summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc6550.txt
blob: aadf889dc5b9d2519466b2c1e823c757c2936f49 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
Internet Engineering Task Force (IETF)                    T. Winter, Ed.
Request for Comments: 6550
Category: Standards Track                                P. Thubert, Ed.
ISSN: 2070-1721                                            Cisco Systems
                                                               A. Brandt
                                                           Sigma Designs
                                                                  J. Hui
                                                   Arch Rock Corporation
                                                               R. Kelsey
                                                       Ember Corporation
                                                                P. Levis
                                                     Stanford University
                                                               K. Pister
                                                           Dust Networks
                                                               R. Struik
                                             Struik Security Consultancy
                                                             JP. Vasseur
                                                           Cisco Systems
                                                            R. Alexander
                                                    Cooper Power Systems
                                                              March 2012


      RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks

Abstract

   Low-Power and Lossy Networks (LLNs) are a class of network in which
   both the routers and their interconnect are constrained.  LLN routers
   typically operate with constraints on processing power, memory, and
   energy (battery power).  Their interconnects are characterized by
   high loss rates, low data rates, and instability.  LLNs are comprised
   of anything from a few dozen to thousands of routers.  Supported
   traffic flows include point-to-point (between devices inside the
   LLN), point-to-multipoint (from a central control point to a subset
   of devices inside the LLN), and multipoint-to-point (from devices
   inside the LLN towards a central control point).  This document
   specifies the IPv6 Routing Protocol for Low-Power and Lossy Networks
   (RPL), which provides a mechanism whereby multipoint-to-point traffic
   from devices inside the LLN towards a central control point as well
   as point-to-multipoint traffic from the central control point to the
   devices inside the LLN are supported.  Support for point-to-point
   traffic is also available.








Winter, et al.               Standards Track                    [Page 1]
^L
RFC 6550                           RPL                        March 2012


Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc6550.

Copyright Notice

   Copyright (c) 2012 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.























Winter, et al.               Standards Track                    [Page 2]
^L
RFC 6550                           RPL                        March 2012


Table of Contents

   1. Introduction ....................................................8
      1.1. Design Principles ..........................................8
      1.2. Expectations of Link-Layer Type ...........................10
   2. Terminology ....................................................10
   3. Protocol Overview ..............................................13
      3.1. Topologies ................................................13
           3.1.1. Constructing Topologies ............................13
           3.1.2. RPL Identifiers ....................................14
           3.1.3. Instances, DODAGs, and DODAG Versions ..............14
      3.2. Upward Routes and DODAG Construction ......................16
           3.2.1. Objective Function (OF) ............................17
           3.2.2. DODAG Repair .......................................17
           3.2.3. Security ...........................................17
           3.2.4. Grounded and Floating DODAGs .......................18
           3.2.5. Local DODAGs .......................................18
           3.2.6. Administrative Preference ..........................18
           3.2.7. Data-Path Validation and Loop Detection ............18
           3.2.8. Distributed Algorithm Operation ....................19
      3.3. Downward Routes and Destination Advertisement .............19
      3.4. Local DODAGs Route Discovery ..............................20
      3.5. Rank Properties ...........................................20
           3.5.1. Rank Comparison (DAGRank()) ........................21
           3.5.2. Rank Relationships .................................22
      3.6. Routing Metrics and Constraints Used by RPL ...............23
      3.7. Loop Avoidance ............................................24
           3.7.1. Greediness and Instability .........................24
           3.7.2. DODAG Loops ........................................26
           3.7.3. DAO Loops ..........................................27
   4. Traffic Flows Supported by RPL .................................27
      4.1. Multipoint-to-Point Traffic ...............................27
      4.2. Point-to-Multipoint Traffic ...............................27
      4.3. Point-to-Point Traffic ....................................27
   5. RPL Instance ...................................................28
      5.1. RPL Instance ID ...........................................29
   6. ICMPv6 RPL Control Message .....................................30
      6.1. RPL Security Fields .......................................32
      6.2. DODAG Information Solicitation (DIS) ......................38
           6.2.1. Format of the DIS Base Object ......................38
           6.2.2. Secure DIS .........................................38
           6.2.3. DIS Options ........................................38
      6.3. DODAG Information Object (DIO) ............................38
           6.3.1. Format of the DIO Base Object ......................39
           6.3.2. Secure DIO .........................................41
           6.3.3. DIO Options ........................................41
      6.4. Destination Advertisement Object (DAO) ....................41
           6.4.1. Format of the DAO Base Object ......................42



Winter, et al.               Standards Track                    [Page 3]
^L
RFC 6550                           RPL                        March 2012


           6.4.2. Secure DAO .........................................43
           6.4.3. DAO Options ........................................43
      6.5. Destination Advertisement Object Acknowledgement
           (DAO-ACK) .................................................43
           6.5.1. Format of the DAO-ACK Base Object ..................44
           6.5.2. Secure DAO-ACK .....................................45
           6.5.3. DAO-ACK Options ....................................45
      6.6. Consistency Check (CC) ....................................45
           6.6.1. Format of the CC Base Object .......................46
           6.6.2. CC Options .........................................47
      6.7. RPL Control Message Options ...............................47
           6.7.1. RPL Control Message Option Generic Format ..........47
           6.7.2. Pad1 ...............................................48
           6.7.3. PadN ...............................................48
           6.7.4. DAG Metric Container ...............................49
           6.7.5. Route Information ..................................50
           6.7.6. DODAG Configuration ................................52
           6.7.7. RPL Target .........................................54
           6.7.8. Transit Information ................................55
           6.7.9. Solicited Information ..............................58
           6.7.10. Prefix Information ................................59
           6.7.11. RPL Target Descriptor .............................63
   7. Sequence Counters ..............................................63
      7.1. Sequence Counter Overview .................................63
      7.2. Sequence Counter Operation ................................64
   8. Upward Routes ..................................................66
      8.1. DIO Base Rules ............................................67
      8.2. Upward Route Discovery and Maintenance ....................67
           8.2.1. Neighbors and Parents within a DODAG Version .......67
           8.2.2. Neighbors and Parents across DODAG Versions ........68
           8.2.3. DIO Message Communication ..........................73
      8.3. DIO Transmission ..........................................74
           8.3.1. Trickle Parameters .................................75
      8.4. DODAG Selection ...........................................75
      8.5. Operation as a Leaf Node ..................................75
      8.6. Administrative Rank .......................................76
   9. Downward Routes ................................................77
      9.1. Destination Advertisement Parents .........................77
      9.2. Downward Route Discovery and Maintenance ..................78
           9.2.1. Maintenance of Path Sequence .......................79
           9.2.2. Generation of DAO Messages .........................79
      9.3. DAO Base Rules ............................................80
      9.4. Structure of DAO Messages .................................80
      9.5. DAO Transmission Scheduling ...............................83
      9.6. Triggering DAO Messages ...................................83
      9.7. Non-Storing Mode ..........................................84
      9.8. Storing Mode ..............................................85
      9.9. Path Control ..............................................86



Winter, et al.               Standards Track                    [Page 4]
^L
RFC 6550                           RPL                        March 2012


           9.9.1. Path Control Example ...............................88
      9.10. Multicast Destination Advertisement Messages .............89
   10. Security Mechanisms ...........................................90
      10.1. Security Overview ........................................90
      10.2. Joining a Secure Network .................................91
      10.3. Installing Keys ..........................................92
      10.4. Consistency Checks .......................................93
      10.5. Counters .................................................93
      10.6. Transmission of Outgoing Packets .........................94
      10.7. Reception of Incoming Packets ............................95
           10.7.1. Timestamp Key Checks ..............................97
      10.8. Coverage of Integrity and Confidentiality ................97
      10.9. Cryptographic Mode of Operation ..........................98
           10.9.1. CCM Nonce .........................................98
           10.9.2. Signatures ........................................99
   11. Packet Forwarding and Loop Avoidance/Detection ................99
      11.1. Suggestions for Packet Forwarding ........................99
      11.2. Loop Avoidance and Detection ............................101
           11.2.1. Source Node Operation ............................102
           11.2.2. Router Operation .................................102
   12. Multicast Operation ..........................................104
   13. Maintenance of Routing Adjacency .............................105
   14. Guidelines for Objective Functions ...........................106
      14.1. Objective Function Behavior .............................106
   15. Suggestions for Interoperation with Neighbor Discovery .......108
   16. Summary of Requirements for Interoperable Implementations ....109
      16.1. Common Requirements .....................................109
      16.2. Operation as a RPL Leaf Node (Only) .....................110
      16.3. Operation as a RPL Router ...............................110
           16.3.1. Support for Upward Routes (Only) .................110
           16.3.2. Support for Upward Routes and Downward
                   Routes in Non-Storing ............................110
           16.3.3. Support for Upward Routes and Downward
                   Routes in Storing Mode ...........................111
      16.4. Items for Future Specification ..........................111
   17. RPL Constants and Variables ..................................112
   18. Manageability Considerations .................................113
      18.1. Introduction ............................................114
      18.2. Configuration Management ................................115
           18.2.1. Initialization Mode ..............................115
           18.2.2. DIO and DAO Base Message and Options
                   Configuration ....................................115
           18.2.3. Protocol Parameters to Be Configured on
                   Every Router in the LLN ..........................116
           18.2.4. Protocol Parameters to Be Configured on
                   Every Non-DODAG-Root .............................117
           18.2.5. Parameters to Be Configured on the DODAG Root ....117




Winter, et al.               Standards Track                    [Page 5]
^L
RFC 6550                           RPL                        March 2012


           18.2.6. Configuration of RPL Parameters Related
                   to DAO-Based Mechanisms ..........................118
           18.2.7. Configuration of RPL Parameters Related
                   to Security Mechanisms ...........................119
           18.2.8. Default Values ...................................119
      18.3. Monitoring of RPL Operation .............................120
           18.3.1. Monitoring a DODAG Parameters ....................120
           18.3.2. Monitoring a DODAG Inconsistencies and
                   Loop Detection ...................................121
      18.4. Monitoring of the RPL Data Structures ...................121
           18.4.1. Candidate Neighbor Data Structure ................121
           18.4.2. Destination-Oriented Directed Acyclic
                   Graph (DODAG) Table ..............................122
           18.4.3. Routing Table and DAO Routing Entries ............122
      18.5. Fault Management ........................................123
      18.6. Policy ..................................................124
      18.7. Fault Isolation .........................................125
      18.8. Impact on Other Protocols ...............................125
      18.9. Performance Management ..................................126
      18.10. Diagnostics ............................................126
   19. Security Considerations ......................................126
      19.1. Overview ................................................126
   20. IANA Considerations ..........................................128
      20.1. RPL Control Message .....................................128
      20.2. New Registry for RPL Control Codes ......................128
      20.3. New Registry for the Mode of Operation (MOP) ............129
      20.4. RPL Control Message Option ..............................130
      20.5. Objective Code Point (OCP) Registry .....................131
      20.6. New Registry for the Security Section Algorithm .........131
      20.7. New Registry for the Security Section Flags .............132
      20.8. New Registry for Per-KIM Security Levels ................132
      20.9. New Registry for DODAG Informational
            Solicitation (DIS) Flags ................................133
      20.10. New Registry for the DODAG Information Object
             (DIO) Flags ............................................134
      20.11. New Registry for the Destination Advertisement
             Object (DAO) Flags .....................................134
      20.12. New Registry for the Destination Advertisement
             Object (DAO) Flags .....................................135
      20.13. New Registry for the Consistency Check (CC) Flags ......135
      20.14. New Registry for the DODAG Configuration Option Flags ..136
      20.15. New Registry for the RPL Target Option Flags ...........136
      20.16. New Registry for the Transit Information Option Flags ..137
      20.17. New Registry for the Solicited Information
             Option Flags ...........................................137
      20.18. ICMPv6: Error in Source Routing Header .................138
      20.19. Link-Local Scope Multicast Address .....................138
   21. Acknowledgements .............................................138



Winter, et al.               Standards Track                    [Page 6]
^L
RFC 6550                           RPL                        March 2012


   22. Contributors .................................................139
   23. References ...................................................139
      23.1. Normative References ....................................139
      23.2. Informative References ..................................140
   Appendix A. Example Operation ....................................143
      A.1. Example Operation in Storing Mode with Node-Owned
           Prefixes .................................................143
           A.1.1. DIO Messages and PIO ..............................144
           A.1.2. DAO Messages ......................................145
           A.1.3. Routing Information Base ..........................145
      A.2. Example Operation in Storing Mode with Subnet-Wide
           Prefix ...................................................146
           A.2.1. DIO Messages and PIO ..............................147
           A.2.2. DAO Messages ......................................148
           A.2.3. Routing Information Base ..........................148
      A.3. Example Operation in Non-Storing Mode with Node-Owned
           Prefixes .................................................149
           A.3.1. DIO Messages and PIO ..............................150
           A.3.2. DAO Messages ......................................150
           A.3.3. Routing Information Base ..........................151
      A.4. Example Operation in Non-Storing Mode with
           Subnet-Wide Prefix .......................................151
           A.4.1. DIO Messages and PIO ..............................152
           A.4.2. DAO Messages ......................................153
           A.4.3. Routing Information Base ..........................153
      A.5. Example with External Prefixes ...........................154

























Winter, et al.               Standards Track                    [Page 7]
^L
RFC 6550                           RPL                        March 2012


1.  Introduction

   Low-power and Lossy Networks (LLNs) consist largely of constrained
   nodes (with limited processing power, memory, and sometimes energy
   when they are battery operated or energy scavenging).  These routers
   are interconnected by lossy links, typically supporting only low data
   rates, that are usually unstable with relatively low packet delivery
   rates.  Another characteristic of such networks is that the traffic
   patterns are not simply point-to-point, but in many cases point-to-
   multipoint or multipoint-to-point.  Furthermore, such networks may
   potentially comprise up to thousands of nodes.  These characteristics
   offer unique challenges to a routing solution: the IETF ROLL working
   group has defined application-specific routing requirements for a
   Low-power and Lossy Network (LLN) routing protocol, specified in
   [RFC5867], [RFC5826], [RFC5673], and [RFC5548].

   This document specifies the IPv6 Routing Protocol for LLNs (RPL).
   Note that although RPL was specified according to the requirements
   set forth in the aforementioned requirement documents, its use is in
   no way limited to these applications.

1.1.  Design Principles

   RPL was designed with the objective to meet the requirements spelled
   out in [RFC5867], [RFC5826], [RFC5673], and [RFC5548].

   A network may run multiple instances of RPL concurrently.  Each such
   instance may serve different and potentially antagonistic constraints
   or performance criteria.  This document defines how a single instance
   operates.

   In order to be useful in a wide range of LLN application domains, RPL
   separates packet processing and forwarding from the routing
   optimization objective.  Examples of such objectives include
   minimizing energy, minimizing latency, or satisfying constraints.
   This document describes the mode of operation of RPL.  Other
   companion documents specify routing Objective Functions.  A RPL
   implementation, in support of a particular LLN application, will
   include the necessary Objective Function(s) as required by the
   application.

   RPL operations require bidirectional links.  In some LLN scenarios,
   those links may exhibit asymmetric properties.  It is required that
   the reachability of a router be verified before the router can be
   used as a parent.  RPL expects an external mechanism to be triggered
   during the parent selection phase in order to verify link properties
   and neighbor reachability.  Neighbor Unreachability Detection (NUD)
   is such a mechanism, but alternates are possible, including



Winter, et al.               Standards Track                    [Page 8]
^L
RFC 6550                           RPL                        March 2012


   Bidirectional Forwarding Detection (BFD) [RFC5881] and hints from
   lower layers via Layer 2 (L2) triggers like [RFC5184].  In a general
   fashion, a detection mechanism that is reactive to traffic is favored
   in order to minimize the cost of monitoring links that are not being
   used.

   RPL also expects an external mechanism to access and transport some
   control information, referred to as the "RPL Packet Information", in
   data packets.  The RPL Packet Information is defined in Section 11.2
   and enables the association of a data packet with a RPL Instance and
   the validation of RPL routing states.  The RPL option [RFC6553] is an
   example of such mechanism.  The mechanism is required for all packets
   except when strict source routing is used (that is for packets going
   Downward in Non-Storing mode as detailed further in Section 9), which
   by nature prevents endless loops and alleviates the need for the RPL
   Packet Information.  Future companion specifications may propose
   alternate ways to carry the RPL Packet Information in the IPv6
   packets and may extend the RPL Packet Information to support
   additional features.

   RPL provides a mechanism to disseminate information over the
   dynamically formed network topology.  This dissemination enables
   minimal configuration in the nodes, allowing nodes to operate mostly
   autonomously.  This mechanism uses Trickle [RFC6206] to optimize the
   dissemination as described in Section 8.3.

   In some applications, RPL assembles topologies of routers that own
   independent prefixes.  Those prefixes may or may not be aggregatable
   depending on the origin of the routers.  A prefix that is owned by a
   router is advertised as on-link.

   RPL also introduces the capability to bind a subnet together with a
   common prefix and to route within that subnet.  A source can inject
   information about the subnet to be disseminated by RPL, and that
   source is authoritative for that subnet.  Because many LLN links have
   non-transitive properties, a common prefix that RPL disseminates over
   the subnet must not be advertised as on-link.

   In particular, RPL may disseminate IPv6 Neighbor Discovery (ND)
   information such as the [RFC4861] Prefix Information Option (PIO) and
   the [RFC4191] Route Information Option (RIO).  ND information that is
   disseminated by RPL conserves all its original semantics for router
   to host, with limited extensions for router to router, though it is
   not to be confused with routing advertisements and it is never to be
   directly redistributed in another routing protocol.  A RPL node often
   combines host and router behaviors.  As a host, it will process the
   options as specified in [RFC4191], [RFC4861], [RFC4862], and
   [RFC6275].  As a router, the RPL node may advertise the information



Winter, et al.               Standards Track                    [Page 9]
^L
RFC 6550                           RPL                        March 2012


   from the options as required for the specific link, for instance, in
   an ND Router Advertisement (RA) message, though the exact operation
   is out of scope.

   A set of companion documents to this specification will provide
   further guidance in the form of applicability statements specifying a
   set of operating points appropriate to the Building Automation, Home
   Automation, Industrial, and Urban application scenarios.

1.2.  Expectations of Link-Layer Type

   In compliance with the layered architecture of IP, RPL does not rely
   on any particular features of a specific link-layer technology.  RPL
   is designed to be able to operate over a variety of different link
   layers, including ones that are constrained, potentially lossy, or
   typically utilized in conjunction with highly constrained host or
   router devices, such as but not limited to, low-power wireless or PLC
   (Power Line Communication) technologies.

   Implementers may find [RFC3819] a useful reference when designing a
   link-layer interface between RPL and a particular link-layer
   technology.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in RFC
   2119 [RFC2119].

   Additionally, this document uses terminology from [ROLL-TERMS], and
   introduces the following terminology:

   DAG: Directed Acyclic Graph.  A directed graph having the property
         that all edges are oriented in such a way that no cycles exist.
         All edges are contained in paths oriented toward and
         terminating at one or more root nodes.

   DAG root: A DAG root is a node within the DAG that has no outgoing
         edge.  Because the graph is acyclic, by definition, all DAGs
         must have at least one DAG root and all paths terminate at a
         DAG root.

   Destination-Oriented DAG (DODAG): A DAG rooted at a single
         destination, i.e., at a single DAG root (the DODAG root) with
         no outgoing edges.





Winter, et al.               Standards Track                   [Page 10]
^L
RFC 6550                           RPL                        March 2012


   DODAG root: A DODAG root is the DAG root of a DODAG.  The DODAG root
         may act as a border router for the DODAG; in particular, it may
         aggregate routes in the DODAG and may redistribute DODAG routes
         into other routing protocols.

   Virtual DODAG root: A Virtual DODAG root is the result of two or more
         RPL routers, for instance, 6LoWPAN Border Routers (6LBRs),
         coordinating to synchronize DODAG state and act in concert as
         if they are a single DODAG root (with multiple interfaces),
         with respect to the LLN.  The coordination most likely occurs
         between powered devices over a reliable transit link, and the
         details of that scheme are out of scope for this specification
         (to be defined in future companion specifications).

   Up:  Up refers to the direction from leaf nodes towards DODAG roots,
         following DODAG edges.  This follows the common terminology
         used in graphs and depth-first-search, where vertices further
         from the root are "deeper" or "down" and vertices closer to the
         root are "shallower" or "up".

   Down: Down refers to the direction from DODAG roots towards leaf
         nodes, in the reverse direction of DODAG edges.  This follows
         the common terminology used in graphs and depth-first-search,
         where vertices further from the root are "deeper" or "down" and
         vertices closer to the root are "shallower" or "up".

   Rank: A node's Rank defines the node's individual position relative
         to other nodes with respect to a DODAG root.  Rank strictly
         increases in the Down direction and strictly decreases in the
         Up direction.  The exact way Rank is computed depends on the
         DAG's Objective Function (OF).  The Rank may analogously track
         a simple topological distance, may be calculated as a function
         of link metrics, and may consider other properties such as
         constraints.

   Objective Function (OF): An OF defines how routing metrics,
         optimization objectives, and related functions are used to
         compute Rank.  Furthermore, the OF dictates how parents in the
         DODAG are selected and, thus, the DODAG formation.

   Objective Code Point (OCP): An OCP is an identifier that indicates
         which Objective Function the DODAG uses.

   RPLInstanceID: A RPLInstanceID is a unique identifier within a
         network.  DODAGs with the same RPLInstanceID share the same
         Objective Function.





Winter, et al.               Standards Track                   [Page 11]
^L
RFC 6550                           RPL                        March 2012


   RPL Instance: A RPL Instance is a set of one or more DODAGs that
         share a RPLInstanceID.  At most, a RPL node can belong to one
         DODAG in a RPL Instance.  Each RPL Instance operates
         independently of other RPL Instances.  This document describes
         operation within a single RPL Instance.

   DODAGID: A DODAGID is the identifier of a DODAG root.  The DODAGID is
         unique within the scope of a RPL Instance in the LLN.  The
         tuple (RPLInstanceID, DODAGID) uniquely identifies a DODAG.

   DODAG Version: A DODAG Version is a specific iteration ("Version") of
         a DODAG with a given DODAGID.

   DODAGVersionNumber: A DODAGVersionNumber is a sequential counter that
         is incremented by the root to form a new Version of a DODAG.  A
         DODAG Version is identified uniquely by the (RPLInstanceID,
         DODAGID, DODAGVersionNumber) tuple.

   Goal: The Goal is an application-specific goal that is defined
         outside the scope of RPL.  Any node that roots a DODAG will
         need to know about this Goal to decide whether or not the Goal
         can be satisfied.  A typical Goal is to construct the DODAG
         according to a specific Objective Function and to keep
         connectivity to a set of hosts (e.g., to use an Objective
         Function that minimizes a metric and is connected to a specific
         database host to store the collected data).

   Grounded: A DODAG is grounded when the DODAG root can satisfy the
         Goal.

   Floating: A DODAG is floating if it is not grounded.  A floating
         DODAG is not expected to have the properties required to
         satisfy the goal.  It may, however, provide connectivity to
         other nodes within the DODAG.

   DODAG parent: A parent of a node within a DODAG is one of the
         immediate successors of the node on a path towards the DODAG
         root.  A DODAG parent's Rank is lower than the node's.  (See
         Section 3.5.1).

   Sub-DODAG: The sub-DODAG of a node is the set of other nodes whose
         paths to the DODAG root pass through that node.  Nodes in the
         sub-DODAG of a node have a greater Rank than that node.  (See
         Section 3.5.1).

   Local DODAG: Local DODAGs contain one and only one root node, and
         they allow that single root node to allocate and manage a RPL
         Instance, identified by a local RPLInstanceID, without



Winter, et al.               Standards Track                   [Page 12]
^L
RFC 6550                           RPL                        March 2012


         coordination with other nodes.  Typically, this is done in
         order to optimize routes to a destination within the LLN.  (See
         Section 5).

   Global DODAG: A Global DODAG uses a global RPLInstanceID that may be
         coordinated among several other nodes.  (See Section 5).

   DIO: DODAG Information Object (see Section 6.3)

   DAO: Destination Advertisement Object (see Section 6.4)

   DIS: DODAG Information Solicitation (see Section 6.2)

   CC: Consistency Check (see Section 6.6)

   As they form networks, LLN devices often mix the roles of host and
   router when compared to traditional IP networks.  In this document,
   "host" refers to an LLN device that can generate but does not forward
   RPL traffic; "router" refers to an LLN device that can forward as
   well as generate RPL traffic; and "node" refers to any RPL device,
   either a host or a router.

3.  Protocol Overview

   The aim of this section is to describe RPL in the spirit of
   [RFC4101].  Protocol details can be found in further sections.

3.1.  Topologies

   This section describes the basic RPL topologies that may be formed,
   and the rules by which these are constructed, i.e., the rules
   governing DODAG formation.

3.1.1.  Constructing Topologies

   LLNs, such as Radio Networks, do not typically have predefined
   topologies, for example, those imposed by point-to-point wires, so
   RPL has to discover links and then select peers sparingly.

   In many cases, because Layer 2 ranges overlap only partially, RPL
   forms non-transitive / Non-Broadcast Multi-Access (NBMA) network
   topologies upon which it computes routes.

   RPL routes are optimized for traffic to or from one or more roots
   that act as sinks for the topology.  As a result, RPL organizes a
   topology as a Directed Acyclic Graph (DAG) that is partitioned into





Winter, et al.               Standards Track                   [Page 13]
^L
RFC 6550                           RPL                        March 2012


   one or more Destination Oriented DAGs (DODAGs), one DODAG per sink.
   If the DAG has multiple roots, then it is expected that the roots are
   federated by a common backbone, such as a transit link.

3.1.2.  RPL Identifiers

   RPL uses four values to identify and maintain a topology:

   o  The first is a RPLInstanceID.  A RPLInstanceID identifies a set of
      one or more Destination Oriented DAGs (DODAGs).  A network may
      have multiple RPLInstanceIDs, each of which defines an independent
      set of DODAGs, which may be optimized for different Objective
      Functions (OFs) and/or applications.  The set of DODAGs identified
      by a RPLInstanceID is called a RPL Instance.  All DODAGs in the
      same RPL Instance use the same OF.

   o  The second is a DODAGID.  The scope of a DODAGID is a RPL
      Instance.  The combination of RPLInstanceID and DODAGID uniquely
      identifies a single DODAG in the network.  A RPL Instance may have
      multiple DODAGs, each of which has an unique DODAGID.

   o  The third is a DODAGVersionNumber.  The scope of a
      DODAGVersionNumber is a DODAG.  A DODAG is sometimes reconstructed
      from the DODAG root, by incrementing the DODAGVersionNumber.  The
      combination of RPLInstanceID, DODAGID, and DODAGVersionNumber
      uniquely identifies a DODAG Version.

   o  The fourth is Rank.  The scope of Rank is a DODAG Version.  Rank
      establishes a partial order over a DODAG Version, defining
      individual node positions with respect to the DODAG root.

3.1.3.  Instances, DODAGs, and DODAG Versions

   A RPL Instance contains one or more DODAG roots.  A RPL Instance may
   provide routes to certain destination prefixes, reachable via the
   DODAG roots or alternate paths within the DODAG.  These roots may
   operate independently, or they may coordinate over a network that is
   not necessarily as constrained as an LLN.

   A RPL Instance may comprise:

   o  a single DODAG with a single root

      *  For example, a DODAG optimized to minimize latency rooted at a
         single centralized lighting controller in a Home Automation
         application.





Winter, et al.               Standards Track                   [Page 14]
^L
RFC 6550                           RPL                        March 2012


   o  multiple uncoordinated DODAGs with independent roots (differing
      DODAGIDs)

      *  For example, multiple data collection points in an urban data
         collection application that do not have suitable connectivity
         to coordinate with each other or that use the formation of
         multiple DODAGs as a means to dynamically and autonomously
         partition the network.

   o  a single DODAG with a virtual root that coordinates LLN sinks
      (with the same DODAGID) over a backbone network.

      *  For example, multiple border routers operating with a reliable
         transit link, e.g., in support of an IPv6 Low-Power Wireless
         Personal Area Network (6LoWPAN) application, that are capable
         of acting as logically equivalent interfaces to the sink of the
         same DODAG.

   o  a combination of the above as suited to some application scenario.

   Each RPL packet is associated with a particular RPLInstanceID (see
   Section 11.2) and, therefore, RPL Instance (Section 5).  The
   provisioning or automated discovery of a mapping between a
   RPLInstanceID and a type or service of application traffic is out of
   scope for this specification (to be defined in future companion
   specifications).

   Figure 1 depicts an example of a RPL Instance comprising three DODAGs
   with DODAG roots R1, R2, and R3.  Each of these DODAG roots
   advertises the same RPLInstanceID.  The lines depict connectivity
   between parents and children.

   Figure 2 depicts how a DODAGVersionNumber increment leads to a new
   DODAG Version.  This depiction illustrates a DODAGVersionNumber
   increment that results in a different DODAG topology.  Note that a
   new DODAG Version does not always imply a different DODAG topology.
   To accommodate certain topology changes requires a new DODAG Version,
   as described later in this specification.

   In the following examples, please note that tree-like structures are
   depicted for simplicity, although the DODAG structure allows for each
   node to have multiple parents when the connectivity supports it.









Winter, et al.               Standards Track                   [Page 15]
^L
RFC 6550                           RPL                        March 2012


     +----------------------------------------------------------------+
     |                                                                |
     | +--------------+                                               |
     | |              |                                               |
     | |     (R1)     |            (R2)                   (R3)        |
     | |     /  \     |            /| \                  / |  \       |
     | |    /    \    |           / |  \                /  |   \      |
     | |  (A)    (B)  |         (C) |  (D)     ...    (F) (G)  (H)    |
     | |  /|\     |\  |         /   | / |\             |\  |    |     |
     | | : : :    : : |        :   (E)  : :            :  `:    :     |
     | |              |            / \                                |
     | +--------------+           :   :                               |
     |      DODAG                                                     |
     |                                                                |
     +----------------------------------------------------------------+
                                RPL Instance

                          Figure 1: RPL Instance

            +----------------+                +----------------+
            |                |                |                |
            |      (R1)      |                |      (R1)      |
            |      /  \      |                |      /         |
            |     /    \     |                |     /          |
            |   (A)    (B)   |         \      |   (A)          |
            |   /|\   / |\   |    ------\     |   /|\          |
            |  : : (C)  : :  |           \    |  : : (C)       |
            |                |           /    |        \       |
            |                |    ------/     |         \      |
            |                |         /      |         (B)    |
            |                |                |          |\    |
            |                |                |          : :   |
            |                |                |                |
            +----------------+                +----------------+
                Version N                        Version N+1

                          Figure 2: DODAG Version

3.2.  Upward Routes and DODAG Construction

   RPL provisions routes Up towards DODAG roots, forming a DODAG
   optimized according to an Objective Function (OF).  RPL nodes
   construct and maintain these DODAGs through DODAG Information Object
   (DIO) messages.







Winter, et al.               Standards Track                   [Page 16]
^L
RFC 6550                           RPL                        March 2012


3.2.1.  Objective Function (OF)

   The Objective Function (OF) defines how RPL nodes select and optimize
   routes within a RPL Instance.  The OF is identified by an Objective
   Code Point (OCP) within the DIO Configuration option.  An OF defines
   how nodes translate one or more metrics and constraints, which are
   themselves defined in [RFC6551], into a value called Rank, which
   approximates the node's distance from a DODAG root.  An OF also
   defines how nodes select parents.  Further details may be found in
   Section 14, [RFC6551], [RFC6552], and related companion
   specifications.

