summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc6426.txt
blob: 4fc0cdef045d560ea1bb738951d500c86d9f9014 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
Internet Engineering Task Force (IETF)                           E. Gray
Request for Comments: 6426                                      Ericsson
Updates: 4379                                                 N. Bahadur
Category: Standards Track                         Juniper Networks, Inc.
ISSN: 2070-1721                                               S. Boutros
                                                     Cisco Systems, Inc.
                                                             R. Aggarwal
                                                           November 2011


       MPLS On-Demand Connectivity Verification and Route Tracing

Abstract

   Label Switched Path Ping (LSP ping) is an existing and widely
   deployed Operations, Administration, and Maintenance (OAM) mechanism
   for Multi-Protocol Label Switching (MPLS) Label Switched Paths
   (LSPs).  This document describes extensions to LSP ping so that LSP
   ping can be used for on-demand connectivity verification of MPLS
   Transport Profile (MPLS-TP) LSPs and pseudowires.  This document also
   clarifies procedures to be used for processing the related OAM
   packets.  Further, it describes procedures for using LSP ping to
   perform connectivity verification and route tracing functions in
   MPLS-TP networks.  Finally, this document updates RFC 4379 by adding
   a new address type and creating an IANA registry.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc6426.












Gray, et al.                 Standards Track                    [Page 1]
^L
RFC 6426        MPLS On-Demand Connectivity Verification   November 2011


Copyright Notice

   Copyright (c) 2011 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
     1.1.  Conventions Used in This Document  . . . . . . . . . . . .  3
     1.2.  On-Demand CV for MPLS-TP LSPs Using IP Encapsulation . . .  4
     1.3.  On-Demand CV for MPLS-TP LSPs Using Non-IP
           Encapsulation  . . . . . . . . . . . . . . . . . . . . . .  4
   2.  LSP Ping Extensions  . . . . . . . . . . . . . . . . . . . . .  5
     2.1.  New Address Type for Downstream Mapping TLV  . . . . . . .  5
       2.1.1.  DSMAP/DDMAP Non-IP Address Information . . . . . . . .  5
     2.2.  Source/Destination Identifier TLV  . . . . . . . . . . . .  7
       2.2.1.  Source/Destination Identifier TLV Format . . . . . . .  7
       2.2.2.  Source Identifier TLV  . . . . . . . . . . . . . . . .  7
       2.2.3.  Destination Identifier TLV . . . . . . . . . . . . . .  8
     2.3.  Identifying Statically Provisioned LSPs and PWs  . . . . .  8
       2.3.1.  Static LSP Sub-TLV . . . . . . . . . . . . . . . . . .  9
       2.3.2.  Static Pseudowire Sub-TLV  . . . . . . . . . . . . . . 10
   3.  Performing On-Demand CV over MPLS-TP LSPs  . . . . . . . . . . 10
     3.1.  LSP Ping with IP Encapsulation . . . . . . . . . . . . . . 11
     3.2.  On-Demand CV with IP Encapsulation, over ACH . . . . . . . 11
     3.3.  Non-IP-Based On-Demand CV, Using ACH . . . . . . . . . . . 12
     3.4.  Reverse-Path Connectivity Verification . . . . . . . . . . 13
       3.4.1.  Requesting Reverse-Path Connectivity Verification  . . 13
       3.4.2.  Responder Procedures . . . . . . . . . . . . . . . . . 13
       3.4.3.  Requester Procedures . . . . . . . . . . . . . . . . . 14
     3.5.  P2MP Considerations  . . . . . . . . . . . . . . . . . . . 14
     3.6.  Management Considerations for Operation with Static
           MPLS-TP  . . . . . . . . . . . . . . . . . . . . . . . . . 14
     3.7.  Generic Associated Channel Label (GAL) Processing  . . . . 14
   4.  Performing On-Demand Route Tracing over MPLS-TP LSPs . . . . . 15
     4.1.  On-Demand LSP Route Tracing with IP Encapsulation  . . . . 15





Gray, et al.                 Standards Track                    [Page 2]
^L
RFC 6426        MPLS On-Demand Connectivity Verification   November 2011


     4.2.  Non-IP-Based On-Demand LSP Route Tracing, Using ACH  . . . 15
       4.2.1.  Requester Procedure for Sending Echo Request
               Packets  . . . . . . . . . . . . . . . . . . . . . . . 16
       4.2.2.  Requester Procedure for Receiving Echo Response
               Packets  . . . . . . . . . . . . . . . . . . . . . . . 16
       4.2.3.  Responder Procedure  . . . . . . . . . . . . . . . . . 16
     4.3.  P2MP Considerations  . . . . . . . . . . . . . . . . . . . 16
     4.4.  ECMP Considerations  . . . . . . . . . . . . . . . . . . . 16
   5.  Applicability  . . . . . . . . . . . . . . . . . . . . . . . . 16
   6.  Security Considerations  . . . . . . . . . . . . . . . . . . . 17
   7.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 17
     7.1.  New Source and Destination Identifier TLVs . . . . . . . . 17
     7.2.  New Target FEC Stack Sub-TLVs  . . . . . . . . . . . . . . 17
     7.3.  New Reverse-Path Target FEC Stack TLV  . . . . . . . . . . 18
     7.4.  New Pseudowire Associated Channel Type . . . . . . . . . . 18
     7.5.  New Downstream Mapping Address Type Registry . . . . . . . 18
   8.  Contributing Authors and Acknowledgements  . . . . . . . . . . 19
   9.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 20
     9.1.  Normative References . . . . . . . . . . . . . . . . . . . 20
     9.2.  Informative References . . . . . . . . . . . . . . . . . . 20

