1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
|
Internet Engineering Task Force (IETF) A. Takacs
Request for Comments: 6387 Ericsson
Obsoletes: 5467 L. Berger
Category: Standards Track LabN Consulting, L.L.C.
ISSN: 2070-1721 D. Caviglia
Ericsson
D. Fedyk
Alcatel-Lucent
J. Meuric
France Telecom Orange
September 2011
GMPLS Asymmetric Bandwidth Bidirectional Label Switched Paths (LSPs)
Abstract
This document defines a method for the support of GMPLS asymmetric
bandwidth bidirectional Label Switched Paths (LSPs). The approach
presented is applicable to any switching technology and builds on the
original Resource Reservation Protocol (RSVP) model for the transport
of traffic-related parameters. This document moves the experiment
documented in RFC 5467 to the standards track and obsoletes RFC 5467.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc6387.
Takacs, et. al. Standards Track [Page 1]
^L
RFC 6387 Asymmetric Bandwidth Bidirectional LSP September 2011
Copyright Notice
Copyright (c) 2011 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1. Background . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Approach Overview . . . . . . . . . . . . . . . . . . . . 3
1.3. Conventions Used in This Document . . . . . . . . . . . . 4
2. Generalized Asymmetric Bandwidth Bidirectional LSPs . . . . . 4
2.1. UPSTREAM_FLOWSPEC Object . . . . . . . . . . . . . . . . . 5
2.1.1. Procedures . . . . . . . . . . . . . . . . . . . . . . 5
2.2. UPSTREAM_TSPEC Object . . . . . . . . . . . . . . . . . . 5
2.2.1. Procedures . . . . . . . . . . . . . . . . . . . . . . 5
2.3. UPSTREAM_ADSPEC Object . . . . . . . . . . . . . . . . . . 6
2.3.1. Procedures . . . . . . . . . . . . . . . . . . . . . . 6
3. Packet Formats . . . . . . . . . . . . . . . . . . . . . . . . 6
4. Compatibility . . . . . . . . . . . . . . . . . . . . . . . . 7
5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 8
5.1. UPSTREAM_FLOWSPEC Object . . . . . . . . . . . . . . . . . 8
5.2. UPSTREAM_TSPEC Object . . . . . . . . . . . . . . . . . . 8
5.3. UPSTREAM_ADSPEC Object . . . . . . . . . . . . . . . . . . 8
6. Security Considerations . . . . . . . . . . . . . . . . . . . 8
7. References . . . . . . . . . . . . . . . . . . . . . . . . . . 9
7.1. Normative References . . . . . . . . . . . . . . . . . . . 9
7.2. Informative References . . . . . . . . . . . . . . . . . . 9
1. Introduction
GMPLS [RFC3473] introduced explicit support for bidirectional Label
Switched Paths (LSPs). The defined support matched the switching
technologies covered by GMPLS, notably Time Division Multiplexing
(TDM) and lambdas; specifically, it only supported bidirectional LSPs
with symmetric bandwidth allocation. Symmetric bandwidth
requirements are conveyed using the semantics objects defined in
[RFC2205] and [RFC2210].
Takacs, et. al. Standards Track [Page 2]
^L
RFC 6387 Asymmetric Bandwidth Bidirectional LSP September 2011
GMPLS asymmetric bandwidth bidirectional LSPs are bidirectional LSPs
that have different bandwidth reservations in each direction.
Support for bidirectional LSPs with asymmetric bandwidth was
previously discussed in the context of Ethernet, notably [RFC6060]
and [RFC6003]. In that context, asymmetric bandwidth support was
considered to be a capability that was unlikely to be deployed, and
hence [RFC5467] was published as Experimental. The MPLS Transport
Profile, MPLS-TP, requires that asymmetric bandwidth bidirectional
LSPs be supported (see [RFC5654]); therefore, this document is being
published on the Standards Track. This document has no technical
changes from the approach defined in [RFC5467]. This document moves
the experiment documented in [RFC5467] to the standards track and
obsoletes [RFC5467]. This document also removes the Ethernet-
technology-specific alternative approach discussed in the appendix of
[RFC5467] and maintains only one approach that is suitable for use
with any technology.
