1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
|
Internet Engineering Task Force (IETF) J. Klensin
Request for Comments: 5891 August 2010
Obsoletes: 3490, 3491
Updates: 3492
Category: Standards Track
ISSN: 2070-1721
Internationalized Domain Names in Applications (IDNA): Protocol
Abstract
This document is the revised protocol definition for
Internationalized Domain Names (IDNs). The rationale for changes,
the relationship to the older specification, and important
terminology are provided in other documents. This document specifies
the protocol mechanism, called Internationalized Domain Names in
Applications (IDNA), for registering and looking up IDNs in a way
that does not require changes to the DNS itself. IDNA is only meant
for processing domain names, not free text.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc5891.
Klensin Standards Track [Page 1]
^L
RFC 5891 IDNA2008 Protocol August 2010
Copyright Notice
Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
Klensin Standards Track [Page 2]
^L
RFC 5891 IDNA2008 Protocol August 2010
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 4
2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 4
3. Requirements and Applicability . . . . . . . . . . . . . . . . 5
3.1. Requirements . . . . . . . . . . . . . . . . . . . . . . . 5
3.2. Applicability . . . . . . . . . . . . . . . . . . . . . . 5
3.2.1. DNS Resource Records . . . . . . . . . . . . . . . . . 6
3.2.2. Non-Domain-Name Data Types Stored in the DNS . . . . . 6
4. Registration Protocol . . . . . . . . . . . . . . . . . . . . 6
4.1. Input to IDNA Registration . . . . . . . . . . . . . . . . 7
4.2. Permitted Character and Label Validation . . . . . . . . . 7
4.2.1. Input Format . . . . . . . . . . . . . . . . . . . . . 7
4.2.2. Rejection of Characters That Are Not Permitted . . . . 8
4.2.3. Label Validation . . . . . . . . . . . . . . . . . . . 8
4.2.4. Registration Validation Requirements . . . . . . . . . 9
4.3. Registry Restrictions . . . . . . . . . . . . . . . . . . 9
4.4. Punycode Conversion . . . . . . . . . . . . . . . . . . . 9
4.5. Insertion in the Zone . . . . . . . . . . . . . . . . . . 10
5. Domain Name Lookup Protocol . . . . . . . . . . . . . . . . . 10
5.1. Label String Input . . . . . . . . . . . . . . . . . . . . 10
5.2. Conversion to Unicode . . . . . . . . . . . . . . . . . . 10
5.3. A-label Input . . . . . . . . . . . . . . . . . . . . . . 10
5.4. Validation and Character List Testing . . . . . . . . . . 11
5.5. Punycode Conversion . . . . . . . . . . . . . . . . . . . 13
5.6. DNS Name Resolution . . . . . . . . . . . . . . . . . . . 13
6. Security Considerations . . . . . . . . . . . . . . . . . . . 13
7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 13
8. Contributors . . . . . . . . . . . . . . . . . . . . . . . . . 13
9. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 14
10. References . . . . . . . . . . . . . . . . . . . . . . . . . . 14
10.1. Normative References . . . . . . . . . . . . . . . . . . . 14
10.2. Informative References . . . . . . . . . . . . . . . . . . 15
Appendix A. Summary of Major Changes from IDNA2003 . . . . . . . 17
Klensin Standards Track [Page 3]
^L
RFC 5891 IDNA2008 Protocol August 2010
1. Introduction
This document supplies the protocol definition for Internationalized
Domain Names in Applications (IDNA), with the version specified here
known as IDNA2008. Essential definitions and terminology for
understanding this document and a road map of the collection of
documents that make up IDNA2008 appear in a separate Definitions
document [RFC5890]. Appendix A discusses the relationship between
this specification and the earlier version of IDNA (referred to here
as "IDNA2003"). The rationale for these changes, along with
considerable explanatory material and advice to zone administrators
who support IDNs, is provided in another document, known informally
in this series as the "Rationale document" [RFC5894].
