1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
|
Internet Engineering Task Force (IETF) W. Kim
Request for Comments: 6209 J. Lee
Category: Informational J. Park
ISSN: 2070-1721 D. Kwon
NSRI
April 2011
Addition of the ARIA Cipher Suites to Transport Layer Security (TLS)
Abstract
This document specifies a set of cipher suites for the Transport
Layer Security (TLS) protocol to support the ARIA encryption
algorithm as a block cipher.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are a candidate for any level of Internet
Standard; see Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc6209.
Copyright Notice
Copyright (c) 2011 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Kim, et al. Informational [Page 1]
^L
RFC 6209 ARIA Cipher Suites for TLS April 2011
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1. ARIA . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Proposed Cipher Suites . . . . . . . . . . . . . . . . . . . . 3
2.1. HMAC-Based Cipher Suites . . . . . . . . . . . . . . . . . 3
2.2. GCM-Based Cipher Suites . . . . . . . . . . . . . . . . . . 3
2.3. PSK Cipher Suites . . . . . . . . . . . . . . . . . . . . . 4
3. Cipher Suite Definitions . . . . . . . . . . . . . . . . . . . 5
3.1. Key Exchange . . . . . . . . . . . . . . . . . . . . . . . 5
3.2. Cipher . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3. PRFs . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4. PSK Cipher Suites . . . . . . . . . . . . . . . . . . . . . 5
4. Security Considerations . . . . . . . . . . . . . . . . . . . . 5
5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . . 6
6. References . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6.1. Normative References . . . . . . . . . . . . . . . . . . . 7
6.2. Informative References . . . . . . . . . . . . . . . . . . 8
1. Introduction
This document specifies cipher suites for the Transport Layer
Security (TLS) [RFC5246] protocol to support the ARIA [RFC5794]
encryption algorithm as a block cipher algorithm. The cipher suites
include variants using the SHA-2 family of cryptographic hash
functions and ARIA Galois counter mode. Elliptic curve cipher suites
and pre-shared key (PSK) cipher suites are also defined.
The cipher suites with SHA-1 are not included in this document. Due
to recent analytic work on SHA-1 [Wang05], the IETF is gradually
moving away from SHA-1 and towards stronger hash algorithms.
1.1. ARIA
ARIA is a general-purpose block cipher algorithm developed by Korean
cryptographers in 2003. It is an iterated block cipher with 128-,
192-, and 256-bit keys and encrypts 128-bit blocks in 12, 14, and 16
rounds, depending on the key size. It is secure and suitable for
most software and hardware implementations on 32-bit and 8-bit
processors. It was established as a Korean standard block cipher
algorithm in 2004 [ARIAKS] and has been widely used in Korea,
especially for government-to-public services. It was included in
PKCS #11 in 2007 [ARIAPKCS]. The algorithm specification and object
identifiers are described in [RFC5794].
Kim, et al. Informational [Page 2]
^L
RFC 6209 ARIA Cipher Suites for TLS April 2011
1.2. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
2. Proposed Cipher Suites
2.1. HMAC-Based Cipher Suites
The first twenty cipher suites use ARIA [RFC5794] in Cipher Block
Chaining (CBC) mode with a SHA-2 family Hashed Message Authentication
Code (HMAC). Eight out of twenty use elliptic curves.