1.1. Background
Bandwidth parameters are transported within RSVP ([RFC2210],
[RFC3209], and [RFC3473]) via several objects that are opaque to
RSVP. While opaque to RSVP, these objects support a particular model
for the communication of bandwidth information between an RSVP
session sender (ingress) and receiver (egress). The original model
of communication, defined in [RFC2205] and maintained in [RFC3209],
used the SENDER_TSPEC and ADSPEC objects in Path messages and the
FLOWSPEC object in Resv messages. The SENDER_TSPEC object was used
to indicate a sender's data generation capabilities. The FLOWSPEC
object was issued by the receiver and indicated the resources that
should be allocated to the associated data traffic. The ADSPEC
object was used to inform the receiver and intermediate hops of the
actual resources available for the associated data traffic.
With the introduction of bidirectional LSPs in [RFC3473], the model
of communication of bandwidth parameters was implicitly changed. In
the context of [RFC3473] bidirectional LSPs, the SENDER_TSPEC object
indicates the desired resources for both upstream and downstream
directions. The FLOWSPEC object is simply confirmation of the
allocated resources. The definition of the ADSPEC object is either
unmodified and only has meaning for downstream traffic, or is
implicitly or explicitly ([RFC4606] and [RFC6003]) irrelevant.
1.2. Approach Overview
The approach for supporting asymmetric bandwidth bidirectional LSPs
defined in this document builds on the original RSVP model for the
transport of traffic-related parameters and GMPLS's support for
bidirectional LSPs.
Takacs, et. al. Standards Track [Page 3]
^L
RFC 6387 Asymmetric Bandwidth Bidirectional LSP September 2011
The defined approach is generic and can be applied to any switching
technology supported by GMPLS. With this approach, the existing
SENDER_TSPEC, ADSPEC, and FLOWSPEC objects are complemented with the
addition of new UPSTREAM_TSPEC, UPSTREAM_ADSPEC, and
UPSTREAM_FLOWSPEC objects. The existing objects are used in the
original fashion defined in [RFC2205] and [RFC2210], and refer only
to traffic associated with the LSP flowing in the downstream
direction. The new objects are used in exactly the same fashion as
the old objects, but refer to the upstream traffic flow Figure 1
shows the bandwidth-related objects used for asymmetric bandwidth
bidirectional LSPs.
|---| Path |---|
| I |------------------->| E |
| n | -SENDER_TSPEC | g |
| g | -ADSPEC | r |
| r | -UPSTREAM_FLOWSPEC | e |
| e | | s |
| s | Resv | s |
| s |<-------------------| |
| | -FLOWSPEC | |
| | -UPSTREAM_TSPEC | |
| | -UPSTREAM_ADSPEC | |
|---| |---|
Figure 1: Generic Asymmetric Bandwidth Bidirectional LSPs
The extensions defined in this document are limited to Point-to-Point
(P2P) LSPs. Support for Point-to-Multipoint (P2MP) bidirectional
LSPs is not currently defined and, as such, not covered in this
document.
1.3. Conventions Used in This Document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
2. Generalized Asymmetric Bandwidth Bidirectional LSPs
The setup of an asymmetric bandwidth bidirectional LSP is signaled
using the bidirectional procedures defined in [RFC3473] together with
the inclusion of the new UPSTREAM_FLOWSPEC, UPSTREAM_TSPEC, and
UPSTREAM_ADSPEC objects.
The new upstream objects carry the same information and are used in
the same fashion as the existing downstream objects; they differ in
that they relate to traffic flowing in the upstream direction while
Takacs, et. al. Standards Track [Page 4]
^L
RFC 6387 Asymmetric Bandwidth Bidirectional LSP September 2011
the existing objects relate to traffic flowing in the downstream
direction. The new objects also differ in that they are carried in
messages traveling in the opposite direction.