3.2.2.  DODAG Repair

   A DODAG root institutes a global repair operation by incrementing the
   DODAGVersionNumber.  This initiates a new DODAG Version.  Nodes in
   the new DODAG Version can choose a new position whose Rank is not
   constrained by their Rank within the old DODAG Version.

   RPL also supports mechanisms that may be used for local repair within
   the DODAG Version.  The DIO message specifies the necessary
   parameters as configured from and controlled by policy at the DODAG
   root.

3.2.3.  Security

   RPL supports message confidentiality and integrity.  It is designed
   such that link-layer mechanisms can be used when available and
   appropriate; yet, in their absence, RPL can use its own mechanisms.
   RPL has three basic security modes.

   In the first, called "unsecured", RPL control messages are sent
   without any additional security mechanisms.  Unsecured mode does not
   imply that the RPL network is unsecure: it could be using other
   present security primitives (e.g., link-layer security) to meet
   application security requirements.

   In the second, called "preinstalled", nodes joining a RPL Instance
   have preinstalled keys that enable them to process and generate
   secured RPL messages.

   The third mode is called "authenticated".  In authenticated mode,
   nodes have preinstalled keys as in preinstalled mode, but the
   preinstalled key may only be used to join a RPL Instance as a leaf.
   Joining an authenticated RPL Instance as a router requires obtaining
   a key from an authentication authority.  The process by which this
   key is obtained is out of scope for this specification.  Note that
   this specification alone does not provide sufficient detail for a RPL



Winter, et al.               Standards Track                   [Page 17]
^L
RFC 6550                           RPL                        March 2012


   implementation to securely operate in authenticated mode.  For a RPL
   implementation to operate securely in authenticated mode, it is
   necessary for a future companion specification to detail the
   mechanisms by which a node obtains/requests the authentication
   material (e.g., key, certificate) and to determine from where that
   material should be obtained.  See also Section 10.3.

3.2.4.  Grounded and Floating DODAGs

   DODAGs can be grounded or floating: the DODAG root advertises which
   is the case.  A grounded DODAG offers connectivity to hosts that are
   required for satisfying the application-defined goal.  A floating
   DODAG is not expected to satisfy the goal; in most cases, it only
   provides routes to nodes within the DODAG.  Floating DODAGs may be
   used, for example, to preserve interconnectivity during repair.

3.2.5.  Local DODAGs

   RPL nodes can optimize routes to a destination within an LLN by
   forming a Local DODAG whose DODAG root is the desired destination.
   Unlike global DAGs, which can consist of multiple DODAGs, local DAGs
   have one and only one DODAG and therefore one DODAG root.  Local
   DODAGs can be constructed on demand.

3.2.6.  Administrative Preference

   An implementation/deployment may specify that some DODAG roots should
   be used over others through an administrative preference.
   Administrative preference offers a way to control traffic and
   engineer DODAG formation in order to better support application
   requirements or needs.

3.2.7.  Data-Path Validation and Loop Detection

   The low-power and lossy nature of LLNs motivates RPL's use of on-
   demand loop detection using data packets.  Because data traffic can
   be infrequent, maintaining a routing topology that is constantly up
   to date with the physical topology can waste energy.  Typical LLNs
   exhibit variations in physical connectivity that are transient and
   innocuous to traffic, but that would be costly to track closely from
   the control plane.  Transient and infrequent changes in connectivity
   need not be addressed by RPL until there is data to send.  This
   aspect of RPL's design draws from existing, highly used LLN protocols
   as well as extensive experimental and deployment evidence on its
   efficacy.






Winter, et al.               Standards Track                   [Page 18]
^L
RFC 6550                           RPL                        March 2012


   The RPL Packet Information that is transported with data packets
   includes the Rank of the transmitter.  An inconsistency between the
   routing decision for a packet (Upward or Downward) and the Rank
   relationship between the two nodes indicates a possible loop.  On
   receiving such a packet, a node institutes a local repair operation.

   For example, if a node receives a packet flagged as moving in the
   Upward direction, and if that packet records that the transmitter is
   of a lower (lesser) Rank than the receiving node, then the receiving
   node is able to conclude that the packet has not progressed in the
   Upward direction and that the DODAG is inconsistent.

3.2.8.  Distributed Algorithm Operation

   A high-level overview of the distributed algorithm, which constructs
   the DODAG, is as follows:

   o  Some nodes are configured to be DODAG roots, with associated DODAG
      configurations.

   o  Nodes advertise their presence, affiliation with a DODAG, routing
      cost, and related metrics by sending link-local multicast DIO
      messages to all-RPL-nodes.

   o  Nodes listen for DIOs and use their information to join a new
      DODAG (thus, selecting DODAG parents), or to maintain an existing
      DODAG, according to the specified Objective Function and Rank of
      their neighbors.

   o  Nodes provision routing table entries, for the destinations
      specified by the DIO message, via their DODAG parents in the DODAG
      Version.  Nodes that decide to join a DODAG can provision one or
      more DODAG parents as the next hop for the default route and a
      number of other external routes for the associated instance.

3.3.  Downward Routes and Destination Advertisement

   RPL uses Destination Advertisement Object (DAO) messages to establish
   Downward routes.  DAO messages are an optional feature for
   applications that require point-to-multipoint (P2MP) or point-to-
   point (P2P) traffic.  RPL supports two modes of Downward traffic:
   Storing (fully stateful) or Non-Storing (fully source routed); see
   Section 9.  Any given RPL Instance is either storing or non-storing.
   In both cases, P2P packets travel Up toward a DODAG root then Down to
   the final destination (unless the destination is on the Upward
   route).  In the Non-Storing case, the packet will travel all the way
   to a DODAG root before traveling Down.  In the Storing case, the




Winter, et al.               Standards Track                   [Page 19]
^L
RFC 6550                           RPL                        March 2012


   packet may be directed Down towards the destination by a common
   ancestor of the source and the destination prior to reaching a DODAG
   root.

   As of the writing of this specification, no implementation is
   expected to support both Storing and Non-Storing modes of operation.
   Most implementations are expected to support either no Downward
   routes, Non-Storing mode only, or Storing mode only.  Other modes of
   operation, such as a hybrid mix of Storing and Non-Storing mode, are
   out of scope for this specification and may be described in other
   companion specifications.

   This specification describes a basic mode of operation in support of
   P2P traffic.  Note that more optimized P2P solutions may be described
   in companion specifications.

3.4.  Local DODAGs Route Discovery

   Optionally, a RPL network can support on-demand discovery of DODAGs
   to specific destinations within an LLN.  Such Local DODAGs behave
   slightly differently than Global DODAGs: they are uniquely defined by
   the combination of DODAGID and RPLInstanceID.  The RPLInstanceID
   denotes whether a DODAG is a Local DODAG.

3.5.  Rank Properties

   The Rank of a node is a scalar representation of the location of that
   node within a DODAG Version.  The Rank is used to avoid and detect
   loops and, as such, must demonstrate certain properties.  The exact
   calculation of the Rank is left to the Objective Function.  Even
   though the specific computation of the Rank is left to the Objective
   Function, the Rank must implement generic properties regardless of
   the Objective Function.

   In particular, the Rank of the nodes must monotonically decrease as
   the DODAG Version is followed towards the DODAG destination.  In that
   regard, the Rank can be considered a scalar representation of the
   location or radius of a node within a DODAG Version.

   The details of how the Objective Function computes Rank are out of
   scope for this specification, although that computation may depend,
   for example, on parents, link metrics, node metrics, and the node
   configuration and policies.  See Section 14 for more information.

   The Rank is not a path cost, although its value can be derived from
   and influenced by path metrics.  The Rank has properties of its own
   that are not necessarily those of all metrics:




Winter, et al.               Standards Track                   [Page 20]
^L
RFC 6550                           RPL                        March 2012


   Type: The Rank is an abstract numeric value.

   Function: The Rank is the expression of a relative position within a
         DODAG Version with regard to neighbors, and it is not
         necessarily a good indication or a proper expression of a
         distance or a path cost to the root.

   Stability: The stability of the Rank determines the stability of the
         routing topology.  Some dampening or filtering is RECOMMENDED
         to keep the topology stable; thus, the Rank does not
         necessarily change as fast as some link or node metrics would.
         A new DODAG Version would be a good opportunity to reconcile
         the discrepancies that might form over time between metrics and
         Ranks within a DODAG Version.

   Properties: The Rank is incremented in a strictly monotonic fashion,
         and it can be used to validate a progression from or towards
         the root.  A metric, like bandwidth or jitter, does not
         necessarily exhibit this property.

   Abstract: The Rank does not have a physical unit, but rather a range
         of increment per hop, where the assignment of each increment is
         to be determined by the Objective Function.

   The Rank value feeds into DODAG parent selection, according to the
   RPL loop-avoidance strategy.  Once a parent has been added, and a
   Rank value for the node within the DODAG has been advertised, the
   node's further options with regard to DODAG parent selection and
   movement within the DODAG are restricted in favor of loop avoidance.

3.5.1.  Rank Comparison (DAGRank())

   Rank may be thought of as a fixed-point number, where the position of
   the radix point between the integer part and the fractional part is
   determined by MinHopRankIncrease.  MinHopRankIncrease is the minimum
   increase in Rank between a node and any of its DODAG parents.  A
   DODAG root provisions MinHopRankIncrease.  MinHopRankIncrease creates
   a trade-off between hop cost precision and the maximum number of hops
   a network can support.  A very large MinHopRankIncrease, for example,
   allows precise characterization of a given hop's effect on Rank but
   cannot support many hops.

   When an Objective Function computes Rank, the Objective Function
   operates on the entire (i.e., 16-bit) Rank quantity.  When Rank is
   compared, e.g., for determination of parent relationships or loop
   detection, the integer portion of the Rank is to be used.  The





Winter, et al.               Standards Track                   [Page 21]
^L
RFC 6550                           RPL                        March 2012


   integer portion of the Rank is computed by the DAGRank() macro as
   follows, where floor(x) is the function that evaluates to the
   greatest integer less than or equal to x:

              DAGRank(rank) = floor(rank/MinHopRankIncrease)

   For example, if a 16-bit Rank quantity is decimal 27, and the
   MinHopRankIncrease is decimal 16, then DAGRank(27) = floor(1.6875) =
   1.  The integer part of the Rank is 1 and the fractional part is
   11/16.

   Following the conventions in this document, using the macro
   DAGRank(node) may be interpreted as DAGRank(node.rank), where
   node.rank is the Rank value as maintained by the node.

   A Node A has a Rank less than the Rank of a Node B if DAGRank(A) is
   less than DAGRank(B).

   A Node A has a Rank equal to the Rank of a Node B if DAGRank(A) is
   equal to DAGRank(B).

   A Node A has a Rank greater than the Rank of a Node B if DAGRank(A)
   is greater than DAGRank(B).

3.5.2.  Rank Relationships

   Rank computations maintain the following properties for any nodes M
   and N that are neighbors in the LLN:

   DAGRank(M) is less than DAGRank(N):

      In this case, the position of M is closer to the DODAG root than
      the position of N.  Node M may safely be a DODAG parent for Node N
      without risk of creating a loop.  Further, for a Node N, all
      parents in the DODAG parent set must be of a Rank less than
      DAGRank(N).  In other words, the Rank presented by a Node N MUST
      be greater than that presented by any of its parents.

   DAGRank(M) equals DAGRank(N):

      In this case, the positions of M and N within the DODAG and with
      respect to the DODAG root are similar or identical.  Routing
      through a node with equal Rank may cause a routing loop (i.e., if
      that node chooses to route through a node with equal Rank as
      well).






Winter, et al.               Standards Track                   [Page 22]
^L
RFC 6550                           RPL                        March 2012


   DAGRank(M) is greater than DAGRank(N):

      In this case, the position of M is farther from the DODAG root
      than the position of N.  Further, Node M may in fact be in the
      sub-DODAG of Node N.  If Node N selects Node M as DODAG parent,
      there is a risk of creating a loop.

   As an example, the Rank could be computed in such a way so as to
   closely track ETX (expected transmission count, a fairly common
   routing metric used in LLN and defined in [RFC6551]) when the metric
   that an Objective Function minimizes is ETX, or latency, or in a more
   complicated way as appropriate to the Objective Function being used
   within the DODAG.

3.6.  Routing Metrics and Constraints Used by RPL

   Routing metrics are used by routing protocols to compute shortest
   paths.  Interior Gateway Protocols (IGPs) such as IS-IS ([RFC5120])
   and OSPF ([RFC4915]) use static link metrics.  Such link metrics can
   simply reflect the bandwidth or can also be computed according to a
   polynomial function of several metrics defining different link
   characteristics.  Some routing protocols support more than one
   metric: in the vast majority of the cases, one metric is used per
   (sub-)topology.  Less often, a second metric may be used as a
   tiebreaker in the presence of Equal Cost Multiple Paths (ECMPs).  The
   optimization of multiple metrics is known as an NP-complete problem
   and is sometimes supported by some centralized path computation
   engine.

   In contrast, LLNs do require the support of both static and dynamic
   metrics.  Furthermore, both link and node metrics are required.  In
   the case of RPL, it is virtually impossible to define one metric, or
   even a composite metric, that will satisfy all use cases.

   In addition, RPL supports constraint-based routing where constraints
   may be applied to both link and nodes.  If a link or a node does not
   satisfy a required constraint, it is "pruned" from the candidate
   neighbor set, thus leading to a constrained shortest path.

   An Objective Function specifies the objectives used to compute the
   (constrained) path.  Furthermore, nodes are configured to support a
   set of metrics and constraints and select their parents in the DODAG
   according to the metrics and constraints advertised in the DIO
   messages.  Upstream and Downstream metrics may be merged or
   advertised separately depending on the OF and the metrics.  When they
   are advertised separately, it may happen that the set of DIO parents





Winter, et al.               Standards Track                   [Page 23]
^L
RFC 6550                           RPL                        March 2012


   is different from the set of DAO parents (a DAO parent is a node to
   which unicast DAO messages are sent).  Yet, all are DODAG parents
   with regard to the rules for Rank computation.

   The Objective Function is decoupled from the routing metrics and
   constraints used by RPL.  Whereas the OF dictates rules such as DODAG
   parent selection, load balancing, and so on, the set of metrics
   and/or constraints used, and thus those that determine the preferred
   path, are based on the information carried within the DAG container
   option in DIO messages.

   The set of supported link/node constraints and metrics is specified
   in [RFC6551].

   Example 1: Shortest path: path offering the shortest end-to-end
              delay.

   Example 2: Shortest Constrained path: the path that does not traverse
              any battery-operated node and that optimizes the path
              reliability.

3.7.  Loop Avoidance

   RPL tries to avoid creating loops when undergoing topology changes
   and includes Rank-based data-path validation mechanisms for detecting
   loops when they do occur (see Section 11 for more details).  In
   practice, this means that RPL guarantees neither loop-free path
   selection nor tight delay convergence times, but it can detect and
   repair a loop as soon as it is used.  RPL uses this loop detection to
   ensure that packets make forward progress within the DODAG Version
   and trigger repairs when necessary.

3.7.1.  Greediness and Instability

   A node is greedy if it attempts to move deeper (increase Rank) in the
   DODAG Version in order to increase the size of the parent set or
   improve some other metric.  Once a node has joined a DODAG Version,
   RPL disallows certain behaviors, including greediness, in order to
   prevent resulting instabilities in the DODAG Version.

   Suppose a node is willing to receive and process a DIO message from a
   node in its own sub-DODAG and, in general, a node deeper than itself.
   In this case, a possibility exists that a feedback loop is created,
   wherein two or more nodes continue to try and move in the DODAG
   Version while attempting to optimize against each other.  In some
   cases, this will result in instability.  It is for this reason that
   RPL limits the cases where a node may process DIO messages from
   deeper nodes to some form of local repair.  This approach creates an



Winter, et al.               Standards Track                   [Page 24]
^L
RFC 6550                           RPL                        March 2012


   "event horizon", whereby a node cannot be influenced beyond some
   limit into an instability by the action of nodes that may be in its
   own sub-DODAG.

3.7.1.1.  Example: Greedy Parent Selection and Instability

         (A)                    (A)                    (A)
          |\                     |\                     |\
          | `-----.              | `-----.              | `-----.
          |        \             |        \             |        \
         (B)       (C)          (B)        \            |        (C)
                                  \        |            |        /
                                   `-----. |            | .-----'
                                          \|            |/
                                          (C)          (B)

              -1-                    -2-                    -3-

                  Figure 3: Greedy DODAG Parent Selection

   Figure 3 depicts a DODAG in three different configurations.  A usable
   link between (B) and (C) exists in all three configurations.  In
   Figure 3-1, Node (A) is a DODAG parent for Nodes (B) and (C).  In
   Figure 3-2, Node (A) is a DODAG parent for Nodes (B) and (C), and
   Node (B) is also a DODAG parent for Node (C).  In Figure 3-3, Node
   (A) is a DODAG parent for Nodes (B) and (C), and Node (C) is also a
   DODAG parent for Node (B).

   If a RPL node is too greedy, in that it attempts to optimize for an
   additional number of parents beyond its most preferred parents, then
   an instability can result.  Consider the DODAG illustrated in
   Figure 3-1.  In this example, Nodes (B) and (C) may most prefer Node
   (A) as a DODAG parent, but we will consider the case when they are
   operating under the greedy condition that will try to optimize for
   two parents.

   o  Let Figure 3-1 be the initial condition.

   o  Suppose Node (C) first is able to leave the DODAG and rejoin at a
      lower Rank, taking both Nodes (A) and (B) as DODAG parents as
      depicted in Figure 3-2.  Now Node (C) is deeper than both Nodes
      (A) and (B), and Node (C) is satisfied to have two DODAG parents.

   o  Suppose Node (B), in its greediness, is willing to receive and
      process a DIO message from Node (C) (against the rules of RPL),
      and then Node (B) leaves the DODAG and rejoins at a lower Rank,





Winter, et al.               Standards Track                   [Page 25]
^L
RFC 6550                           RPL                        March 2012


      taking both Nodes (A) and (C) as DODAG parents.  Now Node (B) is
      deeper than both Nodes (A) and (C) and is satisfied with two DAG
      parents.

   o  Then, Node (C), because it is also greedy, will leave and rejoin
      deeper, to again get two parents and have a lower Rank then both
      of them.

   o  Next, Node (B) will again leave and rejoin deeper, to again get
      two parents.

   o  Again, Node (C) leaves and rejoins deeper.

   o  The process will repeat, and the DODAG will oscillate between
      Figure 3-2 and Figure 3-3 until the nodes count to infinity and
      restart the cycle again.

   o  This cycle can be averted through mechanisms in RPL:

      *  Nodes (B) and (C) stay at a Rank sufficient to attach to their
         most preferred parent (A) and don't go for any deeper (worse)
         alternate parents (Nodes are not greedy).

      *  Nodes (B) and (C) do not process DIO messages from nodes deeper
         than themselves (because such nodes are possibly in their own
         sub-DODAGs).

   These mechanisms are further described in Section 8.2.2.4.

3.7.2.  DODAG Loops

   A DODAG loop may occur when a node detaches from the DODAG and
   reattaches to a device in its prior sub-DODAG.  In particular, this
   may happen when DIO messages are missed.  Strict use of the
   DODAGVersionNumber can eliminate this type of loop, but this type of
   loop may possibly be encountered when using some local repair
   mechanisms.

   For example, consider the local repair mechanism that allows a node
   to detach from the DODAG, advertise a Rank of INFINITE_RANK (in order
   to poison its routes / inform its sub-DODAG), and then reattach to
   the DODAG.  In some of these cases, the node may reattach to its own
   prior-sub-DODAG, causing a DODAG loop, because the poisoning may fail
   if the INFINITE_RANK advertisements are lost in the LLN environment.
   (In this case, the Rank-based data-path validation mechanisms would
   eventually detect and trigger correction of the loop).





Winter, et al.               Standards Track                   [Page 26]
^L
RFC 6550                           RPL                        March 2012


3.7.3.  DAO Loops

   A DAO loop may occur when the parent has a route installed upon
   receiving and processing a DAO message from a child, but the child
   has subsequently cleaned up the related DAO state.  This loop happens
   when a No-Path (a DAO message that invalidates a previously announced
   prefix, see Section 6.4.3) was missed and persists until all state
   has been cleaned up.  RPL includes an optional mechanism to
   acknowledge DAO messages, which may mitigate the impact of a single
   DAO message being missed.  RPL includes loop detection mechanisms
   that mitigate the impact of DAO loops and trigger their repair.  (See
   Section 11.2.2.3.)

4.  Traffic Flows Supported by RPL

   RPL supports three basic traffic flows: multipoint-to-point (MP2P),
   point-to-multipoint (P2MP), and point-to-point (P2P).

4.1.  Multipoint-to-Point Traffic

   Multipoint-to-point (MP2P) is a dominant traffic flow in many LLN
   applications ([RFC5867], [RFC5826], [RFC5673], and [RFC5548]).  The
   destinations of MP2P flows are designated nodes that have some
   application significance, such as providing connectivity to the
   larger Internet or core private IP network.  RPL supports MP2P
   traffic by allowing MP2P destinations to be reached via DODAG roots.

4.2.  Point-to-Multipoint Traffic

   Point-to-multipoint (P2MP) is a traffic pattern required by several
   LLN applications ([RFC5867], [RFC5826], [RFC5673], and [RFC5548]).
   RPL supports P2MP traffic by using a destination advertisement
   mechanism that provisions Down routes toward destinations (prefixes,
   addresses, or multicast groups), and away from roots.  Destination
   advertisements can update routing tables as the underlying DODAG
   topology changes.

4.3.  Point-to-Point Traffic

   RPL DODAGs provide a basic structure for point-to-point (P2P)
   traffic.  For a RPL network to support P2P traffic, a root must be
   able to route packets to a destination.  Nodes within the network may
   also have routing tables to destinations.  A packet flows towards a
   root until it reaches an ancestor that has a known route to the
   destination.  As pointed out later in this document, in the most
   constrained case (when nodes cannot store routes), that common
   ancestor may be the DODAG root.  In other cases, it may be a node
   closer to both the source and destination.



Winter, et al.               Standards Track                   [Page 27]
^L
RFC 6550                           RPL                        March 2012


   RPL also supports the case where a P2P destination is a 'one-hop'
   neighbor.

   RPL neither specifies nor precludes additional mechanisms for
   computing and installing potentially more optimal routes to support
   arbitrary P2P traffic.

5.  RPL Instance

   Within a given LLN, there may be multiple, logically independent RPL
   Instances.  A RPL node may belong to multiple RPL Instances, and it
   may act as a router in some and as a leaf in others.  This document
   describes how a single instance behaves.

   There are two types of RPL Instances: Local and Global.  RPL divides
   the RPLInstanceID space between Global and Local instances to allow
   for both coordinated and unilateral allocation of RPLInstanceIDs.
   Global RPL Instances are coordinated, have one or more DODAGs, and
   are typically long-lived.  Local RPL Instances are always a single
   DODAG whose singular root owns the corresponding DODAGID and
   allocates the local RPLInstanceID in a unilateral manner.  Local RPL
   Instances can be used, for example, for constructing DODAGs in
   support of a future on-demand routing solution.  The mode of
   operation of Local RPL Instances is out of scope for this
   specification and may be described in other companion specifications.

   The definition and provisioning of RPL Instances are out of scope for
   this specification.  Guidelines may be application and implementation
   specific, and they are expected to be elaborated in future companion
   specifications.  Those operations are expected to be such that data
   packets coming from the outside of the RPL network can unambiguously
   be associated to at least one RPL Instance and be safely routed over
   any instance that would match the packet.

   Control and data packets within RPL network are tagged to
   unambiguously identify of which RPL Instance they are a part.

   Every RPL control message has a RPLInstanceID field.  Some RPL
   control messages, when referring to a local RPLInstanceID as defined
   below, may also include a DODAGID.

   Data packets that flow within the RPL network expose the
   RPLInstanceID as part of the RPL Packet Information that RPL
   requires, as further described in Section 11.2.  For data packets
   coming from outside the RPL network, the ingress router determines
   the RPLInstanceID and places it into the resulting packet that it
   injects into the RPL network.




Winter, et al.               Standards Track                   [Page 28]
^L
RFC 6550                           RPL                        March 2012


5.1.  RPL Instance ID

   A global RPLInstanceID MUST be unique to the whole LLN.  Mechanisms
   for allocating and provisioning global RPLInstanceID are out of scope
   for this specification.  There can be up to 128 Global instance in
   the whole network.  Local instances are always used in conjunction
   with a DODAGID (which is either given explicitly or implicitly in
   some cases), and up 64 Local instances per DODAGID can be supported.
   Local instances are allocated and managed by the node that owns the
   DODAGID, without any explicit coordination with other nodes, as
   further detailed below.

   A global RPLInstanceID is encoded in a RPLInstanceID field as
   follows:

        0 1 2 3 4 5 6 7
       +-+-+-+-+-+-+-+-+
       |0|     ID      |  Global RPLInstanceID in 0..127
       +-+-+-+-+-+-+-+-+

         Figure 4: RPLInstanceID Field Format for Global Instances

   A local RPLInstanceID is autoconfigured by the node that owns the
   DODAGID and it MUST be unique for that DODAGID.  The DODAGID used to
   configure the local RPLInstanceID MUST be a reachable IPv6 address of
   the node, and it MUST be used as an endpoint of all communications
   within that Local instance.

   A local RPLInstanceID is encoded in a RPLInstanceID field as follows:

        0 1 2 3 4 5 6 7
       +-+-+-+-+-+-+-+-+
       |1|D|   ID      |  Local RPLInstanceID in 0..63
       +-+-+-+-+-+-+-+-+

         Figure 5: RPLInstanceID Field Format for Local Instances

   The 'D' flag in a local RPLInstanceID is always set to 0 in RPL
   control messages.  It is used in data packets to indicate whether the
   DODAGID is the source or the destination of the packet.  If the 'D'
   flag is set to 1, then the destination address of the IPv6 packet
   MUST be the DODAGID.  If the 'D' flag is cleared, then the source
   address of the IPv6 packet MUST be the DODAGID.

   For example, consider a Node A that is the DODAG root of a Local RPL
   Instance, and has allocated a local RPLInstanceID.  By definition,
   all traffic traversing that Local RPL Instance will either originate
   or terminate at Node A.  In this case, the DODAGID will be the



Winter, et al.               Standards Track                   [Page 29]
^L
RFC 6550                           RPL                        March 2012


   reachable IPv6 address of Node A.  All traffic will contain the
   address of Node A, and thus the DODAGID, in either the source or
   destination address.  Thus, the local RPLInstanceID may indicate that
   the DODAGID is equivalent to either the source address or the
   destination address by setting the 'D' flag appropriately.

6.  ICMPv6 RPL Control Message

   This document defines the RPL control message, a new ICMPv6 [RFC4443]
   message.  A RPL control message is identified by a code and composed
   of a base that depends on the code (and a series of options).

   Most RPL control messages have the scope of a link.  The only
   exception is for the DAO / DAO-ACK messages in Non-Storing mode,
   which are exchanged using a unicast address over multiple hops and
   thus uses global or unique-local addresses for both the source and
   destination addresses.  For all other RPL control messages, the
   source address is a link-local address, and the destination address
   is either the all-RPL-nodes multicast address or a link-local unicast
   address of the destination.  The all-RPL-nodes multicast address is a
   new address with a value of ff02::1a.

   In accordance with [RFC4443], the RPL Control Message consists of an
   ICMPv6 header followed by a message body.  The message body is
   comprised of a message base and possibly a number of options as
   illustrated in Figure 6.

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |     Type      |     Code      |          Checksum             |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       .                             Base                              .
       .                                                               .
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       .                           Option(s)                           .
       .                                                               .
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                       Figure 6: RPL Control Message

   The RPL control message is an ICMPv6 information message with a Type
   of 155.






Winter, et al.               Standards Track                   [Page 30]
^L
RFC 6550                           RPL                        March 2012


   The Code field identifies the type of RPL control message.  This
   document defines codes for the following RPL control message types
   (see Section 20.2)):

   o  0x00: DODAG Information Solicitation (Section 6.2)

   o  0x01: DODAG Information Object (Section 6.3)

   o  0x02: Destination Advertisement Object (Section 6.4)

   o  0x03: Destination Advertisement Object Acknowledgment
      (Section 6.5)

   o  0x80: Secure DODAG Information Solicitation (Section 6.2.2)

   o  0x81: Secure DODAG Information Object (Section 6.3.2)

   o  0x82: Secure Destination Advertisement Object (Section 6.4.2)

   o  0x83: Secure Destination Advertisement Object Acknowledgment
      (Section 6.5.2)

   o  0x8A: Consistency Check (Section 6.6)

   If a node receives a RPL control message with an unknown Code field,
   the node MUST discard the message without any further processing, MAY
   raise a management alert, and MUST NOT send any messages in response.

   The checksum is computed as specified in [RFC4443].  It is set to
   zero for the RPL security operations specified below and computed
   once the rest of the content of the RPL message including the
   security fields is all set.

   The high order bit (0x80) of the code denotes whether the RPL message
   has security enabled.  Secure RPL messages have a format to support
   confidentiality and integrity, illustrated in Figure 7.















Winter, et al.               Standards Track                   [Page 31]
^L
RFC 6550                           RPL                        March 2012


        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |     Type      |     Code      |          Checksum             |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       .                           Security                            .
       .                                                               .
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       .                             Base                              .
       .                                                               .
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       .                           Option(s)                           .
       .                                                               .
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Figure 7: Secure RPL Control Message

   The remainder of this section describes the currently defined RPL
   control message Base formats followed by the currently defined RPL
   Control Message options.

6.1.  RPL Security Fields

   Each RPL message has a secure variant.  The secure variants provide
   integrity and replay protection as well as optional confidentiality
   and delay protection.  Because security covers the base message as
   well as options, in secured messages the security information lies
   between the checksum and base, as shown in Figure 7.

   The level of security and the algorithms in use are indicated in the
   protocol messages as described below:

















Winter, et al.               Standards Track                   [Page 32]
^L
RFC 6550                           RPL                        March 2012


        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |T|  Reserved   |   Algorithm   |KIM|Resvd| LVL |     Flags     |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                            Counter                            |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       .                        Key Identifier                         .
       .                                                               .
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                        Figure 8: Security Section

   Message Authentication Codes (MACs) and signatures provide
   authentication over the entire unsecured ICMPv6 RPL control message,
   including the Security section with all fields defined, but with the
   ICMPv6 checksum temporarily set to zero.  Encryption provides
   confidentiality of the secured RPL ICMPv6 message starting at the
   first byte after the Security section and continuing to the last byte
   of the packet.  The security transformation yields a secured ICMPv6
   RPL message with the inclusion of the cryptographic fields (MAC,
   signature, etc.).  In other words, the security transformation itself
   (e.g., the Signature and/or Algorithm in use) will detail how to
   incorporate the cryptographic fields into the secured packet.  The
   Security section itself does not explicitly carry those cryptographic
   fields.  Use of the Security section is further detailed in Sections
   19 and 10.

   Counter is Time (T): If the counter's Time flag is set, then the
         Counter field is a timestamp.  If the flag is cleared, then the
         counter is an incrementing counter.  Section 10.5 describes the
         details of the 'T' flag and Counter field.

   Reserved: 7-bit unused field.  The field MUST be initialized to zero
         by the sender and MUST be ignored by the receiver.