CipherSuite TLS_RSA_WITH_ARIA_128_CBC_SHA256 = { 0xC0,0x3C };
CipherSuite TLS_RSA_WITH_ARIA_256_CBC_SHA384 = { 0xC0,0x3D };
CipherSuite TLS_DH_DSS_WITH_ARIA_128_CBC_SHA256 = { 0xC0,0x3E };
CipherSuite TLS_DH_DSS_WITH_ARIA_256_CBC_SHA384 = { 0xC0,0x3F };
CipherSuite TLS_DH_RSA_WITH_ARIA_128_CBC_SHA256 = { 0xC0,0x40 };
CipherSuite TLS_DH_RSA_WITH_ARIA_256_CBC_SHA384 = { 0xC0,0x41 };
CipherSuite TLS_DHE_DSS_WITH_ARIA_128_CBC_SHA256 = { 0xC0,0x42 };
CipherSuite TLS_DHE_DSS_WITH_ARIA_256_CBC_SHA384 = { 0xC0,0x43 };
CipherSuite TLS_DHE_RSA_WITH_ARIA_128_CBC_SHA256 = { 0xC0,0x44 };
CipherSuite TLS_DHE_RSA_WITH_ARIA_256_CBC_SHA384 = { 0xC0,0x45 };
CipherSuite TLS_DH_anon_WITH_ARIA_128_CBC_SHA256 = { 0xC0,0x46 };
CipherSuite TLS_DH_anon_WITH_ARIA_256_CBC_SHA384 = { 0xC0,0x47 };
CipherSuite TLS_ECDHE_ECDSA_WITH_ARIA_128_CBC_SHA256 = { 0xC0,0x48 };
CipherSuite TLS_ECDHE_ECDSA_WITH_ARIA_256_CBC_SHA384 = { 0xC0,0x49 };
CipherSuite TLS_ECDH_ECDSA_WITH_ARIA_128_CBC_SHA256 = { 0xC0,0x4A };
CipherSuite TLS_ECDH_ECDSA_WITH_ARIA_256_CBC_SHA384 = { 0xC0,0x4B };
CipherSuite TLS_ECDHE_RSA_WITH_ARIA_128_CBC_SHA256 = { 0xC0,0x4C };
CipherSuite TLS_ECDHE_RSA_WITH_ARIA_256_CBC_SHA384 = { 0xC0,0x4D };
CipherSuite TLS_ECDH_RSA_WITH_ARIA_128_CBC_SHA256 = { 0xC0,0x4E };
CipherSuite TLS_ECDH_RSA_WITH_ARIA_256_CBC_SHA384 = { 0xC0,0x4F };
2.2. GCM-Based Cipher Suites
The next twenty cipher suites use the same asymmetric algorithms as
those in the previous section but use the authenticated encryption
modes defined in TLS 1.2 with the ARIA in Galois Counter Mode (GCM)
[GCM].
Kim, et al. Informational [Page 3]
^L
RFC 6209 ARIA Cipher Suites for TLS April 2011
CipherSuite TLS_RSA_WITH_ARIA_128_GCM_SHA256 = { 0xC0,0x50 };
CipherSuite TLS_RSA_WITH_ARIA_256_GCM_SHA384 = { 0xC0,0x51 };
CipherSuite TLS_DHE_RSA_WITH_ARIA_128_GCM_SHA256 = { 0xC0,0x52 };
CipherSuite TLS_DHE_RSA_WITH_ARIA_256_GCM_SHA384 = { 0xC0,0x53 };
CipherSuite TLS_DH_RSA_WITH_ARIA_128_GCM_SHA256 = { 0xC0,0x54 };
CipherSuite TLS_DH_RSA_WITH_ARIA_256_GCM_SHA384 = { 0xC0,0x55 };
CipherSuite TLS_DHE_DSS_WITH_ARIA_128_GCM_SHA256 = { 0xC0,0x56 };
CipherSuite TLS_DHE_DSS_WITH_ARIA_256_GCM_SHA384 = { 0xC0,0x57 };
CipherSuite TLS_DH_DSS_WITH_ARIA_128_GCM_SHA256 = { 0xC0,0x58 };
CipherSuite TLS_DH_DSS_WITH_ARIA_256_GCM_SHA384 = { 0xC0,0x59 };