IDNA works by allowing applications to use certain ASCII [ASCII]
string labels (beginning with a special prefix) to represent
non-ASCII name labels. Lower-layer protocols need not be aware of
this; therefore, IDNA does not change any infrastructure. In
particular, IDNA does not depend on any changes to DNS servers,
resolvers, or DNS protocol elements, because the ASCII name service
provided by the existing DNS can be used for IDNA.
IDNA applies only to a specific subset of DNS labels. The base DNS
standards [RFC1034] [RFC1035] and their various updates specify how
to combine labels into fully-qualified domain names and parse labels
out of those names.
This document describes two separate protocols, one for IDN
registration (Section 4) and one for IDN lookup (Section 5). These
two protocols share some terminology, reference data, and operations.
2. Terminology
As mentioned above, terminology used as part of the definition of
IDNA appears in the Definitions document [RFC5890]. It is worth
noting that some of this terminology overlaps with, and is consistent
with, that used in Unicode or other character set standards and the
DNS. Readers of this document are assumed to be familiar with the
associated Definitions document and with the DNS-specific terminology
in RFC 1034 [RFC1034].
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in BCP 14, RFC 2119
[RFC2119].
Klensin Standards Track [Page 4]
^L
RFC 5891 IDNA2008 Protocol August 2010
3. Requirements and Applicability
3.1. Requirements
IDNA makes the following requirements:
1. Whenever a domain name is put into a domain name slot that is not
IDNA-aware (see Section 2.3.2.6 of the Definitions document
[RFC5890]), it MUST contain only ASCII characters (i.e., its
labels must be either A-labels or NR-LDH labels), unless the DNS
application is not subject to historical recommendations for
"hostname"-style names (see RFC 1034 [RFC1034] and
Section 3.2.1).
2. Labels MUST be compared using equivalent forms: either both
A-label forms or both U-label forms. Because A-labels and
U-labels can be transformed into each other without loss of
information, these comparisons are equivalent (however, in
practice, comparison of U-labels requires first verifying that
they actually are U-labels and not just Unicode strings). A pair
of A-labels MUST be compared as case-insensitive ASCII (as with
all comparisons of ASCII DNS labels). U-labels MUST be compared
as-is, without case folding or other intermediate steps. While
it is not necessary to validate labels in order to compare them,
successful comparison does not imply validity. In many cases,
not limited to comparison, validation may be important for other
reasons and SHOULD be performed.
3. Labels being registered MUST conform to the requirements of
Section 4. Labels being looked up and the lookup process MUST
conform to the requirements of Section 5.
3.2. Applicability
IDNA applies to all domain names in all domain name slots in
protocols except where it is explicitly excluded. It does not apply
to domain name slots that do not use the LDH syntax rules as
described in the Definitions document [RFC5890].
Because it uses the DNS, IDNA applies to many protocols that were
specified before it was designed. IDNs occupying domain name slots
in those older protocols MUST be in A-label form until and unless
those protocols and their implementations are explicitly upgraded to
be aware of IDNs and to accept the U-label form. IDNs actually
appearing in DNS queries or responses MUST be A-labels.
Klensin Standards Track [Page 5]
^L
RFC 5891 IDNA2008 Protocol August 2010
IDNA-aware protocols and implementations MAY accept U-labels,
A-labels, or both as those particular protocols specify. IDNA is not
defined for extended label types (see RFC 2671 [RFC2671], Section 3).
3.2.1. DNS Resource Records
IDNA applies only to domain names in the NAME and RDATA fields of DNS
resource records whose CLASS is IN. See the DNS specification
[RFC1035] for precise definitions of these terms.
The application of IDNA to DNS resource records depends entirely on
the CLASS of the record, and not on the TYPE except as noted below.
This will remain true, even as new TYPEs are defined, unless a new
TYPE defines TYPE-specific rules. Special naming conventions for SRV
records (and "underscore labels" more generally) are incompatible
with IDNA coding as discussed in the Definitions document [RFC5890],
especially Section 2.3.2.3. Of course, underscore labels may be part
of a domain that uses IDN labels at higher levels in the tree.
