1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
|
Internet Engineering Task Force (IETF) E. Ivov, Ed.
Request for Comments: 6465 Jitsi
Category: Standards Track E. Marocco, Ed.
ISSN: 2070-1721 Telecom Italia
J. Lennox
Vidyo
December 2011
A Real-time Transport Protocol (RTP) Header Extension for
Mixer-to-Client Audio Level Indication
Abstract
This document describes a mechanism for RTP-level mixers in audio
conferences to deliver information about the audio level of
individual participants. Such audio level indicators are transported
in the same RTP packets as the audio data they pertain to.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc6465.
Copyright Notice
Copyright (c) 2011 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Ivov, et al. Standards Track [Page 1]
^L
RFC 6465 Mixer-to-Client Audio Level Indication December 2011
Table of Contents
1. Introduction ....................................................2
2. Terminology .....................................................4
3. Protocol Operation ..............................................4
4. Audio Levels ....................................................5
5. Signaling Information ...........................................7
6. Security Considerations .........................................9
7. IANA Considerations ............................................10
8. Acknowledgments ................................................10
9. References .....................................................10
9.1. Normative References ......................................10
9.2. Informative References ....................................11
Appendix A. Reference Implementation ..............................12
A.1. AudioLevelCalculator.java .................................12
1. Introduction
"A Framework for Conferencing with the Session Initiation Protocol
(SIP)" [RFC4353] presents an overall architecture for multi-party
conferencing. Among others, the framework borrows from RTP [RFC3550]
and extends the concept of a mixer entity "responsible for combining
the media streams that make up a conference, and generating one or
more output streams that are delivered to recipients". Every
participant would hence receive, in a flat single stream, media
originating from all the others.
Using such centralized mixer-based architectures simplifies support
for conference calls on the client side, since they would hardly
differ from one-to-one conversations. However, the method also
introduces a few limitations. The flat nature of the streams that a
mixer would output and send to participants makes it difficult for
users to identify the original source of what they are hearing.
Mechanisms that allow the mixer to send to participants cues on
current speakers (e.g., the contributing source (CSRC) fields in RTP
[RFC3550]) only work for speaking/silent binary indications. There
are, however, a number of use cases where one would require more
detailed information. Possible examples include the presence of
background chat/noise/music/typing, someone breathing noisily in
their microphone, or other cases where identifying the source of the
disturbance would make it easy to remove it (e.g., by sending a
private IM to the concerned party asking them to mute their
microphone). A more advanced scenario could involve an intense
discussion between multiple participants that the user does not
personally know. Audio level information would help better recognize
the speakers by associating with them complex (but still human
readable) characteristics like loudness and speed, for example.
Ivov, et al. Standards Track [Page 2]
^L
RFC 6465 Mixer-to-Client Audio Level Indication December 2011
One way of presenting such information in a user-friendly manner
would be for a conferencing client to attach audio level indicators
to the corresponding participant-related components in the user
interface. One possible example is displayed in Figure 1, where
levels can help users determine that Alice is currently the active
speaker, Carol is mute, and Bob and Dave are sending some background
noise.
________________________
| |
| 00:42 | Weekly Call |
|________________________|
| |
| |
| Alice |====== | (S) |
| |
| Bob |= | |
| |
| Carol | | (M) |
| |
| Dave |=== | |
| |
|________________________|
Figure 1: Displaying Detailed Speaker Information to the User by
Including Audio Level for Every Participant
Implementing a user interface like the above requires analysis of the
media sent from other participants. In a conventional audio
conference, this is only possible for the mixer, since all other
conference participants are generally receiving a single, flat audio
stream and therefore have no immediate way of determining individual
audio levels.
This document specifies an RTP extension header that allows such
mixers to deliver audio level information to conference participants
by including it directly in the RTP packets transporting the
corresponding audio data.
The header extension in this document is different than, but
complementary to, the one defined in [RFC6464], which defines a
mechanism by which clients can indicate to audio mixers the levels of
the audio in the packets they send.
Ivov, et al. Standards Track [Page 3]
^L
RFC 6465 Mixer-to-Client Audio Level Indication December 2011
2. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].