   Security Algorithm (Algorithm): The Security Algorithm field
         specifies the encryption, MAC, and signature scheme the network
         uses.  Supported values of this field are as follows:











Winter, et al.               Standards Track                   [Page 33]
^L
RFC 6550                           RPL                        March 2012


         +-----------+-------------------+------------------------+
         | Algorithm |  Encryption/MAC   |        Signature       |
         +-----------+-------------------+------------------------+
         |     0     | CCM with AES-128  |      RSA with SHA-256  |
         |   1-255   |    Unassigned     |        Unassigned      |
         +-----------+-------------------+------------------------+

             Figure 9: Security Algorithm (Algorithm) Encoding

   Section 10.9 describes the algorithms in greater detail.

   Key Identifier Mode (KIM): The Key Identifier Mode is a 2-bit field
         that indicates whether the key used for packet protection is
         determined implicitly or explicitly and indicates the
         particular representation of the Key Identifier field.  The Key
         Identifier Mode is set one of the values from the table below:



































Winter, et al.               Standards Track                   [Page 34]
^L
RFC 6550                           RPL                        March 2012


          +------+-----+-----------------------------+------------+
          | Mode | KIM |           Meaning           |    Key     |
          |      |     |                             | Identifier |
          |      |     |                             |   Length   |
          |      |     |                             |  (octets)  |
          +------+-----+-----------------------------+------------+
          |  0   | 00  | Group key used.             |     1      |
          |      |     | Key determined by Key Index |            |
          |      |     | field.                      |            |
          |      |     |                             |            |
          |      |     | Key Source is not present.  |            |
          |      |     | Key Index is present.       |            |
          +------+-----+-----------------------------+------------+
          |  1   | 01  | Per-pair key used.          |     0      |
          |      |     | Key determined by source    |            |
          |      |     | and destination of packet.  |            |
          |      |     |                             |            |
          |      |     | Key Source is not present.  |            |
          |      |     | Key Index is not present.   |            |
          +------+-----+-----------------------------+------------+
          |  2   | 10  | Group key used.             |     9      |
          |      |     | Key determined by Key Index |            |
          |      |     | and Key Source Identifier.  |            |
          |      |     |                             |            |
          |      |     | Key Source is present.      |            |
          |      |     | Key Index is present.       |            |
          +------+-----+-----------------------------+------------+
          |  3   | 11  | Node's signature key used.  |    0/9     |
          |      |     | If packet is encrypted,     |
          |      |     | it uses a group key, Key    |            |
          |      |     | Index and Key Source        |            |
          |      |     | specify key.                |            |
          |      |     |                             |            |
          |      |     | Key Source may be present.  |            |
          |      |     | Key Index may be present.   |            |
          +------+-----+-----------------------------+------------+

               Figure 10: Key Identifier Mode (KIM) Encoding

   In Mode 3 (KIM=11), the presence or absence of the Key Source and Key
   Identifier depends on the Security Level (LVL) described below.  If
   the Security Level indicates there is encryption, then the fields are
   present; if it indicates there is no encryption, then the fields are
   not present.

   Resvd: 3-bit unused field.  The field MUST be initialized to zero by
         the sender and MUST be ignored by the receiver.




Winter, et al.               Standards Track                   [Page 35]
^L
RFC 6550                           RPL                        March 2012


   Security Level (LVL):  The Security Level is a 3-bit field that
         indicates the provided packet protection.  This value can be
         adapted on a per-packet basis and allows for varying levels of
         data authenticity and, optionally, for data confidentiality.
         The KIM field indicates whether signatures are used and the
         meaning of the Level field.  Note that the assigned values of
         Security Level are not necessarily ordered -- a higher value of
         LVL does not necessarily equate to increased security.  The
         Security Level is set to one of the values in the tables below:

                      +---------------------------+
                      |         KIM=0,1,2         |
              +-------+--------------------+------+
              |  LVL  |     Attributes     | MAC  |
              |       |                    | Len  |
              +-------+--------------------+------+
              |   0   |       MAC-32       |  4   |
              |   1   |     ENC-MAC-32     |  4   |
              |   2   |       MAC-64       |  8   |
              |   3   |     ENC-MAC-64     |  8   |
              |  4-7  |     Unassigned     | N/A  |
              +-------+--------------------+------+

                            +---------------------+
                            |        KIM=3        |
                    +-------+---------------+-----+
                    |  LVL  |  Attributes   | Sig |
                    |       |               | Len |
                    +-------+---------------+-----+
                    |   0   |   Sign-3072   | 384 |
                    |   1   | ENC-Sign-3072 | 384 |
                    |   2   |   Sign-2048   | 256 |
                    |   3   | ENC-Sign-2048 | 256 |
                    |  4-7  |  Unassigned   | N/A |
                    +-------+---------------+-----+

                 Figure 11: Security Level (LVL) Encoding

   The MAC attribute indicates that the message has a MAC of the
   specified length.  The ENC attribute indicates that the message is
   encrypted.  The Sign attribute indicates that the message has a
   signature of the specified length.









Winter, et al.               Standards Track                   [Page 36]
^L
RFC 6550                           RPL                        March 2012


   Flags: 8-bit unused field reserved for flags.  The field MUST be
         initialized to zero by the sender and MUST be ignored by the
         receiver.

   Counter: The Counter field indicates the non-repeating 4-octet value
         used to construct the cryptographic mechanism that implements
         packet protection and allows for the provision of semantic
         security.  See Section 10.9.1.

   Key Identifier: The Key Identifier field indicates which key was used
         to protect the packet.  This field provides various levels of
         granularity of packet protection, including peer-to-peer keys,
         group keys, and signature keys.  This field is represented as
         indicated by the Key Identifier Mode field and is formatted as
         follows:

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       .                          Key Source                           .
       .                                                               .
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       .                           Key Index                           .
       .                                                               .
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                         Figure 12: Key Identifier

   Key Source: The Key Source field, when present, indicates the logical
         identifier of the originator of a group key.  When present,
         this field is 8 bytes in length.

   Key Index: The Key Index field, when present, allows unique
         identification of different keys with the same originator.  It
         is the responsibility of each key originator to make sure that
         actively used keys that it issues have distinct key indices and
         that all key indices have a value unequal to 0x00.  Value 0x00
         is reserved for a preinstalled, shared key.  When present this
         field is 1 byte in length.

   Unassigned bits of the Security section are reserved.  They MUST be
   set to zero on transmission and MUST be ignored on reception.







Winter, et al.               Standards Track                   [Page 37]
^L
RFC 6550                           RPL                        March 2012


6.2.  DODAG Information Solicitation (DIS)

   The DODAG Information Solicitation (DIS) message may be used to
   solicit a DODAG Information Object from a RPL node.  Its use is
   analogous to that of a Router Solicitation as specified in IPv6
   Neighbor Discovery; a node may use DIS to probe its neighborhood for
   nearby DODAGs.  Section 8.3 describes how nodes respond to a DIS.

6.2.1.  Format of the DIS Base Object

        0                   1                   2
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |     Flags     |   Reserved    |   Option(s)...
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 13: The DIS Base Object

   Flags: 8-bit unused field reserved for flags.  The field MUST be
         initialized to zero by the sender and MUST be ignored by the
         receiver.

   Reserved: 8-bit unused field.  The field MUST be initialized to zero
         by the sender and MUST be ignored by the receiver.

   Unassigned bits of the DIS Base are reserved.  They MUST be set to
   zero on transmission and MUST be ignored on reception.

6.2.2.  Secure DIS

   A Secure DIS message follows the format in Figure 7, where the base
   format is the DIS message shown in Figure 13.

6.2.3.  DIS Options

   The DIS message MAY carry valid options.

   This specification allows for the DIS message to carry the following
   options:

      0x00 Pad1
      0x01 PadN
      0x07 Solicited Information

6.3.  DODAG Information Object (DIO)

   The DODAG Information Object carries information that allows a node
   to discover a RPL Instance, learn its configuration parameters,



Winter, et al.               Standards Track                   [Page 38]
^L
RFC 6550                           RPL                        March 2012


   select a DODAG parent set, and maintain the DODAG.

6.3.1.  Format of the DIO Base Object

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       | RPLInstanceID |Version Number |             Rank              |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |G|0| MOP | Prf |     DTSN      |     Flags     |   Reserved    |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       +                                                               +
       |                                                               |
       +                            DODAGID                            +
       |                                                               |
       +                                                               +
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |   Option(s)...
       +-+-+-+-+-+-+-+-+

                      Figure 14: The DIO Base Object

   Grounded (G): The Grounded 'G' flag indicates whether the DODAG
         advertised can satisfy the application-defined goal.  If the
         flag is set, the DODAG is grounded.  If the flag is cleared,
         the DODAG is floating.

   Mode of Operation (MOP): The Mode of Operation (MOP) field identifies
         the mode of operation of the RPL Instance as administratively
         provisioned at and distributed by the DODAG root.  All nodes
         who join the DODAG must be able to honor the MOP in order to
         fully participate as a router, or else they must only join as a
         leaf.  MOP is encoded as in the figure below:
















Winter, et al.               Standards Track                   [Page 39]
^L
RFC 6550                           RPL                        March 2012


           +-----+-----------------------------------------------------+
           | MOP | Description                                         |
           +-----+-----------------------------------------------------+
           |  0  | No Downward routes maintained by RPL                |
           |  1  | Non-Storing Mode of Operation                       |
           |  2  | Storing Mode of Operation with no multicast support |
           |  3  | Storing Mode of Operation with multicast support    |
           |     |                                                     |
           |     | All other values are unassigned                     |
           +-----+-----------------------------------------------------+

   A value of 0 indicates that destination advertisement messages are
   disabled and the DODAG maintains only Upward routes.

                Figure 15: Mode of Operation (MOP) Encoding

   DODAGPreference (Prf): A 3-bit unsigned integer that defines how
         preferable the root of this DODAG is compared to other DODAG
         roots within the instance.  DAGPreference ranges from 0x00
         (least preferred) to 0x07 (most preferred).  The default is 0
         (least preferred).  Section 8.2 describes how DAGPreference
         affects DIO processing.

   Version Number: 8-bit unsigned integer set by the DODAG root to the
         DODAGVersionNumber.  Section 8.2 describes the rules for
         DODAGVersionNumbers and how they affect DIO processing.

   Rank: 16-bit unsigned integer indicating the DODAG Rank of the node
         sending the DIO message.  Section 8.2 describes how Rank is set
         and how it affects DIO processing.

   RPLInstanceID: 8-bit field set by the DODAG root that indicates of
         which RPL Instance the DODAG is a part.

   Destination Advertisement Trigger Sequence Number (DTSN): 8-bit
         unsigned integer set by the node issuing the DIO message.  The
         Destination Advertisement Trigger Sequence Number (DTSN) flag
         is used as part of the procedure to maintain Downward routes.
         The details of this process are described in Section 9.

   Flags: 8-bit unused field reserved for flags.  The field MUST be
         initialized to zero by the sender and MUST be ignored by the
         receiver.

   Reserved: 8-bit unused field.  The field MUST be initialized to zero
         by the sender and MUST be ignored by the receiver.





Winter, et al.               Standards Track                   [Page 40]
^L
RFC 6550                           RPL                        March 2012


   DODAGID: 128-bit IPv6 address set by a DODAG root that uniquely
         identifies a DODAG.  The DODAGID MUST be a routable IPv6
         address belonging to the DODAG root.

   Unassigned bits of the DIO Base are reserved.  They MUST be set to
   zero on transmission and MUST be ignored on reception.

6.3.2.  Secure DIO

   A Secure DIO message follows the format in Figure 7, where the base
   format is the DIO message shown in Figure 14.

6.3.3.  DIO Options

   The DIO message MAY carry valid options.

   This specification allows for the DIO message to carry the following
   options:

      0x00 Pad1
      0x01 PadN
      0x02 DAG Metric Container
      0x03 Routing Information
      0x04 DODAG Configuration
      0x08 Prefix Information

6.4.  Destination Advertisement Object (DAO)

   The Destination Advertisement Object (DAO) is used to propagate
   destination information Upward along the DODAG.  In Storing mode, the
   DAO message is unicast by the child to the selected parent(s).  In
   Non-Storing mode, the DAO message is unicast to the DODAG root.  The
   DAO message may optionally, upon explicit request or error, be
   acknowledged by its destination with a Destination Advertisement
   Acknowledgement (DAO-ACK) message back to the sender of the DAO.
















Winter, et al.               Standards Track                   [Page 41]
^L
RFC 6550                           RPL                        March 2012


6.4.1.  Format of the DAO Base Object

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       | RPLInstanceID |K|D|   Flags   |   Reserved    | DAOSequence   |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       +                                                               +
       |                                                               |
       +                            DODAGID*                           +
       |                                                               |
       +                                                               +
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |   Option(s)...
       +-+-+-+-+-+-+-+-+

   The '*' denotes that the DODAGID is not always present, as described
   below.

                      Figure 16: The DAO Base Object

   RPLInstanceID: 8-bit field indicating the topology instance
         associated with the DODAG, as learned from the DIO.

   K: The 'K' flag indicates that the recipient is expected to send a
         DAO-ACK back.  (See Section 9.3.)

   D: The 'D' flag indicates that the DODAGID field is present.  This
         flag MUST be set when a local RPLInstanceID is used.

   Flags: The 6 bits remaining unused in the Flags field are reserved
         for flags.  The field MUST be initialized to zero by the sender
         and MUST be ignored by the receiver.

   Reserved: 8-bit unused field.  The field MUST be initialized to zero
         by the sender and MUST be ignored by the receiver.

   DAOSequence: Incremented at each unique DAO message from a node and
         echoed in the DAO-ACK message.

   DODAGID (optional): 128-bit unsigned integer set by a DODAG root that
         uniquely identifies a DODAG.  This field is only present when
         the 'D' flag is set.  This field is typically only present when
         a local RPLInstanceID is in use, in order to identify the
         DODAGID that is associated with the RPLInstanceID.  When a
         global RPLInstanceID is in use, this field need not be present.



Winter, et al.               Standards Track                   [Page 42]
^L
RFC 6550                           RPL                        March 2012


   Unassigned bits of the DAO Base are reserved.  They MUST be set to
   zero on transmission and MUST be ignored on reception.

6.4.2.  Secure DAO

   A Secure DAO message follows the format in Figure 7, where the base
   format is the DAO message shown in Figure 16.

6.4.3.  DAO Options

   The DAO message MAY carry valid options.

   This specification allows for the DAO message to carry the following
   options:

      0x00 Pad1
      0x01 PadN
      0x05 RPL Target
      0x06 Transit Information
      0x09 RPL Target Descriptor

   A special case of the DAO message, termed a No-Path, is used in
   Storing mode to clear Downward routing state that has been
   provisioned through DAO operation.  The No-Path carries a Target
   option and an associated Transit Information option with a lifetime
   of 0x00000000 to indicate a loss of reachability to that Target.

6.5.  Destination Advertisement Object Acknowledgement (DAO-ACK)

   The DAO-ACK message is sent as a unicast packet by a DAO recipient (a
   DAO parent or DODAG root) in response to a unicast DAO message.




















Winter, et al.               Standards Track                   [Page 43]
^L
RFC 6550                           RPL                        March 2012


6.5.1.  Format of the DAO-ACK Base Object

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       | RPLInstanceID |D|  Reserved   |  DAOSequence  |    Status     |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       +                                                               +
       |                                                               |
       +                            DODAGID*                           +
       |                                                               |
       +                                                               +
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |   Option(s)...
       +-+-+-+-+-+-+-+-+

   The '*' denotes that the DODAGID is not always present, as described
   below.

                    Figure 17: The DAO ACK Base Object

   RPLInstanceID: 8-bit field indicating the topology instance
         associated with the DODAG, as learned from the DIO.

   D: The 'D' flag indicates that the DODAGID field is present.  This
         would typically only be set when a local RPLInstanceID is used.

   Reserved: The 7-bit field, reserved for flags.

   DAOSequence: Incremented at each DAO message from a node, and echoed
         in the DAO-ACK by the recipient.  The DAOSequence is used to
         correlate a DAO message and a DAO ACK message and is not to be
         confused with the Transit Information option Path Sequence that
         is associated to a given Target Down the DODAG.

   Status: Indicates the completion.  Status 0 is defined as unqualified
         acceptance in this specification.  The remaining status values
         are reserved as rejection codes.  No rejection status codes are
         defined in this specification, although status codes SHOULD be
         allocated according to the following guidelines in future
         specifications:

           0:  Unqualified acceptance (i.e., the node receiving the
               DAO-ACK is not rejected).





Winter, et al.               Standards Track                   [Page 44]
^L
RFC 6550                           RPL                        March 2012


       1-127:  Not an outright rejection; the node sending the DAO-ACK
               is willing to act as a parent, but the receiving node is
               suggested to find and use an alternate parent instead.
     127-255:  Rejection; the node sending the DAO-ACK is unwilling to
               act as a parent.

   DODAGID (optional): 128-bit unsigned integer set by a DODAG root that
               uniquely identifies a DODAG.  This field is only present
               when the 'D' flag is set.  Typically, this field is only
               present when a local RPLInstanceID is in use in order to
               identify the DODAGID that is associated with the
               RPLInstanceID.  When a global RPLInstanceID is in use,
               this field need not be present.

   Unassigned bits of the DAO-ACK Base are reserved.  They MUST be set
   to zero on transmission and MUST be ignored on reception.

6.5.2.  Secure DAO-ACK

   A Secure DAO-ACK message follows the format in Figure 7, where the
   base format is the DAO-ACK message shown in Figure 17.

6.5.3.  DAO-ACK Options

   This specification does not define any options to be carried by the
   DAO-ACK message.

6.6.  Consistency Check (CC)

   The CC message is used to check secure message counters and issue
   challenge-responses.  A CC message MUST be sent as a secured RPL
   message.



















Winter, et al.               Standards Track                   [Page 45]
^L
RFC 6550                           RPL                        March 2012


6.6.1.  Format of the CC Base Object

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       | RPLInstanceID |R|    Flags    |           CC Nonce            |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       +                                                               +
       |                                                               |
       +                            DODAGID                            +
       |                                                               |
       +                                                               +
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                      Destination Counter                      |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |   Option(s)...
       +-+-+-+-+-+-+-+-+

                       Figure 18: The CC Base Object

   RPLInstanceID: 8-bit field indicating the topology instance
         associated with the DODAG, as learned from the DIO.

   R: The 'R' flag indicates whether the CC message is a response.  A
         message with the 'R' flag cleared is a request; a message with
         the 'R' flag set is a response.

   Flags: The 7 bits remaining unused in the Flags field are reserved
         for flags.  The field MUST be initialized to zero by the sender
         and MUST be ignored by the receiver.

   CC Nonce: 16-bit unsigned integer set by a CC request.  The
         corresponding CC response includes the same CC nonce value as
         the request.

   DODAGID: 128-bit field, contains the identifier of the DODAG root.

   Destination Counter: 32-bit unsigned integer value indicating the
         sender's estimate of the destination's current security counter
         value.  If the sender does not have an estimate, it SHOULD set
         the Destination Counter field to zero.

   Unassigned bits of the CC Base are reserved.  They MUST be set to
   zero on transmission and MUST be ignored on reception.





Winter, et al.               Standards Track                   [Page 46]
^L
RFC 6550                           RPL                        March 2012


   The Destination Counter value allows new or recovered nodes to
   resynchronize through CC message exchanges.  This is important to
   ensure that a Counter value is not repeated for a given security key
   even in the event of devices recovering from a failure that created a
   loss of Counter state.  For example, where a CC request or other RPL
   message is received with an initialized counter within the message
   Security section, the provision of the Incoming Counter within the CC
   response message allows the requesting node to reset its Outgoing
   Counter to a value greater than the last value received by the
   responding node; the Incoming Counter will also be updated from the
   received CC response.

6.6.2.  CC Options

   This specification allows for the CC message to carry the following
   options:

      0x00 Pad1
      0x01 PadN

6.7.  RPL Control Message Options

6.7.1.  RPL Control Message Option Generic Format

   RPL Control Message options all follow this format:

        0                   1                   2
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - -
       |  Option Type  | Option Length | Option Data
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - -

                   Figure 19: RPL Option Generic Format

   Option Type: 8-bit identifier of the type of option.  The Option Type
         values are assigned by IANA (see Section 20.4.)

   Option Length: 8-bit unsigned integer, representing the length in
         octets of the option, not including the Option Type and Length
         fields.

   Option Data: A variable length field that contains data specific to
         the option.








Winter, et al.               Standards Track                   [Page 47]
^L
RFC 6550                           RPL                        March 2012


   When processing a RPL message containing an option for which the
   Option Type value is not recognized by the receiver, the receiver
   MUST silently ignore the unrecognized option and continue to process
   the following option, correctly handling any remaining options in the
   message.

   RPL message options may have alignment requirements.  Following the
   convention in IPv6, options with alignment requirements are aligned
   in a packet such that multi-octet values within the Option Data field
   of each option fall on natural boundaries (i.e., fields of width n
   octets are placed at an integer multiple of n octets from the start
   of the header, for n = 1, 2, 4, or 8).

6.7.2.  Pad1

   The Pad1 option MAY be present in DIS, DIO, DAO, DAO-ACK, and CC
   messages, and its format is as follows:


        0
        0 1 2 3 4 5 6 7
       +-+-+-+-+-+-+-+-+
       |   Type = 0x00 |
       +-+-+-+-+-+-+-+-+

                   Figure 20: Format of the Pad1 Option

   The Pad1 option is used to insert a single octet of padding into the
   message to enable options alignment.  If more than one octet of
   padding is required, the PadN option should be used rather than
   multiple Pad1 options.

   NOTE!  The format of the Pad1 option is a special case -- it has
   neither Option Length nor Option Data fields.

6.7.3.  PadN

   The PadN option MAY be present in DIS, DIO, DAO, DAO-ACK, and CC
   messages, and its format is as follows:


        0                   1                   2
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - -
       |   Type = 0x01 | Option Length | 0x00 Padding...
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - -

                   Figure 21: Format of the Pad N Option



Winter, et al.               Standards Track                   [Page 48]
^L
RFC 6550                           RPL                        March 2012


   The PadN option is used to insert two or more octets of padding into
   the message to enable options alignment.  PadN option data MUST be
   ignored by the receiver.

   Option Type: 0x01

   Option Length: For N octets of padding, where 2 <= N <= 7, the Option
         Length field contains the value N-2.  An Option Length of 0
         indicates a total padding of 2 octets.  An Option Length of 5
         indicates a total padding of 7 octets, which is the maximum
         padding size allowed with the PadN option.

   Option Data: For N (N > 1) octets of padding, the Option Data
         consists of N-2 zero-valued octets.

6.7.4.  DAG Metric Container

   The DAG Metric Container option MAY be present in DIO or DAO
   messages, and its format is as follows:


        0                   1                   2
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - -
       |   Type = 0x02 | Option Length | Metric Data
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - -

           Figure 22: Format of the DAG Metric Container Option

   The DAG Metric Container is used to report metrics along the DODAG.
   The DAG Metric Container may contain a number of discrete node, link,
   and aggregate path metrics and constraints specified in [RFC6551] as
   chosen by the implementer.

   The DAG Metric Container MAY appear more than once in the same RPL
   control message, for example, to accommodate a use case where the
   Metric Data is longer than 256 bytes.  More information is in
   [RFC6551].

   The processing and propagation of the DAG Metric Container is
   governed by implementation specific policy functions.

   Option Type: 0x02

   Option Length: The Option Length field contains the length in octets
         of the Metric Data.





Winter, et al.               Standards Track                   [Page 49]
^L
RFC 6550                           RPL                        March 2012


   Metric Data: The order, content, and coding of the DAG Metric
         Container data is as specified in [RFC6551].

6.7.5.  Route Information

   The Route Information Option (RIO) MAY be present in DIO messages,
   and it carries the same information as the IPv6 Neighbor Discovery
   (ND) RIO as defined in [RFC4191].  The root of a DODAG is
   authoritative for setting that information and the information is
   unchanged as propagated down the DODAG.  A RPL router may trivially
   transform it back into an ND option to advertise in its own RAs so a
   node attached to the RPL router will end up using the DODAG for which
   the root has the best preference for the destination of a packet.  In
   addition to the existing ND semantics, it is possible for an
   Objective Function to use this information to favor a DODAG whose
   root is most preferred for a specific destination.  The format of the
   option is modified slightly (Type, Length, Prefix) in order to be
   carried as a RPL option as follows:

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |   Type = 0x03 | Option Length | Prefix Length |Resvd|Prf|Resvd|
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                        Route Lifetime                         |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       .                   Prefix (Variable Length)                    .
       .                                                               .
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure 23: Format of the Route Information Option

   The RIO is used to indicate that connectivity to the specified
   destination prefix is available from the DODAG root.

   In the event that a RPL control message may need to specify
   connectivity to more than one destination, the RIO may be repeated.

   [RFC4191] should be consulted as the authoritative reference with
   respect to the RIO.  The field descriptions are transcribed here for
   convenience:

   Option Type: 0x03







Winter, et al.               Standards Track                   [Page 50]
^L
RFC 6550                           RPL                        March 2012


   Option Length: Variable, length of the option in octets excluding the
         Type and Length fields.  Note that this length is expressed in
         units of single octets, unlike in IPv6 ND.

   Prefix Length: 8-bit unsigned integer.  The number of leading bits in
         the prefix that are valid.  The value ranges from 0 to 128.
         The Prefix field has the number of bytes inferred from the
         Option Length field, that must be at least the Prefix Length.
         Note that in RPL, this means that the Prefix field may have
         lengths other than 0, 8, or 16.

   Prf: 2-bit signed integer.  The Route Preference indicates whether to
         prefer the router associated with this prefix over others, when
         multiple identical prefixes (for different routers) have been
         received.  If the Reserved (10) value is received, the RIO MUST
         be ignored.  Per [RFC4191], the Reserved (10) value MUST NOT be
         sent.  ([RFC4191] restricts the Preference to just three values
         to reinforce that it is not a metric.)

   Resvd: Two 3-bit unused fields.  They MUST be initialized to zero by
         the sender and MUST be ignored by the receiver.

   Route Lifetime: 32-bit unsigned integer.  The length of time in
         seconds (relative to the time the packet is sent) that the
         prefix is valid for route determination.  A value of all one
         bits (0xFFFFFFFF) represents infinity.

   Prefix: Variable-length field containing an IP address or a prefix of
         an IPv6 address.  The Prefix Length field contains the number
         of valid leading bits in the prefix.  The bits in the prefix
         after the prefix length (if any) are reserved and MUST be
         initialized to zero by the sender and ignored by the receiver.
         Note that in RPL, this field may have lengths other than 0, 8,
         or 16.

   Unassigned bits of the RIO are reserved.  They MUST be set to zero on
   transmission and MUST be ignored on reception.














Winter, et al.               Standards Track                   [Page 51]
^L
RFC 6550                           RPL                        March 2012


6.7.6.  DODAG Configuration

   The DODAG Configuration option MAY be present in DIO messages, and
   its format is as follows:

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |   Type = 0x04 |Opt Length = 14| Flags |A| PCS | DIOIntDoubl.  |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |  DIOIntMin.   |   DIORedun.   |        MaxRankIncrease        |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |      MinHopRankIncrease       |              OCP              |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |   Reserved    | Def. Lifetime |      Lifetime Unit            |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

            Figure 24: Format of the DODAG Configuration Option

   The DODAG Configuration option is used to distribute configuration
   information for DODAG Operation through the DODAG.

   The information communicated in this option is generally static and
   unchanging within the DODAG, therefore it is not necessary to include
   in every DIO.  This information is configured at the DODAG root and
   distributed throughout the DODAG with the DODAG Configuration option.
   Nodes other than the DODAG root MUST NOT modify this information when
   propagating the DODAG Configuration option.  This option MAY be
   included occasionally by the DODAG root (as determined by the DODAG
   root), and MUST be included in response to a unicast request, e.g. a
   unicast DODAG Information Solicitation (DIS) message.

   Option Type: 0x04

   Option Length: 14

   Flags: The 4-bits remaining unused in the Flags field are reserved
         for flags.  The field MUST be initialized to zero by the sender
         and MUST be ignored by the receiver.

   Authentication Enabled (A): 1-bit flag describing the security mode
         of the network.  The bit describes whether a node must
         authenticate with a key authority before joining the network as
         a router.  If the DIO is not a secure DIO, the 'A' bit MUST be
         zero.






Winter, et al.               Standards Track                   [Page 52]
^L
RFC 6550                           RPL                        March 2012


   Path Control Size (PCS): 3-bit unsigned integer used to configure the
         number of bits that may be allocated to the Path Control field
         (see Section 9.9).  Note that when PCS is consulted to
         determine the width of the Path Control field, a value of 1 is
         added, i.e., a PCS value of 0 results in 1 active bit in the
         Path Control field.  The default value of PCS is
         DEFAULT_PATH_CONTROL_SIZE.

   DIOIntervalDoublings: 8-bit unsigned integer used to configure Imax
         of the DIO Trickle timer (see Section 8.3.1).  The default
         value of DIOIntervalDoublings is
         DEFAULT_DIO_INTERVAL_DOUBLINGS.

   DIOIntervalMin: 8-bit unsigned integer used to configure Imin of the
         DIO Trickle timer (see Section 8.3.1).  The default value of
         DIOIntervalMin is DEFAULT_DIO_INTERVAL_MIN.

   DIORedundancyConstant: 8-bit unsigned integer used to configure k of
         the DIO Trickle timer (see Section 8.3.1).  The default value
         of DIORedundancyConstant is DEFAULT_DIO_REDUNDANCY_CONSTANT.

   MaxRankIncrease: 16-bit unsigned integer used to configure
         DAGMaxRankIncrease, the allowable increase in Rank in support
         of local repair.  If DAGMaxRankIncrease is 0, then this
         mechanism is disabled.

   MinHopRankIncrease: 16-bit unsigned integer used to configure
         MinHopRankIncrease as described in Section 3.5.1.  The default
         value of MinHopRankInc is DEFAULT_MIN_HOP_RANK_INCREASE.

   Objective Code Point (OCP): 16-bit unsigned integer.  The OCP field
         identifies the OF and is managed by the IANA.

   Reserved: 7-bit unused field.  The field MUST be initialized to zero
         by the sender and MUST be ignored by the receiver.

   Default Lifetime: 8-bit unsigned integer.  This is the lifetime that
         is used as default for all RPL routes.  It is expressed in
         units of Lifetime Units, e.g., the default lifetime in seconds
         is (Default Lifetime) * (Lifetime Unit).

   Lifetime Unit: 16-bit unsigned integer.  Provides the unit in seconds
         that is used to express route lifetimes in RPL.  For very
         stable networks, it can be hours to days.







Winter, et al.               Standards Track                   [Page 53]
^L
RFC 6550                           RPL                        March 2012


6.7.7.  RPL Target

   The RPL Target option MAY be present in DAO messages, and its format
   is as follows:

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |   Type = 0x05 | Option Length |     Flags     | Prefix Length |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       +                                                               +
       |                Target Prefix (Variable Length)                |
       .                                                               .
       .                                                               .
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 25: Format of the RPL Target Option

   The RPL Target option is used to indicate a Target IPv6 address,
   prefix, or multicast group that is reachable or queried along the
   DODAG.  In a DAO, the RPL Target option indicates reachability.

   A RPL Target option MAY optionally be paired with a RPL Target
   Descriptor option (Figure 30) that qualifies the target.