3.2.2. Non-Domain-Name Data Types Stored in the DNS
Although IDNA enables the representation of non-ASCII characters in
domain names, that does not imply that IDNA enables the
representation of non-ASCII characters in other data types that are
stored in domain names, specifically in the RDATA field for types
that have structured RDATA format. For example, an email address
local part is stored in a domain name in the RNAME field as part of
the RDATA of an SOA record (e.g., hostmaster@example.com would be
represented as hostmaster.example.com). IDNA does not update the
existing email standards, which allow only ASCII characters in local
parts. Even though work is in progress to define
internationalization for email addresses [RFC4952], changes to the
email address part of the SOA RDATA would require action in, or
updates to, other standards, specifically those that specify the
format of the SOA RR.
4. Registration Protocol
This section defines the model for registering an IDN. The model is
implementation independent; any sequence of steps that produces
exactly the same result for all labels is considered a valid
implementation.
Note that, while the registration (this section) and lookup protocols
(Section 5) are very similar in most respects, they are not
identical, and implementers should carefully follow the steps
described in this specification.
Klensin Standards Track [Page 6]
^L
RFC 5891 IDNA2008 Protocol August 2010
4.1. Input to IDNA Registration
Registration processes, especially processing by entities (often
called "registrars") who deal with registrants before the request
actually reaches the zone manager ("registry") are outside the scope
of this definition and may differ significantly depending on local
needs. By the time a string enters the IDNA registration process as
described in this specification, it MUST be in Unicode and in
Normalization Form C (NFC [Unicode-UAX15]). Entities responsible for
zone files ("registries") MUST accept only the exact string for which
registration is requested, free of any mappings or local adjustments.
They MAY accept that input in any of three forms:
1. As a pair of A-label and U-label.
2. As an A-label only.
3. As a U-label only.
The first two of these forms are RECOMMENDED because the use of
A-labels avoids any possibility of ambiguity. The first is normally
preferred over the second because it permits further verification of
user intent (see Section 4.2.1).
4.2. Permitted Character and Label Validation
4.2.1. Input Format
If both the U-label and A-label forms are available, the registry
MUST ensure that the A-label form is in lowercase, perform a
conversion to a U-label, perform the steps and tests described below
on that U-label, and then verify that the A-label produced by the
step in Section 4.4 matches the one provided as input. In addition,
the U-label that was provided as input and the one obtained by
conversion of the A-label MUST match exactly. If, for some reason,
these tests fail, the registration MUST be rejected.
If only an A-label was provided and the conversion to a U-label is
not performed, the registry MUST still verify that the A-label is
superficially valid, i.e., that it does not violate any of the rules
of Punycode encoding [RFC3492] such as the prohibition on trailing
hyphen-minus, the requirement that all characters be ASCII, and so
on. Strings that appear to be A-labels (e.g., they start with
"xn--") and strings that are supplied to the registry in a context
reserved for A-labels (such as a field in a form to be filled out),
but that are not valid A-labels as described in this paragraph, MUST
NOT be placed in DNS zones that support IDNA.
Klensin Standards Track [Page 7]
^L
RFC 5891 IDNA2008 Protocol August 2010
If only an A-label is provided, the conversion to a U-label is not
performed, but the superficial tests described in the previous
paragraph are performed, registration procedures MAY, and usually
will, bypass the tests and actions in the balance of Section 4.2 and
in Sections 4.3 and 4.4.
4.2.2. Rejection of Characters That Are Not Permitted
The candidate Unicode string MUST NOT contain characters that appear
in the "DISALLOWED" and "UNASSIGNED" lists specified in the Tables
document [RFC5892].
4.2.3. Label Validation
The proposed label (in the form of a Unicode string, i.e., a string
that at least superficially appears to be a U-label) is then examined
using tests that require examination of more than one character.
Character order is considered to be the on-the-wire order. That
order may not be the same as the display order.
4.2.3.1. Hyphen Restrictions
The Unicode string MUST NOT contain "--" (two consecutive hyphens) in
the third and fourth character positions and MUST NOT start or end
with a "-" (hyphen).
4.2.3.2. Leading Combining Marks
The Unicode string MUST NOT begin with a combining mark or combining
character (see The Unicode Standard, Section 2.11 [Unicode] for an
exact definition).
