application/pkcs7-mime
   media type that can be used to transport those body parts.

   This document also discusses how to use the multipart/signed media
   type defined in [MIME-SECURE] to transport S/MIME signed messages.
   multipart/signed is used in conjunction with the application/pkcs7-
   signature media type, which is used to transport a detached S/MIME
   signature.








Ramsdell & Turner            Standards Track                    [Page 4]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


   In order to create S/MIME messages, an S/MIME agent MUST follow the
   specifications in this document, as well as the specifications listed
   in the Cryptographic Message Syntax document [CMS], [CMSALG],
   [RSAPSS], [RSAOAEP], and [CMS-SHA2].

   Throughout this specification, there are requirements and
   recommendations made for how receiving agents handle incoming
   messages.  There are separate requirements and recommendations for
   how sending agents create outgoing messages.  In general, the best
   strategy is to "be liberal in what you receive and conservative in
   what you send".  Most of the requirements are placed on the handling
   of incoming messages, while the recommendations are mostly on the
   creation of outgoing messages.

   The separation for requirements on receiving agents and sending
   agents also derives from the likelihood that there will be S/MIME
   systems that involve software other than traditional Internet mail
   clients.  S/MIME can be used with any system that transports MIME
   data.  An automated process that sends an encrypted message might not
   be able to receive an encrypted message at all, for example.  Thus,
   the requirements and recommendations for the two types of agents are
   listed separately when appropriate.

1.2.  Definitions

   For the purposes of this specification, the following definitions
   apply.

   ASN.1:             Abstract Syntax Notation One, as defined in ITU-T
                      Recommendation X.680 [X.680].

   BER:               Basic Encoding Rules for ASN.1, as defined in ITU-
                      T Recommendation X.690 [X.690].

   Certificate:       A type that binds an entity's name to a public key
                      with a digital signature.

   DER:               Distinguished Encoding Rules for ASN.1, as defined
                      in ITU-T Recommendation X.690 [X.690].

   7-bit data:        Text data with lines less than 998 characters
                      long, where none of the characters have the 8th
                      bit set, and there are no NULL characters.  <CR>
                      and <LF> occur only as part of a <CR><LF> end-of-
                      line delimiter.






Ramsdell & Turner            Standards Track                    [Page 5]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


   8-bit data:        Text data with lines less than 998 characters, and
                      where none of the characters are NULL characters.
                      <CR> and <LF> occur only as part of a <CR><LF>
                      end-of-line delimiter.

   Binary data:       Arbitrary data.

   Transfer encoding: A reversible transformation made on data so 8-bit
                      or binary data can be sent via a channel that only
                      transmits 7-bit data.

   Receiving agent:   Software that interprets and processes S/MIME CMS
                      objects, MIME body parts that contain CMS content
                      types, or both.

   Sending agent:     Software that creates S/MIME CMS content types,
                      MIME body parts that contain CMS content types, or
                      both.

   S/MIME agent:      User software that is a receiving agent, a sending
                      agent, or both.

1.3.  Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [MUSTSHOULD].

   We define some additional terms here:

   SHOULD+   This term means the same as SHOULD.  However, the authors
             expect that a requirement marked as SHOULD+ will be
             promoted at some future time to be a MUST.

   SHOULD-   This term means the same as SHOULD.  However, the authors
             expect that a requirement marked as SHOULD- will be demoted
             to a MAY in a future version of this document.

   MUST-     This term means the same as MUST.  However, the authors
             expect that this requirement will no longer be a MUST in a
             future document.  Although its status will be determined at
             a later time, it is reasonable to expect that if a future
             revision of a document alters the status of a MUST-
             requirement, it will remain at least a SHOULD or a SHOULD-.







Ramsdell & Turner            Standards Track                    [Page 6]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


1.4.  Compatibility with Prior Practice of S/MIME

   S/MIME version 3.2 agents ought to attempt to have the greatest
   interoperability possible with agents for prior versions of S/MIME.
   S/MIME version 2 is described in RFC 2311 through RFC 2315 inclusive
   [SMIMEv2], S/MIME version 3 is described in RFC 2630 through RFC 2634
   inclusive and RFC 5035 [SMIMEv3], and S/MIME version 3.1 is described
   in RFC 3850, RFC 3851, RFC 3852, RFC 2634, and RFC 5035 [SMIMEv3.1].
   RFC 2311 also has historical information about the development of
   S/MIME.

1.5.  Changes from S/MIME v3 to S/MIME v3.1

   The RSA public key algorithm was changed to a MUST implement key
   wrapping algorithm, and the Diffie-Hellman (DH) algorithm changed to
   a SHOULD implement.

   The AES symmetric encryption algorithm has been included as a SHOULD
   implement.

   The RSA public key algorithm was changed to a MUST implement
   signature algorithm.

   Ambiguous language about the use of "empty" SignedData messages to
   transmit certificates was clarified to reflect that transmission of
   Certificate Revocation Lists is also allowed.

   The use of binary encoding for some MIME entities is now explicitly
   discussed.

   Header protection through the use of the message/rfc822 media type
   has been added.

   Use of the CompressedData CMS type is allowed, along with required
   media type and file extension additions.

1.6.  Changes since S/MIME v3.1

   Editorial changes, e.g., replaced "MIME type" with "media type",
   content-type with Content-Type.

   Moved "Conventions Used in This Document" to Section 1.3.  Added
   definitions for SHOULD+, SHOULD-, and MUST-.

   Section 1.1 and Appendix A: Added references to RFCs for RSASSA-PSS,
   RSAES-OAEP, and SHA2 CMS algorithms.  Added CMS Multiple Signers
   Clarification to CMS reference.




Ramsdell & Turner            Standards Track                    [Page 7]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


   Section 1.2: Updated references to ASN.1 to X.680 and BER and DER to
   X.690.

   Section 1.4: Added references to S/MIME MSG 3.1 RFCs.

   Section 2.1 (digest algorithm): SHA-256 added as MUST, SHA-1 and MD5
   made SHOULD-.

   Section 2.2 (signature algorithms): RSA with SHA-256 added as MUST,
   and DSA with SHA-256 added as SHOULD+, RSA with SHA-1, DSA with
   SHA-1, and RSA with MD5 changed to SHOULD-, and RSASSA-PSS with
   SHA-256 added as SHOULD+.  Also added note about what S/MIME v3.1
   clients support.

   Section 2.3 (key encryption): DH changed to SHOULD-, and RSAES-OAEP
   added as SHOULD+.  Elaborated requirements for key wrap algorithm.

   Section 2.5.1: Added requirement that receiving agents MUST support
   both GeneralizedTime and UTCTime.

   Section 2.5.2: Replaced reference "sha1WithRSAEncryption" with
   "sha256WithRSAEncryption", "DES-3EDE-CBC" with "AES-128 CBC", and
   deleted the RC5 example.

   Section 2.5.2.1: Deleted entire section (discussed deprecated RC2).

   Section 2.7, 2.7.1, Appendix A: references to RC2/40 removed.

   Section 2.7 (content encryption): AES-128 CBC added as MUST, AES-192
   and AES-256 CBC SHOULD+, tripleDES now SHOULD-.

   Section 2.7.1: Updated pointers from 2.7.2.1 through 2.7.2.4 to
   2.7.1.1 to 2.7.1.2.

   Section 3.1.1: Removed text about MIME character sets.

   Section 3.2.2 and 3.6: Replaced "encrypted" with "enveloped".  Update
   OID example to use AES-128 CBC oid.

   Section 3.4.3.2: Replace micalg parameter for SHA-1 with sha-1.

   Section 4: Updated reference to CERT v3.2.

   Section 4.1: Updated RSA and DSA key size discussion.  Moved last
   four sentences to security considerations.  Updated reference to
   randomness requirements for security.





Ramsdell & Turner            Standards Track                    [Page 8]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


   Section 5: Added IANA registration templates to update media type
   registry to point to this document as opposed to RFC 2311.

   Section 6: Updated security considerations.

   Section 7: Moved references from Appendix B to this section.  Updated
   references.  Added informational references to SMIMEv2, SMIMEv3, and
   SMIMEv3.1.

   Appendix B: Added Appendix B to move S/MIME v2 to Historic status.

2.  CMS Options

   CMS allows for a wide variety of options in content, attributes, and
   algorithm support.  This section puts forth a number of support
   requirements and recommendations in order to achieve a base level of
   interoperability among all S/MIME implementations.  [CMSALG] and
   [CMS-SHA2] provides additional details regarding the use of the
   cryptographic algorithms.  [ESS] provides additional details
   regarding the use of additional attributes.

2.1.  DigestAlgorithmIdentifier

   Sending and receiving agents MUST support SHA-256 [CMS-SHA2] and
   SHOULD- support SHA-1 [CMSALG].  Receiving agents SHOULD- support MD5
   [CMSALG] for the purpose of providing backward compatibility with
   MD5-digested S/MIME v2 SignedData objects.

2.2.  SignatureAlgorithmIdentifier

   Receiving agents:

      - MUST support RSA with SHA-256.

      - SHOULD+ support DSA with SHA-256.

      - SHOULD+ support RSASSA-PSS with SHA-256.

      - SHOULD- support RSA with SHA-1.

      - SHOULD- support DSA with SHA-1.

      - SHOULD- support RSA with MD5.








Ramsdell & Turner            Standards Track                    [Page 9]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


   Sending agents:

      - MUST support RSA with SHA-256.

      - SHOULD+ support DSA with SHA-256.

      - SHOULD+ support RSASSA-PSS with SHA-256.

      - SHOULD- support RSA with SHA-1 or DSA with SHA-1.

      - SHOULD- support RSA with MD5.

   See Section 4.1 for information on key size and algorithm references.