CipherSuite TLS_DH_anon_WITH_ARIA_128_GCM_SHA256 = { 0xC0,0x5A };
CipherSuite TLS_DH_anon_WITH_ARIA_256_GCM_SHA384 = { 0xC0,0x5B };
CipherSuite TLS_ECDHE_ECDSA_WITH_ARIA_128_GCM_SHA256 = { 0xC0,0x5C };
CipherSuite TLS_ECDHE_ECDSA_WITH_ARIA_256_GCM_SHA384 = { 0xC0,0x5D };
CipherSuite TLS_ECDH_ECDSA_WITH_ARIA_128_GCM_SHA256 = { 0xC0,0x5E };
CipherSuite TLS_ECDH_ECDSA_WITH_ARIA_256_GCM_SHA384 = { 0xC0,0x5F };
CipherSuite TLS_ECDHE_RSA_WITH_ARIA_128_GCM_SHA256 = { 0xC0,0x60 };
CipherSuite TLS_ECDHE_RSA_WITH_ARIA_256_GCM_SHA384 = { 0xC0,0x61 };
CipherSuite TLS_ECDH_RSA_WITH_ARIA_128_GCM_SHA256 = { 0xC0,0x62 };
CipherSuite TLS_ECDH_RSA_WITH_ARIA_256_GCM_SHA384 = { 0xC0,0x63 };
2.3. PSK Cipher Suites
The next fourteen cipher suites describe PSK cipher suites. Eight
cipher suites use an HMAC and six cipher suites use the ARIA Galois
Counter Mode.
CipherSuite TLS_PSK_WITH_ARIA_128_CBC_SHA256 = { 0xC0,0x64 };
CipherSuite TLS_PSK_WITH_ARIA_256_CBC_SHA384 = { 0xC0,0x65 };
CipherSuite TLS_DHE_PSK_WITH_ARIA_128_CBC_SHA256 = { 0xC0,0x66 };
CipherSuite TLS_DHE_PSK_WITH_ARIA_256_CBC_SHA384 = { 0xC0,0x67 };
CipherSuite TLS_RSA_PSK_WITH_ARIA_128_CBC_SHA256 = { 0xC0,0x68 };
CipherSuite TLS_RSA_PSK_WITH_ARIA_256_CBC_SHA384 = { 0xC0,0x69 };
CipherSuite TLS_PSK_WITH_ARIA_128_GCM_SHA256 = { 0xC0,0x6A };
CipherSuite TLS_PSK_WITH_ARIA_256_GCM_SHA384 = { 0xC0,0x6B };
CipherSuite TLS_DHE_PSK_WITH_ARIA_128_GCM_SHA256 = { 0xC0,0x6C };
CipherSuite TLS_DHE_PSK_WITH_ARIA_256_GCM_SHA384 = { 0xC0,0x6D };
CipherSuite TLS_RSA_PSK_WITH_ARIA_128_GCM_SHA256 = { 0xC0,0x6E };
CipherSuite TLS_RSA_PSK_WITH_ARIA_256_GCM_SHA384 = { 0xC0,0x6F };
CipherSuite TLS_ECDHE_PSK_WITH_ARIA_128_CBC_SHA256 = { 0xC0,0x70 };
CipherSuite TLS_ECDHE_PSK_WITH_ARIA_256_CBC_SHA384 = { 0xC0,0x71 };
Kim, et al. Informational [Page 4]
^L
RFC 6209 ARIA Cipher Suites for TLS April 2011
3. Cipher Suite Definitions
3.1. Key Exchange
The RSA, DHE_RSA, DH_RSA, DHE_DSS, DH_DSS, DH_anon, ECDH, and ECDHE
key exchanges are performed as defined in [RFC5246].
3.2. Cipher
The ARIA_128_CBC cipher suites use ARIA [RFC5794] in CBC mode with a
128-bit key and 128-bit Initialization Vector (IV); the ARIA_256_CBC
cipher suites use a 256-bit key and 128-bit IV.
AES-authenticated encryption with additional data algorithms,
AEAD_AES_128_GCM, and AEAD_AES_256_GCM are described in [RFC5116].