4.2.3.3. Contextual Rules
The Unicode string MUST NOT contain any characters whose validity is
context-dependent, unless the validity is positively confirmed by a
contextual rule. To check this, each code point identified as
CONTEXTJ or CONTEXTO in the Tables document [RFC5892] MUST have a
non-null rule. If such a code point is missing a rule, the label is
invalid. If the rule exists but the result of applying the rule is
negative or inconclusive, the proposed label is invalid.
4.2.3.4. Labels Containing Characters Written Right to Left
If the proposed label contains any characters from scripts that are
written from right to left, it MUST meet the Bidi criteria [RFC5893].
Klensin Standards Track [Page 8]
^L
RFC 5891 IDNA2008 Protocol August 2010
4.2.4. Registration Validation Requirements
Strings that contain at least one non-ASCII character, have been
produced by the steps above, whose contents pass all of the tests in
Section 4.2.3, and are 63 or fewer characters long in
ASCII-compatible encoding (ACE) form (see Section 4.4), are U-labels.
To summarize, tests are made in Section 4.2 for invalid characters,
invalid combinations of characters, for labels that are invalid even
if the characters they contain are valid individually, and for labels
that do not conform to the restrictions for strings containing
right-to-left characters.
4.3. Registry Restrictions
In addition to the rules and tests above, there are many reasons why
a registry could reject a label. Registries at all levels of the
DNS, not just the top level, are expected to establish policies about
label registrations. Policies are likely to be informed by the local
languages and the scripts that are used to write them and may depend
on many factors including what characters are in the label (for
example, a label may be rejected based on other labels already
registered). See the Rationale document [RFC5894], Section 3.2, for
further discussion and recommendations about registry policies.
The string produced by the steps in Section 4.2 is checked and
processed as appropriate to local registry restrictions. Application
of those registry restrictions may result in the rejection of some
labels or the application of special restrictions to others.
4.4. Punycode Conversion
The resulting U-label is converted to an A-label (defined in Section
2.3.2.1 of the Definitions document [RFC5890]). The A-label is the
encoding of the U-label according to the Punycode algorithm [RFC3492]
with the ACE prefix "xn--" added at the beginning of the string. The
resulting string must, of course, conform to the length limits
imposed by the DNS. This document does not update or alter the
Punycode algorithm specified in RFC 3492 in any way. RFC 3492 does
make a non-normative reference to the information about the value and
construction of the ACE prefix that appears in RFC 3490 or Nameprep
[RFC3491]. For consistency and reader convenience, IDNA2008
effectively updates that reference to point to this document. That
change does not alter the prefix itself. The prefix, "xn--", is the
same in both sets of documents.
Klensin Standards Track [Page 9]
^L
RFC 5891 IDNA2008 Protocol August 2010
With the exception of the maximum string length test on Punycode
output, the failure conditions identified in the Punycode encoding
procedure cannot occur if the input is a U-label as determined by the
steps in Sections 4.1 through 4.3 above.
4.5. Insertion in the Zone
The label is registered in the DNS by inserting the A-label into a
zone.
5. Domain Name Lookup Protocol
Lookup is different from registration and different tests are applied
on the client. Although some validity checks are necessary to avoid
serious problems with the protocol, the lookup-side tests are more
permissive and rely on the assumption that names that are present in
the DNS are valid. That assumption is, however, a weak one because
the presence of wildcards in the DNS might cause a string that is not
actually registered in the DNS to be successfully looked up.
5.1. Label String Input
The user supplies a string in the local character set, for example,
by typing it, clicking on it, or copying and pasting it from a
resource identifier, e.g., a Uniform Resource Identifier (URI)
[RFC3986] or an Internationalized Resource Identifier (IRI)
[RFC3987], from which the domain name is extracted. Alternately,
some process not directly involving the user may read the string from
a file or obtain it in some other way. Processing in this step and
the one specified in Section 5.2 are local matters, to be
accomplished prior to actual invocation of IDNA.
5.2. Conversion to Unicode
The string is converted from the local character set into Unicode, if
it is not already in Unicode. Depending on local needs, this
conversion may involve mapping some characters into other characters
as well as coding conversions. Those issues are discussed in the
mapping-related sections (Sections 4.2, 4.4, 6, and 7.3) of the
Rationale document [RFC5894] and in the separate Mapping document
[IDNA2008-Mapping]. The result MUST be a Unicode string in NFC form.