   Note that S/MIME v3.1 clients support verifying id-dsa-with-sha1 and
   rsaEncryption and might not implement sha256withRSAEncryption.  Note
   that S/MIME v3 clients might only implement signing or signature
   verification using id-dsa-with-sha1, and might also use id-dsa as an
   AlgorithmIdentifier in this field.  Receiving clients SHOULD
   recognize id-dsa as equivalent to id-dsa-with-sha1, and sending
   clients MUST use id-dsa-with-sha1 if using that algorithm.  Also note
   that S/MIME v2 clients are only required to verify digital signatures
   using the rsaEncryption algorithm with SHA-1 or MD5, and might not
   implement id-dsa-with-sha1 or id-dsa at all.

2.3.  KeyEncryptionAlgorithmIdentifier

   Receiving and sending agents:

      - MUST support RSA Encryption, as specified in [CMSALG].

      - SHOULD+ support RSAES-OAEP, as specified in [RSAOAEP].

      - SHOULD- support DH ephemeral-static mode, as specified in
        [CMSALG] and [SP800-57].

   When DH ephemeral-static is used, a key wrap algorithm is also
   specified in the KeyEncryptionAlgorithmIdentifier [CMS].  The
   underlying encryption functions for the key wrap and content
   encryption algorithm ([CMSALG] and [CMSAES]) and the key sizes for
   the two algorithms MUST be the same (e.g., AES-128 key wrap algorithm
   with AES-128 content encryption algorithm).  As AES-128 CBC is the
   mandatory-to-implement content encryption algorithm, the AES-128 key
   wrap algorithm MUST also be supported when DH ephemeral-static is
   used.






Ramsdell & Turner            Standards Track                   [Page 10]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


   Note that S/MIME v3.1 clients might only implement key encryption and
   decryption using the rsaEncryption algorithm.  Note that S/MIME v3
   clients might only implement key encryption and decryption using the
   Diffie-Hellman algorithm.  Also note that S/MIME v2 clients are only
   capable of decrypting content-encryption keys using the rsaEncryption
   algorithm.

2.4.  General Syntax

   There are several CMS content types.  Of these, only the Data,
   SignedData, EnvelopedData, and CompressedData content types are
   currently used for S/MIME.

2.4.1.  Data Content Type

   Sending agents MUST use the id-data content type identifier to
   identify the "inner" MIME message content.  For example, when
   applying a digital signature to MIME data, the CMS SignedData
   encapContentInfo eContentType MUST include the id-data object
   identifier and the media type MUST be stored in the SignedData
   encapContentInfo eContent OCTET STRING (unless the sending agent is
   using multipart/signed, in which case the eContent is absent, per
   Section 3.4.3 of this document).  As another example, when applying
   encryption to MIME data, the CMS EnvelopedData encryptedContentInfo
   contentType MUST include the id-data object identifier and the
   encrypted MIME content MUST be stored in the EnvelopedData
   encryptedContentInfo encryptedContent OCTET STRING.

2.4.2.  SignedData Content Type

   Sending agents MUST use the SignedData content type to apply a
   digital signature to a message or, in a degenerate case where there
   is no signature information, to convey certificates.  Applying a
   signature to a message provides authentication, message integrity,
   and non-repudiation of origin.

2.4.3.  EnvelopedData Content Type

   This content type is used to apply data confidentiality to a message.
   A sender needs to have access to a public key for each intended
   message recipient to use this service.

2.4.4.  CompressedData Content Type

   This content type is used to apply data compression to a message.
   This content type does not provide authentication, message integrity,
   non-repudiation, or data confidentiality, and is only used to reduce
   the message's size.



Ramsdell & Turner            Standards Track                   [Page 11]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


   See Section 3.6 for further guidance on the use of this type in
   conjunction with other CMS types.

2.5.  Attributes and the SignerInfo Type

   The SignerInfo type allows the inclusion of unsigned and signed
   attributes along with a signature.

   Receiving agents MUST be able to handle zero or one instance of each
   of the signed attributes listed here.  Sending agents SHOULD generate
   one instance of each of the following signed attributes in each
   S/MIME message:

      - Signing Time (section (Section 2.5.1 in this document)

      - SMIME Capabilities (section (Section 2.5.2 in this document)

      - Encryption Key Preference (section (Section 2.5.3 in this
        document)

      - Message Digest (section (Section 11.2 in [CMS])

      - Content Type (section (Section 11.1 in [CMS])

   Further, receiving agents SHOULD be able to handle zero or one
   instance of the signingCertificate and signingCertificatev2 signed
   attributes, as defined in Section 5 of RFC 2634 [ESS] and Section 3
   of RFC 5035 [ESS].

   Sending agents SHOULD generate one instance of the signingCertificate
   or signingCertificatev2 signed attribute in each SignerInfo
   structure.

   Additional attributes and values for these attributes might be
   defined in the future.  Receiving agents SHOULD handle attributes or
   values that they do not recognize in a graceful manner.

   Interactive sending agents that include signed attributes that are
   not listed here SHOULD display those attributes to the user, so that
   the user is aware of all of the data being signed.

2.5.1.  Signing Time Attribute

   The signing-time attribute is used to convey the time that a message
   was signed.  The time of signing will most likely be created by a
   message originator and therefore is only as trustworthy as the
   originator.




Ramsdell & Turner            Standards Track                   [Page 12]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


   Sending agents MUST encode signing time through the year 2049 as
   UTCTime; signing times in 2050 or later MUST be encoded as
   GeneralizedTime.  When the UTCTime CHOICE is used, S/MIME agents MUST
   interpret the year field (YY) as follows:

      If YY is greater than or equal to 50, the year is interpreted as
      19YY; if YY is less than 50, the year is interpreted as 20YY.

   Receiving agents MUST be able to process signing-time attributes that
   are encoded in either UTCTime or GeneralizedTime.

2.5.2.  SMIME Capabilities Attribute

   The SMIMECapabilities attribute includes signature algorithms (such
   as "sha256WithRSAEncryption"), symmetric algorithms (such as "AES-128
   CBC"), and key encipherment algorithms (such as "rsaEncryption").
   There are also several identifiers that indicate support for other
   optional features such as binary encoding and compression.  The
   SMIMECapabilities were designed to be flexible and extensible so
   that, in the future, a means of identifying other capabilities and
   preferences such as certificates can be added in a way that will not
   cause current clients to break.

   If present, the SMIMECapabilities attribute MUST be a
   SignedAttribute; it MUST NOT be an UnsignedAttribute.  CMS defines
   SignedAttributes as a SET OF Attribute.  The SignedAttributes in a
   signerInfo MUST NOT include multiple instances of the
   SMIMECapabilities attribute.  CMS defines the ASN.1 syntax for
   Attribute to include attrValues SET OF AttributeValue.  A
   SMIMECapabilities attribute MUST only include a single instance of
   AttributeValue.  There MUST NOT be zero or multiple instances of
   AttributeValue present in the attrValues SET OF AttributeValue.

   The semantics of the SMIMECapabilities attribute specify a partial
   list as to what the client announcing the SMIMECapabilities can
   support.  A client does not have to list every capability it
   supports, and need not list all its capabilities so that the
   capabilities list doesn't get too long.  In an SMIMECapabilities
   attribute, the object identifiers (OIDs) are listed in order of their
   preference, but SHOULD be separated logically along the lines of
   their categories (signature algorithms, symmetric algorithms, key
   encipherment algorithms, etc.).

   The structure of the SMIMECapabilities attribute is to facilitate
   simple table lookups and binary comparisons in order to determine
   matches.  For instance, the DER-encoding for the SMIMECapability for
   AES-128 CBC MUST be identically encoded regardless of the
   implementation.  Because of the requirement for identical encoding,



Ramsdell & Turner            Standards Track                   [Page 13]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


   individuals documenting algorithms to be used in the
   SMIMECapabilities attribute SHOULD explicitly document the correct
   byte sequence for the common cases.

   For any capability, the associated parameters for the OID MUST
   specify all of the parameters necessary to differentiate between two
   instances of the same algorithm.

   The OIDs that correspond to algorithms SHOULD use the same OID as the
   actual algorithm, except in the case where the algorithm usage is
   ambiguous from the OID.  For instance, in an earlier specification,
   rsaEncryption was ambiguous because it could refer to either a
   signature algorithm or a key encipherment algorithm.  In the event
   that an OID is ambiguous, it needs to be arbitrated by the maintainer
   of the registered SMIMECapabilities list as to which type of
   algorithm will use the OID, and a new OID MUST be allocated under the
   smimeCapabilities OID to satisfy the other use of the OID.

   The registered SMIMECapabilities list specifies the parameters for
   OIDs that need them, most notably key lengths in the case of
   variable-length symmetric ciphers.  In the event that there are no
   differentiating parameters for a particular OID, the parameters MUST
   be omitted, and MUST NOT be encoded as NULL.  Additional values for
   the SMIMECapabilities attribute might be defined in the future.
   Receiving agents MUST handle a SMIMECapabilities object that has
   values that it does not recognize in a graceful manner.

   Section 2.7.1 explains a strategy for caching capabilities.

2.5.3.  Encryption Key Preference Attribute

   The encryption key preference attribute allows the signer to
   unambiguously describe which of the signer's certificates has the
   signer's preferred encryption key.  This attribute is designed to
   enhance behavior for interoperating with those clients that use
   separate keys for encryption and signing.  This attribute is used to
   convey to anyone viewing the attribute which of the listed
   certificates is appropriate for encrypting a session key for future
   encrypted messages.

   If present, the SMIMEEncryptionKeyPreference attribute MUST be a
   SignedAttribute; it MUST NOT be an UnsignedAttribute.  CMS defines
   SignedAttributes as a SET OF Attribute.  The SignedAttributes in a
   signerInfo MUST NOT include multiple instances of the
   SMIMEEncryptionKeyPreference attribute.  CMS defines the ASN.1 syntax
   for Attribute to include attrValues SET OF AttributeValue.  A
   SMIMEEncryptionKeyPreference attribute MUST only include a single




Ramsdell & Turner            Standards Track                   [Page 14]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


   instance of AttributeValue.  There MUST NOT be zero or multiple
   instances of AttributeValue present in the attrValues SET OF
   AttributeValue.