1.  Introduction

   Label Switched Path Ping (LSP ping) [RFC4379] is an Operations,
   Administration, and Maintenance (OAM) mechanism for Multi-Protocol
   Label Switching (MPLS) Label Switched Paths (LSPs).  This document
   describes extensions to LSP ping so that LSP ping can be used for
   on-demand monitoring of MPLS Transport Profile (MPLS-TP) LSPs and
   pseudowires.  It also clarifies the procedures to be used for
   processing the related OAM packets.  This document describes how LSP
   ping can be used for on-demand connectivity verification (Section 3)
   and route tracing (Section 4) functions required in [RFC5860] and
   specified in [RFC6371].

1.1.  Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   [RFC2119].

   There is considerable opportunity for confusion in use of the terms
   "on-demand connectivity verification" (CV), "on-demand route tracing"
   and "LSP ping."  In this document, we try to use the terms
   consistently as follows:

   o  LSP ping: refers to the mechanism - particularly as defined and
      used in referenced material;



Gray, et al.                 Standards Track                    [Page 3]
^L
RFC 6426        MPLS On-Demand Connectivity Verification   November 2011


   o  On-demand CV: refers to on-demand connectivity verification and --
      where both apply equally -- on-demand route tracing, as
      implemented using the LSP ping mechanism extended for support of
      MPLS-TP;

   o  On-demand route tracing: used in those cases where the LSP ping
      mechanism (as extended) is used exclusively for route tracing.

   From the perspective of on-demand CV and route tracing, we use the
   concepts of "Requester" and "Responder" as follows:

   o  Requester: Originator of an OAM Request message,

   o  Responder: Entity responding to an OAM Request message.

   Since, in this document, all messages are assumed to be carried in an
   LSP, all Request messages would be injected at the ingress to an LSP.
   A Responder might or might not be at the egress of this same LSP,
   given that it could receive Request messages as a result of time-to-
   live (TTL) expiry.  If a Reply is to be delivered via a reverse-path
   LSP, the message would again be inserted at the ingress of that LSP.

1.2.  On-Demand CV for MPLS-TP LSPs Using IP Encapsulation

   LSP ping requires IP addressing on responding Label Switching Routers
   (LSRs) for performing OAM on MPLS-signaled LSPs and pseudowires.  In
   particular, in these cases, LSP ping packets generated by a Requester
   are encapsulated in an IP/UDP header with the destination address
   from the 127/8 range and then encapsulated in the MPLS label stack
   ([RFC4379] , [RFC5884]).  A Responder uses the presence of the 127/8
   destination address to identify OAM packets and relies further on the
   UDP port number to determine whether the packet is an LSP ping
   packet.  It is to be noted that this determination does not require
   IP forwarding capabilities.  It requires the presence of an IP host
   stack, which enables responding LSRs to process packets with a
   destination address from the 127/8 range.  [RFC1122] allocates the
   127/8 range as "Internal host loopback address" and [RFC1812] states
   that "a router SHOULD NOT forward, except over a loopback interface,
   any packet that has a destination address on network 127".

1.3.  On-Demand CV for MPLS-TP LSPs Using Non-IP Encapsulation

   In certain MPLS-TP deployment scenarios, IP addressing might not be
   available or use some form of non-IP encapsulation might be preferred
   for on-demand CV, route tracing, and BFD packets.  In such scenarios,
   on-demand CV and/or route tracing SHOULD be run without IP
   addressing, using the Associated Channel (ACH) channel type specified
   in Section 3.



Gray, et al.                 Standards Track                    [Page 4]
^L
RFC 6426        MPLS On-Demand Connectivity Verification   November 2011


   Section 3.3 and Section 4.2 describe the theory of operation for
   performing on-demand CV over MPLS-TP LSPs with any non-IP
   encapsulation.

2.  LSP Ping Extensions

2.1.  New Address Type for Downstream Mapping TLV

   [RFC4379] defines the Downstream Mapping (DSMAP) TLV.  [RFC6424]
   further defines the Downstream Detailed Mapping (DDMAP) TLV.  This
   document defines the following new address type, which MAY be used in
   any DSMAP or DDMAP TLV included in an on-demand CV message:

               Type #        Address Type           K Octets
               ------        --------------         --------
                   5         Non IP                       12

               Figure 1: New Downstream Mapping Address Type

   The new address type indicates that no address is present in the
   DSMAP or DDMAP TLV.  However, IF_Num information (see definition of
   "IF_Num" in [RFC6370]) for both ingress and egress interfaces, as
   well as Multipath Information, is included in the format and MAY be
   present.