5.3. A-label Input
If the input to this procedure appears to be an A-label (i.e., it
starts in "xn--", interpreted case-insensitively), the lookup
application MAY attempt to convert it to a U-label, first ensuring
that the A-label is entirely in lowercase (converting it to lowercase
Klensin Standards Track [Page 10]
^L
RFC 5891 IDNA2008 Protocol August 2010
if necessary), and apply the tests of Section 5.4 and the conversion
of Section 5.5 to that form. If the label is converted to Unicode
(i.e., to U-label form) using the Punycode decoding algorithm, then
the processing specified in those two sections MUST be performed, and
the label MUST be rejected if the resulting label is not identical to
the original. See Section 8.1 of the Rationale document [RFC5894]
for additional discussion on this topic.
Conversion from the A-label and testing that the result is a U-label
SHOULD be performed if the domain name will later be presented to the
user in native character form (this requires that the lookup
application be IDNA-aware). If those steps are not performed, the
lookup process SHOULD at least test to determine that the string is
actually an A-label, examining it for the invalid formats specified
in the Punycode decoding specification. Applications that are not
IDNA-aware will obviously omit that testing; others MAY treat the
string as opaque to avoid the additional processing at the expense of
providing less protection and information to users.
5.4. Validation and Character List Testing
As with the registration procedure described in Section 4, the
Unicode string is checked to verify that all characters that appear
in it are valid as input to IDNA lookup processing. As discussed
above and in the Rationale document [RFC5894], the lookup check is
more liberal than the registration one. Labels that have not been
fully evaluated for conformance to the applicable rules are referred
to as "putative" labels as discussed in Section 2.3.2.1 of the
Definitions document [RFC5890]. Putative U-labels with any of the
following characteristics MUST be rejected prior to DNS lookup:
o Labels that are not in NFC [Unicode-UAX15].
o Labels containing "--" (two consecutive hyphens) in the third and
fourth character positions.
o Labels whose first character is a combining mark (see The Unicode
Standard, Section 2.11 [Unicode]).
o Labels containing prohibited code points, i.e., those that are
assigned to the "DISALLOWED" category of the Tables document
[RFC5892].
o Labels containing code points that are identified in the Tables
document as "CONTEXTJ", i.e., requiring exceptional contextual
rule processing on lookup, but that do not conform to those rules.
Note that this implies that a rule must be defined, not null: a
Klensin Standards Track [Page 11]
^L
RFC 5891 IDNA2008 Protocol August 2010
character that requires a contextual rule but for which the rule
is null is treated in this step as having failed to conform to the
rule.
o Labels containing code points that are identified in the Tables
document as "CONTEXTO", but for which no such rule appears in the
table of rules. Applications resolving DNS names or carrying out
equivalent operations are not required to test contextual rules
for "CONTEXTO" characters, only to verify that a rule is defined
(although they MAY make such tests to provide better protection or
give better information to the user).
o Labels containing code points that are unassigned in the version
of Unicode being used by the application, i.e., in the UNASSIGNED
category of the Tables document.
This requirement means that the application must use a list of
unassigned characters that is matched to the version of Unicode
that is being used for the other requirements in this section. It
is not required that the application know which version of Unicode
is being used; that information might be part of the operating
environment in which the application is running.
In addition, the application SHOULD apply the following test.
o Verification that the string is compliant with the requirements
for right-to-left characters specified in the Bidi document
[RFC5893].
This test may be omitted in special circumstances, such as when the
lookup application knows that the conditions are enforced elsewhere,
because an attempt to look up and resolve such strings will almost
certainly lead to a DNS lookup failure except when wildcards are
present in the zone. However, applying the test is likely to give
much better information about the reason for a lookup failure --
information that may be usefully passed to the user when that is
feasible -- than DNS resolution failure information alone.