AES GCM cipher suites for TLS are described in [RFC5288]. AES and
ARIA share common characteristics, including key sizes and block
length. ARIA_128_GCM and ARIA_256_GCM are defined according to those
characteristics of AES.
3.3. PRFs
The pseudorandom functions (PRFs) SHALL be as follows:
a. For cipher suites ending with _SHA256, the PRF is the TLS PRF
[RFC5246] using SHA-256 as the hash function.
b. For cipher suites ending with _SHA384, the PRF is the TLS PRF
[RFC5246] using SHA-384 as the hash function.
3.4. PSK Cipher Suites
Pre-shared key cipher suites for TLS are described in [RFC4279],
[RFC4785], [RFC5487], and [RFC5489].
4. Security Considerations
At the time of writing this document, no security problems have been
found on ARIA (see [YWL]).
The security considerations in the following RFCs apply to this
document as well: [RFC4279] [RFC4785] [RFC5116] [RFC5288] [RFC5289]
[RFC5487] and [GCM].
Kim, et al. Informational [Page 5]
^L
RFC 6209 ARIA Cipher Suites for TLS April 2011
5. IANA Considerations
IANA has allocated the following numbers in the TLS Cipher Suite
Registry:
CipherSuite TLS_RSA_WITH_ARIA_128_CBC_SHA256 = { 0xC0,0x3C };
CipherSuite TLS_RSA_WITH_ARIA_256_CBC_SHA384 = { 0xC0,0x3D };
CipherSuite TLS_DH_DSS_WITH_ARIA_128_CBC_SHA256 = { 0xC0,0x3E };
CipherSuite TLS_DH_DSS_WITH_ARIA_256_CBC_SHA384 = { 0xC0,0x3F };
CipherSuite TLS_DH_RSA_WITH_ARIA_128_CBC_SHA256 = { 0xC0,0x40 };
CipherSuite TLS_DH_RSA_WITH_ARIA_256_CBC_SHA384 = { 0xC0,0x41 };
CipherSuite TLS_DHE_DSS_WITH_ARIA_128_CBC_SHA256 = { 0xC0,0x42 };
CipherSuite TLS_DHE_DSS_WITH_ARIA_256_CBC_SHA384 = { 0xC0,0x43 };
CipherSuite TLS_DHE_RSA_WITH_ARIA_128_CBC_SHA256 = { 0xC0,0x44 };
CipherSuite TLS_DHE_RSA_WITH_ARIA_256_CBC_SHA384 = { 0xC0,0x45 };
CipherSuite TLS_DH_anon_WITH_ARIA_128_CBC_SHA256 = { 0xC0,0x46 };
CipherSuite TLS_DH_anon_WITH_ARIA_256_CBC_SHA384 = { 0xC0,0x47 };
CipherSuite TLS_ECDHE_ECDSA_WITH_ARIA_128_CBC_SHA256 = { 0xC0,0x48 };
CipherSuite TLS_ECDHE_ECDSA_WITH_ARIA_256_CBC_SHA384 = { 0xC0,0x49 };
CipherSuite TLS_ECDH_ECDSA_WITH_ARIA_128_CBC_SHA256 = { 0xC0,0x4A };
CipherSuite TLS_ECDH_ECDSA_WITH_ARIA_256_CBC_SHA384 = { 0xC0,0x4B };
CipherSuite TLS_ECDHE_RSA_WITH_ARIA_128_CBC_SHA256 = { 0xC0,0x4C };
CipherSuite TLS_ECDHE_RSA_WITH_ARIA_256_CBC_SHA384 = { 0xC0,0x4D };
CipherSuite TLS_ECDH_RSA_WITH_ARIA_128_CBC_SHA256 = { 0xC0,0x4E };
CipherSuite TLS_ECDH_RSA_WITH_ARIA_256_CBC_SHA384 = { 0xC0,0x4F };
CipherSuite TLS_RSA_WITH_ARIA_128_GCM_SHA256 = { 0xC0,0x50 };
CipherSuite TLS_RSA_WITH_ARIA_256_GCM_SHA384 = { 0xC0,0x51 };