   IF_Num values of zero indicate that no IF_Num applies in the field in
   which this value appears.

   The Multipath Type SHOULD be set to zero (no multipath) when using
   this address type.

   When this address type is used, on receipt of an LSP ping echo
   request, interface verification MUST be bypassed.  Thus, the
   receiving node SHOULD only perform MPLS label control-plane/
   data-plane consistency checks.  Note that these consistency checks
   include checking the included identifier information.

   The new address type is also applicable to the Detailed Downstream
   Mapping (DDMAP) TLV defined in [RFC6424].

2.1.1.  DSMAP/DDMAP Non-IP Address Information

   If the DSMAP (or DDMAP) TLV is included when sending on-demand CV
   packets using ACH, without IP encapsulation, the following
   information MUST be included in any DSMAP or DDMAP TLV that is
   included in the packet.  This information forms the address portion
   of the DSMAP TLV (as defined in [RFC4379]) or DDMAP TLV (as defined
   in [RFC6424] using one of the address information fields defined in



Gray, et al.                 Standards Track                    [Page 5]
^L
RFC 6426        MPLS On-Demand Connectivity Verification   November 2011


   [RFC4379] and extended to include non-IP identifier types in this
   document).

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |               MTU             | Address Type  |    DS Flags   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |               Ingress IF_Num (4 octets)                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                Egress IF_Num (4 octets)                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Multipath Type| Depth Limit   |        Multipath Length       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 2: New DSMAP/DDMAP Address Format

   Address Type will be 5 (as shown in Section 2.1 above).

   Ingress IF_Num identifies the ingress interface on the target node.
   A value of zero indicates that the interface is not part of the
   identifier.

   Egress IF_Num identifies the egress interface on the target node.  A
   value of zero indicates that the interface is not part of the
   identifier.

   The Multipath Type SHOULD be set to zero (no multipath) when using
   this address type.

   Including this TLV, with one or the other IF_Num (but not both) set
   to a non-zero value, in a request message that also includes a
   Destination Identifier TLV (as described in Section 2.2), is
   sufficient to identify the "per-interface" MIP in Section 7.3 of
   [RFC6370].

   Inclusion of this TLV with both IF_Num fields set to zero would be
   interpreted as specifying neither an ingress, nor an egress,
   interface.  Note that this is the same as not including the TLV;
   hence, including this TLV with both IF_Num values set to zero is NOT
   RECOMMENDED.

   Including this TLV with both IF_NUM fields set to a non-zero value
   will result in the responder sending a Return Code of 5 ("Downstream
   Mapping Mis-match") if either IF_Num is incorrect for this LSP or PW.






Gray, et al.                 Standards Track                    [Page 6]
^L
RFC 6426        MPLS On-Demand Connectivity Verification   November 2011


2.2.  Source/Destination Identifier TLV

2.2.1.  Source/Destination Identifier TLV Format

   The format for the identifier TLV is the same for both Source and
   Destination Identifier TLVs (only the type is different).  The format
   is as specified in the figure below.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             Type              | Length = 8                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Global_ID   (4 Octets)                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                   Node_ID   (4 Octets)                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

            Figure 3: New Source/Destination Identifier Format

   Type will be one of either 13 or 14, depending on whether the TLV in
   question is a Source or Destination Identifier TLV.

   Global_ID is as defined in [RFC6370].

   Node_ID is as defined in [RFC6370].

2.2.2.  Source Identifier TLV

   When sending on-demand CV packets using ACH, without IP
   encapsulation, there MAY be a need to identify the source of the
   packet.  This source identifier (Source ID) will be specified via the
   Source Identifier TLV, using the Identifier TLV defined in
   Section 2.2.1, containing the information specified above.

   An on-demand CV packet MUST NOT include more than one Source
   Identifier TLV.  The Source Identifier TLV MUST specify the
   identifier of the originator of the packet.  If more than one such
   TLV is present in an on-demand CV request packet, then error 1
   (Malformed echo request received; see Section 3.1 of [RFC4379]) MUST
   be returned, if it is possible to unambiguously identify the source
   of the packet.









Gray, et al.                 Standards Track                    [Page 7]
^L
RFC 6426        MPLS On-Demand Connectivity Verification   November 2011


2.2.3.  Destination Identifier TLV

   When sending on-demand CV packets using ACH, without IP
   encapsulation, there MAY be a need to identify the destination of the
   packet.  This destination identifier (Destination ID) will be
   specified via the Destination Identifier TLV, using the Identifier
   TLV defined in Section 2.2.1, containing the information specified
   above.

   An on-demand CV packet MUST NOT include more than one Destination
   Identifier TLV.  The Destination Identifier TLV MUST specify the
   destination node for the packet.  If more than 1 such TLV is present
   in an on-demand CV Request packet, then error 1 (Malformed echo
   request received; see Section 3.1 of [RFC4379]) MUST be returned, if
   it is possible to unambiguously identify the source of the packet.