   The sending agent SHOULD include the referenced certificate in the
   set of certificates included in the signed message if this attribute
   is used.  The certificate MAY be omitted if it has been previously
   made available to the receiving agent.  Sending agents SHOULD use
   this attribute if the commonly used or preferred encryption
   certificate is not the same as the certificate used to sign the
   message.

   Receiving agents SHOULD store the preference data if the signature on
   the message is valid and the signing time is greater than the
   currently stored value.  (As with the SMIMECapabilities, the clock
   skew SHOULD be checked and the data not used if the skew is too
   great.)  Receiving agents SHOULD respect the sender's encryption key
   preference attribute if possible.  This, however, represents only a
   preference and the receiving agent can use any certificate in
   replying to the sender that is valid.

   Section 2.7.1 explains a strategy for caching preference data.

2.5.3.1.  Selection of Recipient Key Management Certificate

   In order to determine the key management certificate to be used when
   sending a future CMS EnvelopedData message for a particular
   recipient, the following steps SHOULD be followed:

   - If an SMIMEEncryptionKeyPreference attribute is found in a
     SignedData object received from the desired recipient, this
     identifies the X.509 certificate that SHOULD be used as the X.509
     key management certificate for the recipient.

   - If an SMIMEEncryptionKeyPreference attribute is not found in a
     SignedData object received from the desired recipient, the set of
     X.509 certificates SHOULD be searched for a X.509 certificate with
     the same subject name as the signer of a X.509 certificate that can
     be used for key management.

   - Or use some other method of determining the user's key management
     key.  If a X.509 key management certificate is not found, then
     encryption cannot be done with the signer of the message.  If
     multiple X.509 key management certificates are found, the S/MIME
     agent can make an arbitrary choice between them.






Ramsdell & Turner            Standards Track                   [Page 15]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


2.6.  SignerIdentifier SignerInfo Type

   S/MIME v3.2 implementations MUST support both issuerAndSerialNumber
   and subjectKeyIdentifier.  Messages that use the subjectKeyIdentifier
   choice cannot be read by S/MIME v2 clients.

   It is important to understand that some certificates use a value for
   subjectKeyIdentifier that is not suitable for uniquely identifying a
   certificate.  Implementations MUST be prepared for multiple
   certificates for potentially different entities to have the same
   value for subjectKeyIdentifier, and MUST be prepared to try each
   matching certificate during signature verification before indicating
   an error condition.

2.7.  ContentEncryptionAlgorithmIdentifier

   Sending and receiving agents:

      - MUST support encryption and decryption with AES-128 CBC
        [CMSAES].

      - SHOULD+ support encryption and decryption with AES-192 CBC and
        AES-256 CBC [CMSAES].

      - SHOULD- support encryption and decryption with DES EDE3 CBC,
        hereinafter called "tripleDES" [CMSALG].

2.7.1.  Deciding Which Encryption Method to Use

   When a sending agent creates an encrypted message, it has to decide
   which type of encryption to use.  The decision process involves using
   information garnered from the capabilities lists included in messages
   received from the recipient, as well as out-of-band information such
   as private agreements, user preferences, legal restrictions, and so
   on.

   Section 2.5.2 defines a method by which a sending agent can
   optionally announce, among other things, its decrypting capabilities
   in its order of preference.  The following method for processing and
   remembering the encryption capabilities attribute in incoming signed
   messages SHOULD be used.

      - If the receiving agent has not yet created a list of
        capabilities for the sender's public key, then, after verifying
        the signature on the incoming message and checking the
        timestamp, the receiving agent SHOULD create a new list
        containing at least the signing time and the symmetric
        capabilities.



Ramsdell & Turner            Standards Track                   [Page 16]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


      - If such a list already exists, the receiving agent SHOULD verify
        that the signing time in the incoming message is greater than
        the signing time stored in the list and that the signature is
        valid.  If so, the receiving agent SHOULD update both the
        signing time and capabilities in the list.  Values of the
        signing time that lie far in the future (that is, a greater
        discrepancy than any reasonable clock skew), or a capabilities
        list in messages whose signature could not be verified, MUST NOT
        be accepted.

   The list of capabilities SHOULD be stored for future use in creating
   messages.

   Before sending a message, the sending agent MUST decide whether it is
   willing to use weak encryption for the particular data in the
   message.  If the sending agent decides that weak encryption is
   unacceptable for this data, then the sending agent MUST NOT use a
   weak algorithm.  The decision to use or not use weak encryption
   overrides any other decision in this section about which encryption
   algorithm to use.

   Sections 2.7.1.1 through 2.7.1.2 describe the decisions a sending
   agent SHOULD use in deciding which type of encryption will be applied
   to a message.  These rules are ordered, so the sending agent SHOULD
   make its decision in the order given.

2.7.1.1.  Rule 1: Known Capabilities

   If the sending agent has received a set of capabilities from the
   recipient for the message the agent is about to encrypt, then the
   sending agent SHOULD use that information by selecting the first
   capability in the list (that is, the capability most preferred by the
   intended recipient) that the sending agent knows how to encrypt.  The
   sending agent SHOULD use one of the capabilities in the list if the
   agent reasonably expects the recipient to be able to decrypt the
   message.

2.7.1.2.  Rule 2: Unknown Capabilities, Unknown Version of S/MIME

   If the following two conditions are met:

      - the sending agent has no knowledge of the encryption
        capabilities of the recipient, and

      - the sending agent has no knowledge of the version of S/MIME of
        the recipient,





Ramsdell & Turner            Standards Track                   [Page 17]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


   then the sending agent SHOULD use AES-128 because it is a stronger
   algorithm and is required by S/MIME v3.2.  If the sending agent
   chooses not to use AES-128 in this step, it SHOULD use tripleDES.

2.7.2.  Choosing Weak Encryption

   All algorithms that use 40-bit keys are considered by many to be weak
   encryption.  A sending agent that is controlled by a human SHOULD
   allow a human sender to determine the risks of sending data using a
   weak encryption algorithm before sending the data, and possibly allow
   the human to use a stronger encryption method such as tripleDES or
   AES.

2.7.3.  Multiple Recipients

   If a sending agent is composing an encrypted message to a group of
   recipients where the encryption capabilities of some of the
   recipients do not overlap, the sending agent is forced to send more
   than one message.  Please note that if the sending agent chooses to
   send a message encrypted with a strong algorithm, and then send the
   same message encrypted with a weak algorithm, someone watching the
   communications channel could learn the contents of the strongly
   encrypted message simply by decrypting the weakly encrypted message.

3.  Creating S/MIME Messages

   This section describes the S/MIME message formats and how they are
   created.  S/MIME messages are a combination of MIME bodies and CMS
   content types.  Several media types as well as several CMS content
   types are used.  The data to be secured is always a canonical MIME
   entity.  The MIME entity and other data, such as certificates and
   algorithm identifiers, are given to CMS processing facilities that
   produce a CMS object.  Finally, the CMS object is wrapped in MIME.
   The Enhanced Security Services for S/MIME [ESS] document provides
   descriptions of how nested, secured S/MIME messages are formatted.
   ESS provides a description of how a triple-wrapped S/MIME message is
   formatted using multipart/signed and application/pkcs7-mime for the
   signatures.

   S/MIME provides one format for enveloped-only data, several formats
   for signed-only data, and several formats for signed and enveloped
   data.  Several formats are required to accommodate several
   environments, in particular for signed messages.  The criteria for
   choosing among these formats are also described.

   The reader of this section is expected to understand MIME as
   described in [MIME-SPEC] and [MIME-SECURE].




Ramsdell & Turner            Standards Track                   [Page 18]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


3.1.  Preparing the MIME Entity for Signing, Enveloping, or Compressing

   S/MIME is used to secure MIME entities.  A MIME entity can be a sub-
   part, sub-parts of a message, or the whole message with all its sub-
   parts.  A MIME entity that is the whole message includes only the
   MIME message headers and MIME body, and does not include the RFC-822
   header.  Note that S/MIME can also be used to secure MIME entities
   used in applications other than Internet mail.  If protection of the
   RFC-822 header is required, the use of the message/rfc822 media type
   is explained later in this section.

   The MIME entity that is secured and described in this section can be
   thought of as the "inside" MIME entity.  That is, it is the
   "innermost" object in what is possibly a larger MIME message.
   Processing "outside" MIME entities into CMS content types is
   described in Sections 3.2, 3.4, and elsewhere.

   The procedure for preparing a MIME entity is given in [MIME-SPEC].
   The same procedure is used here with some additional restrictions
   when signing.  The description of the procedures from [MIME-SPEC] is
   repeated here, but it is suggested that the reader refer to that
   document for the exact procedure.  This section also describes
   additional requirements.

   A single procedure is used for creating MIME entities that are to
   have any combination of signing, enveloping, and compressing applied.
   Some additional steps are recommended to defend against known
   corruptions that can occur during mail transport that are of
   particular importance for clear-signing using the multipart/signed
   format.  It is recommended that these additional steps be performed
   on enveloped messages, or signed and enveloped messages, so that the
   message can be forwarded to any environment without modification.

   These steps are descriptive rather than prescriptive.  The
   implementer is free to use any procedure as long as the result is the
   same.

   Step 1.  The MIME entity is prepared according to the local
            conventions.

   Step 2.  The leaf parts of the MIME entity are converted to canonical
            form.

   Step 3.  Appropriate transfer encoding is applied to the leaves of
            the MIME entity.