2.1. UPSTREAM_FLOWSPEC Object
The format of an UPSTREAM_FLOWSPEC object is the same as a FLOWSPEC
object [RFC2210]. This includes the definition of class types and
their formats. The class number of the UPSTREAM_FLOWSPEC object is
120 (of the form 0bbbbbbb).
2.1.1. Procedures
The Path message of an asymmetric bandwidth bidirectional LSP MUST
contain an UPSTREAM_FLOWSPEC object and MUST use the bidirectional
LSP formats and procedures defined in [RFC3473]. The C-Type of the
UPSTREAM_FLOWSPEC object MUST match the C-Type of the SENDER_TSPEC
object used in the Path message. The contents of the
UPSTREAM_FLOWSPEC object MUST be constructed using a format and
procedures consistent with those used to construct the FLOWSPEC
object that will be used for the LSP, e.g., [RFC2210] or [RFC4328].
Nodes processing a Path message containing an UPSTREAM_FLOWSPEC
object MUST use the contents of the UPSTREAM_FLOWSPEC object in the
upstream label and the resource allocation procedure defined in
Section 3.1 of [RFC3473]. Consistent with [RFC3473], a node that is
unable to allocate a label or internal resources based on the
contents of the UPSTREAM_FLOWSPEC object MUST issue a PathErr message
with a "Routing problem/MPLS label allocation failure" indication.
2.2. UPSTREAM_TSPEC Object
The format of an UPSTREAM_TSPEC object is the same as a SENDER_TSPEC
object, which includes the definition of class types and their
formats. The class number of the UPSTREAM_TSPEC object is 121 (of
the form 0bbbbbbb).
2.2.1. Procedures
The UPSTREAM_TSPEC object describes the traffic flow that originates
at the egress. The UPSTREAM_TSPEC object MUST be included in any
Resv message that corresponds to a Path message containing an
UPSTREAM_FLOWSPEC object. The C-Type of the UPSTREAM_TSPEC object
MUST match the C-Type of the corresponding UPSTREAM_FLOWSPEC object.
The contents of the UPSTREAM_TSPEC object MUST be constructed using a
format and procedures consistent with those used to construct the
FLOWSPEC object that will be used for the LSP, e.g., [RFC2210] or
[RFC4328]. The contents of the UPSTREAM_TSPEC object MAY differ from
Takacs, et. al. Standards Track [Page 5]
^L
RFC 6387 Asymmetric Bandwidth Bidirectional LSP September 2011
contents of the UPSTREAM_FLOWSPEC object based on application data
transmission requirements.
When an UPSTREAM_TSPEC object is received by an ingress, the ingress
MAY determine that the original reservation is insufficient to
satisfy the traffic flow. In this case, the ingress MAY tear down
the LSP and send a PathTear message. Alternatively, the ingress MAY
issue a Path message with an updated UPSTREAM_FLOWSPEC object to
modify the resources requested for the upstream traffic flow. This
modification might require the LSP to be re-routed, and in extreme
cases might result in the LSP being torn down when sufficient
resources are not available along the path of the LSP.
2.3. UPSTREAM_ADSPEC Object
The format of an UPSTREAM_ADSPEC object is the same as an ADSPEC
object. This includes the definition of class types and their
formats. The class number of the UPSTREAM_ADSPEC object is 122 (of
the form 0bbbbbbb).
2.3.1. Procedures
The UPSTREAM_ADSPEC object MAY be included in any Resv message that
corresponds to a Path message containing an UPSTREAM_FLOWSPEC object.
The C-Type of the UPSTREAM_TSPEC object MUST be consistent with the
C-Type of the corresponding UPSTREAM_FLOWSPEC object. The contents
of the UPSTREAM_ADSPEC object MUST be constructed using a format and
procedures consistent with those used to construct the ADSPEC object
that will be used for the LSP, e.g., [RFC2210] or [RFC6003]. The
UPSTREAM_ADSPEC object is processed using the same procedures as the
ADSPEC object and, as such, MAY be updated or added at transit nodes.
3. Packet Formats
This section presents the RSVP message-related formats as modified by
this section. This document modifies formats defined in [RFC2205],
[RFC3209], and [RFC3473]. See [RFC5511] for the syntax used by RSVP.