2.3.  Identifying Statically Provisioned LSPs and PWs

   [RFC4379] specifies how an MPLS LSP under test is identified in an
   echo request.  A Target FEC Stack TLV is used to identify the LSP.
   In order to identify a statically provisioned LSP and PW, new target
   FEC Stack sub-TLVs are being defined.  The new sub-TLVs are assigned
   sub-type identifiers as follows and are described in the following
   sections.

         Type #   Sub-Type #       Length        Value Field
         ------   ----------       ------        -----------
           1         22              24          Static LSP
           1         23              32          Static Pseudowire

                    Figure 4: New Target FEC Sub-Types




















Gray, et al.                 Standards Track                    [Page 8]
^L
RFC 6426        MPLS On-Demand Connectivity Verification   November 2011


2.3.1.  Static LSP Sub-TLV

   The format of the Static LSP sub-TLV value field is specified in the
   following figure.  The value fields are taken from the definitions in
   [RFC6370].

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       Source Global ID                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        Source Node ID                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Source Tunnel Number      |        LSP Number             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                    Destination Global ID                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Destination Node ID                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Destination Tunnel Number   |        Must be Zero           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 5: Static LSP FEC Sub-TLV

   The Source Global ID and Destination Global ID MAY be set to zero.
   When set to zero, the field is not applicable.

























Gray, et al.                 Standards Track                    [Page 9]
^L
RFC 6426        MPLS On-Demand Connectivity Verification   November 2011


2.3.2.  Static Pseudowire Sub-TLV

   The format of the Static PW sub-TLV value field is specified in the
   following figure.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   +                      Service Identifier                       +
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       Source Global ID                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        Source Node ID                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         Source AC-ID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                    Destination Global ID                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Destination Node ID                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Destination AC-ID                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 6: Static PW FEC Sub-TLV

   The Service Identifier is a 64-bit unsigned integer that is included
   in the first two words, as shown.  The Service Identifier identifies
   the service associated with the transport path under test.  The value
   MAY, for example, be an Attachment Group Identifier (AGI), type 0x01,
   as defined in [RFC4446].

   The Source Global ID and Destination Global ID MAY be set to zero.
   When either of these fields is set to zero, the corresponding Global
   ID is not applicable.  This might be done in a scenario where local
   scope is sufficient for uniquely identifying services.

   The Global ID and Node ID fields are defined in [RFC6370].  The AC-ID
   fields are defined in [RFC5003].

3.  Performing On-Demand CV over MPLS-TP LSPs

   This section specifies how on-demand CV can be used in the context of
   MPLS-TP LSPs.  The on-demand CV function meets the on-demand
   connectivity verification requirements specified in [RFC5860],
   Section 2.2.3.  This function SHOULD NOT be performed except in the
   on-demand mode.  This function SHOULD be performed between



Gray, et al.                 Standards Track                   [Page 10]
^L
RFC 6426        MPLS On-Demand Connectivity Verification   November 2011


   Maintenance Entity Group End Points (MEPs) and Maintenance Entity
   Group Intermediate Points (MIPs) of PWs and LSPs, and between End
   Points of PWs, LSPs, and Sections.  In order for the on-demand CV
   packet to be processed at the desired MIP, the TTL of the MPLS label
   MUST be set such that it expires at the MIP to be probed.

   [RFC5586] defines an ACH mechanism for MPLS LSPs.  The mechanism is a
   generalization of the Associated Channel mechanism that [RFC4385]
   defined for use with pseudowires.  As a result, it is possible to use
   a single Associated Channel Type for either an LSP or pseudowire.

   A new Pseudowire Associated Channel Type (0x0025) is defined for use
   in performing on-demand connectivity verification.  Its use is
   described in the following sections.

   ACH TLVs SHALL NOT be associated with this channel type.

   Except as specifically stated in the sections below, message and TLV
   construction procedures for on-demand CV messages are as defined in
   [RFC4379].

3.1.  LSP Ping with IP Encapsulation

   LSP ping packets, as specified in [RFC4379], are sent over the MPLS
   LSP for which OAM is being performed and contain an IP/UDP packet
   within them.  The IP header is not used for forwarding (since LSP
   forwarding is done using MPLS).  The IP header is used mainly for
   addressing and can be used in the context of MPLS-TP LSPs.  This form
   of on-demand CV OAM MUST be supported for MPLS-TP LSPs when IP
   addressing is in use.

   The on-demand CV echo response message MUST be sent on the reverse
   path of the LSP.  The reply MUST contain IP/UDP headers followed by
   the on-demand CV payload.  The destination address in the IP header
   MUST be set to that of the sender of the echo request message.  The
   source address in the IP header MUST be set to a valid address of the
   replying node.