   A set of one or more Transit Information options (Section 6.7.8) MAY
   directly follow a set of one or more Target options in a DAO message
   (where each Target option MAY be paired with a RPL Target Descriptor
   option as above).  The structure of the DAO message, detailing how
   Target options are used in conjunction with Transit Information
   options is further described in Section 9.4.

   The RPL Target option may be repeated as necessary to indicate
   multiple targets.

   Option Type: 0x05

   Option Length: Variable, length of the option in octets excluding the
         Type and Length fields.

   Flags: 8-bit unused field reserved for flags.  The field MUST be
         initialized to zero by the sender and MUST be ignored by the
         receiver.

   Prefix Length: 8-bit unsigned integer.  Number of valid leading bits
         in the IPv6 Prefix.




Winter, et al.               Standards Track                   [Page 54]
^L
RFC 6550                           RPL                        March 2012


   Target Prefix: Variable-length field identifying an IPv6 destination
         address, prefix, or multicast group.  The Prefix Length field
         contains the number of valid leading bits in the prefix.  The
         bits in the prefix after the prefix length (if any) are
         reserved and MUST be set to zero on transmission and MUST be
         ignored on receipt.

6.7.8.  Transit Information

   The Transit Information option MAY be present in DAO messages, and
   its format is as follows:

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |   Type = 0x06 | Option Length |E|    Flags    | Path Control  |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       | Path Sequence | Path Lifetime |                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
       |                                                               |
       +                                                               +
       |                                                               |
       +                        Parent Address*                        +
       |                                                               |
       +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


   The '*' denotes that the DODAG Parent Address subfield is not always
   present, as described below.

            Figure 26: Format of the Transit Information Option

   The Transit Information option is used for a node to indicate
   attributes for a path to one or more destinations.  The destinations
   are indicated by one or more Target options that immediately precede
   the Transit Information option(s).

   The Transit Information option can be used for a node to indicate its
   DODAG parents to an ancestor that is collecting DODAG routing
   information, typically, for the purpose of constructing source
   routes.  In the Non-Storing mode of operation, this ancestor will be
   the DODAG root, and this option is carried by the DAO message.  In
   the Storing mode of operation, the DODAG Parent Address subfield is
   not needed, since the DAO message is sent directly to the parent.
   The option length is used to determine whether or not the DODAG
   Parent Address subfield is present.



Winter, et al.               Standards Track                   [Page 55]
^L
RFC 6550                           RPL                        March 2012


   A non-storing node that has more than one DAO parent MAY include a
   Transit Information option for each DAO parent as part of the non-
   storing destination advertisement operation.  The node may distribute
   the bits in the Path Control field among different groups of DAO
   parents in order to signal a preference among parents.  That
   preference may influence the decision of the DODAG root when
   selecting among the alternate parents/paths for constructing Downward
   routes.

   One or more Transit Information options MUST be preceded by one or
   more RPL Target options.  In this manner, the RPL Target option
   indicates the child node, and the Transit Information option(s)
   enumerates the DODAG parents.  The structure of the DAO message,
   further detailing how Target options are used in conjunction with
   Transit Information options, is further described in Section 9.4.

   A typical non-storing node will use multiple Transit Information
   options, and it will send the DAO message thus formed directly to the
   root.  A typical storing node will use one Transit Information option
   with no parent field and will send the DAO message thus formed, with
   additional adjustments, to Path Control as detailed later, to one or
   multiple parents.

   For example, in a Non-Storing mode of operation let Tgt(T) denote a
   Target option for a Target T.  Let Trnst(P) denote a Transit
   Information option that contains a parent address P.  Consider the
   case of a non-storing Node N that advertises the self-owned targets
   N1 and N2 and has parents P1, P2, and P3.  In that case, the DAO
   message would be expected to contain the sequence ((Tgt(N1),
   Tgt(N2)), (Trnst(P1), Trnst(P2), Trnst(P3))), such that the group of
   Target options {N1, N2} is described by the Transit Information
   options as having the parents {P1, P2, P3}.  The non-storing node
   would then address that DAO message directly to the DODAG root and
   forward that DAO message through one of the DODAG parents: P1, P2, or
   P3.

   Option Type: 0x06

   Option Length: Variable, depending on whether or not the DODAG Parent
         Address subfield is present.

   External (E): 1-bit flag.  The 'E' flag is set to indicate that the
         parent router redistributes external targets into the RPL
         network.  An external Target is a Target that has been learned
         through an alternate protocol.  The external targets are listed
         in the Target options that immediately precede the Transit
         Information option.  An external Target is not expected to
         support RPL messages and options.



Winter, et al.               Standards Track                   [Page 56]
^L
RFC 6550                           RPL                        March 2012


   Flags: The 7 bits remaining unused in the Flags field are reserved
         for flags.  The field MUST be initialized to zero by the sender
         and MUST be ignored by the receiver.

   Path Control: 8-bit bit field.  The Path Control field limits the
         number of DAO parents to which a DAO message advertising
         connectivity to a specific destination may be sent, as well as
         providing some indication of relative preference.  The limit
         provides some bound on overall DAO message fan-out in the LLN.
         The assignment and ordering of the bits in the Path Control
         also serves to communicate preference.  Not all of these bits
         may be enabled as according to the PCS in the DODAG
         Configuration.  The Path Control field is divided into four
         subfields that contain two bits each: PC1, PC2, PC3, and PC4,
         as illustrated in Figure 27.  The subfields are ordered by
         preference, with PC1 being the most preferred and PC4 being the
         least preferred.  Within a subfield, there is no order of
         preference.  By grouping the parents (as in ECMP) and ordering
         them, the parents may be associated with specific bits in the
         Path Control field in a way that communicates preference.

                                 0 1 2 3 4 5 6 7
                                +-+-+-+-+-+-+-+-+
                                |PC1|PC2|PC3|PC4|
                                +-+-+-+-+-+-+-+-+

          Figure 27: Path Control Preference Subfield Encoding

   Path Sequence: 8-bit unsigned integer.  When a RPL Target option is
         issued by the node that owns the Target prefix (i.e., in a DAO
         message), that node sets the Path Sequence and increments the
         Path Sequence each time it issues a RPL Target option with
         updated information.

   Path Lifetime: 8-bit unsigned integer.  The length of time in
         Lifetime Units (obtained from the Configuration option) that
         the prefix is valid for route determination.  The period starts
         when a new Path Sequence is seen.  A value of all one bits
         (0xFF) represents infinity.  A value of all zero bits (0x00)
         indicates a loss of reachability.  A DAO message that contains
         a Transit Information option with a Path Lifetime of 0x00 for a
         Target is referred as a No-Path (for that Target) in this
         document.








Winter, et al.               Standards Track                   [Page 57]
^L
RFC 6550                           RPL                        March 2012


   Parent Address (optional): IPv6 address of the DODAG parent of the
         node originally issuing the Transit Information option.  This
         field may not be present, as according to the DODAG Mode of
         Operation (Storing or Non-Storing) and indicated by the Transit
         Information option length.

   Unassigned bits of the Transit Information option are reserved.  They
   MUST be set to zero on transmission and MUST be ignored on reception.

6.7.9.  Solicited Information

   The Solicited Information option MAY be present in DIS messages, and
   its format is as follows:

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |   Type = 0x07 |Opt Length = 19| RPLInstanceID |V|I|D|  Flags  |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       +                                                               +
       |                                                               |
       +                            DODAGID                            +
       |                                                               |
       +                                                               +
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |Version Number |
       +-+-+-+-+-+-+-+-+

           Figure 28: Format of the Solicited Information Option

   The Solicited Information option is used for a node to request DIO
   messages from a subset of neighboring nodes.  The Solicited
   Information option may specify a number of predicate criteria to be
   matched by a receiving node.  This is used by the requester to limit
   the number of replies from "non-interesting" nodes.  These predicates
   affect whether a node resets its DIO Trickle timer, as described in
   Section 8.3.

   The Solicited Information option contains flags that indicate which
   predicates a node should check when deciding whether to reset its
   Trickle timer.  A node resets its Trickle timer when all predicates
   are true.  If a flag is set, then the RPL node MUST check the
   associated predicate.  If a flag is cleared, then the RPL node MUST
   NOT check the associated predicate.  (If a flag is cleared, the RPL
   node assumes that the associated predicate is true.)




Winter, et al.               Standards Track                   [Page 58]
^L
RFC 6550                           RPL                        March 2012


   Option Type: 0x07

   Option Length: 19

   V: The 'V' flag is the Version predicate.  The Version predicate is
         true if the receiver's DODAGVersionNumber matches the requested
         Version Number.  If the 'V' flag is cleared, then the Version
         field is not valid and the Version field MUST be set to zero on
         transmission and ignored upon receipt.

   I: The 'I' flag is the InstanceID predicate.  The InstanceID
         predicate is true when the RPL node's current RPLInstanceID
         matches the requested RPLInstanceID.  If the 'I' flag is
         cleared, then the RPLInstanceID field is not valid and the
         RPLInstanceID field MUST be set to zero on transmission and
         ignored upon receipt.

   D: The 'D' flag is the DODAGID predicate.  The DODAGID predicate is
         true if the RPL node's parent set has the same DODAGID as the
         DODAGID field.  If the 'D' flag is cleared, then the DODAGID
         field is not valid and the DODAGID field MUST be set to zero on
         transmission and ignored upon receipt.

   Flags: The 5 bits remaining unused in the Flags field are reserved
         for flags.  The field MUST be initialized to zero by the sender
         and MUST be ignored by the receiver.

   Version Number: 8-bit unsigned integer containing the value of
         DODAGVersionNumber that is being solicited when valid.

   RPLInstanceID: 8-bit unsigned integer containing the RPLInstanceID
         that is being solicited when valid.

   DODAGID: 128-bit unsigned integer containing the DODAGID that is
         being solicited when valid.

   Unassigned bits of the Solicited Information option are reserved.
   They MUST be set to zero on transmission and MUST be ignored on
   reception.

6.7.10.  Prefix Information

   The Prefix Information Option (PIO) MAY be present in DIO messages,
   and carries the information that is specified for the IPv6 ND Prefix
   Information option in [RFC4861], [RFC4862], and [RFC6275] for use by
   RPL nodes and IPv6 hosts.  In particular, a RPL node may use this
   option for the purpose of Stateless Address Autoconfiguration (SLAAC)
   from a prefix advertised by a parent as specified in [RFC4862], and



Winter, et al.               Standards Track                   [Page 59]
^L
RFC 6550                           RPL                        March 2012


   advertise its own address as specified in [RFC6275].  The root of a
   DODAG is authoritative for setting that information.  The information
   is propagated down the DODAG unchanged, with the exception that a RPL
   router may overwrite the Interface ID if the 'R' flag is set to
   indicate its full address in the PIO.  The format of the option is
   modified (Type, Length, Prefix) in order to be carried as a RPL
   option as follows:

   If the only desired effect of a received PIO in a DIO is to provide
   the global address of the parent node to the receiving node, then the
   sender resets the 'A' and 'L' bits and sets the 'R' bit.  Upon
   receipt, the RPL will not autoconfigure an address or a connected
   route from the prefix [RFC4862].  As in all cases, when the 'L' bit
   is not set, the RPL node MAY include the prefix in PIOs it sends to
   its children.

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |   Type = 0x08 |Opt Length = 30| Prefix Length |L|A|R|Reserved1|
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                         Valid Lifetime                        |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                       Preferred Lifetime                      |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                           Reserved2                           |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       +                                                               +
       |                                                               |
       +                            Prefix                             +
       |                                                               |
       +                                                               +
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

            Figure 29: Format of the Prefix Information Option

   The PIO may be used to distribute the prefix in use inside the DODAG,
   e.g., for address autoconfiguration.

   [RFC4861] and [RFC6275] should be consulted as the authoritative
   reference with respect to the PIO.  The field descriptions are
   transcribed here for convenience:

   Option Type: 0x08





Winter, et al.               Standards Track                   [Page 60]
^L
RFC 6550                           RPL                        March 2012


   Option Length: 30.  Note that this length is expressed in units of
         single octets, unlike in IPv6 ND.

   Prefix Length: 8-bit unsigned integer.  The number of leading bits in
         the Prefix field that are valid.  The value ranges from 0 to
         128.  The Prefix Length field provides necessary information
         for on-link determination (when combined with the 'L' flag in
         the PIO).  It also assists with address autoconfiguration as
         specified in [RFC4862], for which there may be more
         restrictions on the prefix length.

   L:    1-bit on-link flag.  When set, it indicates that this prefix
         can be used for on-link determination.  When not set, the
         advertisement makes no statement about on-link or off-link
         properties of the prefix.  In other words, if the 'L' flag is
         not set, a RPL node MUST NOT conclude that an address derived
         from the prefix is off-link.  That is, it MUST NOT update a
         previous indication that the address is on-link.  A RPL node
         acting as a router MUST NOT propagate a PIO with the 'L' flag
         set.  A RPL node acting as a router MAY propagate a PIO with
         the 'L' flag not set.

   A:    1-bit autonomous address-configuration flag.  When set, it
         indicates that this prefix can be used for stateless address
         configuration as specified in [RFC4862].  When both protocols
         (ND RAs and RPL DIOs) are used to carry PIOs on the same link,
         it is possible to use either one for SLAAC by a RPL node.  It
         is also possible to make either protocol ineligible for SLAAC
         operation by forcing the 'A' flag to 0 for PIOs carried in that
         protocol.

   R:    1-bit router address flag.  When set, it indicates that the
         Prefix field contains a complete IPv6 address assigned to the
         sending router that can be used as parent in a target option.
         The indicated prefix is the first prefix length bits of the
         Prefix field.  The router IPv6 address has the same scope and
         conforms to the same lifetime values as the advertised prefix.
         This use of the Prefix field is compatible with its use in
         advertising the prefix itself, since Prefix Advertisement uses
         only the leading bits.  Interpretation of this flag bit is thus
         independent of the processing required for the on-link (L) and
         autonomous address-configuration (A) flag bits.

   Reserved1: 5-bit unused field.  It MUST be initialized to zero by the
         sender and MUST be ignored by the receiver.






Winter, et al.               Standards Track                   [Page 61]
^L
RFC 6550                           RPL                        March 2012


   Valid Lifetime: 32-bit unsigned integer.  The length of time in
         seconds (relative to the time the packet is sent) that the
         prefix is valid for the purpose of on-link determination.  A
         value of all one bits (0xFFFFFFFF) represents infinity.  The
         Valid Lifetime is also used by [RFC4862].

   Preferred Lifetime: 32-bit unsigned integer.  The length of time in
         seconds (relative to the time the packet is sent) that
         addresses generated from the prefix via stateless address
         autoconfiguration remain preferred [RFC4862].  A value of all
         one bits (0xFFFFFFFF) represents infinity.  See [RFC4862].
         Note that the value of this field MUST NOT exceed the Valid
         Lifetime field to avoid preferring addresses that are no longer
         valid.

   Reserved2: This field is unused.  It MUST be initialized to zero by
         the sender and MUST be ignored by the receiver.

   Prefix: An IPv6 address or a prefix of an IPv6 address.  The Prefix
         Length field contains the number of valid leading bits in the
         prefix.  The bits in the prefix after the prefix length are
         reserved and MUST be initialized to zero by the sender and
         ignored by the receiver.  A router SHOULD NOT send a prefix
         option for the link-local prefix, and a host SHOULD ignore such
         a prefix option.  A non-storing node SHOULD refrain from
         advertising a prefix till it owns an address of that prefix,
         and then it SHOULD advertise its full address in this field,
         with the 'R' flag set.  The children of a node that so
         advertises a full address with the 'R' flag set may then use
         that address to determine the content of the DODAG Parent
         Address subfield of the Transit Information option.

   Unassigned bits of the PIO are reserved.  They MUST be set to zero on
   transmission and MUST be ignored on reception.

















Winter, et al.               Standards Track                   [Page 62]
^L
RFC 6550                           RPL                        March 2012


6.7.11.  RPL Target Descriptor

   The RPL Target option MAY be immediately followed by one opaque
   descriptor that qualifies that specific target.

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |   Type = 0x09 |Opt Length = 4 |           Descriptor
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
              Descriptor (cont.)       |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

           Figure 30: Format of the RPL Target Descriptor Option

   The RPL Target Descriptor option is used to qualify a target,
   something that is sometimes called "tagging".

   At most, there can be one descriptor per target.  The descriptor is
   set by the node that injects the Target in the RPL network.  It MUST
   be copied but not modified by routers that propagate the Target Up
   the DODAG in DAO messages.

   Option Type: 0x09

   Option Length: 4

   Descriptor: 32-bit unsigned integer.  Opaque.

7.  Sequence Counters

   This section describes the general scheme for bootstrap and operation
   of sequence counters in RPL, such as the DODAGVersionNumber in the
   DIO message, the DAOSequence in the DAO message, and the Path
   Sequence in the Transit Information option.

7.1.  Sequence Counter Overview

   This specification utilizes three different sequence numbers to
   validate the freshness and the synchronization of protocol
   information:

   DODAGVersionNumber: This sequence counter is present in the DIO Base
         to indicate the Version of the DODAG being formed.  The
         DODAGVersionNumber is monotonically incremented by the root
         each time the root decides to form a new Version of the DODAG
         in order to revalidate the integrity and allow a global repair
         to occur.  The DODAGVersionNumber is propagated unchanged Down



Winter, et al.               Standards Track                   [Page 63]
^L
RFC 6550                           RPL                        March 2012


         the DODAG as routers join the new DODAG Version.  The
         DODAGVersionNumber is globally significant in a DODAG and
         indicates the Version of the DODAG in which a router is
         operating.  An older (lesser) value indicates that the
         originating router has not migrated to the new DODAG Version
         and cannot be used as a parent once the receiving node has
         migrated to the newer DODAG Version.

   DAOSequence: This sequence counter is present in the DAO Base to
         correlate a DAO message and a DAO ACK message.  The DAOSequence
         number is locally significant to the node that issues a DAO
         message for its own consumption to detect the loss of a DAO
         message and enable retries.

   Path Sequence: This sequence counter is present in the Transit
         Information option in a DAO message.  The purpose of this
         counter is to differentiate a movement where a newer route
         supersedes a stale one from a route redundancy scenario where
         multiple routes exist in parallel for the same target.  The
         Path Sequence is globally significant in a DODAG and indicates
         the freshness of the route to the associated target.  An older
         (lesser) value received from an originating router indicates
         that the originating router holds stale routing states and the
         originating router should not be considered anymore as a
         potential next hop for the target.  The Path Sequence is
         computed by the node that advertises the target, that is the
         Target itself or a router that advertises a Target on behalf of
         a host, and is unchanged as the DAO content is propagated
         towards the root by parent routers.  If a host does not pass a
         counter to its router, then the router is in charge of
         computing the Path Sequence on behalf of the host and the host
         can only register to one router for that purpose.  If a DAO
         message containing the same Target is issued to multiple
         parents at a given point in time for the purpose of route
         redundancy, then the Path Sequence is the same in all the DAO
         messages for that same target.

7.2.  Sequence Counter Operation

   RPL sequence counters are subdivided in a 'lollipop' fashion
   [Perlman83], where the values from 128 and greater are used as a
   linear sequence to indicate a restart and bootstrap the counter, and
   the values less than or equal to 127 used as a circular sequence
   number space of size 128 as in [RFC1982].  Consideration is given to
   the mode of operation when transitioning from the linear region to
   the circular region.  Finally, when operating in the circular region,
   if sequence numbers are detected to be too far apart, then they are
   not comparable, as detailed below.



Winter, et al.               Standards Track                   [Page 64]
^L
RFC 6550                           RPL                        March 2012


   A window of comparison, SEQUENCE_WINDOW = 16, is configured based on
   a value of 2^N, where N is defined to be 4 in this specification.

   For a given sequence counter:

   1.  The sequence counter SHOULD be initialized to an implementation
       defined value, which is 128 or greater prior to use.  A
       recommended value is 240 (256 - SEQUENCE_WINDOW).

   2.  When a sequence counter increment would cause the sequence
       counter to increment beyond its maximum value, the sequence
       counter MUST wrap back to zero.  When incrementing a sequence
       counter greater than or equal to 128, the maximum value is 255.
       When incrementing a sequence counter less than 128, the maximum
       value is 127.

   3.  When comparing two sequence counters, the following rules MUST be
       applied:

       1.  When a first sequence counter A is in the interval [128..255]
           and a second sequence counter B is in [0..127]:

           1.  If (256 + B - A) is less than or equal to
               SEQUENCE_WINDOW, then B is greater than A, A is less than
               B, and the two are not equal.

           2.  If (256 + B - A) is greater than SEQUENCE_WINDOW, then A
               is greater than B, B is less than A, and the two are not
               equal.

           For example, if A is 240, and B is 5, then (256 + 5 - 240) is
           21. 21 is greater than SEQUENCE_WINDOW (16); thus, 240 is
           greater than 5.  As another example, if A is 250 and B is 5,
           then (256 + 5 - 250) is 11. 11 is less than SEQUENCE_WINDOW
           (16); thus, 250 is less than 5.

       2.  In the case where both sequence counters to be compared are
           less than or equal to 127, and in the case where both
           sequence counters to be compared are greater than or equal to
           128:

           1.  If the absolute magnitude of difference between the two
               sequence counters is less than or equal to
               SEQUENCE_WINDOW, then a comparison as described in
               [RFC1982] is used to determine the relationships greater
               than, less than, and equal.





Winter, et al.               Standards Track                   [Page 65]
^L
RFC 6550                           RPL                        March 2012


           2.  If the absolute magnitude of difference of the two
               sequence counters is greater than SEQUENCE_WINDOW, then a
               desynchronization has occurred and the two sequence
               numbers are not comparable.

   4.  If two sequence numbers are determined not to be comparable,
       i.e., the results of the comparison are not defined, then a node
       should consider the comparison as if it has evaluated in such a
       way so as to give precedence to the sequence number that has most
       recently been observed to increment.  Failing this, the node
       should consider the comparison as if it has evaluated in such a
       way so as to minimize the resulting changes to its own state.

8.  Upward Routes

   This section describes how RPL discovers and maintains Upward routes.
   It describes the use of DODAG Information Objects (DIOs), the
   messages used to discover and maintain these routes.  It specifies
   how RPL generates and responds to DIOs.  It also describes DODAG
   Information Solicitation (DIS) messages, which are used to trigger
   DIO transmissions.

   As mentioned in Section 3.2.8, nodes that decide to join a DODAG MUST
   provision at least one DODAG parent as a default route for the
   associated instance.  This default route enables a packet to be
   forwarded Upward until it eventually hits a common ancestor from
   which it will be routed Downward to the destination.  If the
   destination is not in the DODAG, then the DODAG root may be able to
   forward the packet using connectivity to the outside of the DODAG; if
   it cannot forward the packet outside, then the DODAG root has to drop
   it.

   A DIO message can also transport explicit routing information:

   DODAGID: The DODAGID is a Global or Unique Local IPv6 address of the
         root.  A node that joins a DODAG SHOULD provision a host route
         via a DODAG parent to the address used by the root as the
         DODAGID.

   RIO Prefix: The root MAY place one or more Route Information options
         in a DIO message.  The RIO is used to advertise an external
         route that is reachable via the root, associated with a
         preference, as presented in Section 6.7.5, which incorporates
         the RIO from [RFC4191].  It is interpreted as a capability of
         the root as opposed to a routing advertisement, and it MUST NOT
         be redistributed in another routing protocol though it SHOULD
         be used by an ingress RPL router to select a DODAG when a
         packet is injected in a RPL domain from a node attached to that



Winter, et al.               Standards Track                   [Page 66]
^L
RFC 6550                           RPL                        March 2012


         RPL router.  An Objective Function MAY use the routes
         advertised in RIO or the preference for those routes in order
         to favor a DODAG versus another one for the same instance.

8.1.  DIO Base Rules

   1.  For the following DIO Base fields, a node that is not a DODAG
       root MUST advertise the same values as its preferred DODAG parent
       (defined in Section 8.2.1).  In this way, these values will
       propagate Down the DODAG unchanged and advertised by every node
       that has a route to that DODAG root.  These fields are as
       follows:
       1.  Grounded (G)
       2.  Mode of Operation (MOP)
       3.  DAGPreference (Prf)
       4.  Version
       5.  RPLInstanceID
       6.  DODAGID

   2.  A node MAY update the following fields at each hop:
       1.  Rank
       2.  DTSN

   3.  The DODAGID field each root sets MUST be unique within the RPL
       Instance and MUST be a routable IPv6 address belonging to the
       root.

8.2.  Upward Route Discovery and Maintenance

   Upward route discovery allows a node to join a DODAG by discovering
   neighbors that are members of the DODAG of interest and identifying a
   set of parents.  The exact policies for selecting neighbors and
   parents is implementation dependent and driven by the OF.  This
   section specifies the set of rules those policies must follow for
   interoperability.

8.2.1.  Neighbors and Parents within a DODAG Version

   RPL's Upward route discovery algorithms and processing are in terms
   of three logical sets of link-local nodes.  First, the candidate
   neighbor set is a subset of the nodes that can be reached via link-
   local multicast.  The selection of this set is implementation and OF
   dependent.  Second, the parent set is a restricted subset of the
   candidate neighbor set.  Finally, the preferred parent is a member of
   the parent set that is the preferred next hop in Upward routes.
   Conceptually, the preferred parent is a single parent; although, it
   may be a set of multiple parents if those parents are equally
   preferred and have identical Rank.



Winter, et al.               Standards Track                   [Page 67]
^L
RFC 6550                           RPL                        March 2012


   More precisely:

   1.  The DODAG parent set MUST be a subset of the candidate neighbor
       set.

   2.  A DODAG root MUST have a DODAG parent set of size zero.

   3.  A node that is not a DODAG root MAY maintain a DODAG parent set
       of size greater than or equal to one.

   4.  A node's preferred DODAG parent MUST be a member of its DODAG
       parent set.

   5.  A node's Rank MUST be greater than all elements of its DODAG
       parent set.

   6.  When Neighbor Unreachability Detection (NUD) [RFC4861], or an
       equivalent mechanism, determines that a neighbor is no longer
       reachable, a RPL node MUST NOT consider this node in the
       candidate neighbor set when calculating and advertising routes
       until it determines that it is again reachable.  Routes through
       an unreachable neighbor MUST be removed from the routing table.

   These rules ensure that there is a consistent partial order on nodes
   within the DODAG.  As long as node Ranks do not change, following the
   above rules ensures that every node's route to a DODAG root is loop-
   free, as Rank decreases on each hop to the root.

   The OF can guide candidate neighbor set and parent set selection, as
   discussed in [RFC6552].

8.2.2.  Neighbors and Parents across DODAG Versions

   The above rules govern a single DODAG Version.  The rules in this
   section define how RPL operates when there are multiple DODAG
   Versions.

8.2.2.1.  DODAG Version

   1.  The tuple (RPLInstanceID, DODAGID, DODAGVersionNumber) uniquely
       defines a DODAG Version.  Every element of a node's DODAG parent
       set, as conveyed by the last heard DIO message from each DODAG
       parent, MUST belong to the same DODAG Version.  Elements of a
       node's candidate neighbor set MAY belong to different DODAG
       Versions.






Winter, et al.               Standards Track                   [Page 68]
^L
RFC 6550                           RPL                        March 2012


   2.  A node is a member of a DODAG Version if every element of its
       DODAG parent set belongs to that DODAG Version, or if that node
       is the root of the corresponding DODAG.

   3.  A node MUST NOT send DIOs for DODAG Versions of which it is not a
       member.

   4.  DODAG roots MAY increment the DODAGVersionNumber that they
       advertise and thus move to a new DODAG Version.  When a DODAG
       root increments its DODAGVersionNumber, it MUST follow the
       conventions of Serial Number Arithmetic as described in
       Section 7.  Events triggering the increment of the
       DODAGVersionNumber are described later in this section and in
       Section 18.

   5.  Within a given DODAG, a node that is a not a root MUST NOT
       advertise a DODAGVersionNumber higher than the highest
       DODAGVersionNumber it has heard.  Higher is defined as the
       greater-than operator in Section 7.

   6.  Once a node has advertised a DODAG Version by sending a DIO, it
       MUST NOT be a member of a previous DODAG Version of the same
       DODAG (i.e., with the same RPLInstanceID, the same DODAGID, and a
       lower DODAGVersionNumber).  Lower is defined as the less-than
       operator in Section 7.

   When the DODAG parent set becomes empty on a node that is not a root,
   (i.e., the last parent has been removed, causing the node no longer
   to be associated with that DODAG), then the DODAG information should
   not be suppressed until after the expiration of an implementation-
   specific local timer.  During the interval prior to suppression of
   the "old" DODAG state, the node will be able to observe if the
   DODAGVersionNumber has been incremented should any new parents
   appear.  This will help protect against the possibility of loops that
   may occur if that node were to inadvertently rejoin the old DODAG
   Version in its own prior sub-DODAG.

   As the DODAGVersionNumber is incremented, a new DODAG Version spreads
   outward from the DODAG root.  A parent that advertises the new
   DODAGVersionNumber cannot belong to the sub-DODAG of a node
   advertising an older DODAGVersionNumber.  Therefore, a node can
   safely add a parent of any Rank with a newer DODAGVersionNumber
   without forming a loop.

   For example, suppose that a node has left a DODAG with
   DODAGVersionNumber N.  Suppose that a node had a sub-DODAG and did
   attempt to poison that sub-DODAG by advertising a Rank of
   INFINITE_RANK, but those advertisements may have become lost in the



Winter, et al.               Standards Track                   [Page 69]
^L
RFC 6550                           RPL                        March 2012


   LLN.  Then, if the node did observe a candidate neighbor advertising
   a position in that original DODAG at DODAGVersionNumber N, that
   candidate neighbor could possibly have been in the node's former sub-
   DODAG, and there is a possible case where adding that candidate
   neighbor as a parent could cause a loop.  In this case, if that
   candidate neighbor is observed to advertise a DODAGVersionNumber N+1,
   then that candidate neighbor is certain to be safe, since it is
   certain not to be in that original node's sub-DODAG, as it has been
   able to increment the DODAGVersionNumber by hearing from the DODAG
   root while that original node was detached.  For this reason, it is
   useful for the detached node to remember the original DODAG
   information, including the DODAGVersionNumber N.

   Exactly when a DODAG root increments the DODAGVersionNumber is
   implementation dependent and out of scope for this specification.
   Examples include incrementing the DODAGVersionNumber periodically,
   upon administrative intervention, or on application-level detection
   of lost connectivity or DODAG inefficiency.

   After a node transitions to and advertises a new DODAG Version, the
   rules above make it unable to advertise the previous DODAG Version
   (prior DODAGVersionNumber) once it has committed to advertising the
   new DODAG Version.

8.2.2.2.  DODAG Roots

   1.  A DODAG root without possibility to satisfy the application-
       defined goal MUST NOT set the Grounded bit.

   2.  A DODAG root MUST advertise a Rank of ROOT_RANK.

   3.  A node whose DODAG parent set is empty MAY become the DODAG root
       of a floating DODAG.  It MAY also set its DAGPreference such that
       it is less preferred.

   In a deployment that uses non-LLN links to federate a number of LLN
   roots, it is possible to run RPL over those non-RPL links and use one
   router as a "backbone root".  The backbone root is the virtual root
   of the DODAG and exposes a Rank of BASE_RANK over the backbone.  All
   the LLN roots that are parented to that backbone root, including the
   backbone root if it also serves as the LLN root itself, expose a Rank
   of ROOT_RANK to the LLN.  These virtual roots are part of the same
   DODAG and advertise the same DODAGID.  They coordinate
   DODAGVersionNumbers and other DODAG parameters with the virtual root
   over the backbone.  The method of coordination is out of scope for
   this specification (to be defined in future companion
   specifications).