3. Protocol Operation
According to RFC 3550 [RFC3550], a mixer is expected to include in
outgoing RTP packets a list of identifiers (CSRC IDs) indicating the
sources that contributed to the resulting stream. The presence of
such CSRC IDs allows RTP clients to determine, in a binary way, the
active speaker(s) in any given moment. The RTP Control Protocol
(RTCP) also provides a basic mechanism to map the CSRC IDs to user
identities through the CNAME field. More advanced mechanisms can
exist, depending on the signaling protocol used to establish and
control a conference. In the case of the Session Initiation Protocol
[RFC3261], for example, "A Session Initiation Protocol (SIP) Event
Package for Conference State" [RFC4575] defines a <src-id> tag that
binds CSRC IDs to media streams and SIP URIs.
This document describes an RTP header extension that allows mixers to
indicate the audio level of every contributing conference participant
(CSRC) in addition to simply indicating their on/off status. This
new header extension uses the general mechanism for RTP header
extensions as described in [RFC5285].
Each instance of this header contains a list of one-octet audio
levels expressed in -dBov, with values from 0 to 127 representing 0
to -127 dBov (see Figures 2 and 3). Appendix A provides a reference
implementation indicating one way of obtaining such values from raw
audio samples.
Every audio level value pertains to the CSRC identifier located at
the corresponding position in the CSRC list. In other words, the
first value would indicate the audio level of the conference
participant represented by the first CSRC identifier in that packet,
and so forth. The number and order of these values MUST therefore
match the number and order of the CSRC IDs present in the same
packet.
When encoding audio level information, a mixer SHOULD include in a
packet information that corresponds to the audio data being
transported in that same packet. It is important that these values
follow the actual stream as closely as possible. Therefore, a mixer
SHOULD also calculate the values after the original contributing
stream has undergone possible processing such as level normalization,
and noise reduction, for example.
Ivov, et al. Standards Track [Page 4]
^L
RFC 6465 Mixer-to-Client Audio Level Indication December 2011
It can sometimes happen that a conference involves more than a single
mixer. In such cases, each of the mixers MAY choose to relay the
CSRC list and audio level information they receive from peer mixers
(as long as the total CSRC count remains below 16). Given that the
maximum audio level is not precisely defined by this specification,
it is likely that in such situations average audio levels would be
perceptibly different for the participants located behind the
different mixers.
4. Audio Levels
The audio level header extension carries the level of the audio in
the RTP payload of the packet with which it is associated. This
information is carried in an RTP header extension element as defined
by "A General Mechanism for RTP Header Extensions" [RFC5285].
The payload of the audio level header extension element can be
encoded using either the one-byte or two-byte header defined in
[RFC5285]. Figures 2 and 3 show sample audio level encodings with
each of these header formats.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ID | len=2 |0| level 1 |0| level 2 |0| level 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 2: Sample Audio Level Encoding Using the
One-Byte Header Format
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ID | len=3 |0| level 1 |0| level 2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0| level 3 | 0 (pad) | ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: Sample Audio Level Encoding Using the
Two-Byte Header Format
In the case of the one-byte header format, the 4-bit len field is the
number minus one of data bytes (i.e., audio level values) transported
in this header extension element following the one-byte header.
Therefore, the value zero in this field indicates that one byte of
data follows. In the case of the two-byte header format, the 8-bit
len field contains the exact number of audio levels carried in the
Ivov, et al. Standards Track [Page 5]
^L
RFC 6465 Mixer-to-Client Audio Level Indication December 2011
extension. RFC 3550 [RFC3550] only allows RTP packets to carry a
maximum of 15 CSRC IDs. Given that audio levels directly refer to
CSRC IDs, implementations MUST NOT include more than 15 audio level
values. The maximum value allowed in the len field is therefore 14
for the one-byte header format and 15 for the two-byte header format.
Note: Audio levels in this document are defined in the same manner
as is audio noise level in the RTP Payload Comfort Noise
specification [RFC3389]. In [RFC3389], the overall magnitude of
the noise level in comfort noise is encoded into the first byte of
the payload, with spectral information about the noise in
subsequent bytes. This specification's audio level parameter is
defined so as to be identical to the comfort noise payload's
noise-level byte.
The magnitude of the audio level itself is packed into the seven
least significant bits of the single byte of the header extension,
shown in Figures 2 and 3. The least significant bit of the audio
level magnitude is packed into the least significant bit of the byte.
The most significant bit of the byte is unused and always set to 0.