Ramsdell & Turner            Standards Track                   [Page 19]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


   When an S/MIME message is received, the security services on the
   message are processed, and the result is the MIME entity.  That MIME
   entity is typically passed to a MIME-capable user agent where it is
   further decoded and presented to the user or receiving application.

   In order to protect outer, non-content-related message header fields
   (for instance, the "Subject", "To", "From", and "Cc" fields), the
   sending client MAY wrap a full MIME message in a message/rfc822
   wrapper in order to apply S/MIME security services to these header
   fields.  It is up to the receiving client to decide how to present
   this "inner" header along with the unprotected "outer" header.

   When an S/MIME message is received, if the top-level protected MIME
   entity has a Content-Type of message/rfc822, it can be assumed that
   the intent was to provide header protection.  This entity SHOULD be
   presented as the top-level message, taking into account header
   merging issues as previously discussed.

3.1.1.  Canonicalization

   Each MIME entity MUST be converted to a canonical form that is
   uniquely and unambiguously representable in the environment where the
   signature is created and the environment where the signature will be
   verified.  MIME entities MUST be canonicalized for enveloping and
   compressing as well as signing.

   The exact details of canonicalization depend on the actual media type
   and subtype of an entity, and are not described here.  Instead, the
   standard for the particular media type SHOULD be consulted.  For
   example, canonicalization of type text/plain is different from
   canonicalization of audio/basic.  Other than text types, most types
   have only one representation regardless of computing platform or
   environment that can be considered their canonical representation.
   In general, canonicalization will be performed by the non-security
   part of the sending agent rather than the S/MIME implementation.

   The most common and important canonicalization is for text, which is
   often represented differently in different environments.  MIME
   entities of major type "text" MUST have both their line endings and
   character set canonicalized.  The line ending MUST be the pair of
   characters <CR><LF>, and the charset SHOULD be a registered charset
   [CHARSETS].  The details of the canonicalization are specified in
   [MIME-SPEC].

   Note that some charsets such as ISO-2022 have multiple
   representations for the same characters.  When preparing such text
   for signing, the canonical representation specified for the charset
   MUST be used.



Ramsdell & Turner            Standards Track                   [Page 20]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


3.1.2.  Transfer Encoding

   When generating any of the secured MIME entities below, except the
   signing using the multipart/signed format, no transfer encoding is
   required at all.  S/MIME implementations MUST be able to deal with
   binary MIME objects.  If no Content-Transfer-Encoding header field is
   present, the transfer encoding is presumed to be 7BIT.

   S/MIME implementations SHOULD however use transfer encoding described
   in Section 3.1.3 for all MIME entities they secure.  The reason for
   securing only 7-bit MIME entities, even for enveloped data that are
   not exposed to the transport, is that it allows the MIME entity to be
   handled in any environment without changing it.  For example, a
   trusted gateway might remove the envelope, but not the signature, of
   a message, and then forward the signed message on to the end
   recipient so that they can verify the signatures directly.  If the
   transport internal to the site is not 8-bit clean, such as on a wide-
   area network with a single mail gateway, verifying the signature will
   not be possible unless the original MIME entity was only 7-bit data.

   S/MIME implementations that "know" that all intended recipients are
   capable of handling inner (all but the outermost) binary MIME objects
   SHOULD use binary encoding as opposed to a 7-bit-safe transfer
   encoding for the inner entities.  The use of a 7-bit-safe encoding
   (such as base64) would unnecessarily expand the message size.
   Implementations MAY "know" that recipient implementations are capable
   of handling inner binary MIME entities either by interpreting the id-
   cap-preferBinaryInside SMIMECapabilities attribute, by prior
   agreement, or by other means.

   If one or more intended recipients are unable to handle inner binary
   MIME objects, or if this capability is unknown for any of the
   intended recipients, S/MIME implementations SHOULD use transfer
   encoding described in Section 3.1.3 for all MIME entities they
   secure.

3.1.3.  Transfer Encoding for Signing Using multipart/signed

   If a multipart/signed entity is ever to be transmitted over the
   standard Internet SMTP infrastructure or other transport that is
   constrained to 7-bit text, it MUST have transfer encoding applied so
   that it is represented as 7-bit text.  MIME entities that are 7-bit
   data already need no transfer encoding.  Entities such as 8-bit text
   and binary data can be encoded with quoted-printable or base-64
   transfer encoding.






Ramsdell & Turner            Standards Track                   [Page 21]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


   The primary reason for the 7-bit requirement is that the Internet
   mail transport infrastructure cannot guarantee transport of 8-bit or
   binary data.  Even though many segments of the transport
   infrastructure now handle 8-bit and even binary data, it is sometimes
   not possible to know whether the transport path is 8-bit clean.  If a
   mail message with 8-bit data were to encounter a message transfer
   agent that cannot transmit 8-bit or binary data, the agent has three
   options, none of which are acceptable for a clear-signed message:

    - The agent could change the transfer encoding; this would
      invalidate the signature.

    - The agent could transmit the data anyway, which would most likely
      result in the 8th bit being corrupted; this too would invalidate
      the signature.

    - The agent could return the message to the sender.

   [MIME-SECURE] prohibits an agent from changing the transfer encoding
   of the first part of a multipart/signed message.  If a compliant
   agent that cannot transmit 8-bit or binary data encounters a
   multipart/signed message with 8-bit or binary data in the first part,
   it would have to return the message to the sender as undeliverable.

3.1.4.  Sample Canonical MIME Entity

   This example shows a multipart/mixed message with full transfer
   encoding.  This message contains a text part and an attachment.  The
   sample message text includes characters that are not US-ASCII and
   thus need to be transfer encoded.  Though not shown here, the end of
   each line is <CR><LF>.  The line ending of the MIME headers, the
   text, and the transfer encoded parts, all MUST be <CR><LF>.

   Note that this example is not of an S/MIME message.

      Content-Type: multipart/mixed; boundary=bar

      --bar
      Content-Type: text/plain; charset=iso-8859-1
      Content-Transfer-Encoding: quoted-printable

      =A1Hola Michael!

      How do you like the new S/MIME specification?

      It's generally a good idea to encode lines that begin with
      From=20because some mail transport agents will insert a greater-
      than (>) sign, thus invalidating the signature.



Ramsdell & Turner            Standards Track                   [Page 22]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


      Also, in some cases it might be desirable to encode any =20
      trailing whitespace that occurs on lines in order to ensure =20
      that the message signature is not invalidated when passing =20
      a gateway that modifies such whitespace (like BITNET). =20

      --bar
      Content-Type: image/jpeg
      Content-Transfer-Encoding: base64

      iQCVAwUBMJrRF2N9oWBghPDJAQE9UQQAtl7LuRVndBjrk4EqYBIb3h5QXIX/LC//
      jJV5bNvkZIGPIcEmI5iFd9boEgvpirHtIREEqLQRkYNoBActFBZmh9GC3C041WGq
      uMbrbxc+nIs1TIKlA08rVi9ig/2Yh7LFrK5Ein57U/W72vgSxLhe/zhdfolT9Brn
      HOxEa44b+EI=

      --bar--

3.2.  The application/pkcs7-mime Media Type

   The application/pkcs7-mime media type is used to carry CMS content
   types including EnvelopedData, SignedData, and CompressedData.  The
   details of constructing these entities are described in subsequent
   sections.  This section describes the general characteristics of the
   application/pkcs7-mime media type.

   The carried CMS object always contains a MIME entity that is prepared
   as described in Section 3.1 if the eContentType is id-data.  Other
   contents MAY be carried when the eContentType contains different
   values.  See [ESS] for an example of this with signed receipts.

   Since CMS content types are binary data, in most cases base-64
   transfer encoding is appropriate, in particular, when used with SMTP
   transport.  The transfer encoding used depends on the transport
   through which the object is to be sent, and is not a characteristic
   of the media type.

   Note that this discussion refers to the transfer encoding of the CMS
   object or "outside" MIME entity.  It is completely distinct from, and
   unrelated to, the transfer encoding of the MIME entity secured by the
   CMS object, the "inside" object, which is described in Section 3.1.

   Because there are several types of application/pkcs7-mime objects, a
   sending agent SHOULD do as much as possible to help a receiving agent
   know about the contents of the object without forcing the receiving
   agent to decode the ASN.1 for the object.  The Content-Type header
   field of all application/pkcs7-mime objects SHOULD include the
   optional "smime-type" parameter, as described in the following
   sections.




Ramsdell & Turner            Standards Track                   [Page 23]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


3.2.1.  The name and filename Parameters

   For the application/pkcs7-mime, sending agents SHOULD emit the
   optional "name" parameter to the Content-Type field for compatibility
   with older systems.  Sending agents SHOULD also emit the optional
   Content-Disposition field [CONTDISP] with the "filename" parameter.
   If a sending agent emits the above parameters, the value of the
   parameters SHOULD be a file name with the appropriate extension:

   Media Type                                            File Extension
     application/pkcs7-mime (SignedData, EnvelopedData)      .p7m
     application/pkcs7-mime (degenerate SignedData           .p7c
        certificate management message)
     application/pkcs7-mime (CompressedData)                 .p7z
     application/pkcs7-signature (SignedData)                .p7s

   In addition, the file name SHOULD be limited to eight characters
   followed by a three-letter extension.  The eight-character filename
   base can be any distinct name; the use of the filename base "smime"
   SHOULD be used to indicate that the MIME entity is associated with
   S/MIME.

   Including a file name serves two purposes.  It facilitates easier use
   of S/MIME objects as files on disk.  It also can convey type
   information across gateways.  When a MIME entity of type
   application/pkcs7-mime (for example) arrives at a gateway that has no
   special knowledge of S/MIME, it will default the entity's media type
   to application/octet-stream and treat it as a generic attachment,
   thus losing the type information.  However, the suggested filename
   for an attachment is often carried across a gateway.  This often
   allows the receiving systems to determine the appropriate application
   to hand the attachment off to, in this case, a stand-alone S/MIME
   processing application.  Note that this mechanism is provided as a
   convenience for implementations in certain environments.  A proper
   S/MIME implementation MUST use the media types and MUST NOT rely on
   the file extensions.