Winter, et al.               Standards Track                   [Page 70]
^L
RFC 6550                           RPL                        March 2012


8.2.2.3.  DODAG Selection

   The Objective Function and the set of advertised routing metrics and
   constraints of a DAG determine how a node selects its neighbor set,
   parent set, and preferred parents.  This selection implicitly also
   determines the DODAG within a DAG.  Such selection can include
   administrative preference (Prf) as well as metrics or other
   considerations.

   If a node has the option to join a more preferred DODAG while still
   meeting other optimization objectives, then the node will generally
   seek to join the more preferred DODAG as determined by the OF.  All
   else being equal, it is left to the implementation to determine which
   DODAG is most preferred (since, as a reminder, a node must only join
   one DODAG per RPL Instance).

8.2.2.4.  Rank and Movement within a DODAG Version

   1.  A node MUST NOT advertise a Rank less than or equal to any member
       of its parent set within the DODAG Version.

   2.  A node MAY advertise a Rank lower than its prior advertisement
       within the DODAG Version.

   3.  Let L be the lowest Rank within a DODAG Version that a given node
       has advertised.  Within the same DODAG Version, that node MUST
       NOT advertise an effective Rank higher than L +
       DAGMaxRankIncrease.  INFINITE_RANK is an exception to this rule:
       a node MAY advertise an INFINITE_RANK within a DODAG Version
       without restriction.  If a node's Rank were to be higher than
       allowed by L + DAGMaxRankIncrease, when it advertises Rank, it
       MUST advertise its Rank as INFINITE_RANK.

   4.  A node MAY, at any time, choose to join a different DODAG within
       a RPL Instance.  Such a join has no Rank restrictions, unless
       that different DODAG is a DODAG Version of which this node has
       previously been a member; in which case, the rule of the previous
       bullet (3) must be observed.  Until a node transmits a DIO
       indicating its new DODAG membership, it MUST forward packets
       along the previous DODAG.

   5.  A node MAY, at any time after hearing the next DODAGVersionNumber
       advertised from suitable DODAG parents, choose to migrate to the
       next DODAG Version within the DODAG.







Winter, et al.               Standards Track                   [Page 71]
^L
RFC 6550                           RPL                        March 2012


   Conceptually, an implementation is maintaining a DODAG parent set
   within the DODAG Version.  Movement entails changes to the DODAG
   parent set.  Moving Up does not present the risk to create a loop but
   moving Down might, so that operation is subject to additional
   constraints.

   When a node migrates to the next DODAG Version, the DODAG parent set
   needs to be rebuilt for the new Version.  An implementation could
   defer to migrate for some reasonable amount of time, to see if some
   other neighbors with potentially better metrics but higher Rank
   announce themselves.  Similarly, when a node jumps into a new DODAG,
   it needs to construct a new DODAG parent set for this new DODAG.

   If a node needs to move Down a DODAG that it is attached to,
   increasing its Rank, then it MAY poison its routes and delay before
   moving as described in Section 8.2.2.5.

   A node is allowed to join any DODAG Version that it has never been a
   prior member of without any restrictions, but if the node has been a
   prior member of the DODAG Version, then it must continue to observe
   the rule that it may not advertise a Rank higher than
   L+DAGMaxRankIncrease at any point in the life of the DODAG Version.
   This rule must be observed so as not to create a loophole that would
   allow the node to effectively increment its Rank all the way to
   INFINITE_RANK, which may have impact on other nodes and create a
   resource-wasting count-to-infinity scenario.

8.2.2.5.  Poisoning

   1.  A node poisons routes by advertising a Rank of INFINITE_RANK.

   2.  A node MUST NOT have any nodes with a Rank of INFINITE_RANK in
       its parent set.

   Although an implementation may advertise INFINITE_RANK for the
   purposes of poisoning, doing so is not the same as setting Rank to
   INFINITE_RANK.  For example, a node may continue to send data packets
   whose RPL Packet Information includes a Rank that is not
   INFINITE_RANK, yet still advertise INFINITE_RANK in its DIOs.

   When a (former) parent is observed to advertise a Rank of
   INFINITE_RANK, that (former) parent has detached from the DODAG and
   is no longer able to act as a parent, nor is there any way that
   another node may be considered to have a Rank greater-than
   INFINITE_RANK.  Therefore, that (former) parent cannot act as a
   parent any longer and is removed from the parent set.





Winter, et al.               Standards Track                   [Page 72]
^L
RFC 6550                           RPL                        March 2012


8.2.2.6.  Detaching

   1.  A node unable to stay connected to a DODAG within a given DODAG
       Version, i.e., that cannot retain non-empty parent set without
       violating the rules of this specification, MAY detach from this
       DODAG Version.  A node that detaches becomes the root of its own
       floating DODAG and SHOULD immediately advertise this new
       situation in a DIO as an alternate to poisoning.

8.2.2.7.  Following a Parent

   1.  If a node receives a DIO from one of its DODAG parents,
       indicating that the parent has left the DODAG, that node SHOULD
       stay in its current DODAG through an alternative DODAG parent, if
       possible.  It MAY follow the leaving parent.

   A DODAG parent may have moved, migrated to the next DODAG Version, or
   jumped to a different DODAG.  A node ought to give some preference to
   remaining in the current DODAG, if possible via an alternate parent,
   but ought to follow the parent if there are no other options.

8.2.3.  DIO Message Communication

   When a DIO message is received, the receiving node must first
   determine whether or not the DIO message should be accepted for
   further processing, and subsequently present the DIO message for
   further processing if eligible.

   1.  If the DIO message is malformed, then the DIO message is not
       eligible for further processing and a node MUST silently discard
       it.  (See Section 18 for error logging).

   2.  If the sender of the DIO message is a member of the candidate
       neighbor set and the DIO message is not malformed, the node MUST
       process the DIO.

8.2.3.1.  DIO Message Processing

   As DIO messages are received from candidate neighbors, the neighbors
   may be promoted to DODAG parents by following the rules of DODAG
   discovery as described in Section 8.2.  When a node places a neighbor
   into the DODAG parent set, the node becomes attached to the DODAG
   through the new DODAG parent node.








Winter, et al.               Standards Track                   [Page 73]
^L
RFC 6550                           RPL                        March 2012


   The most preferred parent should be used to restrict which other
   nodes may become DODAG parents.  Some nodes in the DODAG parent set
   may be of a Rank less than or equal to the most preferred DODAG
   parent.  (This case may occur, for example, if an energy-constrained
   device is at a lesser Rank but should be avoided per an optimization
   objective, resulting in a more preferred parent at a greater Rank.)

8.3.  DIO Transmission

   RPL nodes transmit DIOs using a Trickle timer [RFC6206].  A DIO from
   a sender with a lesser DAGRank that causes no changes to the
   recipient's parent set, preferred parent, or Rank SHOULD be
   considered consistent with respect to the Trickle timer.

   The following packets and events MUST be considered inconsistencies
   with respect to the Trickle timer, and cause the Trickle timer to
   reset:

   o  When a node detects an inconsistency when forwarding a packet, as
      detailed in Section 11.2.

   o  When a node receives a multicast DIS message without a Solicited
      Information option, unless a DIS flag restricts this behavior.

   o  When a node receives a multicast DIS with a Solicited Information
      option and the node matches all of the predicates in the Solicited
      Information option, unless a DIS flag restricts this behavior.

   o  When a node joins a new DODAG Version (e.g., by updating its
      DODAGVersionNumber, joining a new RPL Instance, etc.).

   Note that this list is not exhaustive, and an implementation MAY
   consider other messages or events to be inconsistencies.

   A node SHOULD NOT reset its DIO Trickle timer in response to unicast
   DIS messages.  When a node receives a unicast DIS without a Solicited
   Information option, it MUST unicast a DIO to the sender in response.
   This DIO MUST include a DODAG Configuration option.  When a node
   receives a unicast DIS message with a Solicited Information option
   and matches the predicates of that Solicited Information option, it
   MUST unicast a DIO to the sender in response.  This unicast DIO MUST
   include a DODAG Configuration option.  Thus, a node MAY transmit a
   unicast DIS message to a potential DODAG parent in order to probe for
   DODAG Configuration and other parameters.







Winter, et al.               Standards Track                   [Page 74]
^L
RFC 6550                           RPL                        March 2012


8.3.1.  Trickle Parameters

   The configuration parameters of the Trickle timer are specified as
   follows:

   Imin: learned from the DIO message as (2^DIOIntervalMin) ms.  The
         default value of DIOIntervalMin is DEFAULT_DIO_INTERVAL_MIN.

   Imax: learned from the DIO message as DIOIntervalDoublings.  The
         default value of DIOIntervalDoublings is
         DEFAULT_DIO_INTERVAL_DOUBLINGS.

   k:    learned from the DIO message as DIORedundancyConstant.  The
         default value of DIORedundancyConstant is
         DEFAULT_DIO_REDUNDANCY_CONSTANT.  In RPL, when k has the value
         of 0x00, this is to be treated as a redundancy constant of
         infinity in RPL, i.e., Trickle never suppresses messages.

8.4.  DODAG Selection

   The DODAG selection is implementation and OF dependent.  In order to
   limit erratic movements, and all metrics being equal, nodes SHOULD
   keep their previous selection.  Also, nodes SHOULD provide a means to
   filter out a parent whose availability is detected as fluctuating, at
   least when more stable choices are available.

   When connection to a grounded DODAG is not possible or preferable for
   security or other reasons, scattered DODAGs MAY aggregate as much as
   possible into larger DODAGs in order to allow connectivity within the
   LLN.

   A node SHOULD verify that bidirectional connectivity and adequate
   link quality is available with a candidate neighbor before it
   considers that candidate as a DODAG parent.

8.5.  Operation as a Leaf Node

   In some cases, a RPL node may attach to a DODAG as a leaf node only.
   One example of such a case is when a node does not understand or does
   not support (policy) the RPL Instance's OF or advertised metric/
   constraint.  As specified in Section 18.6, related to policy
   function, the node may either join the DODAG as a leaf node or may
   not join the DODAG.  As mentioned in Section 18.5, it is then
   recommended to log a fault.







Winter, et al.               Standards Track                   [Page 75]
^L
RFC 6550                           RPL                        March 2012


   A leaf node does not extend DODAG connectivity; however, in some
   cases, the leaf node may still need to transmit DIOs on occasion, in
   particular, when the leaf node may not have always been acting as a
   leaf node and an inconsistency is detected.

   A node operating as a leaf node must obey the following rules:

   1.  It MUST NOT transmit DIOs containing the DAG Metric Container.

   2.  Its DIOs MUST advertise a DAGRank of INFINITE_RANK.

   3.  It MAY suppress DIO transmission, unless the DIO transmission has
       been triggered due to detection of inconsistency when a packet is
       being forwarded or in response to a unicast DIS message, in which
       case the DIO transmission MUST NOT be suppressed.

   4.  It MAY transmit unicast DAOs as described in Section 9.2.

   5.  It MAY transmit multicast DAOs to the '1 hop' neighborhood as
       described in Section 9.10.

   A particular case that requires a leaf node to send a DIO is if that
   leaf node was a prior member of another DODAG and another node
   forwards a message assuming the old topology, triggering an
   inconsistency.  The leaf node needs to transmit a DIO in order to
   repair the inconsistency.  Note that due to the lossy nature of LLNs,
   even though the leaf node may have optimistically poisoned its routes
   by advertising a Rank of INFINITE_RANK in the old DODAG prior to
   becoming a leaf node, that advertisement may have become lost and a
   leaf node must be capable to send a DIO later in order to repair the
   inconsistency.

   In the general case, the leaf node MUST NOT advertise itself as a
   router (i.e., send DIOs).

8.6.  Administrative Rank

   In some cases, it might be beneficial to adjust the Rank advertised
   by a node beyond that computed by the OF based on some
   implementation-specific policy and properties of the node.  For
   example, a node that has a limited battery should be a leaf unless
   there is no other choice, and may then augment the Rank computation
   specified by the OF in order to expose an exaggerated Rank.








Winter, et al.               Standards Track                   [Page 76]
^L
RFC 6550                           RPL                        March 2012


9.  Downward Routes

   This section describes how RPL discovers and maintains Downward
   routes.  RPL constructs and maintains Downward routes with
   Destination Advertisement Object (DAO) messages.  Downward routes
   support P2MP flows, from the DODAG roots toward the leaves.  Downward
   routes also support P2P flows: P2P messages can flow toward a DODAG
   root (or a common ancestor) through an Upward route, then away from
   the DODAG root to a destination through a Downward route.

   This specification describes the two modes a RPL Instance may choose
   from for maintaining Downward routes.  In the first mode, called
   "Storing", nodes store Downward routing tables for their sub-DODAG.
   Each hop on a Downward route in a storing network examines its
   routing table to decide on the next hop.  In the second mode, called
   "Non-Storing", nodes do not store Downward routing tables.  Downward
   packets are routed with source routes populated by a DODAG root
   [RFC6554].

   RPL allows a simple one-hop P2P optimization for both storing and
   non-storing networks.  A node may send a P2P packet destined to a
   one-hop neighbor directly to that node.

9.1.  Destination Advertisement Parents

   To establish Downward routes, RPL nodes send DAO messages Upward.
   The next-hop destinations of these DAO messages are called "DAO
   parents".  The collection of a node's DAO parents is called the "DAO
   parent set".

   1.  A node MAY send DAO messages using the all-RPL-nodes multicast
       address, which is an optimization to provision one-hop routing.
       The 'K' bit MUST be cleared on transmission of the multicast DAO.

   2.  A node's DAO parent set MUST be a subset of its DODAG parent set.

   3.  In Storing mode operation, a node MUST NOT address unicast DAO
       messages to nodes that are not DAO parents.

   4.  In Storing mode operation, the IPv6 source and destination
       addresses of a DAO message MUST be link-local addresses.

   5.  In Non-Storing mode operation, a node MUST NOT address unicast
       DAO messages to nodes that are not DODAG roots.

   6.  In Non-Storing mode operation, the IPv6 source and destination
       addresses of a DAO message MUST be a unique-local or a global
       address.



Winter, et al.               Standards Track                   [Page 77]
^L
RFC 6550                           RPL                        March 2012


   The selection of DAO parents is implementation and Objective Function
   specific.

9.2.  Downward Route Discovery and Maintenance

   Destination Advertisement may be configured to be entirely disabled,
   or operate in either a Storing or Non-Storing mode, as reported in
   the MOP in the DIO message.

   1.  All nodes who join a DODAG MUST abide by the MOP setting from the
       root.  Nodes that do not have the capability to fully participate
       as a router, e.g., that do not match the advertised MOP, MAY join
       the DODAG as a leaf.

   2.  If the MOP is 0, indicating no Downward routing, nodes MUST NOT
       transmit DAO messages and MAY ignore DAO messages.

   3.  In Non-Storing mode, the DODAG root SHOULD store source routing
       table entries for destinations learned from DAOs.  The DODAG root
       MUST be able to generate source routes for those destinations
       learned from DAOs that were stored.

   4.  In Storing mode, all non-root, non-leaf nodes MUST store routing
       table entries for destinations learned from DAOs.

   A DODAG can have one of several possible modes of operation, as
   defined by the MOP field.  Either it does not support Downward
   routes, it supports Downward routes through source routing from DODAG
   roots, or it supports Downward routes through in-network routing
   tables.

   When Downward routes are supported through source routing from DODAG
   roots, it is generally expected that the DODAG root has stored the
   source routing information learned from DAOs in order to construct
   the source routes.  If the DODAG root fails to store some
   information, then some destinations may be unreachable.

   When Downward routes are supported through in-network routing tables,
   the multicast operation defined in this specification may or may not
   be supported, also as indicated by the MOP field.

   When Downward routes are supported through in-network routing tables,
   as described in this specification, it is expected that nodes acting
   as routers have been provisioned sufficiently to hold the required
   routing table state.  If a node acting as a router is unable to hold
   the full routing table state then the routing state is not complete,





Winter, et al.               Standards Track                   [Page 78]
^L
RFC 6550                           RPL                        March 2012


   messages may be dropped as a consequence, and a fault may be logged
   (Section 18.5).  Future extensions to RPL may elaborate on refined
   actions/behaviors to manage this case.

   As of the writing of this specification, RPL does not support mixed-
   mode operation, where some nodes source route and other store routing
   tables: future extensions to RPL may support this mode of operation.

9.2.1.  Maintenance of Path Sequence

   For each Target that is associated with (owned by) a node, that node
   is responsible to emit DAO messages in order to provision the
   Downward routes.  The Target+Transit information contained in those
   DAO messages subsequently propagates Up the DODAG.  The Path Sequence
   counter in the Transit information option is used to indicate
   freshness and update stale Downward routing information as described
   in Section 7.

   For a Target that is associated with (owned by) a node, that node
   MUST increment the Path Sequence counter, and generate a new DAO
   message, when:

   1.  the Path Lifetime is to be updated (e.g., a refresh or a no-
       Path).

   2.  the DODAG Parent Address subfield list is to be changed.

   For a Target that is associated with (owned by) a node, that node MAY
   increment the Path Sequence counter, and generate a new DAO message,
   on occasion in order to refresh the Downward routing information.  In
   Storing mode, the node generates such a DAO to each of its DAO
   parents in order to enable multipath.  All DAOs generated at the same
   time for the same Target MUST be sent with the same Path Sequence in
   the Transit Information.

9.2.2.  Generation of DAO Messages

   A node might send DAO messages when it receives DAO messages, as a
   result of changes in its DAO parent set, or in response to another
   event such as the expiry of a related prefix lifetime.  In the case
   of receiving DAOs, it matters whether the DAO message is "new" or
   contains new information.  In Non-Storing mode, every DAO message a
   node receives is "new".  In Storing mode, a DAO message is "new" if
   it satisfies any of these criteria for a contained Target:

   1.  it has a newer Path Sequence number,

   2.  it has additional Path Control bits, or



Winter, et al.               Standards Track                   [Page 79]
^L
RFC 6550                           RPL                        March 2012


   3.  it is a No-Path DAO message that removes the last Downward route
       to a prefix.

   A node that receives a DAO message from its sub-DODAG MAY suppress
   scheduling a DAO message transmission if that DAO message is not new.

9.3.  DAO Base Rules

   1.  If a node sends a DAO message with newer or different information
       than the prior DAO message transmission, it MUST increment the
       DAOSequence field by at least one.  A DAO message transmission
       that is identical to the prior DAO message transmission MAY
       increment the DAOSequence field.

   2.  The RPLInstanceID and DODAGID fields of a DAO message MUST be the
       same value as the members of the node's parent set and the DIOs
       it transmits.

   3.  A node MAY set the 'K' flag in a unicast DAO message to solicit a
       unicast DAO-ACK in response in order to confirm the attempt.

   4.  A node receiving a unicast DAO message with the 'K' flag set
       SHOULD respond with a DAO-ACK.  A node receiving a DAO message
       without the 'K' flag set MAY respond with a DAO-ACK, especially
       to report an error condition.

   5.  A node that sets the 'K' flag in a unicast DAO message but does
       not receive a DAO-ACK in response MAY reschedule the DAO message
       transmission for another attempt, up until an implementation-
       specific number of retries.

   6.  Nodes SHOULD ignore DAOs without newer sequence numbers and MUST
       NOT process them further.

   Unlike the Version field of a DIO, which is incremented only by a
   DODAG root and repeated unchanged by other nodes, DAOSequence values
   are unique to each node.  The sequence number space for unicast and
   multicast DAO messages can be either the same or distinct.  It is
   RECOMMENDED to use the same sequence number space.

9.4.  Structure of DAO Messages

   DAOs follow a common structure in both storing and non-storing
   networks.  In the most general form, a DAO message may include
   several groups of options, where each group consists of one or more
   Target options followed by one or more Transit Information options.





Winter, et al.               Standards Track                   [Page 80]
^L
RFC 6550                           RPL                        March 2012


   The entire group of Transit Information options applies to the entire
   group of Target options.  Later sections describe further details for
   each mode of operation.

   1.  RPL nodes MUST include one or more RPL Target options in each DAO
       message they transmit.  One RPL Target option MUST have a prefix
       that includes the node's IPv6 address if that node needs the
       DODAG to provision Downward routes to that node.  The RPL Target
       option MAY be immediately followed by an opaque RPL Target
       Descriptor option that qualifies it.

   2.  When a node updates the information in a Transit Information
       option for a Target option that covers one of its addresses, it
       MUST increment the Path Sequence number in that Transit
       Information option.  The Path Sequence number MAY be incremented
       occasionally to cause a refresh to the Downward routes.

   3.  One or more RPL Target options in a unicast DAO message MUST be
       followed by one or more Transit Information options.  All the
       transit options apply to all the Target options that immediately
       precede them.

   4.  Multicast DAOs MUST NOT include the DODAG Parent Address subfield
       in Transit Information options.

   5.  A node that receives and processes a DAO message containing
       information for a specific Target, and that has prior information
       for that Target, MUST use the Path Sequence number in the Transit
       Information option associated with that Target in order to
       determine whether or not the DAO message contains updated
       information per Section 7.

   6.  If a node receives a DAO message that does not follow the above
       rules, it MUST discard the DAO message without further
       processing.

   In Non-Storing mode, the root builds a strict source routing header,
   hop-by-hop, by recursively looking up one-hop information that ties a
   Target (address or prefix) and a transit address together.  In some
   cases, when a child address is derived from a prefix that is owned
   and advertised by a parent, that parent-child relationship may be
   inferred by the root for the purpose of constructing the source
   routing header.  In all other cases, it is necessary to inform the
   root of the transit-Target relationship from a reachable target, so
   as to later enable the recursive construction of the routing header.
   An address that is advertised as a Target in a DAO message MUST be
   collocated in the same router, or reachable on-link by the router




Winter, et al.               Standards Track                   [Page 81]
^L
RFC 6550                           RPL                        March 2012


   that owns the address that is indicated in the associated Transit
   Information.  The following additional rules apply to ensure the
   continuity of the end-to-end source route path:

   1.  The address of a parent used in the transit option MUST be taken
       from a PIO from that parent with the 'R' flag set.  The 'R' flag
       in a PIO indicates that the prefix field actually contains the
       full parent address but the child SHOULD NOT assume that the
       parent address is on-link.

   2.  A PIO with an 'A' flag set indicates that the RPL child node may
       use the prefix to autoconfigure an address.  A parent that
       advertises a prefix in a PIO with the 'A' flag set MUST ensure
       that the address or the whole prefix in the PIO is reachable from
       the root by advertising it as a DAO target.  If the parent also
       sets the 'L' flag indicating that the prefix is on-link, then it
       MUST advertise the whole prefix as Target in a DAO message.  If
       the 'L' flag is cleared and the 'R' flag is set, indicating that
       the parent provides its own address in the PIO, then the parent
       MUST advertise that address as a DAO target.

   3.  An address that is advertised as Target in a DAO message MUST be
       collocated in the same router or reachable on-link by the router
       that owns the address that is indicated in the associated Transit
       Information.

   4.  In order to enable an optimum compression of the routing header,
       the parent SHOULD set the 'R' flag in all PIOs with the 'A' flag
       set and the 'L' flag cleared, and the child SHOULD prefer to use
       as transit the address of the parent that is found in the PIO
       that is used to autoconfigure the address that is advertised as
       Target in the DAO message.

   5.  A router might have targets that are not known to be on-link for
       a parent, either because they are addresses located on an
       alternate interface or because they belong to nodes that are
       external to RPL, for instance connected hosts.  In order to
       inject such a Target in the RPL network, the router MUST
       advertise itself as the DODAG Parent Address subfield in the
       Transit Information option for that target, using an address that
       is on-link for that nodes DAO parent.  If the Target belongs to
       an external node, then the router MUST set the External 'E' flag
       in the Transit Information.

   A child node that has autoconfigured an address from a parent PIO
   with the 'L' flag set does not need to advertise that address as a
   DAO Target since the parent ensures that the whole prefix is already
   reachable from the root.  However, if the 'L' flag is not set, then



Winter, et al.               Standards Track                   [Page 82]
^L
RFC 6550                           RPL                        March 2012


   it is necessary, in Non-Storing mode, for the child node to inform
   the root of the parent-child relationship, using a reachable address
   of the parent, so as to enable the recursive construction of the
   routing header.  This is done by associating an address of the parent
   as transit with the address of the child as Target in a DAO message.

9.5.  DAO Transmission Scheduling

   Because DAOs flow Upward, receiving a unicast DAO can trigger sending
   a unicast DAO to a DAO parent.

   1.  On receiving a unicast DAO message with updated information, such
       as containing a Transit Information option with a new Path
       Sequence, a node SHOULD send a DAO.  It SHOULD NOT send this DAO
       message immediately.  It SHOULD delay sending the DAO message in
       order to aggregate DAO information from other nodes for which it
       is a DAO parent.

   2.  A node SHOULD delay sending a DAO message with a timer
       (DelayDAO).  Receiving a DAO message starts the DelayDAO timer.
       DAO messages received while the DelayDAO timer is active do not
       reset the timer.  When the DelayDAO timer expires, the node sends
       a DAO.

   3.  When a node adds a node to its DAO parent set, it SHOULD schedule
       a DAO message transmission.

   DelayDAO's value and calculation is implementation dependent.  A
   default value of DEFAULT_DAO_DELAY is defined in this specification.

9.6.  Triggering DAO Messages

   Nodes can trigger their sub-DODAG to send DAO messages.  Each node
   maintains a DAO Trigger Sequence Number (DTSN), which it communicates
   through DIO messages.

   1.  If a node hears one of its DAO parents increment its DTSN, the
       node MUST schedule a DAO message transmission using rules in
       Sections 9.3 and 9.5.

   2.  In Non-Storing mode, if a node hears one of its DAO parents
       increment its DTSN, the node MUST increment its own DTSN.

   In a Storing mode of operation, as part of routine routing table
   updates and maintenance, a storing node MAY increment DTSN in order
   to reliably trigger a set of DAO updates from its immediate children.





Winter, et al.               Standards Track                   [Page 83]
^L
RFC 6550                           RPL                        March 2012


   In a Storing mode of operation, it is not necessary to trigger DAO
   updates from the entire sub-DODAG, since that state information will
   propagate hop-by-hop Up the DODAG.

   In a Non-Storing mode of operation, a DTSN increment will also cause
   the immediate children of a node to increment their DTSN in turn,
   triggering a set of DAO updates from the entire sub-DODAG.
   Typically, in a Non-Storing mode of operation, only the root would
   independently increment the DTSN when a DAO refresh is needed but a
   global repair (such as by incrementing DODAGVersionNumber) is not
   desired.  Typically, in a Non-Storing mode of operation, all non-root
   nodes would increment their DTSN only when their parent(s) are
   observed to do so.

   In general, a node may trigger DAO updates according to
   implementation-specific logic, such as based on the detection of a
   Downward route inconsistency or occasionally based upon an internal
   timer.

   In a storing network, selecting a proper DelayDAO for triggered DAOs
   can greatly reduce the number of DAOs transmitted.  The trigger flows
   Down the DODAG; in the best case, the DAOs flow Up the DODAG such
   that leaves send DAOs first, with each node sending a DAO message
   only once.  Such a scheduling could be approximated by setting
   DelayDAO inversely proportional to Rank.  Note that this suggestion
   is intended as an optimization to allow efficient aggregation (it is
   not required for correct operation in the general case).

9.7.  Non-Storing Mode

   In Non-Storing mode, RPL routes messages Downward using IP source
   routing.  The following rule applies to nodes that are in Non-Storing
   mode.  Storing mode has a separate set of rules, described in
   Section 9.8.

   1.  The DODAG Parent Address subfield of a Transit Information option
       MUST contain one or more addresses.  All of these addresses MUST
       be addresses of DAO parents of the sender.

   2.  DAOs are sent directly to the root along a default route
       installed as part of the parent selection.

   3.  When a node removes a node from its DAO parent set, it MAY
       generate a new DAO message with an updated Transit Information
       option.






Winter, et al.               Standards Track                   [Page 84]
^L
RFC 6550                           RPL                        March 2012


   In Non-Storing mode, a node uses DAOs to report its DAO parents to
   the DODAG root.  The DODAG root can piece together a Downward route
   to a node by using DAO parent sets from each node in the route.  The
   Path Sequence information may be used to detect stale DAO
   information.  The purpose of this per-hop route calculation is to
   minimize traffic when DAO parents change.  If nodes reported complete
   source routes, then on a DAO parent change, the entire sub-DODAG
   would have to send new DAOs to the DODAG root.  Therefore, in Non-
   Storing mode, a node can send a single DAO, although it might choose
   to send more than one DAO message to each of multiple DAO parents.

   Nodes pack DAOs by sending a single DAO message with multiple RPL
   Target options.  Each RPL Target option has its own, immediately
   following, Transit Information options.

9.8.  Storing Mode

   In Storing mode, RPL routes messages Downward by the IPv6 destination
   address.  The following rules apply to nodes that are in Storing
   mode:

   1.  The DODAG Parent Address subfield of a Transmit Information
       option MUST be empty.

   2.  On receiving a unicast DAO, a node MUST compute if the DAO would
       change the set of prefixes that the node itself advertises.  This
       computation SHOULD include consultation of the Path Sequence
       information in the Transit Information options associated with
       the DAO, to determine if the DAO message contains newer
       information that supersedes the information already stored at the
       node.  If so, the node MUST generate a new DAO message and
       transmit it, following the rules in Section 9.5.  Such a change
       includes receiving a No-Path DAO.

   3.  When a node generates a new DAO, it SHOULD unicast it to each of
       its DAO parents.  It MUST NOT unicast the DAO message to nodes
       that are not DAO parents.

   4.  When a node removes a node from its DAO parent set, it SHOULD
       send a No-Path DAO message (Section 6.4.3) to that removed DAO
       parent to invalidate the existing route.

   5.  If messages to an advertised Downward address suffer from a
       forwarding error, Neighbor Unreachable Detection (NUD), or
       similar failure, a node MAY mark the address as unreachable and
       generate an appropriate No-Path DAO.





Winter, et al.               Standards Track                   [Page 85]
^L
RFC 6550                           RPL                        March 2012


   DAOs advertise to which destination addresses and prefixes a node has
   routes.  Unlike in Non-Storing mode, these DAOs do not communicate
   information about the routes themselves: that information is stored
   within the network and is implicit from the IPv6 source address.
   When a storing node generates a DAO, it uses the stored state of DAOs
   it has received to produce a set of RPL Target options and their
   associated Transmit Information options.

   Because this information is stored within each node's routing tables,
   in Storing mode, DAOs are communicated directly to DAO parents, who
   store this information.

9.9.  Path Control

   A DAO message from a node contains one or more Target options.  Each
   Target option specifies either a prefix advertised by the node, a
   prefix of addresses reachable outside the LLN, the address of a
   destination in the node's sub-DODAG, or a multicast group to which a
   node in the sub-DODAG is listening.  The Path Control field of the
   Transit Information option allows nodes to request or allow for
   multiple Downward routes.  A node constructs the Path Control field
   of a Transit Information option as follows:

   1.  The bit width of the Path Control field MUST be equal to the
       value (PCS + 1), where PCS is specified in the control field of
       the DODAG Configuration option.  Bits greater than or equal to
       the value (PCS + 1) MUST be cleared on transmission and MUST be
       ignored on reception.  Bits below that value are considered
       "active" bits.