3.2.  On-Demand CV with IP Encapsulation, over ACH

   IP encapsulated on-demand CV packets MAY be sent over the MPLS LSP
   using the control channel (ACH).  The IP ACH type specified in
   [RFC4385] MUST be used in such a case.  The IP header is used mainly
   for addressing and can be used in the context of MPLS-TP LSPs.

   Note that the application-level control channel in this case is the
   reverse path of the LSP (or Pseudowire) using ACH.




Gray, et al.                 Standards Track                   [Page 11]
^L
RFC 6426        MPLS On-Demand Connectivity Verification   November 2011


   The on-demand CV echo response message MUST be sent on the reverse
   path of the LSP.  The response in this case SHOULD use ACH and SHOULD
   be IP encapsulated.

   If IP encapsulated, the destination address in the IP header MUST be
   set to that of the sender of the echo request message, and the source
   address in the IP header MUST be set to a valid address of the
   replying node.

3.3.  Non-IP-Based On-Demand CV, Using ACH

   The OAM procedures defined in [RFC4379] require the use of IP
   addressing, and in some cases IP routing, to perform OAM functions.

   When the ACH header is used, IP addressing and routing is not needed.
   This section describes procedures for performing on-demand CV without
   a dependency on IP addressing and routing.

   In the non-IP case, when using on-demand CV via LSP ping with the ACH
   header, the on-demand CV request payload MUST directly follow the ACH
   header, and the LSP ping Reply mode [RFC4379] in the LSP ping echo
   request SHOULD be set to 4 (Reply via application level control
   channel).

   Note that the application-level control channel in this case is the
   reverse path of the LSP (or pseudowire) using ACH.

   The requesting node MAY attach a Source Identifier TLV (Section 2.2)
   to identify the node originating the request.

   If the Reply mode indicated in an on-demand CV Request is 4 (Reply
   via application level control channel), the on-demand CV reply
   message MUST be sent on the reverse path of the LSP using ACH.  The
   on-demand CV payload MUST directly follow the ACH header, and IP
   and/or UDP headers MUST NOT be attached.  The responding node MAY
   attach a Source Identifier TLV to identify the node sending the
   response.

   If a node receives an MPLS echo request packet over ACH, without IP/
   UDP headers, with a reply mode of 4, and if that node does not have a
   return MPLS LSP path to the echo request source, then the node SHOULD
   drop the echo request packet and not attempt to send a response.

   If a node receives an MPLS echo request with a reply mode other than
   4 (Reply via application level control channel), and if the node
   supports that reply mode, then it MAY respond using that reply mode.
   If the node does not support the reply mode requested, or is unable
   to reply using the requested reply mode in any specific instance, the



Gray, et al.                 Standards Track                   [Page 12]
^L
RFC 6426        MPLS On-Demand Connectivity Verification   November 2011


   node MUST drop the echo request packet and not attempt to send a
   response.

3.4.  Reverse-Path Connectivity Verification

3.4.1.  Requesting Reverse-Path Connectivity Verification

   A new Global flag, Validate Reverse Path (R), is being defined in the
   LSP ping packet header.  When this flag is set in the echo request,
   the Responder SHOULD return reverse-path FEC information, as
   described in Section 3.4.2.

   The R flag MUST NOT be set in the echo response.

   The Global Flags field is now a bit vector with the following format:

                       0                   1
                       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                      |             MBZ         |R|T|V|
                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                       Figure 7: Global Flags Field

   The V flag is defined in [RFC4379].  The T flag is defined in
   [RFC6425].  The R flag is defined in this document.

   The Validate FEC Stack (V) flag MAY be set in the echo response when
   reverse-path connectivity verification is being performed.

3.4.2.  Responder Procedures

   When the R flag is set in the echo request, the responding node
   SHOULD attach a Reverse-path Target FEC Stack TLV in the echo
   response.  The requesting node (on receipt of the response) can use
   the Reverse-path Target FEC Stack TLV to perform reverse-path
   connectivity verification.  For co-routed bidirectional LSPs, the
   Reverse-path Target FEC Stack used for the on-demand CV will be the
   same in both the forward and reverse path of the LSP.  For associated
   bidirectional LSPs, the Target FEC Stack MAY be different for the
   reverse path.

   The format of the Reverse-path Target FEC Stack TLV is the same as
   that of the Target FEC Stack TLV defined in [RFC4379].  The rules for
   creating a Target FEC Stack TLV also apply to the Reverse-path Target
   FEC Stack TLV.





Gray, et al.                 Standards Track                   [Page 13]
^L
RFC 6426        MPLS On-Demand Connectivity Verification   November 2011


             Type         Meaning
             --------     ------------------------------------
                16        Reverse-path Target FEC Stack

             Figure 8: Reverse-Path Target FEC Stack TLV Type

3.4.3.  Requester Procedures

   On receipt of the echo response, the requesting node MUST perform the
   following checks:

   1.  Perform interface and label-stack validation to ensure that the
       packet is received on the reverse path of the bidirectional LSP.