3.2.2.  The smime-type Parameter

   The application/pkcs7-mime content type defines the optional "smime-
   type" parameter.  The intent of this parameter is to convey details
   about the security applied (signed or enveloped) along with
   information about the contained content.  This specification defines
   the following smime-types.







Ramsdell & Turner            Standards Track                   [Page 24]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


      Name                   CMS Type                Inner Content
      enveloped-data         EnvelopedData           id-data
      signed-data            SignedData              id-data
      certs-only             SignedData              none
      compressed-data        CompressedData          id-data

   In order for consistency to be obtained with future specifications,
   the following guidelines SHOULD be followed when assigning a new
   smime-type parameter.

      1. If both signing and encryption can be applied to the content,
         then two values for smime-type SHOULD be assigned "signed-*"
         and "enveloped-*".  If one operation can be assigned, then this
         can be omitted.  Thus, since "certs-only" can only be signed,
         "signed-" is omitted.

      2. A common string for a content OID SHOULD be assigned.  We use
         "data" for the id-data content OID when MIME is the inner
         content.

      3. If no common string is assigned, then the common string of
         "OID.<oid>" is recommended (for example,
         "OID.2.16.840.1.101.3.4.1.2" would be AES-128 CBC).

   It is explicitly intended that this field be a suitable hint for mail
   client applications to indicate whether a message is "signed" or
   "enveloped" without having to tunnel into the CMS payload.

3.3.  Creating an Enveloped-Only Message

   This section describes the format for enveloping a MIME entity
   without signing it.  It is important to note that sending enveloped
   but not signed messages does not provide for data integrity.  It is
   possible to replace ciphertext in such a way that the processed
   message will still be valid, but the meaning can be altered.

   Step 1.  The MIME entity to be enveloped is prepared according to
            Section 3.1.

   Step 2.  The MIME entity and other required data is processed into a
            CMS object of type EnvelopedData.  In addition to encrypting
            a copy of the content-encryption key for each recipient, a
            copy of the content-encryption key SHOULD be encrypted for
            the originator and included in the EnvelopedData (see [CMS],
            Section 6).

   Step 3.  The EnvelopedData object is wrapped in a CMS ContentInfo
            object.



Ramsdell & Turner            Standards Track                   [Page 25]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


   Step 4.  The ContentInfo object is inserted into an
            application/pkcs7-mime MIME entity.

   The smime-type parameter for enveloped-only messages is "enveloped-
   data".  The file extension for this type of message is ".p7m".

   A sample message would be:

      Content-Type: application/pkcs7-mime; smime-type=enveloped-data;
           name=smime.p7m
      Content-Transfer-Encoding: base64
      Content-Disposition: attachment; filename=smime.p7m

      rfvbnj756tbBghyHhHUujhJhjH77n8HHGT9HG4VQpfyF467GhIGfHfYT6
      7n8HHGghyHhHUujhJh4VQpfyF467GhIGfHfYGTrfvbnjT6jH7756tbB9H
      f8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHfYT6ghyHhHUujpfyF4
      0GhIGfHfQbnj756YT64V

3.4.  Creating a Signed-Only Message

   There are two formats for signed messages defined for S/MIME:

      - application/pkcs7-mime with SignedData.

      - multipart/signed.

   In general, the multipart/signed form is preferred for sending, and
   receiving agents MUST be able to handle both.

3.4.1.  Choosing a Format for Signed-Only Messages

   There are no hard-and-fast rules as to when a particular signed-only
   format is chosen.  It depends on the capabilities of all the
   receivers and the relative importance of receivers with S/MIME
   facilities being able to verify the signature versus the importance
   of receivers without S/MIME software being able to view the message.

   Messages signed using the multipart/signed format can always be
   viewed by the receiver whether or not they have S/MIME software.
   They can also be viewed whether they are using a MIME-native user
   agent or they have messages translated by a gateway.  In this
   context, "be viewed" means the ability to process the message
   essentially as if it were not a signed message, including any other
   MIME structure the message might have.







Ramsdell & Turner            Standards Track                   [Page 26]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


   Messages signed using the SignedData format cannot be viewed by a
   recipient unless they have S/MIME facilities.  However, the
   SignedData format protects the message content from being changed by
   benign intermediate agents.  Such agents might do line wrapping or
   content-transfer encoding changes that would break the signature.

3.4.2.  Signing Using application/pkcs7-mime with SignedData

   This signing format uses the application/pkcs7-mime media type.  The
   steps to create this format are:

   Step 1.  The MIME entity is prepared according to Section 3.1.

   Step 2.  The MIME entity and other required data are processed into a
            CMS object of type SignedData.

   Step 3.  The SignedData object is wrapped in a CMS ContentInfo
            object.

   Step 4.  The ContentInfo object is inserted into an
            application/pkcs7-mime MIME entity.

   The smime-type parameter for messages using application/pkcs7-mime
   with SignedData is "signed-data".  The file extension for this type
   of message is ".p7m".

   A sample message would be:

      Content-Type: application/pkcs7-mime; smime-type=signed-data;
           name=smime.p7m
      Content-Transfer-Encoding: base64
      Content-Disposition: attachment; filename=smime.p7m

      567GhIGfHfYT6ghyHhHUujpfyF4f8HHGTrfvhJhjH776tbB9HG4VQbnj7
      77n8HHGT9HG4VQpfyF467GhIGfHfYT6rfvbnj756tbBghyHhHUujhJhjH
      HUujhJh4VQpfyF467GhIGfHfYGTrfvbnjT6jH7756tbB9H7n8HHGghyHh
      6YT64V0GhIGfHfQbnj75

3.4.3.  Signing Using the multipart/signed Format

   This format is a clear-signing format.  Recipients without any S/MIME
   or CMS processing facilities are able to view the message.  It makes
   use of the multipart/signed media type described in [MIME-SECURE].
   The multipart/signed media type has two parts.  The first part
   contains the MIME entity that is signed; the second part contains the
   "detached signature" CMS SignedData object in which the
   encapContentInfo eContent field is absent.




Ramsdell & Turner            Standards Track                   [Page 27]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


3.4.3.1.  The application/pkcs7-signature Media Type

   This media type always contains a CMS ContentInfo containing a single
   CMS object of type SignedData.  The SignedData encapContentInfo
   eContent field MUST be absent.  The signerInfos field contains the
   signatures for the MIME entity.

   The file extension for signed-only messages using application/pkcs7-
   signature is ".p7s".

3.4.3.2.  Creating a multipart/signed Message

   Step 1.  The MIME entity to be signed is prepared according to
            Section 3.1, taking special care for clear-signing.

   Step 2.  The MIME entity is presented to CMS processing in order to
            obtain an object of type SignedData in which the
            encapContentInfo eContent field is absent.

   Step 3.  The MIME entity is inserted into the first part of a
            multipart/signed message with no processing other than that
            described in Section 3.1.

   Step 4.  Transfer encoding is applied to the "detached signature" CMS
            SignedData object, and it is inserted into a MIME entity of
            type application/pkcs7-signature.

   Step 5.  The MIME entity of the application/pkcs7-signature is
            inserted into the second part of the multipart/signed
            entity.

   The multipart/signed Content-Type has two required parameters: the
   protocol parameter and the micalg parameter.

   The protocol parameter MUST be "application/pkcs7-signature".  Note
   that quotation marks are required around the protocol parameter
   because MIME requires that the "/" character in the parameter value
   MUST be quoted.

   The micalg parameter allows for one-pass processing when the
   signature is being verified.  The value of the micalg parameter is
   dependent on the message digest algorithm(s) used in the calculation
   of the Message Integrity Check.  If multiple message digest
   algorithms are used, they MUST be separated by commas per [MIME-
   SECURE].  The values to be placed in the micalg parameter SHOULD be
   from the following:





Ramsdell & Turner            Standards Track                   [Page 28]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


      Algorithm   Value Used

      MD5         md5
      SHA-1       sha-1
      SHA-224     sha-224
      SHA-256     sha-256
      SHA-384     sha-384
      SHA-512     sha-512
      Any other   (defined separately in algorithm profile or "unknown"
                   if not defined)

   (Historical note: some early implementations of S/MIME emitted and
   expected "rsa-md5", "rsa-sha1", and "sha1" for the micalg parameter.)
   Receiving agents SHOULD be able to recover gracefully from a micalg
   parameter value that they do not recognize.  Future names for this
   parameter will be consistent with the IANA "Hash Function Textual
   Names" registry.

3.4.3.3.  Sample multipart/signed Message

       Content-Type: multipart/signed;
          protocol="application/pkcs7-signature";
          micalg=sha1; boundary=boundary42

       --boundary42
       Content-Type: text/plain

       This is a clear-signed message.

       --boundary42
       Content-Type: application/pkcs7-signature; name=smime.p7s
       Content-Transfer-Encoding: base64
       Content-Disposition: attachment; filename=smime.p7s

       ghyHhHUujhJhjH77n8HHGTrfvbnj756tbB9HG4VQpfyF467GhIGfHfYT6
       4VQpfyF467GhIGfHfYT6jH77n8HHGghyHhHUujhJh756tbB9HGTrfvbnj
       n8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHfYT6ghyHhHUujpfyF4
       7GhIGfHfYT64VQbnj756

      --boundary42--

   The content that is digested (the first part of the multipart/signed)
   consists of the bytes:

   43 6f 6e 74 65 6e 74 2d 54 79 70 65 3a 20 74 65 78 74 2f 70 6c 61 69
   6e 0d 0a 0d 0a 54 68 69 73 20 69 73 20 61 20 63 6c 65 61 72 2d 73 69
   67 6e 65 64 20 6d 65 73 73 61 67 65 2e 0d 0a




Ramsdell & Turner            Standards Track                   [Page 29]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


3.5.  Creating a Compressed-Only Message

   This section describes the format for compressing a MIME entity.
   Please note that versions of S/MIME prior to version 3.1 did not
   specify any use of CompressedData, and will not recognize it.  The
   use of a capability to indicate the ability to receive CompressedData
   is described in [CMSCOMPR] and is the preferred method for
   compatibility.