   2.  The node MUST logically construct groupings of its DAO parents
       while populating the Path Control field, where each group
       consists of DAO parents of equal preference.  Those groups MUST
       then be ordered according to preference, which allows for a
       logical mapping of DAO parents onto Path Control subfields (see
       Figure 27).  Groups MAY be repeated in order to extend over the
       entire bit width of the patch control field, but the order,
       including repeated groups, MUST be retained so that preference is
       properly communicated.

   3.  For a RPL Target option describing a node's own address or a
       prefix outside the LLN, at least one active bit of the Path
       Control field MUST be set.  More active bits of the Path Control
       field MAY be set.







Winter, et al.               Standards Track                   [Page 86]
^L
RFC 6550                           RPL                        March 2012


   4.  If a node receives multiple DAOs with the same RPL Target option,
       it MUST bitwise-OR the Path Control fields it receives.  This
       aggregated bitwise-OR represents the number of Downward routes
       the prefix requests.

   5.  When a node sends a DAO message to one of its DAO parents, it
       MUST select one or more of the bits that are set active in the
       subfield that is mapped to the group containing that DAO parent
       from the aggregated Path Control field.  A given bit can only be
       presented as active to one parent.  The DAO message it transmits
       to its parent MUST have these active bits set and all other
       active bits cleared.

   6.  For the RPL Target option and DAOSequence number, the DAOs a node
       sends to different DAO parents MUST have disjoint sets of active
       Path Control bits.  A node MUST NOT set the same active bit on
       DAOs to two different DAO parents.

   7.  Path Control bits SHOULD be allocated according to the preference
       mapping of DAO parents onto Path Control subfields, such that the
       active Path Control bits, or groupings of bits, that belong to a
       particular Path Control subfield are allocated to DAO parents
       within the group that was mapped to that subfield.

   8.  In a Non-Storing mode of operation, a node MAY pass DAOs through
       without performing any further processing on the Path Control
       field.

   9.  A node MUST NOT unicast a DAO message that has no active bits in
       the Path Control field set.  It is possible that, for a given
       Target option, a node does not have enough aggregate Path Control
       bits to send a DAO message containing that Target to each of its
       DAO parents, in which case those least preferred DAO Parents may
       not get a DAO message for that Target.

   The Path Control field allows a node to bound how many Downward
   routes will be generated to it.  It sets a number of bits in the Path
   Control field equal to the maximum number of Downward routes it
   prefers.  At most, each bit is sent to one DAO parent; clusters of
   bits can be sent to a single DAO parent for it to divide among its
   own DAO parents.

   A node that provisions a DAO route for a Target that has an
   associated Path Control field SHOULD use the content of that Path
   Control field in order to determine an order of preference among
   multiple alternative DAO routes for that Target.  The Path Control
   field assignment is derived from preference (of the DAO parents), as
   determined on the basis of this node's best knowledge of the "end-to-



Winter, et al.               Standards Track                   [Page 87]
^L
RFC 6550                           RPL                        March 2012


   end" aggregated metrics in the Downward direction as per the
   Objective Function.  In Non-Storing mode the root can determine the
   Downward route by aggregating the information from each received DAO,
   which includes the Path Control indications of preferred DAO parents.

9.9.1.  Path Control Example

   Suppose that there is an LLN operating in Storing mode that contains
   a Node N with four parents, P1, P2, P3, and P4.  Let N have three
   children, C1, C2, and C3 in its sub-DODAG.  Let PCS be 7, such that
   there will be 8 active bits in the Path Control field: 11111111b.
   Consider the following example:

   The Path Control field is split into four subfields, PC1 (11000000b),
   PC2 (00110000b), PC3 (00001100b), and PC4 (00000011b), such that
   those four subfields represent four different levels of preference
   per Figure 27.  The implementation at Node N, in this example, groups
   {P1, P2} to be of equal preference to each other and the most
   preferred group overall. {P3} is less preferred to {P1, P2}, and more
   preferred to {P4}.  Let Node N then perform its Path Control mapping
   such that:

              {P1, P2} -> PC1 (11000000b) in the Path Control field
              {P3}     -> PC2 (00110000b) in the Path Control field
              {P4}     -> PC3 (00001100b) in the Path Control field
              {P4}     -> PC4 (00000011b) in the Path Control field

   Note that the implementation repeated {P4} in order to get complete
   coverage of the Path Control field.

   1.   Let C1 send a DAO containing a Target T with a Path Control
        10000000b.  Node N stores an entry associating 10000000b with
        the Path Control field for C1 and Target T.

   2.   Let C2 send a DAO containing a Target T with a Path Control
        00010000b.  Node N stores an entry associating 00010000b with
        the Path Control field for C1 and Target T.

   3.   Let C3 send a DAO containing a Target T with a Path Control
        00001100b.  Node N stores an entry associating 00001100b with
        the Path Control field for C1 and Target T.

   4.   At some later time, Node N generates a DAO for Target T.  Node N
        will construct an aggregate Path Control field by ORing together
        the contribution from each of its children that have given a DAO
        for Target T.  Thus, the aggregate Path Control field has the
        active bits set as: 10011100b.




Winter, et al.               Standards Track                   [Page 88]
^L
RFC 6550                           RPL                        March 2012


   5.   Node N then distributes the aggregate Path Control bits among
        its parents P1, P2, P3, and P4 in order to prepare the DAO
        messages.

   6.   P1 and P2 are eligible to receive active bits from the most
        preferred subfield (11000000b).  Those bits are 10000000b in the
        aggregate Path Control field.  Node N must set the bit to one of
        the two parents only.  In this case, Node P1 is allocated the
        bit and gets the Path Control field 10000000b for its DAO.
        There are no bits left to allocate to Node P2; thus, Node P2
        would have a Path Control field of 00000000b and a DAO cannot be
        generated to Node P2 since there are no active bits.

   7.   The second-most preferred subfield (00110000b) has the active
        bits 00010000b.  Node N has mapped P3 to this subfield.  Node N
        may allocates the active bit to P3, constructing a DAO for P3
        containing Target T with a Path Control of 00010000b.

   8.   The third-most preferred subfield (00001100b) has the active
        bits 00001100b.  Node N has mapped P4 to this subfield.  Node N
        may allocate both bits to P4, constructing a DAO for P4
        containing Target T with a Path Control of 00001100b.

   9.   The least preferred subfield (00000011b) has no active bits.
        Had there been active bits, those bits would have been added to
        the Path Control field of the DAO constructed for P4.

   10.  The process of populating the DAO messages destined for P1, P2,
        P3, P4 with other targets (other than T) proceeds according to
        the aggregate Path Control fields collected for those targets.

9.10.  Multicast Destination Advertisement Messages

   A special case of DAO operation, distinct from unicast DAO operation,
   is multicast DAO operation that may be used to populate '1-hop'
   routing table entries.

   1.  A node MAY multicast a DAO message to the link-local scope all-
       RPL-nodes multicast address.

   2.  A multicast DAO message MUST be used only to advertise
       information about the node itself, i.e., prefixes directly
       connected to or owned by the node, such as a multicast group that
       the node is subscribed to or a global address owned by the node.

   3.  A multicast DAO message MUST NOT be used to relay connectivity
       information learned (e.g., through unicast DAO) from another
       node.



Winter, et al.               Standards Track                   [Page 89]
^L
RFC 6550                           RPL                        March 2012


   4.  A node MUST NOT perform any other DAO-related processing on a
       received multicast DAO message; in particular, a node MUST NOT
       perform the actions of a DAO parent upon receipt of a multicast
       DAO.

   o  The multicast DAO may be used to enable direct P2P communication,
      without needing the DODAG to relay the packets.

10.  Security Mechanisms

   This section describes the generation and processing of secure RPL
   messages.  The high-order bit of the RPL message code identifies
   whether or not a RPL message is secure.  In addition to secure
   versions of basic control messages (DIS, DIO, DAO, DAO-ACK), RPL has
   several messages that are relevant only in networks that are security
   enabled.

   Implementation complexity and size is a core concern for LLNs such
   that it may be economically or physically impossible to include
   sophisticated security provisions in a RPL implementation.
   Furthermore, many deployments can utilize link-layer or other
   security mechanisms to meet their security requirements without
   requiring the use of security in RPL.

   Therefore, the security features described in this document are
   OPTIONAL to implement.  A given implementation MAY support a subset
   (including the empty set) of the described security features, for
   example, it could support integrity and confidentiality, but not
   signatures.  An implementation SHOULD clearly specify which security
   mechanisms are supported, and it is RECOMMENDED that implementers
   carefully consider security requirements and the availability of
   security mechanisms in their network.

10.1.  Security Overview

   RPL supports three security modes:

   o  Unsecured.  In this security mode, RPL uses basic DIS, DIO, DAO,
      and DAO-ACK messages, which do not have Security sections.  As a
      network could be using other security mechanisms, such as link-
      layer security, unsecured mode does not imply all messages are
      sent without any protection.

   o  Preinstalled.  In this security mode, RPL uses secure messages.
      To join a RPL Instance, a node must have a preinstalled key.
      Nodes use this to provide message confidentiality, integrity, and
      authenticity.  A node may, using this preinstalled key, join the
      RPL network as either a host or a router.



Winter, et al.               Standards Track                   [Page 90]
^L
RFC 6550                           RPL                        March 2012


   o  Authenticated.  In this security mode, RPL uses secure messages.
      To join a RPL Instance, a node must have a preinstalled key.
      Nodes use this key to provide message confidentiality, integrity,
      and authenticity.  Using this preinstalled key, a node may join
      the network as a host only.  To join the network as a router, a
      node must obtain a second key from a key authority.  This key
      authority can authenticate that the requester is allowed to be a
      router before providing it with the second key.  Authenticated
      mode cannot be supported by symmetric algorithms.  As of the
      writing of this specification, RPL supports only symmetric
      algorithms: authenticated mode is included for the benefit of
      potential future cryptographic primitives.  See Section 10.3.

   Whether or not the RPL Instance uses unsecured mode is signaled by
   whether it uses secure RPL messages.  Whether a secured network uses
   the preinstalled or authenticated mode is signaled by the 'A' bit of
   the DAG Configuration option.

   This specification specifies CCM -- Counter with CBC-MAC (Cipher
   Block Chaining - Message Authentication Code) -- as the cryptographic
   basis for RPL security [RFC3610].  In this specification, CCM uses
   AES-128 as its underlying cryptographic algorithm.  There are bits
   reserved in the Security section to specify other algorithms in the
   future.

   All secured RPL messages have either a MAC or a signature.
   Optionally, secured RPL messages also have encryption protection for
   confidentiality.  Secured RPL message formats support both integrated
   encryption/authentication schemes (e.g., CCM) as well as schemes that
   separately encrypt and authenticate packets.

10.2.  Joining a Secure Network

   RPL security assumes that a node wishing to join a secured network
   has been pre-configured with a shared key for communicating with
   neighbors and the RPL root.  To join a secure RPL network, a node
   either listens for secure DIOs or triggers secure DIOs by sending a
   secure DIS.  In addition to the DIO/DIS rules in Section 8, secure
   DIO and DIS messages have these rules:

   1.  If sent, this initial secure DIS MUST set the Key Identifier Mode
       field to 0 (00) and MUST set the Security Level field to 1 (001).
       The key used MUST be the pre-configured group key (Key Index
       0x00).

   2.  When a node resets its Trickle timer in response to a secure DIS
       (Section 8.3), the next DIO it transmits MUST be a secure DIO
       with the same security configuration as the secure DIS.  If a



Winter, et al.               Standards Track                   [Page 91]
^L
RFC 6550                           RPL                        March 2012


       node receives multiple secure DIS messages before it transmits a
       DIO, the secure DIO MUST have the same security configuration as
       the last DIS to which it is responding.

   3.  When a node sends a DIO in response to a unicast secure DIS
       (Section 8.3), the DIO MUST be a secure DIO.

   The above rules allow a node to join a secured RPL Instance using the
   pre-configured shared key.  Once a node has joined the DODAG using
   the pre-configured shared key, the 'A' bit of the Configuration
   option determines its capabilities.  If the 'A' bit of the
   Configuration option is cleared, then nodes can use this
   preinstalled, shared key to exchange messages normally: it can issue
   DIOs, DAOs, etc.

   If the 'A' bit of the Configuration option is set and the RPL
   Instance is operating in authenticated mode:

   1.  A node MUST NOT advertise a Rank besides INFINITE_RANK in secure
       DIOs secured with Key Index 0x00.  When processing DIO messages
       secured with Key Index 0x00, a processing node MUST consider the
       advertised Rank to be INFINITE_RANK.  Any other value results in
       the message being discarded.

   2.  Secure DAOs using a Key Index 0x00 MUST NOT have a RPL Target
       option with a prefix besides the node's address.  If a node
       receives a secured DAO message using the preinstalled, shared key
       where the RPL Target option does not match the IPv6 source
       address, it MUST discard the secured DAO message without further
       processing.

   The above rules mean that in RPL Instances where the 'A' bit is set,
   using Key Index 0x00, a node can join the RPL Instance as a host but
   not a router.  A node must communicate with a key authority to obtain
   a key that will enable it to act as a router.

10.3.  Installing Keys

   Authenticated mode requires a would-be router to dynamically install
   new keys once they have joined a network as a host.  Having joined as
   a host, the node uses standard IP messaging to communicate with an
   authorization server, which can provide new keys.

   The protocol to obtain such keys is out of scope for this
   specification and to be elaborated in future specifications.  That
   elaboration is required for RPL to securely operate in authenticated
   mode.




Winter, et al.               Standards Track                   [Page 92]
^L
RFC 6550                           RPL                        March 2012


10.4.  Consistency Checks

   RPL nodes send Consistency Check (CC) messages to protect against
   replay attacks and synchronize counters.

   1.  If a node receives a unicast CC message with the 'R' bit cleared,
       and it is a member of or is in the process of joining the
       associated DODAG, it SHOULD respond with a unicast CC message to
       the sender.  This response MUST have the 'R' bit set, and it MUST
       have the same CC nonce, RPLInstanceID, and DODAGID fields as the
       message it received.

   2.  If a node receives a multicast CC message, it MUST discard the
       message with no further processing.

   Consistency Check messages allow nodes to issue a challenge-response
   to validate a node's current counter value.  Because the CC nonce is
   generated by the challenger, an adversary replaying messages is
   unlikely to be able to generate a correct response.  The counter in
   the Consistency Check response allows the challenger to validate the
   counter values it hears.

10.5.  Counters

   In the simplest case, the counter value is an unsigned integer that a
   node increments by one or more on each secured RPL transmission.  The
   counter MAY represent a timestamp that has the following properties:

   1.  The timestamp MUST be at least six octets long.

   2.  The timestamp MUST be in 1024 Hz (binary millisecond)
       granularity.

   3.  The timestamp start time MUST be January 1, 1970, 12:00:00AM UTC.

   4.  If the counter represents a timestamp, the counter value MUST be
       a value computed as follows.  Let T be the timestamp, S be the
       start time of the key in use, and E be the end time of the key in
       use.  Both S and E are represented using the same three rules as
       the timestamp described above.  If E > T < S, then the counter is
       invalid and a node MUST NOT generate a packet.  Otherwise, the
       counter value is equal to T-S.

   5.  If the counter represents such a timestamp, a node MAY set the
       'T' flag of the Security section of secured RPL packets.

   6.  If the Counter field does not present such a timestamp, then a
       node MUST NOT set the 'T' flag.



Winter, et al.               Standards Track                   [Page 93]
^L
RFC 6550                           RPL                        March 2012


   7.  If a node does not have a local timestamp that satisfies the
       above requirements, it MUST ignore the 'T' flag.

   If a node supports such timestamps and it receives a message with the
   'T' flag set, it MAY apply the temporal check on the received message
   described in Section 10.7.1.  If a node receives a message without
   the 'T' flag set, it MUST NOT apply this temporal check.  A node's
   security policy MAY, for application reasons, include rejecting all
   messages without the 'T' flag set.

   The 'T' flag is present because many LLNs today already maintain
   global time synchronization at sub-millisecond granularity for
   security, application, and other reasons.  Allowing RPL to leverage
   this existing functionality when present greatly simplifies solutions
   to some security problems, such as delay protection.

10.6.  Transmission of Outgoing Packets

   Given an outgoing RPL control packet and the required security
   protection, this section describes how RPL generates the secured
   packet to transmit.  It also describes the order of cryptographic
   operations to provide the required protection.

   The requirement for security protection and the level of security to
   be applied to an outgoing RPL packet shall be determined by the
   node's security policy database.  The configuration of this security
   policy database for outgoing packet processing is implementation
   specific.

   Where secured RPL messages are to be transmitted, a RPL node MUST set
   the Security section (T, Sec, KIM, and LVL) in the outgoing RPL
   packet to describe the protection level and security settings that
   are applied (see Section 6.1).  The Security subfield bit of the RPL
   Message Code field MUST be set to indicate the secure RPL message.

   The counter value used in constructing the AES-128 CCM nonce
   (Figure 31) to secure the outgoing packet MUST be an increment of the
   last counter transmitted to the particular destination address.

   Where security policy specifies the application of delay protection,
   the Timestamp counter used in constructing the CCM nonce to secure
   the outgoing packet MUST be incremented according to the rules in
   Section 10.5.  Where a Timestamp counter is applied (indicated with
   the 'T' flag set), the locally maintained Timestamp counter MUST be
   included as part of the transmitted secured RPL message.






Winter, et al.               Standards Track                   [Page 94]
^L
RFC 6550                           RPL                        March 2012


   The cryptographic algorithm used in securing the outgoing packet
   shall be specified by the node's security policy database and MUST be
   indicated in the value of the Sec field set within the outgoing
   message.

   The security policy for the outgoing packet shall determine the
   applicable KIM and Key Identifier specifying the security key to be
   used for the cryptographic packet processing, including the optional
   use of signature keys (see Section 6.1).  The security policy will
   also specify the algorithm (Algorithm) and level of protection
   (Level) in the form of authentication or authentication and
   encryption, and potential use of signatures that shall apply to the
   outgoing packet.

   Where encryption is applied, a node MUST replace the original packet
   payload with that payload encrypted using the security protection,
   key, and CCM nonce specified in the Security section of the packet.

   All secured RPL messages include integrity protection.  In
   conjunction with the security algorithm processing, a node derives
   either a MAC or signature that MUST be included as part of the
   outgoing secured RPL packet.

10.7.  Reception of Incoming Packets

   This section describes the reception and processing of a secured RPL
   packet.  Given an incoming secured RPL packet, where the Security
   subfield bit of the RPL Message Code field is set, this section
   describes how RPL generates an unencrypted variant of the packet and
   validates its integrity.

   The receiver uses the RPL security control fields to determine the
   necessary packet security processing.  If the described level of
   security for the message type and originator is unknown or does not
   meet locally maintained security policies, a node MUST discard the
   packet without further processing, MAY raise a management alert, and
   MUST NOT send any messages in response.  These policies can include
   security levels, keys used, source identifiers, or the lack of
   timestamp-based counters (as indicated by the 'T' flag).  The
   configuration of the security policy database for incoming packet
   processing is out of scope for this specification (it may, for
   example, be defined through DIO Configuration or through out-of-band
   administrative router configuration).

   Where the message Security Level (LVL) indicates an encrypted RPL
   message, the node uses the key information identified through the KIM
   field as well as the CCM nonce as input to the message payload
   decryption processing.  The CCM nonce shall be derived from the



Winter, et al.               Standards Track                   [Page 95]
^L
RFC 6550                           RPL                        March 2012


   message Counter field and other received and locally maintained
   information (see Section 10.9.1).  The plaintext message contents
   shall be obtained by invoking the inverse cryptographic mode of
   operation specified by the Sec field of the received packet.

   The receiver shall use the CCM nonce and identified key information
   to check the integrity of the incoming packet.  If the integrity
   check fails against the received MAC, a node MUST discard the packet.

   If the received message has an initialized (zero value) counter value
   and the receiver has an incoming counter currently maintained for the
   originator of the message, the receiver MUST initiate a counter
   resynchronization by sending a Consistency Check response message
   (see Section 6.6) to the message source.  The Consistency Check
   response message shall be protected with the current full outgoing
   counter maintained for the particular node address.  That outgoing
   counter will be included within the security section of the message
   while the incoming counter will be included within the Consistency
   Check message payload.

   Based on the specified security policy, a node MAY apply replay
   protection for a received RPL message.  The replay check SHOULD be
   performed before the authentication of the received packet.  The
   counter, as obtained from the incoming packet, shall be compared
   against the watermark of the incoming counter maintained for the
   given origination node address.  If the received message counter
   value is non-zero and less than the maintained incoming counter
   watermark, a potential packet replay is indicated and the node MUST
   discard the incoming packet.

   If delay protection is specified as part of the incoming packet
   security policy checks, the Timestamp counter is used to validate the
   timeliness of the received RPL message.  If the incoming message
   Timestamp counter value indicates a message transmission time prior
   to the locally maintained transmission time counter for the
   originator address, a replay violation is indicated and the node MUST
   discard the incoming packet.  If the received Timestamp counter value
   indicates a message transmission time that is earlier than the
   Current time less the acceptable packet delay, a delay violation is
   indicated and the node MUST discard the incoming packet.

   Once a message has been decrypted, where applicable, and has
   successfully passed its integrity check, replay check, and optionally
   delay-protection checks, the node can update its local security
   information, such as the source's expected counter value for replay
   comparison.





Winter, et al.               Standards Track                   [Page 96]
^L
RFC 6550                           RPL                        March 2012


   A node MUST NOT update its security information on receipt of a
   message that fails security policy checks or other applied integrity,
   replay, or delay checks.

10.7.1.  Timestamp Key Checks

   If the 'T' flag of a message is set and a node has a local timestamp
   that follows the requirements in Section 10.5, then a node MAY check
   the temporal consistency of the message.  The node computes the
   transmit time of the message by adding the counter value to the start
   time of the associated key.  If this transmit time is past the end
   time of the key, the node MAY discard the message without further
   processing.  If the transmit time is too far in the past or future
   compared to the local time on the receiver, it MAY discard the
   message without further processing.

10.8.  Coverage of Integrity and Confidentiality

   For a RPL ICMPv6 message, the entire packet is within the scope of
   RPL security.

   MACs and signatures are calculated over the entire unsecured IPv6
   packet.  When computing MACs and signatures, mutable IPv6 fields are
   considered to be filled with zeroes, following the rules in Section
   3.3.3.1 of [RFC4302] (IPsec Authenticated Header).  MAC and signature
   calculations are performed before any compression that lower layers
   may apply.

   When a RPL ICMPv6 message is encrypted, encryption starts at the
   first byte after the Security section and continues to the last byte
   of the packet.  The IPv6 header, ICMPv6 header, and RPL message up to
   the end of the Security section are not encrypted, as they are needed
   to correctly decrypt the packet.

   For example, a node sending a message with LVL=1, KIM=0, and
   Algorithm=0 uses the CCM algorithm [RFC3610] to create a packet with
   attributes ENC-MAC-32: it encrypts the packet and appends a 32-bit
   MAC.  The block cipher key is determined by the Key Index.  The CCM
   nonce is computed as described in Section 10.9.1; the message to
   authenticate and encrypt is the RPL message starting at the first
   byte after the Security section and ends with the last byte of the
   packet.  The additional authentication data starts with the beginning
   of the IPv6 header and ends with the last byte of the RPL Security
   section.







Winter, et al.               Standards Track                   [Page 97]
^L
RFC 6550                           RPL                        March 2012


10.9.  Cryptographic Mode of Operation

   The cryptographic mode of operation described in this specification
   (Algorithm = 0) is based on CCM and the block-cipher AES-128
   [RFC3610].  This mode of operation is widely supported by existing
   implementations.  CCM mode requires a nonce (CCM nonce).

10.9.1.  CCM Nonce

   A RPL node constructs a CCM nonce as follows:

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       +                       Source Identifier                       +
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                            Counter                            |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |KIM|Resvd| LVL |
       +-+-+-+-+-+-+-+-+

                           Figure 31: CCM Nonce

   Source Identifier: 8 bytes.  Source Identifier is set to the logical
         identifier of the originator of the protected packet.

   Counter: 4 bytes.  Counter is set to the (uncompressed) value of the
         corresponding field in the Security option of the RPL control
         message.

   Key Identifier Mode (KIM): 2 bits.  KIM is set to the value of the
         corresponding field in the Security option of the RPL control
         message.

   Security Level (LVL): 3 bits.  Security Level is set to the value of
         the corresponding field in the Security option of the RPL
         control message.

   Unassigned bits of the CCM nonce are reserved.  They MUST be set to
   zero when constructing the CCM nonce.

   All fields of the CCM nonce are represented in most significant octet
   and most significant bit first order.






Winter, et al.               Standards Track                   [Page 98]
^L
RFC 6550                           RPL                        March 2012


10.9.2.  Signatures

   If the KIM indicates the use of signatures (a value of 3), then a
   node appends a signature to the data payload of the packet.  The
   Security Level (LVL) field describes the length of this signature.
   The signature scheme in RPL for Security Mode 3 is an instantiation
   of the RSA algorithm (RSASSA-PSS) as defined in Section 8.1 of
   [RFC3447].  As public key, it uses the pair (n,e), where n is a
   2048-bit or 3072-bit RSA modulus and where e=2^{16}+1.  It uses CCM
   mode [RFC3610] as the encryption scheme with M=0 (as a stream-
   cipher).  Note that although [RFC3610] disallows the CCM mode with
   M=0, RPL explicitly allows the CCM mode with M=0 when used in
   conjunction with a signature, because the signature provides
   sufficient data authentication.  Here, the CCM mode with M=0 is
   specified as in [RFC3610], but where the M' field in Section 2.2 MUST
   be set to 0.  It uses the SHA-256 hash function specified in Section
   6.2 of [FIPS180].  It uses the message encoding rules of Section 8.1
   of [RFC3447].

   Let 'a' be a concatenation of a 6-byte representation of counter and
   the message header.  The packet payload is the right-concatenation of
   packet data 'm' and the signature 's'.  This signature scheme is
   invoked with the right-concatenation of the message parts a and m,
   whereas the signature verification is invoked with the right-
   concatenation of the message parts a and m and with signature s.

   RSA signatures of this form provide sufficient protection for RPL
   networks.  If needed, alternative signature schemes that produce more
   concise signatures is out of scope for this specification and may be
   the subject of a future specification.

   An implementation that supports RSA signing with either 2048-bit or
   3072-bit signatures SHOULD support verification of both 2048-bit and
   3072-bit RSA signatures.  This is in consideration of providing an
   upgrade path for a RPL deployment.

11.  Packet Forwarding and Loop Avoidance/Detection

11.1.  Suggestions for Packet Forwarding

   This document specifies a routing protocol.  These non-normative
   suggestions are provided to aid in the design of a forwarding
   implementation by illustrating how such an implementation could work
   with RPL.

   When forwarding a packet to a destination, precedence is given to
   selection of a next-hop successor as follows:




Winter, et al.               Standards Track                   [Page 99]
^L
RFC 6550                           RPL                        March 2012


   1.  This specification only covers how a successor is selected from
       the DODAG Version that matches the RPLInstanceID marked in the
       IPv6 header of the packet being forwarded.  Routing outside the
       instance can be done as long as additional rules are put in place
       such as strict ordering of instances and routing protocols to
       protect against loops.  Such rules may be defined in a separate
       document.

   2.  If a local administrative preference favors a route that has been
       learned from a different routing protocol than RPL, then use that
       successor.

   3.  If the packet header specifies a source route by including an RH4
       header as specified in [RFC6554], then use that route.  If the
       node fails to forward the packet with that specified source
       route, then that packet should be dropped.  The node MAY log an
       error.  The node may send an ICMPv6 error in Source Routing
       Header message to the source of the packet (see Section 20.18).

   4.  If there is an entry in the routing table matching the
       destination that has been learned from a multicast destination
       advertisement (e.g., the destination is a one-hop neighbor), then
       use that successor.

   5.  If there is an entry in the routing table matching the
       destination that has been learned from a unicast destination
       advertisement (e.g., the destination is located Down the sub-
       DODAG), then use that successor.  If there are DAO Path Control
       bits associated with multiple successors, then consult the Path
       Control bits to order the successors by preference when choosing.
       If, for a given DAO Path Control bit, multiple successors are
       recorded as having asserted that bit, precedence should be given
       to the successor who most recently asserted that bit.

   6.  If there is a DODAG Version offering a route to a prefix matching
       the destination, then select one of those DODAG parents as a
       successor according to the OF and routing metrics.

   7.  Any other as-yet-unattempted DODAG parent may be chosen for the
       next attempt to forward a unicast packet when no better match
       exists.

   8.  Finally, the packet is dropped.  ICMP Destination Unreachable MAY
       be invoked (an inconsistency is detected).

   Hop Limit MUST be decremented when forwarding per [RFC2460].





Winter, et al.               Standards Track                  [Page 100]
^L
RFC 6550                           RPL                        March 2012


   Note that the chosen successor MUST NOT be the neighbor that was the
   predecessor of the packet (split horizon), except in the case where
   it is intended for the packet to change from an Upward to a Downward
   direction, as determined by the routing table of the node making the
   change, such as switching from DIO routes to DAO routes as the
   destination is neared in order to continue traveling toward the
   destination.

11.2.  Loop Avoidance and Detection

   RPL loop avoidance mechanisms are kept simple and designed to
   minimize churn and states.  Loops may form for a number of reasons,
   e.g., control packet loss.  RPL includes a reactive loop detection
   technique that protects from meltdown and triggers repair of broken
   paths.

   RPL loop detection uses RPL Packet Information that is transported
   within the data packets, relying on an external mechanism such as
   [RFC6553] that places in the RPL Packet Information in an IPv6 Hop-
   by-Hop option header.

   The content of RPL Packet Information is defined as follows:

   Down 'O': 1-bit flag indicating whether the packet is expected to
         progress Up or Down.  A router sets the 'O' flag when the
         packet is expected to progress Down (using DAO routes), and
         clears it when forwarding toward the DODAG root (to a node with
         a lower Rank).  A host or RPL leaf node MUST set the 'O' flag
         to 0.

   Rank-Error 'R': 1-bit flag indicating whether a Rank error was
         detected.  A Rank error is detected when there is a mismatch in
         the relative Ranks and the direction as indicated in the 'O'
         bit.  A host or RPL leaf node MUST set the 'R' bit to 0.

   Forwarding-Error 'F': 1-bit flag indicating that this node cannot
         forward the packet further towards the destination.  The 'F'
         bit might be set by a child node that does not have a route to
         destination for a packet with the Down 'O' bit set.  A host or
         RPL leaf node MUST set the 'F' bit to 0.

   RPLInstanceID: 8-bit field indicating the DODAG instance along which
         the packet is sent.

   SenderRank: 16-bit field set to zero by the source and to
         DAGRank(rank) by a router that forwards inside the RPL network.





Winter, et al.               Standards Track                  [Page 101]
^L
RFC 6550                           RPL                        March 2012


11.2.1.  Source Node Operation

   If the source is aware of the RPLInstanceID that is preferred for the
   packet, then it MUST set the RPLInstanceID field associated with the
   packet accordingly; otherwise, it MUST set it to the
   RPL_DEFAULT_INSTANCE.