   2.  If the Reverse-path Target FEC Stack TLV is present in the echo
       response, then perform FEC validation.

   The verification in this case is performed as described for the
   Target FEC Stack in Section 3.6 of [RFC4379].

   If any of the validations fail, then the requesting node MUST drop
   the echo response and SHOULD log and/or report an error.

3.5.  P2MP Considerations

   [RFC6425] describes how LSP ping can be used for OAM on P2MP LSPs
   with IP encapsulation.  This MUST be supported for MPLS-TP P2MP LSPs
   when IP addressing is used.  When IP addressing is not used, then the
   procedures described in Section 3.3 can be applied to P2MP MPLS-TP
   LSPs as well.

3.6.  Management Considerations for Operation with Static MPLS-TP

   Support for on-demand CV on a static MPLS-TP LSP or pseudowire MAY
   require manageable objects to allow, for instance, configuring
   operating parameters such as identifiers associated with the
   statically configured LSP or PW.

   The specifics of this manageability requirement are out-of-scope in
   this document and SHOULD be addressed in appropriate management
   specifications.

3.7.  Generic Associated Channel Label (GAL) Processing

   At the Requester, when encapsulating the LSP echo request (LSP ping)
   packet (with the IP ACH, or the Non IP ACH, codepoint), a GAL MUST be
   added before adding the MPLS LSP label, and sending the LSP Ping echo
   request packet in-band in the MPLS LSP.



Gray, et al.                 Standards Track                   [Page 14]
^L
RFC 6426        MPLS On-Demand Connectivity Verification   November 2011


   The GAL MUST NOT be considered as part of the MPLS label stack that
   requires verification by the Responder.  For this reason, a Nil FEC
   TLV MUST NOT be added or associated with the GAL.

   The GAL MUST NOT be included in DSMAP or DDMAP TLVs.

   Interface and Label Stack TLVs MUST include the whole label stack
   including the GAL.

4.  Performing On-Demand Route Tracing over MPLS-TP LSPs

   This section specifies how on-demand CV route tracing can be used in
   the context of MPLS-TP LSPs.  The on-demand CV route tracing function
   meets the route tracing requirement specified in [RFC5860], Section
   2.2.3.

   This function SHOULD be performed on-demand.  This function SHOULD be
   performed between End Points and Intermediate Points of PWs and LSPs,
   and between End Points of PWs, LSPs and Sections.

   When performing on-demand CV route tracing, the requesting node
   inserts a Downstream Mapping TLV to get the downstream node
   information and to enable LSP verification along the transit nodes.
   The Downstream Mapping TLV can be used as is for performing route
   tracing.  If IP addressing is not in use, then the Address Type field
   in the Downstream Mapping TLV can be set to "Non IP" (Section 2.1).
   The Downstream Mapping TLV address type field can be extended to
   include other address types as needed.

4.1.  On-Demand LSP Route Tracing with IP Encapsulation

   The mechanics of on-demand CV route tracing are similar to those
   described for ping in Section 3.1.  On-demand route tracing packets
   sent by the Requester MUST follow procedures described in [RFC4379].
   This form of on-demand CV OAM MUST be supported for MPLS-TP LSPs,
   when IP addressing is used.

4.2.  Non-IP-Based On-Demand LSP Route Tracing, Using ACH

   This section describes procedures for performing LSP route tracing
   when using LSP ping with the ACH header and without any dependency on
   IP addressing.  The procedures specified in Section 3.3 with regards
   to the Source Identifier TLV apply to LSP route tracing as well.








Gray, et al.                 Standards Track                   [Page 15]
^L
RFC 6426        MPLS On-Demand Connectivity Verification   November 2011


4.2.1.  Requester Procedure for Sending Echo Request Packets

   On-demand route tracing packets sent by the Requester MUST adhere to
   the format described in Section 3.3.  MPLS-TTL expiry (as described
   in [RFC4379]) will be used to direct the packets to specific nodes
   along the LSP path.

4.2.2.  Requester Procedure for Receiving Echo Response Packets

   The on-demand CV route tracing responses will be received on the LSP
   itself, and the presence of an ACH header with channel type of on-
   demand CV is an indicator that the packet contains an on-demand CV
   payload.

4.2.3.  Responder Procedure

   When an echo request reaches the Responder, the presence of the ACH
   channel type of on-demand CV will indicate that the packet contains
   on-demand CV data.  The on-demand CV data, the label stack, and the
   destination identifier are sufficient to identify the LSP associated
   with the echo request packet.  If there is an error and the node is
   unable to identify the LSP on which the echo response would be sent,
   the node MUST drop the echo request packet and not send any response
   back.  All responses MUST always be sent on an LSP path using the ACH
   header and ACH channel type of on-demand CV.

4.3.  P2MP Considerations

   [RFC6425] describes how LSP ping can be used for OAM on P2MP LSPs.
   This MUST be supported for MPLS-TP P2MP LSPs when IP addressing is
   used.  When IP addressing is not used, then the procedures described
   in Section 4.2 can be applied to P2MP MPLS-TP LSPs as well.