For all other strings, the lookup application MUST rely on the
presence or absence of labels in the DNS to determine the validity of
those labels and the validity of the characters they contain. If
they are registered, they are presumed to be valid; if they are not,
their possible validity is not relevant. While a lookup application
may reasonably issue warnings about strings it believes may be
problematic, applications that decline to process a string that
conforms to the rules above (i.e., does not look it up in the DNS)
are not in conformance with this protocol.
Klensin Standards Track [Page 12]
^L
RFC 5891 IDNA2008 Protocol August 2010
5.5. Punycode Conversion
The string that has now been validated for lookup is converted to ACE
form by applying the Punycode algorithm to the string and then adding
the ACE prefix ("xn--").
5.6. DNS Name Resolution
The A-label resulting from the conversion in Section 5.5 or supplied
directly (see Section 5.3) is combined with other labels as needed to
form a fully-qualified domain name that is then looked up in the DNS,
using normal DNS resolver procedures. The lookup can obviously
either succeed (returning information) or fail.
6. Security Considerations
Security Considerations for this version of IDNA are described in the
Definitions document [RFC5890], except for the special issues
associated with right-to-left scripts and characters. The latter are
discussed in the Bidi document [RFC5893].
In order to avoid intentional or accidental attacks from labels that
might be confused with others, special problems in rendering, and so
on, the IDNA model requires that registries exercise care and
thoughtfulness about what labels they choose to permit. That issue
is discussed in Section 4.3 of this document which, in turn, points
to a somewhat more extensive discussion in the Rationale document
[RFC5894].
7. IANA Considerations
IANA actions for this version of IDNA are specified in the Tables
document [RFC5892] and discussed informally in the Rationale document
[RFC5894]. The components of IDNA described in this document do not
require any IANA actions.
8. Contributors
While the listed editor held the pen, the original versions of this
document represent the joint work and conclusions of an ad hoc design
team consisting of the editor and, in alphabetic order, Harald
Alvestrand, Tina Dam, Patrik Faltstrom, and Cary Karp. This document
draws significantly on the original version of IDNA [RFC3490] both
conceptually and for specific text. This second-generation version
would not have been possible without the work that went into that
first version and especially the contributions of its authors Patrik
Faltstrom, Paul Hoffman, and Adam Costello. While Faltstrom was
Klensin Standards Track [Page 13]
^L
RFC 5891 IDNA2008 Protocol August 2010
actively involved in the creation of this version, Hoffman and
Costello were not and should not be held responsible for any errors
or omissions.
9. Acknowledgments
This revision to IDNA would have been impossible without the
accumulated experience since RFC 3490 was published and resulting
comments and complaints of many people in the IETF, ICANN, and other
communities (too many people to list here). Nor would it have been
possible without RFC 3490 itself and the efforts of the Working Group
that defined it. Those people whose contributions are acknowledged
in RFC 3490, RFC 4690 [RFC4690], and the Rationale document [RFC5894]
were particularly important.
Specific textual changes were incorporated into this document after
suggestions from the other contributors, Stephane Bortzmeyer, Vint
Cerf, Lisa Dusseault, Paul Hoffman, Kent Karlsson, James Mitchell,
Erik van der Poel, Marcos Sanz, Andrew Sullivan, Wil Tan, Ken
Whistler, Chris Wright, and other WG participants and reviewers
including Martin Duerst, James Mitchell, Subramanian Moonesamy, Peter
Saint-Andre, Margaret Wasserman, and Dan Winship who caught specific
errors and recommended corrections. Special thanks are due to Paul
Hoffman for permission to extract material to form the basis for
Appendix A from a draft document that he prepared.
10. References
10.1. Normative References
[RFC1034] Mockapetris, P., "Domain names - concepts and
facilities", STD 13, RFC 1034, November 1987.
[RFC1035] Mockapetris, P., "Domain names - implementation and
specification", STD 13, RFC 1035, November 1987.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC3492] Costello, A., "Punycode: A Bootstring encoding of
Unicode for Internationalized Domain Names in
Applications (IDNA)", RFC 3492, March 2003.
[RFC5890] Klensin, J., "Internationalized Domain Names for
Applications (IDNA): Definitions and Document
Framework", RFC 5890, August 2010.