11.2.2.  Router Operation

11.2.2.1.  Instance Forwarding

   The RPLInstanceID is associated by the source with the packet.  This
   RPLInstanceID MUST match the RPL Instance onto which the packet is
   placed by any node, be it a host or router.  The RPLInstanceID is
   part of the RPL Packet Information.

   A RPL router that forwards a packet in the RPL network MUST check if
   the packet includes the RPL Packet Information.  If not, then the RPL
   router MUST insert the RPL Packet Information.  If the router is an
   ingress router that injects the packet into the RPL network, the
   router MUST set the RPLInstanceID field in the RPL Packet
   Information.  The details of how that router determines the mapping
   to a RPLInstanceID are out of scope for this specification and left
   to future specification.

   A router that forwards a packet outside the RPL network MUST remove
   the RPL Packet Information.

   When a router receives a packet that specifies a given RPLInstanceID
   and the node can forward the packet along the DODAG associated to
   that instance, then the router MUST do so and leave the RPLInstanceID
   value unchanged.

   If any node cannot forward a packet along the DODAG associated with
   the RPLInstanceID, then the node SHOULD discard the packet and send
   an ICMP error message.

11.2.2.2.  DAG Inconsistency Loop Detection

   The DODAG is inconsistent if the direction of a packet does not match
   the Rank relationship.  A receiver detects an inconsistency if it
   receives a packet with either:

      the 'O' bit set (to Down) from a node of a higher Rank.

      the 'O' bit cleared (for Up) from a node of a lower Rank.





Winter, et al.               Standards Track                  [Page 102]
^L
RFC 6550                           RPL                        March 2012


   When the DODAG root increments the DODAGVersionNumber, a temporary
   Rank discontinuity may form between the next DODAG Version and the
   prior DODAG Version, in particular, if nodes are adjusting their Rank
   in the next DODAG Version and deferring their migration into the next
   DODAG Version.  A router that is still a member of the prior DODAG
   Version may choose to forward a packet to a (future) parent that is
   in the next DODAG Version.  In some cases, this could cause the
   parent to detect an inconsistency because the Rank-ordering in the
   prior DODAG Version is not necessarily the same as in the next DODAG
   Version, and the packet may be judged not to be making forward
   progress.  If the sending router is aware that the chosen successor
   has already joined the next DODAG Version, then the sending router
   MUST update the SenderRank to INFINITE_RANK as it forwards the
   packets across the discontinuity into the next DODAG Version in order
   to avoid a false detection of Rank inconsistency.

   One inconsistency along the path is not considered a critical error
   and the packet may continue.  However, a second detection along the
   path of the same packet should not occur and the packet MUST be
   dropped.

   This process is controlled by the Rank-Error bit associated with the
   packet.  When an inconsistency is detected on a packet, if the Rank-
   Error bit was not set, then the Rank-Error bit is set.  If it was set
   the packet MUST be discarded and the Trickle timer MUST be reset.

11.2.2.3.  DAO Inconsistency Detection and Recovery

   DAO inconsistency loop recovery is a mechanism that applies to
   Storing mode of operation only.

   In Non-Storing mode, the packets are source routed to the
   destination, and DAO inconsistencies are not corrected locally.
   Instead, an ICMP error with a new code "Error in Source Routing
   Header" is sent back to the root.  The "Error in Source Routing
   Header" message has the same format as the "Destination Unreachable
   Message", as specified in [RFC4443].  The portion of the invoking
   packet that is sent back in the ICMP message should record at least
   up to the routing header, and the routing header should be consumed
   by this node so that the destination in the IPv6 header is the next
   hop that this node could not reach.

   A DAO inconsistency happens when a router has a Downward route that
   was previously learned from a DAO message via a child, but that
   Downward route is not longer valid in the child, e.g., because that
   related state in the child has been cleaned up.  With DAO
   inconsistency loop recovery, a packet can be used to recursively
   explore and clean up the obsolete DAO states along a sub-DODAG.



Winter, et al.               Standards Track                  [Page 103]
^L
RFC 6550                           RPL                        March 2012


   In a general manner, a packet that goes Down should never go Up
   again.  If DAO inconsistency loop recovery is applied, then the
   router SHOULD send the packet back to the parent that passed it with
   the Forwarding-Error 'F' bit set and the 'O' bit left untouched.
   Otherwise, the router MUST silently discard the packet.

   Upon receiving a packet with a Forwarding-Error bit set, the node
   MUST remove the routing states that caused forwarding to that
   neighbor, clear the Forwarding-Error bit, and attempt to send the
   packet again.  The packet may be sent to an alternate neighbor, after
   the expiration of a user-configurable implementation-specific timer.
   If that alternate neighbor still has an inconsistent DAO state via
   this node, the process will recurse, this node will set the
   Forwarding-Error 'F' bit, and the routing state in the alternate
   neighbor will be cleaned up as well.

12.  Multicast Operation

   This section describes a multicast routing operation over an IPv6 RPL
   network and, specifically, how unicast DAOs can be used to relay
   group registrations.  The same DODAG construct can be used to forward
   unicast and multicast traffic.  This section is limited to a
   description of how group registrations may be exchanged and how the
   forwarding infrastructure operates.  It does not provide a full
   description of multicast within an LLN and, in particular, does not
   describe the generation of DODAGs specifically targeted at multicast
   or the details of operating RPL for multicast -- that will be the
   subject of further specifications.

   The multicast group registration uses DAO messages that are identical
   to unicast except for the type of address that is transported.  The
   main difference is that the multicast traffic going down is copied to
   all the children that have registered with the multicast group,
   whereas unicast traffic is passed to one child only.

   Nodes that support the RPL Storing mode of operation SHOULD also
   support multicast DAO operations as described below.  Nodes that only
   support the Non-Storing mode of operation are not expected to support
   this section.

   The multicast operation is controlled by the MOP field in the DIO.

   o  If the MOP field requires multicast support, then a node that
      joins the RPL network as a router must operate as described in
      this section for multicast signaling and forwarding within the RPL
      network.  A node that does not support the multicast operation
      required by the MOP field can only join as a leaf.




Winter, et al.               Standards Track                  [Page 104]
^L
RFC 6550                           RPL                        March 2012


   o  If the MOP field does not require multicast support, then
      multicast is handled by some other way that is out of scope for
      this specification.  (Examples may include a series of unicast
      copies or limited-scope flooding).

   A router might select to pass a listener registration DAO message to
   its preferred parent only; in which case, multicast packets coming
   back might be lost for all of its sub-DODAGs if the transmission
   fails over that link.  Alternatively, the router might select copying
   additional parents as it would do for DAO messages advertising
   unicast destinations; in which case, there might be duplicates that
   the router will need to prune.

   As a result, multicast routing states are installed in each router on
   the way from the listeners to the DODAG root, enabling the root to
   copy a multicast packet to all its children routers that had issued a
   DAO message including a Target option for that multicast group.

   For a multicast packet sourced from inside the DODAG, the packet is
   passed to the preferred parents, and if that fails, then to the
   alternates in the DODAG.  The packet is also copied to all the
   registered children, except for the one that passed the packet.
   Finally, if there is a listener in the external infrastructure, then
   the DODAG root has to further propagate the packet into the external
   infrastructure.

   As a result, the DODAG root acts as an automatic proxy Rendezvous
   Point for the RPL network and as source towards the non-RPL domain
   for all multicast flows started in the RPL domain.  So, regardless of
   whether the root is actually attached to a non-RPL domain, and
   regardless of whether the DODAG is grounded or floating, the root can
   serve inner multicast streams at all times.

13.  Maintenance of Routing Adjacency

   The selection of successors, along the default paths Up along the
   DODAG, or along the paths learned from destination advertisements
   Down along the DODAG, leads to the formation of routing adjacencies
   that require maintenance.

   In IGPs, such as OSPF [RFC4915] or IS-IS [RFC5120], the maintenance
   of a routing adjacency involves the use of keepalive mechanisms
   (Hellos) or other protocols such as the Bidirectional Forwarding
   Detection (BFD) [RFC5881] and the MANET Neighborhood Discovery
   Protocol (NHDP) [RFC6130].  Unfortunately, such a proactive approach
   is often not desirable in constrained environments where it would
   lead to excessive control traffic in light of the data traffic with a
   negative impact on both link loads and nodes resources.



Winter, et al.               Standards Track                  [Page 105]
^L
RFC 6550                           RPL                        March 2012


   By contrast with those routing protocols, RPL does not define any
   keepalive mechanisms to detect routing adjacency failures: this is
   because in many cases, such a mechanism would be too expensive in
   terms of bandwidth and, even more importantly, energy (a battery-
   operated device could not afford to send periodic keepalives).  Still
   RPL requires an external mechanisms to detect that a neighbor is no
   longer reachable.  Such a mechanism should preferably be reactive to
   traffic in order to minimize the overhead to maintain the routing
   adjacency and focus on links that are actually being used.

   Example reactive mechanisms that can be used include:

      The Neighbor Unreachability Detection [RFC4861] mechanism.

      Layer 2 triggers [RFC5184] derived from events such as association
      states and L2 acknowledgements.

14.  Guidelines for Objective Functions

   An Objective Function (OF), in conjunction with routing metrics and
   constraints, allows for the selection of a DODAG to join, and a
   number of peers in that DODAG as parents.  The OF is used to compute
   an ordered list of parents.  The OF is also responsible to compute
   the Rank of the device within the DODAG Version.

   The Objective Function is indicated in the DIO message using an
   Objective Code Point (OCP), and it indicates the method that must be
   used to construct the DODAG.  The Objective Code Points are specified
   in [RFC6552] and related companion specifications.

14.1.  Objective Function Behavior

   Most Objective Functions are expected to follow the same abstract
   behavior at a node:

   o  The parent selection is triggered each time an event indicates
      that a potential next-hop information is updated.  This might
      happen upon the reception of a DIO message, a timer elapse, all
      DODAG parents are unavailable, or a trigger indicating that the
      state of a candidate neighbor has changed.

   o  An OF scans all the interfaces on the node.  Although, there may
      typically be only one interface in most application scenarios,
      there might be multiple of them and an interface might be
      configured to be usable or not for RPL operation.  An interface
      can also be configured with a preference or dynamically learned to
      be better than another by some heuristics that might be link-layer
      dependent and are out of scope for this specification.  Finally,



Winter, et al.               Standards Track                  [Page 106]
^L
RFC 6550                           RPL                        March 2012


      an interface might or might not match a required criterion for an
      Objective Function, for instance, a degree of security.  As a
      result, some interfaces might be completely excluded from the
      computation, for example, if those interfaces cannot satisfy some
      advertised constraints, while others might be more or less
      preferred.

   o  An OF scans all the candidate neighbors on the possible interfaces
      to check whether they can act as a router for a DODAG.  There
      might be many of them and a candidate neighbor might need to pass
      some validation tests before it can be used.  In particular, some
      link layers require experience on the activity with a router to
      enable the router as a next hop.

   o  An OF computes Rank of a node for comparison by adding to the Rank
      of the candidate a value representing the relative locations of
      the node and the candidate in the DODAG Version.

      *  The increase in Rank must be at least MinHopRankIncrease.

      *  To keep loop avoidance and metric optimization in alignment,
         the increase in Rank should reflect any increase in the metric
         value.  For example, with a purely additive metric, such as
         ETX, the increase in Rank can be made proportional to the
         increase in the metric.

      *  Candidate neighbors that would cause the Rank of the node to
         increase are not considered for parent selection.

   o  Candidate neighbors that advertise an OF incompatible with the set
      of OFs specified by the policy functions are ignored.

   o  As it scans all the candidate neighbors, the OF keeps the current
      best parent and compares its capabilities with the current
      candidate neighbor.  The OF defines a number of tests that are
      critical to reach the objective.  A test between the routers
      determines an order relation.

      *  If the routers are equal for that relation, then the next test
         is attempted between the routers,

      *  Else the best of the two routers becomes the current best
         parent, and the scan continues with the next candidate
         neighbor.

      *  Some OFs may include a test to compare the Ranks that would
         result if the node joined either router.




Winter, et al.               Standards Track                  [Page 107]
^L
RFC 6550                           RPL                        March 2012


   o  When the scan is complete, the preferred parent is elected and the
      node's Rank is computed as the preferred parent Rank plus the step
      in Rank with that parent.

   o  Other rounds of scans might be necessary to elect alternate
      parents.  In the next rounds:

      *  Candidate neighbors that are not in the same DODAG are ignored.

      *  Candidate neighbors that are of greater Rank than the node are
         ignored.

      *  Candidate neighbors of an equal Rank to the node are ignored
         for parent selection.

      *  Candidate neighbors of a lesser Rank than the node are
         preferred.

15.  Suggestions for Interoperation with Neighbor Discovery

   This specification directly borrows the Prefix Information Option
   (PIO) and the Route Information Option (RIO) from IPv6 ND.  It is
   envisioned that, as future specifications build on this base, there
   may be additional cause to leverage parts of IPv6 ND.  This section
   provides some suggestions for future specifications.

   First and foremost, RPL is a routing protocol.  One should take great
   care to preserve architecture when mapping functionalities between
   RPL and ND.  RPL is for routing only.  That said, there may be
   persuading technical reasons to allow for sharing options between RPL
   and IPv6 ND in a particular implementation/deployment.

   In general, the following guidelines apply:

   o  RPL Type codes must be allocated from the RPL Control Message
      Options registry.

   o  RPL Length fields must be expressed in units of single octets, as
      opposed to ND Length fields, which are expressed in units of 8
      octets.

   o  RPL options are generally not required to be aligned to 8-octet
      boundaries.

   o  When mapping/transposing an IPv6 ND option for redistribution as a
      RPL option, any padding octets should be removed when possible.
      For example, the Prefix Length field in the PIO is sufficient to
      describe the length of the Prefix field.  When mapping/transposing



Winter, et al.               Standards Track                  [Page 108]
^L
RFC 6550                           RPL                        March 2012


      a RPL option for redistribution as an IPv6 ND option, any such
      padding octets should be restored.  This procedure must be
      unambiguous.

16.  Summary of Requirements for Interoperable Implementations

   This section summarizes basic interoperability and references
   normative text for RPL implementations operating in one of three
   major modes.  Implementations are expected to support either no
   Downward routes, Non-Storing mode only, or Storing mode only.  A
   fourth mode, operation as a leaf, is also possible.

   Implementations conforming to this specification may contain
   different subsets of capabilities as appropriate to the application
   scenario.  It is important for the implementer to support a level of
   interoperability consistent with that required by the application
   scenario.  To this end, further guidance may be provided beyond this
   specification (e.g., as applicability statements), and it is
   understood that in some cases such further guidance may override
   portions of this specification.

16.1.  Common Requirements

   In a general case, the greatest level of interoperability may be
   achieved when all of the nodes in a RPL LLN are cooperating to use
   the same MOP, OF, metrics, and constraints, and are thus able to act
   as RPL routers.  When a node is not capable of being a RPL router, it
   may be possible to interoperate in a more limited manner as a RPL
   leaf.

   All RPL implementations need to support the use of RPL Packet
   Information transported within data packets (Section 11.2).  One such
   mechanism is described in [RFC6553].

   RPL implementations will need to support the use of Neighbor
   Unreachability Detection (NUD), or an equivalent mechanism, to
   maintain the reachability of neighboring RPL nodes (Section 8.2.1).
   Alternate mechanisms may be optimized to the constrained capabilities
   of the implementation, such as hints from the link layer.

   This specification provides means to obtain a PIO and thus form an
   IPv6 address.  When that mechanism is used, it may be necessary to
   perform address resolution and duplicate address detection through an
   external process, such as IPv6 ND [RFC4861] or 6LoWPAN ND
   [6LOWPAN-ND].






Winter, et al.               Standards Track                  [Page 109]
^L
RFC 6550                           RPL                        March 2012


16.2.  Operation as a RPL Leaf Node (Only)

   o  An implementation of a leaf node (only) does not ever participate
      as a RPL router.  Interoperable implementations of leaf nodes
      behave as summarized in Section 8.5.

   o  Support of a particular MOP encoding is not required, although if
      the leaf node sends DAO messages to set up Downward routes, the
      leaf node should do so in a manner consistent with the mode of
      operation indicated by the MOP.

   o  Support of a particular OF is not required.

   o  In summary, a leaf node does not generally issue DIO messages, it
      may issue DAO and DIS messages.  A leaf node accepts DIO messages
      though it generally ignores DAO and DIS messages.

16.3.  Operation as a RPL Router

   If further guidance is not available then a RPL router implementation
   MUST at least support the metric-less OF0 [RFC6552].

   For consistent operation a RPL router implementation needs to support
   the MOP in use by the DODAG.

   All RPL routers will need to implement Trickle [RFC6206].

16.3.1.  Support for Upward Routes (Only)

   An implementation of a RPL router that supports only Upward routes
   supports the following:

   o  Upward routes (Section 8)

   o  MOP encoding 0 (Section 20.3)

   o  In summary, DIO and DIS messages are issued, and DAO messages are
      not issued.  DIO and DIS messages are accepted, and DAO messages
      are ignored.

16.3.2.  Support for Upward Routes and Downward Routes in Non-Storing
         Mode

   An implementation of a RPL router that supports Upward routes and
   Downward routes in Non-Storing mode supports the following:

   o  Upward routes (Section 8)




Winter, et al.               Standards Track                  [Page 110]
^L
RFC 6550                           RPL                        March 2012


   o  Downward routes (Non-Storing) (Section 9)

   o  MOP encoding 1 (Section 20.3)

   o  Source-routed Downward traffic ([RFC6554])

   o  In summary, DIO and DIS messages are issued, and DAO messages are
      issued to the DODAG root.  DIO and DIS messages are accepted, and
      DAO messages are ignored by nodes other than DODAG roots.
      Multicast is not supported through the means described in this
      specification, though it may be supported through some alternate
      means.

16.3.3.  Support for Upward Routes and Downward Routes in Storing Mode

   An implementation of a RPL router that supports Upward routes and
   Downward routes in Storing mode supports the following:

   o  Upward routes (Section 8)

   o  Downward routes (Storing) (Section 9)

   o  MOP encoding 2 (Section 20.3)

   o  In summary, DIO, DIS, and DAO messages are issued.  DIO, DIS, and
      DAO messages are accepted.  Multicast is not supported through the
      means described in this specification, though it may be supported
      through some alternate means.

16.3.3.1.  Optional Support for Basic Multicast Scheme

   A Storing mode implementation may be enhanced with basic multicast
   support through the following additions:

   o  Basic Multicast Support (Section 12)

   o  MOP encoding 3 (Section 20.3)

16.4.  Items for Future Specification

   A number of items are left to future specification, including but not
   limited to the following:

   o  How to attach a non-RPL node such as an IPv6 host, e.g., to
      consistently distribute at least PIO material to the attached
      node.





Winter, et al.               Standards Track                  [Page 111]
^L
RFC 6550                           RPL                        March 2012


   o  How to obtain authentication material in support if authenticated
      mode is used (Section 10.3).

   o  Details of operation over multiple simultaneous instances.

   o  Advanced configuration mechanisms, such as the provisioning of
      RPLInstanceIDs, parameterization of Objective Functions, and
      parameters to control security.  (It is expected that such
      mechanisms might extend the DIO as a means to disseminate
      information across the DODAG).

17.  RPL Constants and Variables

   The following is a summary of RPL constants and variables:

   BASE_RANK: This is the Rank for a virtual root that might be used to
         coordinate multiple roots.  BASE_RANK has a value of 0.

   ROOT_RANK: This is the Rank for a DODAG root.  ROOT_RANK has a value
         of MinHopRankIncrease (as advertised by the DODAG root), such
         that DAGRank(ROOT_RANK) is 1.

   INFINITE_RANK: This is the constant maximum for the Rank.
         INFINITE_RANK has a value of 0xFFFF.

   RPL_DEFAULT_INSTANCE: This is the RPLInstanceID that is used by this
         protocol by a node without any overriding policy.
         RPL_DEFAULT_INSTANCE has a value of 0.

   DEFAULT_PATH_CONTROL_SIZE: This is the default value used to
         configure PCS in the DODAG Configuration option, which dictates
         the number of significant bits in the Path Control field of the
         Transit Information option.  DEFAULT_PATH_CONTROL_SIZE has a
         value of 0.  This configures the simplest case limiting the
         fan-out to 1 and limiting a node to send a DAO message to only
         one parent.

   DEFAULT_DIO_INTERVAL_MIN: This is the default value used to configure
         Imin for the DIO Trickle timer.  DEFAULT_DIO_INTERVAL_MIN has a
         value of 3.  This configuration results in Imin of 8 ms.

   DEFAULT_DIO_INTERVAL_DOUBLINGS: This is the default value used to
         configure Imax for the DIO Trickle timer.
         DEFAULT_DIO_INTERVAL_DOUBLINGS has a value of 20.  This
         configuration results in a maximum interval of 2.3 hours.






Winter, et al.               Standards Track                  [Page 112]
^L
RFC 6550                           RPL                        March 2012


   DEFAULT_DIO_REDUNDANCY_CONSTANT: This is the default value used to
         configure k for the DIO Trickle timer.
         DEFAULT_DIO_REDUNDANCY_CONSTANT has a value of 10.  This
         configuration is a conservative value for Trickle suppression
         mechanism.

   DEFAULT_MIN_HOP_RANK_INCREASE: This is the default value of
         MinHopRankIncrease.  DEFAULT_MIN_HOP_RANK_INCREASE has a value
         of 256.  This configuration results in an 8-bit wide integer
         part of Rank.

   DEFAULT_DAO_DELAY: This is the default value for the DelayDAO Timer.
         DEFAULT_DAO_DELAY has a value of 1 second.  See Section 9.5.

   DIO Timer: One instance per DODAG of which a node is a member.
         Expiry triggers DIO message transmission.  A Trickle timer with
         variable interval in [0,
         DIOIntervalMin..2^DIOIntervalDoublings].  See Section 8.3.1

   DAG Version Increment Timer: Up to one instance per DODAG of which
         the node is acting as DODAG root.  May not be supported in all
         implementations.  Expiry triggers increment of
         DODAGVersionNumber, causing a new series of updated DIO message
         to be sent.  Interval should be chosen appropriate to
         propagation time of DODAG and as appropriate to application
         requirements (e.g., response time versus overhead).

   DelayDAO Timer: Up to one timer per DAO parent (the subset of DODAG
         parents chosen to receive destination advertisements) per
         DODAG.  Expiry triggers sending of DAO message to the DAO
         parent.  See Section 9.5

   RemoveTimer: Up to one timer per DAO entry per neighbor (i.e., those
         neighbors that have given DAO messages to this node as a DODAG
         parent).  Expiry may trigger No-Path advertisements or
         immediately deallocate the DAO entry if there are no DAO
         parents.

18.  Manageability Considerations

   The aim of this section is to give consideration to the manageability
   of RPL, and how RPL will be operated in an LLN.  The scope of this
   section is to consider the following aspects of manageability:
   configuration, monitoring, fault management, accounting, and
   performance of the protocol in light of the recommendations set forth
   in [RFC5706].





Winter, et al.               Standards Track                  [Page 113]
^L
RFC 6550                           RPL                        March 2012


18.1.  Introduction

   Most of the existing IETF management standards are MIB modules (data
   models based on the Structure of Management Information (SMI)) to
   monitor and manage networking devices.

   For a number of protocols, the IETF community has used the IETF
   Standard Management Framework, including the Simple Network
   Management Protocol [RFC3410], the Structure of Management
   Information [RFC2578], and MIB data models for managing new
   protocols.

   As pointed out in [RFC5706], the common policy in terms of operation
   and management has been expanded to a policy that is more open to a
   set of tools and management protocols rather than strictly relying on
   a single protocol such as SNMP.

   In 2003, the Internet Architecture Board (IAB) held a workshop on
   Network Management [RFC3535] that discussed the strengths and
   weaknesses of some IETF network management protocols and compared
   them to operational needs, especially configuration.

   One issue discussed was the user-unfriendliness of the binary format
   of SNMP [RFC3410].  In the case of LLNs, it must be noted that at the
   time of writing, the CoRE working group is actively working on
   resource management of devices in LLNs.  Still, it is felt that this
   section provides important guidance on how RPL should be deployed,
   operated, and managed.

   As stated in [RFC5706]:

      A management information model should include a discussion of what
      is manageable, which aspects of the protocol need to be
      configured, what types of operations are allowed, what protocol-
      specific events might occur, which events can be counted, and for
      which events an operator should be notified.

   These aspects are discussed in detail in the following sections.

   RPL will be used on a variety of devices that may have resources such
   as memory varying from a few kilobytes to several hundreds of
   kilobytes and even megabytes.  When memory is highly constrained, it
   may not be possible to satisfy all the requirements listed in this
   section.  Still it is worth listing all of these in an exhaustive
   fashion, and implementers will then determine which of these
   requirements could be satisfied according to the available resources
   on the device.




Winter, et al.               Standards Track                  [Page 114]
^L
RFC 6550                           RPL                        March 2012


18.2.  Configuration Management

   This section discusses the configuration management, listing the
   protocol parameters for which configuration management is relevant.

   Some of the RPL parameters are optional.  The requirements for
   configuration are only applicable for the options that are used.

18.2.1.  Initialization Mode

   "Architectural Principles of the Internet" [RFC1958], Section 3.8,
   states: "Avoid options and parameters whenever possible.  Any options
   and parameters should be configured or negotiated dynamically rather
   than manually".  This is especially true in LLNs where the number of
   devices may be large and manual configuration is infeasible.  This
   has been taken into account in the design of RPL whereby the DODAG
   root provides a number of parameters to the devices joining the
   DODAG, thus avoiding cumbersome configuration on the routers and
   potential sources of misconfiguration (e.g., values of Trickle
   timers, etc.).  Still, there are additional RPL parameters that a RPL
   implementation should allow to be configured, which are discussed in
   this section.

18.2.1.1.  DIS Mode of Operation upon Boot-Up

   When a node is first powered up:

   1.  The node may decide to stay silent, waiting to receive DIO
       messages from DODAG of interest (advertising a supported OF and
       metrics/constraints) and not send any multicast DIO messages
       until it has joined a DODAG.

   2.  The node may decide to send one or more DIS messages (optionally,
       requesting DIO for a specific DODAG) as an initial probe for
       nearby DODAGs, and in the absence of DIO messages in reply after
       some configurable period of time, the node may decide to root a
       floating DODAG and start sending multicast DIO messages.

   A RPL implementation SHOULD allow configuring the preferred mode of
   operation listed above along with the required parameters (in the
   second mode: the number of DIS messages and related timer).

18.2.2.  DIO and DAO Base Message and Options Configuration

   RPL specifies a number of protocol parameters considering the large
   spectrum of applications where it will be used.  That said,
   particular attention has been given to limiting the number of these
   parameters that must be configured on each RPL router.  Instead, a



Winter, et al.               Standards Track                  [Page 115]
^L
RFC 6550                           RPL                        March 2012


   number of the default values can be used, and when required these
   parameters can be provided by the DODAG root thus allowing for
   dynamic parameter setting.

   A RPL implementation SHOULD allow configuring the following routing
   protocol parameters.  As pointed out above, note that a large set of
   parameters is configured on the DODAG root.

18.2.3.  Protocol Parameters to Be Configured on Every Router in the LLN

   A RPL implementation MUST allow configuring the following RPL
   parameters:

   o  RPLInstanceID [DIO message, in DIO Base message].  Although the
      RPLInstanceID must be configured on the DODAG root, it must also
      be configured as a policy on every node in order to determine
      whether or not the node should join a particular DODAG.  Note that
      a second RPLInstanceID can be configured on the node, should it
      become root of a floating DODAG.

   o  List of supported Objective Code Points (OCPs)

   o  List of supported metrics: [RFC6551] specifies a number of metrics
      and constraints used for the DODAG formation.  Thus, a RPL
      implementation should allow configuring the list of metrics that a
      node can accept and understand.  If a DIO is received with a
      metric and/or constraint that is not understood or supported, as
      specified in Section 8.5, the node would join as a leaf node.

   o  Prefix Information, along with valid and preferred lifetime and
      the 'L' and 'A' flags.  [DIO message, Prefix Information Option].
      A RPL implementation SHOULD allow configuring if the Prefix
      Information option must be carried with the DIO message to
      distribute the Prefix Information for autoconfiguration.  In that
      case, the RPL implementation MUST allow the list of prefixes to be
      advertised in the PIO along with the corresponding flags.

   o  Solicited Information [DIS message, in Solicited Information
      option].  Note that a RPL implementation SHOULD allow configuring
      when such messages should be sent and under which circumstances,
      along with the value of the RPLInstance ID, 'V'/'I'/'D' flags.

   o  'K' flag: when a node should set the 'K' flag in a DAO message
      [DAO message, in DAO Base message].

   o  MOP (Mode of Operation) [DIO message, in DIO Base message].





Winter, et al.               Standards Track                  [Page 116]
^L
RFC 6550                           RPL                        March 2012


   o  Route Information (and preference) [DIO message, in Route
      Information option]

18.2.4.  Protocol Parameters to Be Configured on Every Non-DODAG-Root
         Router in the LLN

   A RPL implementation MUST allow configuring the Target prefix [DAO
   message, in RPL Target option].

   Furthermore, there are circumstances where a node may want to
   designate a Target to allow for specific processing of the Target
   (prioritization, etc.).  Such processing rules are out of scope for
   this specification.  When used, a RPL implementation SHOULD allow
   configuring the Target Descriptor on a per-Target basis (for example,
   using access lists).

   A node whose DODAG parent set is empty may become the DODAG root of a
   floating DODAG.  It may also set its DAGPreference such that it is
   less preferred.  Thus, a RPL implementation MUST allow configuring
   the set of actions that the node should initiate in this case:

   o  Start its own (floating) DODAG: the new DODAGID must be configured
      in addition to its DAGPreference.

   o  Poison the broken path (see procedure in Section 8.2.2.5).

   o  Trigger a local repair.

18.2.5.  Parameters to Be Configured on the DODAG Root

   In addition, several other parameters are configured only on the
   DODAG root and advertised in options carried in DIO messages.

   As specified in Section 8.3, a RPL implementation makes use of
   Trickle timers to govern the sending of DIO messages.  The operation
   of the Trickle algorithm is determined by a set of configurable
   parameters, which MUST be configurable and that are then advertised
   by the DODAG root along the DODAG in DIO messages.

   o  DIOIntervalDoublings [DIO message, in DODAG Configuration option]

   o  DIOIntervalMin [DIO message, in DODAG Configuration option]

   o  DIORedundancyConstant [DIO message, in DODAG Configuration option]

   In addition, a RPL implementation SHOULD allow for configuring the
   following set of RPL parameters:




Winter, et al.               Standards Track                  [Page 117]
^L
RFC 6550                           RPL                        March 2012


   o  Path Control Size [DIO message, in DODAG Configuration option]

   o  MinHopRankIncrease [DIO message, in DODAG Configuration option]

   o  The DODAGPreference field [DIO message, DIO Base object]

   o  DODAGID [DIO message, in DIO Base option] and [DAO message, when
      the 'D' flag of the DAO message is set]

   DAG root behavior: in some cases, a node may not want to permanently
   act as a floating DODAG root if it cannot join a grounded DODAG.  For
   example, a battery-operated node may not want to act as a floating
   DODAG root for a long period of time.  Thus, a RPL implementation MAY
   support the ability to configure whether or not a node could act as a
   floating DODAG root for a configured period of time.

   DAG Version Number Increment: a RPL implementation may allow, by
   configuration at the DODAG root, refreshing the DODAG states by
   updating the DODAGVersionNumber.  A RPL implementation SHOULD allow
   configuring whether or not periodic or event triggered mechanisms are
   used by the DODAG root to control DODAGVersionNumber change (which
   triggers a global repair as specified in Section 3.2.2).