Unmodified formats are not listed. Three new objects are defined in
this section:
Object name Applicable RSVP messages
--------------- ------------------------
UPSTREAM_FLOWSPEC Path, PathTear, PathErr, and Notify
(via sender descriptor)
UPSTREAM_TSPEC Resv, ResvConf, ResvTear, ResvErr, and
Notify (via flow descriptor list)
UPSTREAM_ADSPEC Resv, ResvConf, ResvTear, ResvErr, and
Notify (via flow descriptor list)
Takacs, et. al. Standards Track [Page 6]
^L
RFC 6387 Asymmetric Bandwidth Bidirectional LSP September 2011
The format of the sender description for bidirectional asymmetric
LSPs is:
<sender descriptor> ::= <SENDER_TEMPLATE> <SENDER_TSPEC>
[ <ADSPEC> ]
[ <RECORD_ROUTE> ]
[ <SUGGESTED_LABEL> ]
[ <RECOVERY_LABEL> ]
<UPSTREAM_LABEL>
<UPSTREAM_FLOWSPEC>
The format of the flow descriptor list for bidirectional asymmetric
LSPs is:
<flow descriptor list> ::= <FF flow descriptor list>
| <SE flow descriptor>
<FF flow descriptor list> ::= <FLOWSPEC>
<UPSTREAM_TSPEC> [ <UPSTREAM_ADSPEC> ]
<FILTER_SPEC>
<LABEL> [ <RECORD_ROUTE> ]
| <FF flow descriptor list>
<FF flow descriptor>
<FF flow descriptor> ::= [ <FLOWSPEC> ]
[ <UPSTREAM_TSPEC>] [ <UPSTREAM_ADSPEC> ]
<FILTER_SPEC> <LABEL>
[ <RECORD_ROUTE> ]
<SE flow descriptor> ::= <FLOWSPEC>
<UPSTREAM_TSPEC> [ <UPSTREAM_ADSPEC> ]
<SE filter spec list>
<SE filter spec list> is unmodified by this document.
4. Compatibility
This extension reuses and extends semantics and procedures defined in
[RFC2205], [RFC3209], and [RFC3473] to support bidirectional LSPs
with asymmetric bandwidth. Three new objects are defined to indicate
the use of asymmetric bandwidth. Each of these objects is defined
with class numbers in the form 0bbbbbbb. Per [RFC2205], nodes not
supporting this extension will not recognize the new class numbers
and will respond with an "Unknown Object Class" error. The error
message will propagate to the ingress, which can then take action to
avoid the path with the incompatible node or can simply terminate the
session.
Takacs, et. al. Standards Track [Page 7]
^L
RFC 6387 Asymmetric Bandwidth Bidirectional LSP September 2011
5. IANA Considerations
The IANA has made the assignments described below in the "Class
Names, Class Numbers, and Class Types" section of the "RSVP
PARAMETERS" registry.
5.1. UPSTREAM_FLOWSPEC Object
The class named UPSTREAM_FLOWSPEC has been assigned in the 0bbbbbbb
range (120) with the following definition:
Class Types or C-types:
Same values as FLOWSPEC object (C-Num 9)
5.2. UPSTREAM_TSPEC Object
The class named UPSTREAM_TSPEC has been assigned in the 0bbbbbbb
range (121) with the following definition:
Class Types or C-types:
Same values as SENDER_TSPEC object (C-Num 12)
5.3. UPSTREAM_ADSPEC Object
The class named UPSTREAM_ADSPEC has been assigned in the 0bbbbbbb
range (122) with the following definition:
Class Types or C-types:
Same values as ADSPEC object (C-Num 13)
6. Security Considerations
This document introduces new message objects for use in GMPLS
signaling [RFC3473] -- specifically the UPSTREAM_TSPEC,
UPSTREAM_ADSPEC, and UPSTREAM_FLOWSPEC objects. These objects
parallel the existing SENDER_TSPEC, ADSPEC, and FLOWSPEC objects but
are used in the opposite direction. As such, any vulnerabilities
that are due to the use of the old objects now apply to messages
flowing in the reverse direction.