   Step 1.  The MIME entity to be compressed is prepared according to
            Section 3.1.

   Step 2.  The MIME entity and other required data are processed into a
            CMS object of type CompressedData.

   Step 3.  The CompressedData object is wrapped in a CMS ContentInfo
            object.

   Step 4.  The ContentInfo object is inserted into an
            application/pkcs7-mime MIME entity.

   The smime-type parameter for compressed-only messages is "compressed-
   data".  The file extension for this type of message is ".p7z".

   A sample message would be:

   Content-Type: application/pkcs7-mime; smime-type=compressed-data;
      name=smime.p7z
   Content-Transfer-Encoding: base64
   Content-Disposition: attachment; filename=smime.p7z

   rfvbnj756tbBghyHhHUujhJhjH77n8HHGT9HG4VQpfyF467GhIGfHfYT6
   7n8HHGghyHhHUujhJh4VQpfyF467GhIGfHfYGTrfvbnjT6jH7756tbB9H
   f8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHfYT6ghyHhHUujpfyF4
   0GhIGfHfQbnj756YT64V

3.6.  Multiple Operations

   The signed-only, enveloped-only, and compressed-only MIME formats can
   be nested.  This works because these formats are all MIME entities
   that encapsulate other MIME entities.

   An S/MIME implementation MUST be able to receive and process
   arbitrarily nested S/MIME within reasonable resource limits of the
   recipient computer.






Ramsdell & Turner            Standards Track                   [Page 30]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


   It is possible to apply any of the signing, encrypting, and
   compressing operations in any order.  It is up to the implementer and
   the user to choose.  When signing first, the signatories are then
   securely obscured by the enveloping.  When enveloping first the
   signatories are exposed, but it is possible to verify signatures
   without removing the enveloping.  This can be useful in an
   environment where automatic signature verification is desired, as no
   private key material is required to verify a signature.

   There are security ramifications to choosing whether to sign first or
   encrypt first.  A recipient of a message that is encrypted and then
   signed can validate that the encrypted block was unaltered, but
   cannot determine any relationship between the signer and the
   unencrypted contents of the message.  A recipient of a message that
   is signed then encrypted can assume that the signed message itself
   has not been altered, but that a careful attacker could have changed
   the unauthenticated portions of the encrypted message.

   When using compression, keep the following guidelines in mind:

      - Compression of binary encoded encrypted data is discouraged,
        since it will not yield significant compression.  Base64
        encrypted data could very well benefit, however.

      - If a lossy compression algorithm is used with signing, you will
        need to compress first, then sign.

3.7.  Creating a Certificate Management Message

   The certificate management message or MIME entity is used to
   transport certificates and/or Certificate Revocation Lists, such as
   in response to a registration request.

   Step 1.  The certificates and/or Certificate Revocation Lists are
            made available to the CMS generating process that creates a
            CMS object of type SignedData.  The SignedData
            encapContentInfo eContent field MUST be absent and
            signerInfos field MUST be empty.

   Step 2.  The SignedData object is wrapped in a CMS ContentInfo
            object.

   Step 3.  The ContentInfo object is enclosed in an
            application/pkcs7-mime MIME entity.

   The smime-type parameter for a certificate management message is
   "certs-only".  The file extension for this type of message is ".p7c".




Ramsdell & Turner            Standards Track                   [Page 31]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


3.8.  Registration Requests

   A sending agent that signs messages MUST have a certificate for the
   signature so that a receiving agent can verify the signature.  There
   are many ways of getting certificates, such as through an exchange
   with a certification authority, through a hardware token or diskette,
   and so on.

   S/MIME v2 [SMIMEv2] specified a method for "registering" public keys
   with certificate authorities using an application/pkcs10 body part.
   Since that time, the IETF PKIX Working Group has developed other
   methods for requesting certificates.  However, S/MIME v3.2 does not
   require a particular certificate request mechanism.

3.9.  Identifying an S/MIME Message

   Because S/MIME takes into account interoperation in non-MIME
   environments, several different mechanisms are employed to carry the
   type information, and it becomes a bit difficult to identify S/MIME
   messages.  The following table lists criteria for determining whether
   or not a message is an S/MIME message.  A message is considered an
   S/MIME message if it matches any of the criteria listed below.

   The file suffix in the table below comes from the "name" parameter in
   the Content-Type header field, or the "filename" parameter on the
   Content-Disposition header field.  These parameters that give the
   file suffix are not listed below as part of the parameter section.

   Media type:  application/pkcs7-mime
   parameters:  any
   file suffix: any

   Media type:  multipart/signed
   parameters:  protocol="application/pkcs7-signature"
   file suffix: any

   Media type:  application/octet-stream
   parameters:  any
   file suffix: p7m, p7s, p7c, p7z

4.  Certificate Processing

   A receiving agent MUST provide some certificate retrieval mechanism
   in order to gain access to certificates for recipients of digital
   envelopes.  This specification does not cover how S/MIME agents
   handle certificates, only what they do after a certificate has been
   validated or rejected.  S/MIME certificate issues are covered in
   [CERT32].



Ramsdell & Turner            Standards Track                   [Page 32]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


   At a minimum, for initial S/MIME deployment, a user agent could
   automatically generate a message to an intended recipient requesting
   that recipient's certificate in a signed return message.  Receiving
   and sending agents SHOULD also provide a mechanism to allow a user to
   "store and protect" certificates for correspondents in such a way so
   as to guarantee their later retrieval.

4.1.  Key Pair Generation

   All generated key pairs MUST be generated from a good source of non-
   deterministic random input [RANDOM] and the private key MUST be
   protected in a secure fashion.

   An S/MIME user agent MUST NOT generate asymmetric keys less than 512
   bits for use with the RSA or DSA signature algorithms.

   For 512-bit RSA with SHA-1 see [CMSALG] and [FIPS186-2] without
   Change Notice 1, for 512-bit RSA with SHA-256 see [CMS-SHA2] and
   [FIPS186-2] without Change Notice 1, and for 1024-bit through
   2048-bit RSA with SHA-256 see [CMS-SHA2] and [FIPS186-2] with Change
   Notice 1.  The first reference provides the signature algorithm's
   object identifier, and the second provides the signature algorithm's
   definition.

   For 512-bit DSA with SHA-1 see [CMSALG] and [FIPS186-2] without
   Change Notice 1, for 512-bit DSA with SHA-256 see [CMS-SHA2] and
   [FIPS186-2] without Change Notice 1, for 1024-bit DSA with SHA-1 see
   [CMSALG] and [FIPS186-2] with Change Notice 1, for 1024-bit and above
   DSA with SHA-256 see [CMS-SHA2] and [FIPS186-3].  The first reference
   provides the signature algorithm's object identifier and the second
   provides the signature algorithm's definition.

   For RSASSA-PSS with SHA-256, see [RSAPSS].  For 1024-bit DH, see
   [CMSALG].  For 1024-bit and larger DH, see [SP800-56A]; regardless,
   use the KDF, which is from X9.42, specified in [CMSALG].  For RSAES-
   OAEP, see [RSAOAEP].

4.2.  Signature Generation

   The following are the requirements for an S/MIME agent generated RSA,
   RSASSA-PSS, and DSA signatures:

           key size <= 1023 : SHOULD NOT (see Security Considerations)
   1024 <= key size <= 2048 : SHOULD     (see Security Considerations)
   2048 <  key size         : MAY        (see Security Considerations)






Ramsdell & Turner            Standards Track                   [Page 33]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


4.3.  Signature Verification

   The following are the requirements for S/MIME receiving agents during
   signature verification of RSA, RSASSA-PSS, and DSA signatures:

           key size <= 1023 : MAY        (see Security Considerations)
   1024 <= key size <= 2048 : MUST       (see Security Considerations)
   2048 <  key size         : MAY        (see Security Considerations)

4.4.  Encryption

   The following are the requirements for an S/MIME agent when
   establishing keys for content encryption using the RSA, RSA-OAEP, and
   DH algorithms:

           key size <= 1023 : SHOULD NOT (see Security Considerations)
   1024 <= key size <= 2048 : SHOULD     (see Security Considerations)
   2048 <  key size         : MAY        (see Security Considerations)

4.5.  Decryption

   The following are the requirements for an S/MIME agent when
   establishing keys for content decryption using the RSA, RSAES-OAEP,
   and DH algorithms:

           key size <= 1023 : MAY        (see Security Considerations)
   1024 <= key size <= 2048 : MUST       (see Security Considerations)
   2048 <  key size         : MAY        (see Security Considerations)

5.  IANA Considerations

   The following information updates the media type registration for
   application/pkcs7-mime and application/pkcs7-signature to refer to
   this document as opposed to RFC 2311.

   Note that other documents can define additional MIME media types for
   S/MIME.