4.4.  ECMP Considerations

   On-demand CV using ACH SHOULD NOT be used when there is ECMP (Equal
   Cost Multi-Path) for a given LSP.  The inclusion of the additional
   ACH header can modify the hashing behavior for OAM packets that could
   result in incorrect monitoring of the path taken by data traffic.

5.  Applicability

   The procedures specified in this document for non-IP encapsulation
   apply to MPLS-TP transport paths.  This includes LSPs and PWs when IP
   encapsulation is not desired.  However, when IP addressing is used,
   as in non MPLS-TP LSPs, procedures specified in [RFC4379] MUST be
   used.




Gray, et al.                 Standards Track                   [Page 16]
^L
RFC 6426        MPLS On-Demand Connectivity Verification   November 2011


6.  Security Considerations

   This document does not itself introduce any new security
   considerations.  Those discussed in [RFC4379] are applicable to this
   document.

   Unlike typical deployment scenarios identified in [RFC4379], however,
   likely deployments of on-demand CV for transport paths involves a
   strong possibility that the techniques in this document may be used
   across MPLS administrative boundaries.  Where this may occur, it is
   RECOMMENDED that on-demand OAM is configured as necessary to ensure
   that Source Identifier TLVs are included in on-demand CV messages.
   This will allow implementations to filter OAM messages arriving from
   an unexpected or unknown source.

7.  IANA Considerations

7.1.  New Source and Destination Identifier TLVs

   IANA has assigned the following TLV types from the "Multi-Protocol
   Label Switching (MPLS) Label Switched Paths (LSPs) Ping Parameters"
   registry, "TLVs and sub-TLVs" sub-registry (from the "Standards
   Action" TLV type range):

                                   Length
       Type #   TLV Name           Octets   Reference
       ------   -----------------  ------   ---------------------------
           13   Source ID            8      this document (Section 2.2)
           14   Destination ID       8      this document (Section 2.2)

         Figure 9: New Source and Destination Identifier TLV Types

7.2.  New Target FEC Stack Sub-TLVs

   Section 2.3 defines 2 new sub-TLV types for inclusion within the LSP
   ping [RFC4379] Target FEC Stack TLV (1).

   IANA has assigned sub-type values to the following sub-TLVs from the
   "Multi-Protocol Label Switching Architecture (MPLS) Label Switched
   Paths (LSPs) Ping Parameters" registry, "TLVs and sub-TLVs" sub-
   registry.

   Value    Meaning                 Reference
   -----    -------------------     -----------------------------
   22       Static LSP              this document (Section 2.4.1)
   23       Static Pseudowire       this document (Section 2.4.2)





Gray, et al.                 Standards Track                   [Page 17]
^L
RFC 6426        MPLS On-Demand Connectivity Verification   November 2011


7.3.  New Reverse-Path Target FEC Stack TLV

   Section 3.4.2 defines a new TLV type for inclusion in the LSP ping
   packet.

   IANA has assigned a type value to the TLV from the "Multi-Protocol
   Label Switching Architecture (MPLS) Label Switched Paths (LSPs) Ping
   Parameters" registry, "TLVs and sub-TLVs" sub-registry.

   Type     Meaning                        Reference
   -----    --------------------------     ---------------------------
      16    Reverse-path Target FEC        this document (Section 3.4)
            Stack TLV

   The sub-TLV space and assignments for this TLV will be the same as
   that for the Target FEC Stack TLV.  Sub-types for the Target FEC
   Stack TLV and the Reverse-path Target FEC Stack TLV MUST be kept the
   same.  Any new sub-type added to the Target FEC Stack TLV MUST apply
   to the Reverse-path Target FEC Stack TLV as well.

7.4.  New Pseudowire Associated Channel Type

   On-demand connectivity verification requires a unique Associated
   Channel Type.  IANA has assigned a PW ACH Type from the "Pseudowire
   Associated Channel Types" registry as described below:

     Value     Description     TLV Follows  Reference
     ------    -------------   -----------  -------------------------
     0x0025    On-Demand CV         No      this document (Section 3)

   ACH TLVs SHALL NOT be associated with this channel type.

7.5.  New Downstream Mapping Address Type Registry

   [RFC4379] defined several registries.  It also defined some value
   assignments without explicitly asking for IANA to create a registry
   to support additional value assignments.  One such case is in
   defining address types associated with the Downstream Mapping (DSMAP)
   TLV.

   This document extends RFC 4379 by defining a new address type for use
   with the Downstream Mapping and Downstream Detailed Mapping TLVs.

   Recognizing that the absence of a registry makes it possible to have
   collisions of "address-type" usages, IANA has established a new
   registry -- associated with both [RFC4379] and this document -- that
   initially allocates the following assignments:




Gray, et al.                 Standards Track                   [Page 18]
^L
RFC 6426        MPLS On-Demand Connectivity Verification   November 2011


   Type #     Address Type      K Octets    Reference
   ------     ------------      --------    --------------------------
        1     IPv4 Numbered           16    RFC 4379
        2     IPv4 Unnumbered         16    RFC 4379
        3     IPv6 Numbered           40    RFC 4379
        4     IPv6 Unnumbered         28    RFC 4379
        5     Non IP                  12    this document (Sect. 2.1.1)

                 Downstream Mapping Address Type Registry

   Because the field in this case is an 8-bit field, the allocation
   policy for this registry is "Standards Action."