The audio level is expressed in -dBov, with values from 0 to 127
representing 0 to -127 dBov. dBov is the level, in decibels, relative
to the overload point of the system, i.e., the highest-intensity
signal encodable by the payload format. (Note: Representation
relative to the overload point of a system is particularly useful for
digital implementations, since one does not need to know the relative
calibration of the analog circuitry.) For example, in the case of
u-law (audio/pcmu) audio [ITU.G711], the 0 dBov reference would be a
square wave with values +/- 8031. (This translates to 6.18 dBm0,
relative to u-law's dBm0 definition in Table 6 of [ITU.G711].)
The audio level for digital silence -- for a muted audio source, for
example -- MUST be represented as 127 (-127 dBov), regardless of the
dynamic range of the encoded audio format.
The audio level header extension only carries the level of the audio
in the RTP payload of the packet with which it is associated, with no
long-term averaging or smoothing applied. That level is measured as
a root mean square of all the samples in the measured range.
To simplify implementation of the encoding procedures described here,
this specification provides a sample Java implementation (see
Appendix A) of an audio level calculator that helps obtain such
values from raw linear Pulse Code Modulation (PCM) audio samples.
Ivov, et al. Standards Track [Page 6]
^L
RFC 6465 Mixer-to-Client Audio Level Indication December 2011
5. Signaling Information
The URI for declaring the audio level header extension in a Session
Description Protocol (SDP) extmap attribute and mapping it to a local
extension header identifier is
"urn:ietf:params:rtp-hdrext:csrc-audio-level". There is no
additional setup information needed for this extension (i.e., no
extension attributes).
An example attribute line in the SDP for a conference might be:
a=extmap:7 urn:ietf:params:rtp-hdrext:csrc-audio-level
The above mapping will most often be provided per media stream (in
the media-level section(s) of SDP, i.e., after an "m=" line) or
globally if there is more than one stream containing audio level
indicators in a session.
Presence of the above attribute in the SDP description of a media
stream indicates that RTP packets in that stream, which contain the
level extension defined in this document, will be carrying such an
extension with an ID of 7.
Conferencing clients that support audio level indicators and have no
mixing capabilities would not be able to provide content for this
audio level extension and would hence have to always include the
direction parameter in the "extmap" attribute with a value of
"recvonly". Conference focus entities with mixing capabilities can
omit the direction or set it to "sendrecv" in SDP offers. Such
entities would need to set it to "sendonly" in SDP answers to offers
with a "recvonly" parameter and to "sendrecv" when answering other
"sendrecv" offers.
This specification only defines the use of the audio level extensions
in audio streams. They MUST NOT be advertised with other media
types, such as video or text, for example.
Figures 4 and 5 show two example offer/answer exchanges between a
conferencing client and a focus, and between two conference focus
entities.
Ivov, et al. Standards Track [Page 7]
^L
RFC 6465 Mixer-to-Client Audio Level Indication December 2011
SDP Offer:
v=0
o=alice 2890844526 2890844526 IN IP6 host.example.com
s=-
c=IN IP6 host.example.com
t=0 0
m=audio 49170 RTP/AVP 0 4
a=rtpmap:0 PCMU/8000
a=rtpmap:4 G723/8000
a=extmap:1/recvonly urn:ietf:params:rtp-hdrext:csrc-audio-level
SDP Answer:
v=0
i=A Seminar on the session description protocol
o=conf-focus 2890844730 2890844730 IN IP6 focus.example.net
s=-
c=IN IP6 focus.example.net
t=0 0
m=audio 52544 RTP/AVP 0
a=rtpmap:0 PCMU/8000
a=extmap:1/sendonly urn:ietf:params:rtp-hdrext:csrc-audio-level
Figure 4: A Client-Initiated Example SDP Offer/Answer Exchange
Negotiating an Audio Stream with One-Way Flow of
Audio Level Information
Ivov, et al. Standards Track [Page 8]
^L
RFC 6465 Mixer-to-Client Audio Level Indication December 2011
SDP Offer:
v=0
i=Un seminaire sur le protocole de description des sessions
o=fr-focus 2890844730 2890844730 IN IP6 focus.fr.example.net
s=-
c=IN IP6 focus.fr.example.net
t=0 0
m=audio 49170 RTP/AVP 0
a=rtpmap:0 PCMU/8000
a=extmap:1/sendrecv urn:ietf:params:rtp-hdrext:csrc-audio-level
SDP Answer:
v=0
i=A Seminar on the session description protocol
o=us-focus 2890844526 2890844526 IN IP6 focus.us.example.net
s=-
c=IN IP6 focus.us.example.net
t=0 0
m=audio 52544 RTP/AVP 0
a=rtpmap:0 PCMU/8000
a=extmap:1/sendrecv urn:ietf:params:rtp-hdrext:csrc-audio-level
Figure 5: An Example SDP Offer/Answer Exchange between Two Conference
Focus Entities with Mixing Capabilities Negotiating an Audio Stream
with Bidirectional Flow of Audio Level Information
6. Security Considerations
1. This document defines a means of attributing audio level to a
particular participant in a conference. An attacker may try to
modify the content of RTP packets in a way that would make audio
activity from one participant appear to be coming from another
participant.