Klensin Standards Track [Page 14]
^L
RFC 5891 IDNA2008 Protocol August 2010
[RFC5892] Faltstrom, P., Ed., "The Unicode Code Points and
Internationalized Domain Names for Applications (IDNA)",
RFC 5892, August 2010.
[RFC5893] Alvestrand, H., Ed. and C. Karp, "Right-to-Left Scripts
for Internationalized Domain Names for Applications
(IDNA)", RFC 5893, August 2010.
[Unicode-UAX15]
The Unicode Consortium, "Unicode Standard Annex #15:
Unicode Normalization Forms", September 2009,
<http://www.unicode.org/reports/tr15/>.
10.2. Informative References
[ASCII] American National Standards Institute (formerly United
States of America Standards Institute), "USA Code for
Information Interchange", ANSI X3.4-1968, 1968. ANSI
X3.4-1968 has been replaced by newer versions with
slight modifications, but the 1968 version remains
definitive for the Internet.
[IDNA2008-Mapping]
Resnick, P. and P. Hoffman, "Mapping Characters in
Internationalized Domain Names for Applications (IDNA)",
Work in Progress, April 2010.
[RFC2671] Vixie, P., "Extension Mechanisms for DNS (EDNS0)",
RFC 2671, August 1999.
[RFC3490] Faltstrom, P., Hoffman, P., and A. Costello,
"Internationalizing Domain Names in Applications
(IDNA)", RFC 3490, March 2003.
[RFC3491] Hoffman, P. and M. Blanchet, "Nameprep: A Stringprep
Profile for Internationalized Domain Names (IDN)",
RFC 3491, March 2003.
[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", STD 66,
RFC 3986, January 2005.
[RFC3987] Duerst, M. and M. Suignard, "Internationalized Resource
Identifiers (IRIs)", RFC 3987, January 2005.
[RFC4690] Klensin, J., Faltstrom, P., Karp, C., and IAB, "Review
and Recommendations for Internationalized Domain Names
(IDNs)", RFC 4690, September 2006.
Klensin Standards Track [Page 15]
^L
RFC 5891 IDNA2008 Protocol August 2010
[RFC4952] Klensin, J. and Y. Ko, "Overview and Framework for
Internationalized Email", RFC 4952, July 2007.
[RFC5894] Klensin, J., "Internationalized Domain Names for
Applications (IDNA): Background, Explanation, and
Rationale", RFC 5894, August 2010.
[Unicode] The Unicode Consortium, "The Unicode Standard, Version
5.0", 2007. Boston, MA, USA: Addison-Wesley. ISBN
0-321-48091-0. This printed reference has now been
updated online to reflect additional code points. For
code points, the reference at the time this document was
published is to Unicode 5.2.
Klensin Standards Track [Page 16]
^L
RFC 5891 IDNA2008 Protocol August 2010
Appendix A. Summary of Major Changes from IDNA2003
1. Update base character set from Unicode 3.2 to Unicode version
agnostic.
2. Separate the definitions for the "registration" and "lookup"
activities.
3. Disallow symbol and punctuation characters except where special
exceptions are necessary.
4. Remove the mapping and normalization steps from the protocol and
have them, instead, done by the applications themselves,
possibly in a local fashion, before invoking the protocol.
5. Change the way that the protocol specifies which characters are
allowed in labels from "humans decide what the table of code
points contains" to "decision about code points are based on
Unicode properties plus a small exclusion list created by
humans".
6. Introduce the new concept of characters that can be used only in
specific contexts.
7. Allow typical words and names in languages such as Dhivehi and
Yiddish to be expressed.
8. Make bidirectional domain names (delimited strings of labels,
not just labels standing on their own) display in a less
surprising fashion, whether they appear in obvious domain name
contexts or as part of running text in paragraphs.
9. Remove the dot separator from the mandatory part of the
protocol.
10. Make some currently valid labels that are not actually IDNA
labels invalid.
Author's Address
John C Klensin
1770 Massachusetts Ave, Ste 322
Cambridge, MA 02140
USA
Phone: +1 617 245 1457
EMail: john+ietf@jck.com
Klensin Standards Track [Page 17]
^L
|