From a message standpoint, this document does not introduce any new
signaling messages or change the relationship between LSRs that are
adjacent in the control plane. As such, this document introduces no
additional message- or neighbor-related security considerations.
Takacs, et. al. Standards Track [Page 8]
^L
RFC 6387 Asymmetric Bandwidth Bidirectional LSP September 2011
See [RFC3473] for relevant security considerations and [RFC5920] for
a more general discussion on RSVP-TE security discussions.
7. References
7.1. Normative References
[RFC2205] Braden, R., Ed., Zhang, L., Berson, S., Herzog, S., and
S. Jamin, "Resource ReSerVation Protocol (RSVP) --
Version 1 Functional Specification", RFC 2205, September
1997.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2210] Wroclawski, J., "The Use of RSVP with IETF Integrated
Services", RFC 2210, September 1997.
[RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
Tunnels", RFC 3209, December 2001.
[RFC3473] Berger, L., Ed., "Generalized Multi-Protocol Label
Switching (GMPLS) Signaling Resource ReserVation
Protocol-Traffic Engineering (RSVP-TE) Extensions", RFC
3473, January 2003.
7.2. Informative References
[RFC4606] Mannie, E. and D. Papadimitriou, "Generalized Multi-
Protocol Label Switching (GMPLS) Extensions for
Synchronous Optical Network (SONET) and Synchronous
Digital Hierarchy (SDH) Control", RFC 4606, August 2006.
[RFC4328] Papadimitriou, D., Ed., "Generalized Multi-Protocol Label
Switching (GMPLS) Signaling Extensions for G.709 Optical
Transport Networks Control", RFC 4328, January 2006.
[RFC5511] Farrel, A., "Routing Backus-Naur Form (RBNF): A Syntax
Used to Form Encoding Rules in Various Routing Protocol
Specifications", RFC 5511, April 2009.
[RFC5654] Niven-Jenkins, B., Ed., Brungard, D., Ed., Betts, M.,
Ed., Sprecher, N., and S. Ueno, "Requirements of an MPLS
Transport Profile", RFC 5654, September 2009.
[RFC5920] Fang, L., Ed., "Security Framework for MPLS and GMPLS
Networks", RFC 5920, July 2010.
Takacs, et. al. Standards Track [Page 9]
^L
RFC 6387 Asymmetric Bandwidth Bidirectional LSP September 2011
[RFC5467] Berger, L., Takacs, A., Caviglia, D., Fedyk, D., and J.
Meuric, "GMPLS Asymmetric Bandwidth Bidirectional Label
Switched Paths (LSPs)", RFC 5467, March 2009.
[RFC6003] Papadimitriou, D., "Ethernet Traffic Parameters", RFC
6003, October 2010.
[RFC6060] Fedyk, D., Shah, H., Bitar, N., and A. Takacs,
"Generalized Multiprotocol Label Switching (GMPLS)
Control of Ethernet Provider Backbone Traffic Engineering
(PBB-TE)", RFC 6060, March 2011.
Takacs, et. al. Standards Track [Page 10]
^L
RFC 6387 Asymmetric Bandwidth Bidirectional LSP September 2011
Authors' Addresses
Attila Takacs
Ericsson
Konyves Kalman krt. 11.
Budapest, 1097
Hungary
EMail: attila.takacs@ericsson.com
Lou Berger
LabN Consulting, L.L.C.
EMail: lberger@labn.net
Diego Caviglia
Ericsson
Via A. Negrone 1/A
Genova-Sestri Ponente,
Italy
Phone: +390106003738
Fax:
EMail: diego.caviglia@ericsson.com
Don Fedyk
Alcatel-Lucent
Groton, MA
USA
EMail: donald.fedyk@alcatel-lucent.com
Julien Meuric
France Telecom Orange
2, avenue Pierre Marzin
Lannion Cedex, 22307
France
EMail: julien.meuric@orange.com
Takacs, et. al. Standards Track [Page 11]
^L
|