5.1.  Media Type for application/pkcs7-mime

   Type name: application

   Subtype Name: pkcs7-mime

   Required Parameters: NONE






Ramsdell & Turner            Standards Track                   [Page 34]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


   Optional Parameters: smime-type/signed-data
                        smime-type/enveloped-data
                        smime-type/compressed-data
                        smime-type/certs-only
                        name

   Encoding Considerations: See Section 3 of this document

   Security Considerations: See Section 6 of this document

   Interoperability Considerations: See Sections 1-6 of this document

   Published Specification: RFC 2311, RFC 2633, and this document

   Applications that use this media type: Security applications

   Additional information: NONE

   Person & email to contact for further information:
      S/MIME working group chairs smime-chairs@tools.ietf.org

   Intended usage: COMMON

   Restrictions on usage: NONE

   Author: Sean Turner

   Change Controller: S/MIME working group delegated from the IESG

5.2.  Media Type for application/pkcs7-signature

   Type name: application

   Subtype Name: pkcs7-signature

   Required Parameters: NONE

   Optional Parameters: NONE

   Encoding Considerations: See Section 3 of this document

   Security Considerations: See Section 6 of this document

   Interoperability Considerations: See Sections 1-6 of this document

   Published Specification: RFC 2311, RFC 2633, and this document

   Applications that use this media type: Security applications



Ramsdell & Turner            Standards Track                   [Page 35]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


   Additional information: NONE

   Person & email to contact for further information:
      S/MIME working group chairs smime-chairs@tools.ietf.org

   Intended usage: COMMON

   Restrictions on usage: NONE

   Author: Sean Turner

   Change Controller: S/MIME working group delegated from the IESG

6.  Security Considerations

   Cryptographic algorithms will be broken or weakened over time.
   Implementers and users need to check that the cryptographic
   algorithms listed in this document continue to provide the expected
   level of security.  The IETF from time to time may issue documents
   dealing with the current state of the art.  For example:

      - The Million Message Attack described in RFC 3218 [MMA].

      - The Diffie-Hellman "small-subgroup" attacks described in RFC
        2785 [DHSUB].

      - The attacks against hash algorithms described in RFC 4270 [HASH-
        ATTACK].

   This specification uses Public-Key Cryptography technologies.  It is
   assumed that the private key is protected to ensure that it is not
   accessed or altered by unauthorized parties.

   It is impossible for most people or software to estimate the value of
   a message's content.  Further, it is impossible for most people or
   software to estimate the actual cost of recovering an encrypted
   message content that is encrypted with a key of a particular size.
   Further, it is quite difficult to determine the cost of a failed
   decryption if a recipient cannot process a message's content.  Thus,
   choosing between different key sizes (or choosing whether to just use
   plaintext) is also impossible for most people or software.  However,
   decisions based on these criteria are made all the time, and
   therefore this specification gives a framework for using those
   estimates in choosing algorithms.

   The choice of 2048 bits as the RSA asymmetric key size in this
   specification is based on the desire to provide at least 100 bits of
   security.  The key sizes that must be supported to conform to this



Ramsdell & Turner            Standards Track                   [Page 36]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


   specification seem appropriate for the Internet based on [STRENGTH].
   Of course, there are environments, such as financial and medical
   systems, that may select different key sizes.  For this reason, an
   implementation MAY support key sizes beyond those recommended in this
   specification.

   Receiving agents that validate signatures and sending agents that
   encrypt messages need to be cautious of cryptographic processing
   usage when validating signatures and encrypting messages using keys
   larger than those mandated in this specification.  An attacker could
   send certificates with keys that would result in excessive
   cryptographic processing, for example, keys larger than those
   mandated in this specification, which could swamp the processing
   element.  Agents that use such keys without first validating the
   certificate to a trust anchor are advised to have some sort of
   cryptographic resource management system to prevent such attacks.

   Using weak cryptography in S/MIME offers little actual security over
   sending plaintext.  However, other features of S/MIME, such as the
   specification of AES and the ability to announce stronger
   cryptographic capabilities to parties with whom you communicate,
   allow senders to create messages that use strong encryption.  Using
   weak cryptography is never recommended unless the only alternative is
   no cryptography.

   RSA and DSA keys of less than 1024 bits are now considered by many
   experts to be cryptographically insecure (due to advances in
   computing power), and should no longer be used to protect messages.
   Such keys were previously considered secure, so processing previously
   received signed and encrypted mail will often result in the use of
   weak keys.  Implementations that wish to support previous versions of
   S/MIME or process old messages need to consider the security risks
   that result from smaller key sizes (e.g., spoofed messages) versus
   the costs of denial of service.  If an implementation supports
   verification of digital signatures generated with RSA and DSA keys of
   less than 1024 bits, it MUST warn the user.  Implementers should
   consider providing different warnings for newly received messages and
   previously stored messages.  Server implementations (e.g., secure
   mail list servers) where user warnings are not appropriate SHOULD
   reject messages with weak signatures.

   Implementers SHOULD be aware that multiple active key pairs can be
   associated with a single individual.  For example, one key pair can
   be used to support confidentiality, while a different key pair can be
   used for digital signatures.






Ramsdell & Turner            Standards Track                   [Page 37]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


   If a sending agent is sending the same message using different
   strengths of cryptography, an attacker watching the communications
   channel might be able to determine the contents of the strongly
   encrypted message by decrypting the weakly encrypted version.  In
   other words, a sender SHOULD NOT send a copy of a message using
   weaker cryptography than they would use for the original of the
   message.

   Modification of the ciphertext can go undetected if authentication is
   not also used, which is the case when sending EnvelopedData without
   wrapping it in SignedData or enclosing SignedData within it.

   If an implementation is concerned about compliance with National
   Institute of Standards and Technology (NIST) key size
   recommendations, then see [SP800-57].

   If messaging environments make use of the fact that a message is
   signed to change the behavior of message processing (examples would
   be running rules or UI display hints), without first verifying that
   the message is actually signed and knowing the state of the
   signature, this can lead to incorrect handling of the message.
   Visual indicators on messages may need to have the signature
   validation code checked periodically if the indicator is supposed to
   give information on the current status of a message.

7.  References

7.1.  Reference Conventions

   [CMS] refers to [RFC5652].

   [ESS] refers to [RFC2634] and [RFC5035].

   [MIME] refers to [RFC2045], [RFC2046],  [RFC2047], [RFC2049],
   [RFC4288], and [RFC4289].

   [SMIMEv2] refers to [RFC2311], [RFC2312], [RFC2313], [RFC2314], and
   [RFC2315].

   [SMIMEv3] refers to [RFC2630], [RFC2631], [RFC2632], [RFC2633],
   [RFC2634], and [RFC5035].

   [SMIMv3.1] refers to [RFC2634], [RFC3850], [RFC3851], [RFC3852], and
   [RFC5035].







Ramsdell & Turner            Standards Track                   [Page 38]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


7.2.  Normative References

   [CERT32]      Ramsdell, B. and S. Turner, "Secure/Multipurpose
                 Internet Mail Extensions (S/MIME) Version 3.2
                 Certificate Handling", RFC 5750, January 2010.

   [CHARSETS]    Character sets assigned by IANA.  See
                 http://www.iana.org/assignments/character-sets.

   [CMSAES]      Schaad, J., "Use of the Advanced Encryption Standard
                 (AES) Encryption Algorithm in Cryptographic Message
                 Syntax (CMS)", RFC 3565, July 2003.

   [CMSALG]      Housley, R., "Cryptographic Message Syntax (CMS)
                 Algorithms", RFC 3370, August 2002.

   [CMSCOMPR]    Gutmann, P., "Compressed Data Content Type for
                 Cryptographic Message Syntax (CMS)", RFC 3274, June
                 2002.

   [CMS-SHA2]    Turner, S., "Using SHA2 Algorithms with Cryptographic
                 Message Syntax", RFC 5754, January 2010.

   [CONTDISP]    Troost, R., Dorner, S., and K. Moore, Ed.,
                 "Communicating Presentation Information in Internet
                 Messages: The Content-Disposition Header Field", RFC
                 2183, August 1997.

   [FIPS186-2]   National Institute of Standards and Technology (NIST),
                 "Digital Signature Standard (DSS)", FIPS Publication
                 186-2, January 2000. [With Change Notice 1].

   [FIPS186-3]   National Institute of Standards and Technology (NIST),
                 FIPS Publication 186-3: Digital Signature Standard,
                 June 2009.

   [MIME-SECURE] Galvin, J., Murphy, S., Crocker, S., and N. Freed,
                 "Security Multiparts for MIME: Multipart/Signed and
                 Multipart/Encrypted", RFC 1847, October 1995.

   [MUSTSHOULD]  Bradner, S., "Key words for use in RFCs to Indicate
                 Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RANDOM]      Eastlake, D., 3rd, Schiller, J., and S. Crocker,
                 "Randomness Requirements for Security", BCP 106, RFC
                 4086, June 2005.





Ramsdell & Turner            Standards Track                   [Page 39]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


   [RFC2045]     Freed, N. and N. Borenstein, "Multipurpose Internet
                 Mail Extensions (MIME) Part One: Format of Internet
                 Message Bodies", RFC 2045, November 1996.

   [RFC2046]     Freed, N. and N. Borenstein, "Multipurpose Internet
                 Mail Extensions (MIME) Part Two: Media Types", RFC
                 2046, November 1996.

   [RFC2047]     Moore, K., "MIME (Multipurpose Internet Mail
                 Extensions) Part Three: Message Header Extensions for
                 Non-ASCII Text", RFC 2047, November 1996.

   [RFC2049]     Freed, N. and N. Borenstein, "Multipurpose Internet
                 Mail Extensions (MIME) Part Five: Conformance Criteria
                 and Examples", RFC 2049, November 1996.

   [RFC2634]     Hoffman, P. Ed., "Enhanced Security Services for
                 S/MIME", RFC 2634, June 1999.

   [RFC4288]     Freed, N. and J. Klensin, "Media Type Specifications
                 and Registration Procedures", BCP 13, RFC 4288,
                 December 2005.

   [RFC4289]     Freed, N. and J. Klensin, "Multipurpose Internet Mail
                 Extensions (MIME) Part Four: Registration Procedures",
                 BCP 13, RFC 4289, December 2005.