CipherSuite TLS_DHE_RSA_WITH_ARIA_128_GCM_SHA256 = { 0xC0,0x52 };
CipherSuite TLS_DHE_RSA_WITH_ARIA_256_GCM_SHA384 = { 0xC0,0x53 };
CipherSuite TLS_DH_RSA_WITH_ARIA_128_GCM_SHA256 = { 0xC0,0x54 };
CipherSuite TLS_DH_RSA_WITH_ARIA_256_GCM_SHA384 = { 0xC0,0x55 };
CipherSuite TLS_DHE_DSS_WITH_ARIA_128_GCM_SHA256 = { 0xC0,0x56 };
CipherSuite TLS_DHE_DSS_WITH_ARIA_256_GCM_SHA384 = { 0xC0,0x57 };
CipherSuite TLS_DH_DSS_WITH_ARIA_128_GCM_SHA256 = { 0xC0,0x58 };
CipherSuite TLS_DH_DSS_WITH_ARIA_256_GCM_SHA384 = { 0xC0,0x59 };
CipherSuite TLS_DH_anon_WITH_ARIA_128_GCM_SHA256 = { 0xC0,0x5A };
CipherSuite TLS_DH_anon_WITH_ARIA_256_GCM_SHA384 = { 0xC0,0x5B };
CipherSuite TLS_ECDHE_ECDSA_WITH_ARIA_128_GCM_SHA256 = { 0xC0,0x5C };
CipherSuite TLS_ECDHE_ECDSA_WITH_ARIA_256_GCM_SHA384 = { 0xC0,0x5D };
CipherSuite TLS_ECDH_ECDSA_WITH_ARIA_128_GCM_SHA256 = { 0xC0,0x5E };
CipherSuite TLS_ECDH_ECDSA_WITH_ARIA_256_GCM_SHA384 = { 0xC0,0x5F };
CipherSuite TLS_ECDHE_RSA_WITH_ARIA_128_GCM_SHA256 = { 0xC0,0x60 };
CipherSuite TLS_ECDHE_RSA_WITH_ARIA_256_GCM_SHA384 = { 0xC0,0x61 };
CipherSuite TLS_ECDH_RSA_WITH_ARIA_128_GCM_SHA256 = { 0xC0,0x62 };
CipherSuite TLS_ECDH_RSA_WITH_ARIA_256_GCM_SHA384 = { 0xC0,0x63 };
Kim, et al. Informational [Page 6]
^L
RFC 6209 ARIA Cipher Suites for TLS April 2011
CipherSuite TLS_PSK_WITH_ARIA_128_CBC_SHA256 = { 0xC0,0x64 };
CipherSuite TLS_PSK_WITH_ARIA_256_CBC_SHA384 = { 0xC0,0x65 };
CipherSuite TLS_DHE_PSK_WITH_ARIA_128_CBC_SHA256 = { 0xC0,0x66 };
CipherSuite TLS_DHE_PSK_WITH_ARIA_256_CBC_SHA384 = { 0xC0,0x67 };
CipherSuite TLS_RSA_PSK_WITH_ARIA_128_CBC_SHA256 = { 0xC0,0x68 };
CipherSuite TLS_RSA_PSK_WITH_ARIA_256_CBC_SHA384 = { 0xC0,0x69 };
CipherSuite TLS_PSK_WITH_ARIA_128_GCM_SHA256 = { 0xC0,0x6A };
CipherSuite TLS_PSK_WITH_ARIA_256_GCM_SHA384 = { 0xC0,0x6B };
CipherSuite TLS_DHE_PSK_WITH_ARIA_128_GCM_SHA256 = { 0xC0,0x6C };
CipherSuite TLS_DHE_PSK_WITH_ARIA_256_GCM_SHA384 = { 0xC0,0x6D };
CipherSuite TLS_RSA_PSK_WITH_ARIA_128_GCM_SHA256 = { 0xC0,0x6E };
CipherSuite TLS_RSA_PSK_WITH_ARIA_256_GCM_SHA384 = { 0xC0,0x6F };
CipherSuite TLS_ECDHE_PSK_WITH_ARIA_128_CBC_SHA256 = { 0xC0,0x70 };
CipherSuite TLS_ECDHE_PSK_WITH_ARIA_256_CBC_SHA384 = { 0xC0,0x71 };
6. References
6.1. Normative References
[GCM] Dworkin, M., "Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC", NIST
SP 800-38D, November 2007.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC4279] Eronen, P. and H. Tschofenig, "Pre-Shared Key
Ciphersuites for Transport Layer Security (TLS)",
RFC 4279, December 2005.