2. Furthermore, the fact that audio level values would not be
protected even in a Secure Real-time Transport Protocol (SRTP)
session [RFC3711] might be of concern in some cases where the
activity of a particular participant in a conference is
confidential. Also, as discussed in [SRTP-VBR-AUDIO], an
attacker might be able to infer information about the
conversation, possibly with phoneme-level resolution.
3. Both of the above are concerns that stem from the design of the
RTP protocol itself, and they would probably also apply when
using CSRC identifiers in the way specified in RFC 3550
[RFC3550]. It is therefore important that, according to the
Ivov, et al. Standards Track [Page 9]
^L
RFC 6465 Mixer-to-Client Audio Level Indication December 2011
needs of a particular scenario, implementors and deployers
consider the use of header extension encryption [SRTP-ENCR-HDR]
or a lower-level security and authentication mechanism such as
IPsec [RFC4301], for example.
7. IANA Considerations
This document defines a new extension URI in the RTP Compact Header
Extensions subregistry of the Real-Time Transport Protocol (RTP)
Parameters registry, according to the following data:
Extension URI: urn:ietf:params:rtp-hdrext:csrc-audio-level
Description: Mixer-to-client audio level indicators
Contact: emcho@jitsi.org
Reference: RFC 6465
8. Acknowledgments
Lyubomir Marinov contributed level measurement and rendering code.
Keith Drage, Roni Even, Miguel A. Garcia, John Elwell, Kevin P.
Fleming, Ingemar Johansson, Michael Ramalho, Magnus Westerlund, and
several others provided helpful feedback over the avt and avtext
mailing lists.
Jitsi's participation in this specification is funded by the NLnet
Foundation.
9. References
9.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
Jacobson, "RTP: A Transport Protocol for Real-Time
Applications", STD 64, RFC 3550, July 2003.
[RFC5285] Singer, D. and H. Desineni, "A General Mechanism for RTP
Header Extensions", RFC 5285, July 2008.
Ivov, et al. Standards Track [Page 10]
^L
RFC 6465 Mixer-to-Client Audio Level Indication December 2011
9.2. Informative References
[ITU.G711] International Telecommunication Union, "Pulse Code
Modulation (PCM) of Voice Frequencies",
ITU-T Recommendation G.711, November 1988.
[RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
A., Peterson, J., Sparks, R., Handley, M., and E.
Schooler, "SIP: Session Initiation Protocol", RFC 3261,
June 2002.
[RFC3389] Zopf, R., "Real-time Transport Protocol (RTP) Payload for
Comfort Noise (CN)", RFC 3389, September 2002.
[RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
Norrman, "The Secure Real-time Transport Protocol (SRTP)",
RFC 3711, March 2004.
[RFC4301] Kent, S. and K. Seo, "Security Architecture for the
Internet Protocol", RFC 4301, December 2005.
[RFC4353] Rosenberg, J., "A Framework for Conferencing with the
Session Initiation Protocol (SIP)", RFC 4353,
February 2006.
[RFC4575] Rosenberg, J., Schulzrinne, H., and O. Levin, Ed., "A
Session Initiation Protocol (SIP) Event Package for
Conference State", RFC 4575, August 2006.
[RFC6464] Lennox, J., Ed., Ivov, E., and E. Marocco, "A Real-time
Transport Protocol (RTP) Header Extension for Client-to-
Mixer Audio Level Indication", RFC 6465, December 2011.
[SRTP-ENCR-HDR]
Lennox, J., "Encryption of Header Extensions in the Secure
Real-Time Transport Protocol (SRTP)", Work in Progress,
October 2011.