   [RFC5035]     Schaad, J., "Enhanced Security Services (ESS) Update:
                 Adding CertID Algorithm Agility", RFC 5035, August
                 2007.

   [RFC5652]     Housley, R., "Cryptographic Message Syntax (CMS)", RFC
                 5652, September 2009.

   [RSAOAEP]     Housley, R. "Use of the RSAES-OAEP Key Transport
                 Algorithm in the Cryptographic Message Syntax (CMS)",
                 RFC 3560, July 2003.

   [RSAPSS]      Schaad, J., "Use of the RSASSA-PSS Signature Algorithm
                 in Cryptographic Message Syntax (CMS)", RFC 4056, June
                 2005.

   [SP800-56A]   National Institute of Standards and Technology (NIST),
                 Special Publication 800-56A: Recommendation Pair-Wise
                 Key Establishment Schemes Using Discrete Logarithm
                 Cryptography (Revised), March 2007.





Ramsdell & Turner            Standards Track                   [Page 40]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


   [X.680]       ITU-T Recommendation X.680 (2002) | ISO/IEC
                 8824-1:2002. Information Technology - Abstract Syntax
                 Notation One (ASN.1):  Specification of basic notation.

   [X.690]       ITU-T Recommendation X.690 (2002) | ISO/IEC
                 8825-1:2002.  Information Technology - ASN.1 encoding
                 rules: Specification of Basic Encoding Rules (BER),
                 Canonical Encoding Rules (CER) and Distinguished
                 Encoding Rules (DER).

7.3.  Informative References

   [DHSUB]       Zuccherato, R., "Methods for Avoiding the "Small-
                 Subgroup" Attacks on the Diffie-Hellman Key Agreement
                 Method for S/MIME", RFC 2785, March 2000.

   [HASH-ATTACK] Hoffman, P. and B. Schneier, "Attacks on Cryptographic
                 Hashes in Internet Protocols", RFC 4270, November 2005.

   [MMA]         Rescorla, E., "Preventing the Million Message Attack on
                 Cryptographic Message Syntax", RFC 3218, January 2002.

   [PKCS-7]      Kaliski, B., "PKCS #7: Cryptographic Message Syntax
                 Version 1.5", RFC 2315, March 1998.

   [RFC2311]     Dusse, S., Hoffman, P., Ramsdell, B., Lundblade, L.,
                 and L. Repka, "S/MIME Version 2 Message Specification",
                 RFC 2311, March 1998.

   [RFC2312]     Dusse, S., Hoffman, P., Ramsdell, B., and J.
                 Weinstein, "S/MIME Version 2 Certificate Handling", RFC
                 2312, March 1998.

   [RFC2313]     Kaliski, B., "PKCS #1: RSA Encryption Version 1.5", RFC
                 2313, March 1998.

   [RFC2314]     Kaliski, B., "PKCS #10: Certification Request Syntax
                 Version 1.5", RFC 2314, March 1998.

   [RFC2315]     Kaliski, B., "PKCS #7: Certification Message Syntax
                 Version 1.5", RFC 2315, March 1998.

   [RFC2630]     Housley, R., "Cryptographic Message Syntax", RFC 2630,
                 June 1999.

   [RFC2631]     Rescorla, E., "Diffie-Hellman Key Agreement Method",
                 RFC 2631, June 1999.




Ramsdell & Turner            Standards Track                   [Page 41]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


   [RFC2632]     Ramsdell, B., Ed., "S/MIME Version 3 Certificate
                 Handling", RFC 2632, June 1999.

   [RFC2633]     Ramsdell, B., Ed., "S/MIME Version 3 Message
                 Specification", RFC 2633, June 1999.

   [RFC3850]     Ramsdell, B., Ed., "Secure/Multipurpose Internet Mail
                 Extensions (S/MIME) Version 3.1 Certificate Handling",
                 RFC 3850, July 2004.

   [RFC3851]     Ramsdell, B., Ed., "Secure/Multipurpose Internet Mail
                 Extensions (S/MIME) Version 3.1 Message Specification",
                 RFC 3851, July 2004.

   [RFC3852]     Housley, R., "Cryptographic Message Syntax (CMS)", RFC
                 3852, July 2004.

   [SP800-57]    National Institute of Standards and Technology (NIST),
                 Special Publication 800-57: Recommendation for Key
                 Management, August 2005.

   [STRENGTH]    Orman, H., and P. Hoffman, "Determining Strengths For
                 Public Keys Used For Exchanging Symmetric Keys", BCP
                 86, RFC 3766, April 2004.



























Ramsdell & Turner            Standards Track                   [Page 42]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


Appendix A.  ASN.1 Module

   Note: The ASN.1 module contained herein is unchanged from RFC 3851
   [SMIMEv3.1] with the exception of a change to the prefersBinaryInside
   ASN.1 comment.  This module uses the 1988 version of ASN.1.

   SecureMimeMessageV3dot1

     { iso(1) member-body(2) us(840) rsadsi(113549)
            pkcs(1) pkcs-9(9) smime(16) modules(0) msg-v3dot1(21) }

   DEFINITIONS IMPLICIT TAGS ::=

   BEGIN

   IMPORTS

   -- Cryptographic Message Syntax [CMS]
      SubjectKeyIdentifier, IssuerAndSerialNumber,
      RecipientKeyIdentifier
          FROM  CryptographicMessageSyntax
                { iso(1) member-body(2) us(840) rsadsi(113549)
                  pkcs(1) pkcs-9(9) smime(16) modules(0) cms-2001(14) };

   --  id-aa is the arc with all new authenticated and unauthenticated
   --  attributes produced by the S/MIME Working Group

   id-aa OBJECT IDENTIFIER ::= {iso(1) member-body(2) usa(840)
           rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) attributes(2)}

   -- S/MIME Capabilities provides a method of broadcasting the
   -- symmetric capabilities understood.  Algorithms SHOULD be ordered
   -- by preference and grouped by type

   smimeCapabilities OBJECT IDENTIFIER ::= {iso(1) member-body(2)
           us(840) rsadsi(113549) pkcs(1) pkcs-9(9) 15}

   SMIMECapability ::= SEQUENCE {
      capabilityID OBJECT IDENTIFIER,
      parameters ANY DEFINED BY capabilityID OPTIONAL }

   SMIMECapabilities ::= SEQUENCE OF SMIMECapability

   -- Encryption Key Preference provides a method of broadcasting the
   -- preferred encryption certificate.

   id-aa-encrypKeyPref OBJECT IDENTIFIER ::= {id-aa 11}




Ramsdell & Turner            Standards Track                   [Page 43]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


   SMIMEEncryptionKeyPreference ::= CHOICE {
      issuerAndSerialNumber   [0] IssuerAndSerialNumber,
      receipentKeyId          [1] RecipientKeyIdentifier,
      subjectAltKeyIdentifier [2] SubjectKeyIdentifier
   }

   -- receipentKeyId is spelt incorrectly, but kept for historical
   -- reasons.

   id-smime OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
           rsadsi(113549) pkcs(1) pkcs9(9) 16 }

   id-cap  OBJECT IDENTIFIER ::= { id-smime 11 }

   -- The preferBinaryInside OID indicates an ability to receive
   -- messages with binary encoding inside the CMS wrapper.
   -- The preferBinaryInside attribute's value field is ABSENT.

   id-cap-preferBinaryInside  OBJECT IDENTIFIER ::= { id-cap 1 }

   --  The following list OIDs to be used with S/MIME V3

   -- Signature Algorithms Not Found in [CMSALG], [CMS-SHA2], [RSAPSS],
   -- and [RSAOAEP]

   --
   -- md2WithRSAEncryption OBJECT IDENTIFIER ::=
   --    {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1)
   --     2}

   --
   -- Other Signed Attributes
   --
   -- signingTime OBJECT IDENTIFIER ::=
   --    {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
   --     5}
   --    See [CMS] for a description of how to encode the attribute
   --    value.

   SMIMECapabilitiesParametersForRC2CBC ::= INTEGER
   --        (RC2 Key Length (number of bits))

   END








Ramsdell & Turner            Standards Track                   [Page 44]
^L
RFC 5751            S/MIME 3.2 Message Specification        January 2010


Appendix B.  Moving S/MIME v2 Message Specification to Historic Status

   The S/MIME v3 [SMIMEv3], v3.1 [SMIMEv3.1], and v3.2 (this document)
   are backwards compatible with the S/MIME v2 Message Specification
   [SMIMEv2], with the exception of the algorithms (dropped RC2/40
   requirement and added DSA and RSASSA-PSS requirements).  Therefore,
   it is recommended that RFC 2311 [SMIMEv2] be moved to Historic
   status.

Appendix C.  Acknowledgments

   Many thanks go out to the other authors of the S/MIME version 2
   Message Specification RFC: Steve Dusse, Paul Hoffman, Laurence
   Lundblade, and Lisa Repka.  Without v2, there wouldn't be a v3, v3.1,
   or v3.2.

   A number of the members of the S/MIME Working Group have also worked
   very hard and contributed to this document.  Any list of people is
   doomed to omission, and for that I apologize.  In alphabetical order,
   the following people stand out in my mind because they made direct
   contributions to this document:

   Tony Capel, Piers Chivers, Dave Crocker, Bill Flanigan, Peter
   Gutmann, Alfred Hoenes, Paul Hoffman, Russ Housley, William Ottaway,
   John Pawling, and Jim Schaad.

Authors' Addresses

   Blake Ramsdell
   Brute Squad Labs, Inc.

   EMail: blaker@gmail.com


   Sean Turner
   IECA, Inc.
   3057 Nutley Street, Suite 106
   Fairfax, VA 22031
   USA

   EMail: turners@ieca.com










Ramsdell & Turner            Standards Track                   [Page 45]
^L