[RFC4785] Blumenthal, U. and P. Goel, "Pre-Shared Key (PSK)
Ciphersuites with NULL Encryption for Transport Layer
Security (TLS)", RFC 4785, January 2007.
[RFC5116] McGrew, D., "An Interface and Algorithms for
Authenticated Encryption", RFC 5116, January 2008.
[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.
[RFC5288] Salowey, J., Choudhury, A., and D. McGrew, "AES Galois
Counter Mode (GCM) Cipher Suites for TLS", RFC 5288,
August 2008.
[RFC5289] Rescorla, E., "TLS Elliptic Curve Cipher Suites with SHA-
256/384 and AES Galois Counter Mode (GCM)", RFC 5289,
August 2008.
Kim, et al. Informational [Page 7]
^L
RFC 6209 ARIA Cipher Suites for TLS April 2011
[RFC5487] Badra, M., "Pre-Shared Key Cipher Suites for TLS with
SHA-256/384 and AES Galois Counter Mode", RFC 5487,
March 2009.
[RFC5489] Badra, M. and I. Hajjeh, "ECDHE_PSK Cipher Suites for
Transport Layer Security (TLS)", RFC 5489, March 2009.
[RFC5794] Lee, J., Lee, J., Kim, J., Kwon, D., and C. Kim, "A
Description of the ARIA Encryption Algorithm", RFC 5794,
March 2010.
6.2. Informative References
[ARIAKS] Korean Agency for Technology and Standards, "128 bit
block encryption algorithm ARIA - Part 1: General (in
Korean)", KS X 1213-1:2009, December 2009.
[ARIAPKCS] RSA Laboratories, "Additional PKCS #11 Mechanisms",
PKCS #11 v2.20 Amendment 3 Revision 1, January 2007.
[Wang05] Wang, X., Yin, Y., and H. Yu, "Finding Collisions in the
Full SHA-1", CRYPTO 2005, LNCS vol.3621, pp.17-36,
August 2005.
[YWL] Li, Y., Wu, W., and L. Zhang, "Integral attacks on
reduced-round ARIA block cipher", ISPEC 2010,
LNCS Vol.6047, pp. 19-29, May 2010.
Kim, et al. Informational [Page 8]
^L
RFC 6209 ARIA Cipher Suites for TLS April 2011
Authors' Addresses
Woo-Hwan Kim
National Security Research Institute
P.O.Box 1, Yuseong
Daejeon 305-350
Korea
EMail: whkim5@ensec.re.kr
Jungkeun Lee
National Security Research Institute
P.O.Box 1, Yuseong
Daejeon 305-350
Korea
EMail: jklee@ensec.re.kr
Je-Hong Park
National Security Research Institute
P.O.Box 1, Yuseong
Daejeon 305-350
Korea
EMail: jhpark@ensec.re.kr
Daesung Kwon
National Security Research Institute
P.O.Box 1, Yuseong
Daejeon 305-350
Korea
EMail: ds_kwon@ensec.re.kr
Kim, et al. Informational [Page 9]
^L
|