[SRTP-VBR-AUDIO]
Perkins, C. and JM. Valin, "Guidelines for the use of
Variable Bit Rate Audio with Secure RTP", Work
in Progress, July 2011.
Ivov, et al. Standards Track [Page 11]
^L
RFC 6465 Mixer-to-Client Audio Level Indication December 2011
Appendix A. Reference Implementation
This appendix contains Java code for a reference implementation of
the level calculation and rendering methods. The code is not
normative and is by no means the only possible implementation. Its
purpose is to help implementors add audio level support to mixers and
clients.
The Java code contains an AudioLevelCalculator class that calculates
the sound pressure level of a signal with specific samples. It can
be used in mixers to generate values suitable for the level extension
headers.
The implementation is provided in Java but does not rely on any of
the language specifics and can be easily ported to another language.
A.1. AudioLevelCalculator.java
<CODE BEGINS>
/*
Copyright (c) 2011 IETF Trust and the persons identified
as authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with
or without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents (http://trustee.ietf.org/license-info).
*/
/**
* Calculates the audio level of specific samples of a signal
* relative to overload.
*/
public class AudioLevelCalculator
{
/**
* Calculates the audio level of a signal with specific
* <tt>samples</tt>.
*
* @param samples the samples whose audio level we need to
* calculate. The samples are specified as an <tt>int</tt>
* array starting at <tt>offset</tt>, extending <tt>length</tt>
* number of elements, and each <tt>int</tt> element in the
* specified range representing a sample whose audio level we
Ivov, et al. Standards Track [Page 12]
^L
RFC 6465 Mixer-to-Client Audio Level Indication December 2011
* need to calculate. Though a sample is provided in the
* form of an <tt>int</tt> value, the sample size in bits
* is determined by the caller via <tt>overload</tt>.
*
* @param offset the offset in <tt>samples</tt> at which the
* samples start.
*
* @param length the length of the signal specified in
* <tt>samples<tt>, starting at <tt>offset</tt>.
*
* @param overload the overload (point) of <tt>signal</tt>.
* For example, <tt>overload</tt> can be {@link Byte#MAX_VALUE}
* for 8-bit signed samples or {@link Short#MAX_VALUE} for
* 16-bit signed samples.
*
* @return the audio level of the specified signal.
*/
public static int calculateAudioLevel(
int[] samples, int offset, int length,
int overload)
{
/*
* Calculate the root mean square (RMS) of the signal.
*/
double rms = 0;
for (; offset < length; offset++)
{
double sample = samples[offset];
sample /= overload;
rms += sample * sample;
}
rms = (length == 0) ? 0 : Math.sqrt(rms / length);
/*
* The audio level is a logarithmic measure of the
* rms level of an audio sample relative to a reference
* value and is measured in decibels.
*/
double db;
/*
* The minimum audio level permitted.
*/
final double MIN_AUDIO_LEVEL = -127;
Ivov, et al. Standards Track [Page 13]
^L
RFC 6465 Mixer-to-Client Audio Level Indication December 2011
/*
* The maximum audio level permitted.
*/
final double MAX_AUDIO_LEVEL = 0;
if (rms > 0)
{
/*
* The "zero" reference level is the overload level,
* which corresponds to 1.0 in this calculation, because
* the samples are normalized in calculating the RMS.
*/
db = 20 * Math.log10(rms);
/*
* Ensure that the calculated level is within the minimum
* and maximum range permitted.
*/
if (db < MIN_AUDIO_LEVEL)
db = MIN_AUDIO_LEVEL;
else if (db > MAX_AUDIO_LEVEL)
db = MAX_AUDIO_LEVEL;
}
else
{
db = MIN_AUDIO_LEVEL;
}
return (int)Math.round(db);
}
}
<CODE ENDS>
Ivov, et al. Standards Track [Page 14]
^L
RFC 6465 Mixer-to-Client Audio Level Indication December 2011
Authors' Addresses
Emil Ivov (editor)
Jitsi
Strasbourg 67000
France
EMail: emcho@jitsi.org
Enrico Marocco (editor)
Telecom Italia
Via G. Reiss Romoli, 274
Turin 10148
Italy
EMail: enrico.marocco@telecomitalia.it
Jonathan Lennox
Vidyo, Inc.
433 Hackensack Avenue
Seventh Floor
Hackensack, NJ 07601
US
EMail: jonathan@vidyo.com
Ivov, et al. Standards Track [Page 15]
^L
|