8.  Contributing Authors and Acknowledgements

   The following individuals contributed materially to this document:

   o  Thomas D. Nadeau, CA Technologies

   o  Nurit Sprecher, Nokia Siemens Networks

   o  Yaacov Weingarten, Nokia Siemens Networks

   In addition, we would like to thank the following individuals for
   their efforts in reviewing and commenting on the document:

   o  Adrian Farrel

   o  Alexander Vaishtein

   o  David Sinicrope (Routing Directorate)

   o  Greg Mirsky

   o  Hideki Endo

   o  Huub van Helvoort

   o  Joel Halpern (Routing Directorate)

   o  Loa Andersson

   o  Mach Chen

   o  Mahesh Akula

   o  Sam Aldrin




Gray, et al.                 Standards Track                   [Page 19]
^L
RFC 6426        MPLS On-Demand Connectivity Verification   November 2011


   o  Sandra Murphy (Security Directorate)

   o  Yaacov Weingarten

   o  Yoshinori Koike

   o  Zhenlong Cui

9.  References

9.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC4379]  Kompella, K. and G. Swallow, "Detecting Multi-Protocol
              Label Switched (MPLS) Data Plane Failures", RFC 4379,
              February 2006.

   [RFC4385]  Bryant, S., Swallow, G., Martini, L., and D. McPherson,
              "Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for
              Use over an MPLS PSN", RFC 4385, February 2006.

   [RFC5586]  Bocci, M., Vigoureux, M., and S. Bryant, "MPLS Generic
              Associated Channel", RFC 5586, June 2009.

   [RFC6370]  Bocci, M., Swallow, G., and E. Gray, "MPLS Transport
              Profile (MPLS-TP) Identifiers", RFC 6370, September 2011.

   [RFC6424]  Bahadur, N., Kompella, K., and G. Swallow, "Mechanism for
              Performing Label Switched Path Ping (LSP Ping) over MPLS
              Tunnels", RFC 6424, November 2011.

   [RFC6425]  Saxena, S., Swallow, G., Ali, Z., Farrel, A., Yasukawa,
              S., and T. Nadeau, "Detecting Data-Plane Failures in
              Point-to-Multipoint MPLS - Extensions to LSP Ping",
              RFC 6425, November 2011.

9.2.  Informative References

   [RFC1122]  Braden, R., "Requirements for Internet Hosts -
              Communication Layers", STD 3, RFC 1122, October 1989.

   [RFC1812]  Baker, F., "Requirements for IP Version 4 Routers",
              RFC 1812, June 1995.

   [RFC4446]  Martini, L., "IANA Allocations for Pseudowire Edge to Edge
              Emulation (PWE3)", BCP 116, RFC 4446, April 2006.



Gray, et al.                 Standards Track                   [Page 20]
^L
RFC 6426        MPLS On-Demand Connectivity Verification   November 2011


   [RFC5003]  Metz, C., Martini, L., Balus, F., and J. Sugimoto,
              "Attachment Individual Identifier (AII) Types for
              Aggregation", RFC 5003, September 2007.

   [RFC5860]  Vigoureux, M., Ward, D., and M. Betts, "Requirements for
              Operations, Administration, and Maintenance (OAM) in MPLS
              Transport Networks", RFC 5860, May 2010.

   [RFC5884]  Aggarwal, R., Kompella, K., Nadeau, T., and G. Swallow,
              "Bidirectional Forwarding Detection (BFD) for MPLS Label
              Switched Paths (LSPs)", RFC 5884, June 2010.

   [RFC6371]  Busi, I. and D. Allan, "Operations, Administration, and
              Maintenance Framework for MPLS-Based Transport Networks",
              RFC 6371, September 2011.




































Gray, et al.                 Standards Track                   [Page 21]
^L
RFC 6426        MPLS On-Demand Connectivity Verification   November 2011


Authors' Addresses

   Eric Gray
   Ericsson
   900 Chelmsford Street
   Lowell, MA  01851
   US

   Phone: +1 978 275 7470
   EMail: eric.gray@ericsson.com


   Nitin Bahadur
   Juniper Networks, Inc.
   1194 N. Mathilda Avenue
   Sunnyvale, CA  94089
   US

   Phone: +1 408 745 2000
   EMail: nitinb@juniper.net
   URI:   www.juniper.net


   Sami Boutros
   Cisco Systems, Inc.
   3750 Cisco Way
   San Jose, CA  95134
   US

   EMail: sboutros@cisco.com


   Rahul Aggarwal

   EMail: raggarwa_1@yahoo.com
















Gray, et al.                 Standards Track                   [Page 22]
^L