18.2.6.  Configuration of RPL Parameters Related to DAO-Based Mechanisms

   DAO messages are optional and used in DODAGs that require Downward
   routing operation.  This section deals with the set of parameters
   related to DAO messages and provides recommendations on their
   configuration.

   As stated in Section 9.5, it is recommended to delay the sending of
   DAO message to DAO parents in order to maximize the chances to
   perform route aggregation.  Upon receiving a DAO message, the node
   should thus start a DelayDAO timer.  The default value is
   DEFAULT_DAO_DELAY.  A RPL implementation MAY allow for configuring
   the DelayDAO timer.

   In a Storing mode of operation, a storing node may increment DTSN in
   order to reliably trigger a set of DAO updates from its immediate
   children, as part of routine routing table updates and maintenance.
   A RPL implementation MAY allow for configuring a set of rules
   specifying the triggers for DTSN increment (manual or event-based).

   When a DAO entry times out or is invalidated, a node SHOULD make a
   reasonable attempt to report a No-Path to each of the DAO parents.
   That number of attempts MAY be configurable.





Winter, et al.               Standards Track                  [Page 118]
^L
RFC 6550                           RPL                        March 2012


   An implementation should support rate-limiting the sending of DAO
   messages.  The related parameters MAY be configurable.

18.2.7.  Configuration of RPL Parameters Related to Security Mechanisms

   As described in Section 10, the security features described in this
   document are optional to implement and a given implementation may
   support a subset (including the empty set) of the described security
   features.

   To this end, an implementation supporting described security features
   may conceptually implement a security policy database.  In support of
   the security mechanisms, a RPL implementation SHOULD allow for
   configuring a subset of the following parameters:

   o  Security Modes accepted [Unsecured mode, Preinstalled mode,
      Authenticated mode]

   o  KIM values accepted [Secure RPL control messages, in Security
      section]

   o  Level values accepted [Secure RPL control messages, in Security
      section]

   o  Algorithm values accepted [Secure RPL control messages, in
      Security section]

   o  Key material in support of Authenticated or Preinstalled key
      modes.

   In addition, a RPL implementation SHOULD allow for configuring a
   DODAG root with a subset of the following parameters:

   o  Level values advertised [Secure DIO message, in Security section]

   o  KIM value advertised [Secure DIO message, in Security section]

   o  Algorithm value advertised [Secure DIO message, in Security
      section]

18.2.8.  Default Values

   This document specifies default values for the following set of RPL
   variables:
      DEFAULT_PATH_CONTROL_SIZE
      DEFAULT_DIO_INTERVAL_MIN
      DEFAULT_DIO_INTERVAL_DOUBLINGS
      DEFAULT_DIO_REDUNDANCY_CONSTANT



Winter, et al.               Standards Track                  [Page 119]
^L
RFC 6550                           RPL                        March 2012


      DEFAULT_MIN_HOP_RANK_INCREASE
      DEFAULT_DAO_DELAY

   It is recommended to specify default values in protocols; that being
   said, as discussed in [RFC5706], default values may make less and
   less sense.  RPL is a routing protocol that is expected to be used in
   a number of contexts where network characteristics such as the number
   of nodes and link and node types are expected to vary significantly.
   Thus, these default values are likely to change with the context and
   as the technology evolves.  Indeed, LLNs' related technology (e.g.,
   hardware, link layers) have been evolving dramatically over the past
   few years and such technologies are expected to change and evolve
   considerably in the coming years.

   The proposed values are not based on extensive best current practices
   and are considered to be conservative.

18.3.  Monitoring of RPL Operation

   Several RPL parameters should be monitored to verify the correct
   operation of the routing protocol and the network itself.  This
   section lists the set of monitoring parameters of interest.

18.3.1.  Monitoring a DODAG Parameters

   A RPL implementation SHOULD provide information about the following
   parameters:

   o  DODAG Version number [DIO message, in DIO Base message]

   o  Status of the 'G' flag [DIO message, in DIO Base message]

   o  Status of the MOP field [DIO message, in DIO Base message]

   o  Value of the DTSN [DIO message, in DIO Base message]

   o  Value of the Rank [DIO message, in DIO Base message]

   o  DAOSequence: Incremented at each unique DAO message, echoed in the
      DAO-ACK message [DAO and DAO-ACK messages]

   o  Route Information [DIO message, Route Information Option] (list of
      IPv6 prefixes per parent along with lifetime and preference]

   o  Trickle parameters:

      *  DIOIntervalDoublings [DIO message, in DODAG Configuration
         option]



Winter, et al.               Standards Track                  [Page 120]
^L
RFC 6550                           RPL                        March 2012


      *  DIOIntervalMin [DIO message, in DODAG Configuration option]

      *  DIORedundancyConstant [DIO message, in DODAG Configuration
         option]

   o  Path Control Size [DIO message, in DODAG Configuration option]

   o  MinHopRankIncrease [DIO message, in DODAG Configuration option]

   Values that may be monitored only on the DODAG root:

   o  Transit Information [DAO, Transit Information option]: A RPL
      implementation SHOULD allow configuring whether the set of
      received Transit Information options should be displayed on the
      DODAG root.  In this case, the RPL database of received Transit
      Information should also contain the Path Sequence, Path Control,
      Path Lifetime, and Parent Address.

18.3.2.  Monitoring a DODAG Inconsistencies and Loop Detection

   Detection of DODAG inconsistencies is particularly critical in RPL
   networks.  Thus, it is recommended for a RPL implementation to
   provide appropriate monitoring tools.  A RPL implementation SHOULD
   provide a counter reporting the number of a times the node has
   detected an inconsistency with respect to a DODAG parent, e.g., if
   the DODAGID has changed.

   When possible more granular information about inconsistency detection
   should be provided.  A RPL implementation MAY provide counters
   reporting the number of following inconsistencies:

   o  Packets received with 'O' bit set (to Down) from a node with a
      higher Rank

   o  Packets received with 'O' bit cleared (to Up) from a node with a
      lower Rank

   o  Number of packets with the 'F' bit set

   o  Number of packets with the 'R' bit set

18.4.  Monitoring of the RPL Data Structures

18.4.1.  Candidate Neighbor Data Structure

   A node in the candidate neighbor list is a node discovered by the
   same means and qualified to potentially become a parent (with high
   enough local confidence).  A RPL implementation SHOULD provide a way



Winter, et al.               Standards Track                  [Page 121]
^L
RFC 6550                           RPL                        March 2012


   to allow for the candidate neighbor list to be monitored with some
   metric reflecting local confidence (the degree of stability of the
   neighbors) as measured by some metrics.

   A RPL implementation MAY provide a counter reporting the number of
   times a candidate neighbor has been ignored, should the number of
   candidate neighbors exceed the maximum authorized value.

18.4.2.  Destination-Oriented Directed Acyclic Graph (DODAG) Table

   For each DODAG, a RPL implementation is expected to keep track of the
   following DODAG table values:

   o  RPLInstanceID

   o  DODAGID

   o  DODAGVersionNumber

   o  Rank

   o  Objective Code Point

   o  A set of DODAG parents

   o  A set of prefixes offered Upward along the DODAG

   o  Trickle timers used to govern the sending of DIO messages for the
      DODAG

   o  List of DAO parents

   o  DTSN

   o  Node status (router versus leaf)

   A RPL implementation SHOULD allow for monitoring the set of
   parameters listed above.

18.4.3.  Routing Table and DAO Routing Entries

   A RPL implementation maintains several information elements related
   to the DODAG and the DAO entries (for storing nodes).  In the case of
   a non-storing node, a limited amount of information is maintained
   (the routing table is mostly reduced to a set of DODAG parents along
   with characteristics of the DODAG as mentioned above); whereas in the
   case of storing nodes, this information is augmented with routing
   entries.



Winter, et al.               Standards Track                  [Page 122]
^L
RFC 6550                           RPL                        March 2012


   A RPL implementation SHOULD allow for the following parameters to be
   monitored:

   o  Next Hop (DODAG parent)

   o  Next Hop Interface

   o  Path metrics value for each DODAG parent

   A DAO Routing Table entry conceptually contains the following
   elements (for storing nodes only):

   o  Advertising Neighbor Information

   o  IPv6 address

   o  Interface ID to which DAO parents has this entry been reported

   o  Retry counter

   o  Logical equivalent of DAO Content:

      *  DAO-Sequence

      *  Path Sequence

      *  DAO Lifetime

      *  DAO Path Control

   o  Destination Prefix (or address or Mcast Group)

   A RPL implementation SHOULD provide information about the state of
   each DAO Routing Table entry states.

18.5.  Fault Management

   Fault management is a critical component used for troubleshooting,
   verification of the correct mode of operation of the protocol, and
   network design; also, it is a key component of network performance
   monitoring.  A RPL implementation SHOULD allow the provision of the
   following information related to fault managements:

   o  Memory overflow along with the cause (e.g., routing tables
      overflow, etc.)

   o  Number of times a packet could not be sent to a DODAG parent
      flagged as valid



Winter, et al.               Standards Track                  [Page 123]
^L
RFC 6550                           RPL                        March 2012


   o  Number of times a packet has been received for which the router
      did not have a corresponding RPLInstanceID

   o  Number of times a local repair procedure was triggered

   o  Number of times a global repair was triggered by the DODAG root

   o  Number of received malformed messages

   o  Number of seconds with packets to forward and no next hop (DODAG
      parent)

   o  Number of seconds without next hop (DODAG parent)

   o  Number of times a node has joined a DODAG as a leaf because it
      received a DIO with a metric/constraint that was not understood
      and it was configured to join as a leaf node in this case (see
      Section 18.6)

   It is RECOMMENDED to report faults via at least error log messages.
   Other protocols may be used to report such faults.

18.6.  Policy

   Policy rules can be used by a RPL implementation to determine whether
   or not the node is allowed to join a particular DODAG advertised by a
   neighbor by means of DIO messages.

   This document specifies operation within a single DODAG.  A DODAG is
   characterized by the following tuple (RPLInstanceID, DODAGID).
   Furthermore, as pointed out above, DIO messages are used to advertise
   other DODAG characteristics such as the routing metrics and
   constraints used to build to the DODAG and the Objective Function in
   use (specified by OCP).

   The first policy rules consist of specifying the following conditions
   that a RPL node must satisfy to join a DODAG:

   o  RPLInstanceID

   o  List of supported routing metrics and constraints

   o  Objective Function (OCP values)

   A RPL implementation MUST allow configuring these parameters and
   SHOULD specify whether the node must simply ignore the DIO if the
   advertised DODAG is not compliant with the local policy or whether
   the node should join as the leaf node if only the list of supported



Winter, et al.               Standards Track                  [Page 124]
^L
RFC 6550                           RPL                        March 2012


   routing metrics and constraints, and the OF is not supported.
   Additionally, a RPL implementation SHOULD allow for the addition of
   the DODAGID as part of the policy.

   A RPL implementation SHOULD allow configuring the set of acceptable
   or preferred Objective Functions (OFs) referenced by their Objective
   Code Points (OCPs) for a node to join a DODAG, and what action should
   be taken if none of a node's candidate neighbors advertise one of the
   configured allowable Objective Functions, or if the advertised
   metrics/constraint is not understood/supported.  Two actions can be
   taken in this case:

   o  The node joins the DODAG as a leaf node as specified in
      Section 8.5.

   o  The node does not join the DODAG.

   A node in an LLN may learn routing information from different routing
   protocols including RPL.  In this case, it is desirable to control,
   via administrative preference, which route should be favored.  An
   implementation SHOULD allow for the specification of an
   administrative preference for the routing protocol from which the
   route was learned.

   Internal Data Structures: some RPL implementations may limit the size
   of the candidate neighbor list in order to bound the memory usage; in
   which case, some otherwise viable candidate neighbors may not be
   considered and simply dropped from the candidate neighbor list.

   A RPL implementation MAY provide an indicator on the size of the
   candidate neighbor list.

18.7.  Fault Isolation

   It is RECOMMENDED to quarantine neighbors that start emitting
   malformed messages at unacceptable rates.

18.8.  Impact on Other Protocols

   RPL has very limited impact on other protocols.  Where more than one
   routing protocol is required on a router, such as an LBR, it is
   expected for the device to support routing redistribution functions
   between the routing protocols to allow for reachability between the
   two routing domains.  Such redistribution SHOULD be governed by the
   use of user configurable policy.






Winter, et al.               Standards Track                  [Page 125]
^L
RFC 6550                           RPL                        March 2012


   With regard to the impact in terms of traffic on the network, RPL has
   been designed to limit the control traffic thanks to mechanisms such
   as Trickle timers (Section 8.3).  Thus, the impact of RPL on other
   protocols should be extremely limited.

18.9.  Performance Management

   Performance management is always an important aspect of a protocol,
   and RPL is not an exception.  Several metrics of interest have been
   specified by the IP Performance Monitoring (IPPM) working group: that
   being said, they will be hardly applicable to LLN considering the
   cost of monitoring these metrics in terms of resources on the devices
   and required bandwidth.  Still, RPL implementations MAY support some
   of these, and other parameters of interest are listed below:

   o  Number of repairs and time to repair in seconds (average,
      variance)

   o  Number of times and time period during which a devices could not
      forward a packet because of a lack of a reachable neighbor in its
      routing table

   o  Monitoring of resources consumption by RPL in terms of bandwidth
      and required memory

   o  Number of RPL control messages sent and received

18.10.  Diagnostics

   There may be situations where a node should be placed in "verbose"
   mode to improve diagnostics.  Thus, a RPL implementation SHOULD
   provide the ability to place a node in and out of verbose mode in
   order to get additional diagnostic information.

19.  Security Considerations

19.1.  Overview

   From a security perspective, RPL networks are no different from any
   other network.  They are vulnerable to passive eavesdropping attacks
   and, potentially, even active tampering when physical access to a
   wire is not required to participate in communications.  The very
   nature of ad hoc networks and their cost objectives impose additional
   security constraints, which perhaps make these networks the most
   difficult environments to secure.  Devices are low-cost and have
   limited capabilities in terms of computing power, available storage,
   and power drain; it cannot always be assumed they have a trusted
   computing base or a high-quality random number generator aboard.



Winter, et al.               Standards Track                  [Page 126]
^L
RFC 6550                           RPL                        March 2012


   Communications cannot rely on the online availability of a fixed
   infrastructure and might involve short-term relationships between
   devices that may never have communicated before.  These constraints
   might severely limit the choice of cryptographic algorithms and
   protocols and influence the design of the security architecture
   because the establishment and maintenance of trust relationships
   between devices need to be addressed with care.  In addition, battery
   lifetime and cost constraints put severe limits on the security
   overhead these networks can tolerate, something that is of far less
   concern with higher bandwidth networks.  Most of these security
   architectural elements can be implemented at higher layers and may,
   therefore, be considered to be out of scope for this specification.
   Special care, however, needs to be exercised with respect to
   interfaces to these higher layers.

   The security mechanisms in this standard are based on symmetric-key
   and public-key cryptography and use keys that are to be provided by
   higher-layer processes.  The establishment and maintenance of these
   keys are out of scope for this specification.  The mechanisms assume
   a secure implementation of cryptographic operations and secure and
   authentic storage of keying material.

   The security mechanisms specified provide particular combinations of
   the following security services:

   Data confidentiality: Assurance that transmitted information is only
         disclosed to parties for which it is intended.

   Data authenticity: Assurance of the source of transmitted information
         (and, hereby, that information was not modified in transit).

   Replay protection: Assurance that a duplicate of transmitted
         information is detected.

   Timeliness (delay protection):  Assurance that transmitted
         information was received in a timely manner.

   The actual protection provided can be adapted on a per-packet basis
   and allows for varying levels of data authenticity (to minimize
   security overhead in transmitted packets where required) and for
   optional data confidentiality.  When nontrivial protection is
   required, replay protection is always provided.

   Replay protection is provided via the use of a non-repeating value
   (CCM nonce) in the packet protection process and storage of some
   status information (originating device and the CCM nonce counter last
   received from that device), which allows detection of whether this
   particular CCM nonce value was used previously by the originating



Winter, et al.               Standards Track                  [Page 127]
^L
RFC 6550                           RPL                        March 2012


   device.  In addition, so-called delay protection is provided amongst
   those devices that have a loosely synchronized clock on board.  The
   acceptable time delay can be adapted on a per-packet basis and allows
   for varying latencies (to facilitate longer latencies in packets
   transmitted over a multi-hop communication path).

   Cryptographic protection may use a key shared between two peer
   devices (link key) or a key shared among a group of devices (group
   key), thus allowing some flexibility and application-specific trade-
   offs between key storage and key maintenance costs versus the
   cryptographic protection provided.  If a group key is used for peer-
   to-peer communication, protection is provided only against outsider
   devices and not against potential malicious devices in the key-
   sharing group.

   Data authenticity may be provided using symmetric-key-based or
   public-key-based techniques.  With public-key-based techniques (via
   signatures), one corroborates evidence as to the unique originator of
   transmitted information, whereas with symmetric-key-based techniques,
   data authenticity is only provided relative to devices in a key-
   sharing group.  Thus, public-key-based authentication may be useful
   in scenarios that require a more fine-grained authentication than can
   be provided with symmetric-key-based authentication techniques alone,
   such as with group communications (broadcast, multicast) or in
   scenarios that require non-repudiation.

20.  IANA Considerations

20.1.  RPL Control Message

   The RPL control message is an ICMP information message type that is
   to be used carry DODAG Information Objects, DODAG Information
   Solicitations, and Destination Advertisement Objects in support of
   RPL operation.

   IANA has defined an ICMPv6 Type Number Registry.  The type value for
   the RPL control message is 155.

20.2.  New Registry for RPL Control Codes

   IANA has created a registry, RPL Control Codes, for the Code field of
   the ICMPv6 RPL control message.

   New codes may be allocated only by an IETF Review.  Each code is
   tracked with the following qualities:

   o  Code




Winter, et al.               Standards Track                  [Page 128]
^L
RFC 6550                           RPL                        March 2012


   o  Description

   o  Defining RFC

   The following codes are currently defined:

   +------+----------------------------------------------+-------------+
   | Code | Description                                  | Reference   |
   +------+----------------------------------------------+-------------+
   | 0x00 | DODAG Information Solicitation               | This        |
   |      |                                              | document    |
   |      |                                              |             |
   | 0x01 | DODAG Information Object                     | This        |
   |      |                                              | document    |
   |      |                                              |             |
   | 0x02 | Destination Advertisement Object             | This        |
   |      |                                              | document    |
   |      |                                              |             |
   | 0x03 | Destination Advertisement Object             | This        |
   |      | Acknowledgment                               | document    |
   |      |                                              |             |
   | 0x80 | Secure DODAG Information Solicitation        | This        |
   |      |                                              | document    |
   |      |                                              |             |
   | 0x81 | Secure DODAG Information Object              | This        |
   |      |                                              | document    |
   |      |                                              |             |
   | 0x82 | Secure Destination Advertisement Object      | This        |
   |      |                                              | document    |
   |      |                                              |             |
   | 0x83 | Secure Destination Advertisement Object      | This        |
   |      | Acknowledgment                               | document    |
   |      |                                              |             |
   | 0x8A | Consistency Check                            | This        |
   |      |                                              | document    |
   +------+----------------------------------------------+-------------+

                             RPL Control Codes

20.3.  New Registry for the Mode of Operation (MOP)

   IANA has created a registry for the 3-bit Mode of Operation (MOP),
   which is contained in the DIO Base.

   New values may be allocated only by an IETF Review.  Each value is
   tracked with the following qualities:

   o  Mode of Operation Value



Winter, et al.               Standards Track                  [Page 129]
^L
RFC 6550                           RPL                        March 2012


   o  Capability description

   o  Defining RFC

   Four values are currently defined:

   +----------+------------------------------------------+-------------+
   |    MOP   | Description                              | Reference   |
   |   value  |                                          |             |
   +----------+------------------------------------------+-------------+
   |     0    | No Downward routes maintained by RPL     | This        |
   |          |                                          | document    |
   |          |                                          |             |
   |     1    | Non-Storing Mode of Operation            | This        |
   |          |                                          | document    |
   |          |                                          |             |
   |     2    | Storing Mode of Operation with no        | This        |
   |          | multicast support                        | document    |
   |          |                                          |             |
   |     3    | Storing Mode of Operation with multicast | This        |
   |          | support                                  | document    |
   +----------+------------------------------------------+-------------+

                           DIO Mode of Operation

   The rest of the range, decimal 4 to 7, is currently unassigned.

20.4.  RPL Control Message Options

   IANA has created a registry for the RPL Control Message Options.

   New values may be allocated only by an IETF Review.  Each value is
   tracked with the following qualities:

   o  Value

   o  Meaning

   o  Defining RFC












Winter, et al.               Standards Track                  [Page 130]
^L
RFC 6550                           RPL                        March 2012


             +-------+-----------------------+---------------+
             | Value | Meaning               | Reference     |
             +-------+-----------------------+---------------+
             |  0x00 | Pad1                  | This document |
             |       |                       |               |
             |  0x01 | PadN                  | This document |
             |       |                       |               |
             |  0x02 | DAG Metric Container  | This Document |
             |       |                       |               |
             |  0x03 | Routing Information   | This Document |
             |       |                       |               |
             |  0x04 | DODAG Configuration   | This Document |
             |       |                       |               |
             |  0x05 | RPL Target            | This Document |
             |       |                       |               |
             |  0x06 | Transit Information   | This Document |
             |       |                       |               |
             |  0x07 | Solicited Information | This Document |
             |       |                       |               |
             |  0x08 | Prefix Information    | This Document |
             |       |                       |               |
             |  0x09 | Target Descriptor     | This Document |
             +-------+-----------------------+---------------+

                        RPL Control Message Options

20.5.  Objective Code Point (OCP) Registry

   IANA has created a registry to manage the codespace of the Objective
   Code Point (OCP) field.

   No OCPs are defined in this specification.

   New codes may be allocated only by an IETF Review.  Each code is
   tracked with the following qualities:

   o  Code

   o  Description

   o  Defining RFC

20.6.  New Registry for the Security Section Algorithm

   IANA has created a registry for the values of the 8-bit Algorithm
   field in the Security section.





Winter, et al.               Standards Track                  [Page 131]
^L
RFC 6550                           RPL                        March 2012


   New values may be allocated only by an IETF Review.  Each value is
   tracked with the following qualities:

   o  Value

   o  Encryption/MAC

   o  Signature

   o  Defining RFC

   The following value is currently defined:

      +-------+------------------+------------------+---------------+
      | Value | Encryption/MAC   | Signature        | Reference     |
      +-------+------------------+------------------+---------------+
      |   0   | CCM with AES-128 | RSA with SHA-256 | This document |
      +-------+------------------+------------------+---------------+

                        Security Section Algorithm

20.7.  New Registry for the Security Section Flags

   IANA has created a registry for the 8-bit Security Section Flags
   field.

   New bit numbers may be allocated only by an IETF Review.  Each bit is
   tracked with the following qualities:

   o  Bit number (counting from bit 0 as the most significant bit)

   o  Capability description

   o  Defining RFC

   No bit is currently defined for the Security Section Flags field.

20.8.  New Registry for Per-KIM Security Levels

   IANA has created one registry for the 3-bit Security Level (LVL)
   field per allocated KIM value.

   For a given KIM value, new levels may be allocated only by an IETF
   Review.  Each level is tracked with the following qualities:

   o  Level

   o  KIM value



Winter, et al.               Standards Track                  [Page 132]
^L
RFC 6550                           RPL                        March 2012


   o  Description

   o  Defining RFC

   The following levels per KIM value are currently defined:

           +-------+-----------+---------------+---------------+
           | Level | KIM value | Description   | Reference     |
           +-------+-----------+---------------+---------------+
           |   0   |     0     | See Figure 11 | This document |
           |       |           |               |               |
           |   1   |     0     | See Figure 11 | This document |
           |       |           |               |               |
           |   2   |     0     | See Figure 11 | This document |
           |       |           |               |               |
           |   3   |     0     | See Figure 11 | This document |
           |       |           |               |               |
           |   0   |     1     | See Figure 11 | This document |
           |       |           |               |               |
           |   1   |     1     | See Figure 11 | This document |
           |       |           |               |               |
           |   2   |     1     | See Figure 11 | This document |
           |       |           |               |               |
           |   3   |     1     | See Figure 11 | This document |
           |       |           |               |               |
           |   0   |     2     | See Figure 11 | This document |
           |       |           |               |               |
           |   1   |     2     | See Figure 11 | This document |
           |       |           |               |               |
           |   2   |     2     | See Figure 11 | This document |
           |       |           |               |               |
           |   3   |     2     | See Figure 11 | This document |
           |       |           |               |               |
           |   0   |     3     | See Figure 11 | This document |
           |       |           |               |               |
           |   1   |     3     | See Figure 11 | This document |
           |       |           |               |               |
           |   2   |     3     | See Figure 11 | This document |
           |       |           |               |               |
           |   3   |     3     | See Figure 11 | This document |
           +-------+-----------+---------------+---------------+

                          Per-KIM Security Levels

20.9.  New Registry for DODAG Informational Solicitation (DIS) Flags

   IANA has created a registry for the DIS (DODAG Informational
   Solicitation) Flags field.



Winter, et al.               Standards Track                  [Page 133]
^L
RFC 6550                           RPL                        March 2012


   New bit numbers may be allocated only by an IETF Review.  Each bit is
   tracked with the following qualities:

   o  Bit number (counting from bit 0 as the most significant bit)

   o  Capability description

   o  Defining RFC

   No bit is currently defined for the DIS (DODAG Informational
   Solicitation) Flags field.

20.10.  New Registry for the DODAG Information Object (DIO) Flags

   IANA has created a registry for the 8-bit DODAG Information Object
   (DIO) Flags field.

   New bit numbers may be allocated only by an IETF Review.  Each bit is
   tracked with the following qualities:

   o  Bit number (counting from bit 0 as the most significant bit)

   o  Capability description

   o  Defining RFC

   No bit is currently defined for the DIS (DODAG Informational
   Solicitation) Flags.

20.11.  New Registry for the Destination Advertisement Object (DAO)
        Flags

   IANA has created a registry for the 8-bit Destination Advertisement
   Object (DAO) Flags field.

   New bit numbers may be allocated only by an IETF Review.  Each bit is
   tracked with the following qualities:

   o  Bit number (counting from bit 0 as the most significant bit)

   o  Capability description

   o  Defining RFC








Winter, et al.               Standards Track                  [Page 134]
^L
RFC 6550                           RPL                        March 2012


   The following bits are currently defined:

       +------------+------------------------------+---------------+
       | Bit number | Description                  | Reference     |
       +------------+------------------------------+---------------+
       |      0     | DAO-ACK request (K)          | This document |
       |            |                              |               |
       |      1     | DODAGID field is present (D) | This document |
       +------------+------------------------------+---------------+

                              DAO Base Flags

20.12.  New Registry for the Destination Advertisement Object (DAO)
        Acknowledgement Flags

   IANA has created a registry for the 8-bit Destination Advertisement
   Object (DAO) Acknowledgement Flags field.

   New bit numbers may be allocated only by an IETF Review.  Each bit is
   tracked with the following qualities:

   o  Bit number (counting from bit 0 as the most significant bit)

   o  Capability description

   o  Defining RFC

   The following bit is currently defined:

       +------------+------------------------------+---------------+
       | Bit number | Description                  | Reference     |
       +------------+------------------------------+---------------+
       |      0     | DODAGID field is present (D) | This document |
       +------------+------------------------------+---------------+

                            DAO-ACK Base Flags

20.13.  New Registry for the Consistency Check (CC) Flags

   IANA has created a registry for the 8-bit Consistency Check (CC)
   Flags field.

   New bit numbers may be allocated only by an IETF Review.  Each bit is
   tracked with the following qualities:

   o  Bit number (counting from bit 0 as the most significant bit)

   o  Capability description



Winter, et al.               Standards Track                  [Page 135]
^L
RFC 6550                           RPL                        March 2012


   o  Defining RFC

   The following bit is currently defined:

             +------------+-----------------+---------------+
             | Bit number | Description     | Reference     |
             +------------+-----------------+---------------+
             |      0     | CC Response (R) | This document |
             +------------+-----------------+---------------+

                       Consistency Check Base Flags

20.14.  New Registry for the DODAG Configuration Option Flags

   IANA has created a registry for the 8-bit DODAG Configuration Option
   Flags field.

   New bit numbers may be allocated only by an IETF Review.  Each bit is
   tracked with the following qualities:

   o  Bit number (counting from bit 0 as the most significant bit)

   o  Capability description

   o  Defining RFC

   The following bits are currently defined:

        +------------+----------------------------+---------------+
        | Bit number | Description                | Reference     |
        +------------+----------------------------+---------------+
        |      4     | Authentication Enabled (A) | This document |
        |     5-7    | Path Control Size (PCS)    | This document |
        +------------+----------------------------+---------------+

                     DODAG Configuration Option Flags

20.15.  New Registry for the RPL Target Option Flags

   IANA has created a registry for the 8-bit RPL Target Option Flags
   field.

   New bit numbers may be allocated only by an IETF Review.  Each bit is
   tracked with the following qualities:

   o  Bit number (counting from bit 0 as the most significant bit)

   o  Capability description



Winter, et al.               Standards Track                  [Page 136]
^L
RFC 6550                           RPL                        March 2012


   o  Defining RFC

   No bit is currently defined for the RPL Target Option Flags.

20.16.  New Registry for the Transit Information Option Flags

   IANA has created a registry for the 8-bit Transit Information Option
   (TIO) Flags field.

   New bit numbers may be allocated only by an IETF Review.  Each bit is
   tracked with the following qualities:

   o  Bit number (counting from bit 0 as the most significant bit)

   o  Capability description

   o  Defining RFC

   The following bits are currently defined:

               +------------+--------------+---------------+
               | Bit number | Description  | Reference     |
               +------------+--------------+---------------+
               |      0     | External (E) | This document |
               +------------+--------------+---------------+

                     Transit Information Option Flags

20.17.  New Registry for the Solicited Information Option Flags

   IANA has created a registry for the 8-bit Solicited Information
   Option (SIO) Flags field.

   New bit numbers may be allocated only by an IETF Review.  Each bit is
   tracked with the following qualities:

   o  Bit number (counting from bit 0 as the most significant bit)

   o  Capability description

   o  Defining RFC










Winter, et al.               Standards Track                  [Page 137]
^L
RFC 6550                           RPL                        March 2012


   The following bits are currently defined:

      +------------+--------------------------------+---------------+
      | Bit number | Description                    | Reference     |
      +------------+--------------------------------+---------------+
      |      0     | Version Predicate match (V)    | This document |
      |            |                                |               |
      |      1     | InstanceID Predicate match (I) | This document |
      |            |                                |               |
      |      2     | DODAGID Predicate match (D)    | This document |
      +------------+--------------------------------+---------------+

                    Solicited Information Option Flags

20.18.  ICMPv6: Error in Source Routing Header

   In some cases RPL will return an ICMPv6 error message when a message
   cannot be delivered as specified by its source routing header.  This
   ICMPv6 error message is "Error in Source Routing Header".

   IANA has defined an ICMPv6 "Code" Fields Registry for ICMPv6 Message
   Types.  ICMPv6 Message Type 1 describes "Destination Unreachable"
   codes.  The "Error in Source Routing Header" code is has been
   allocated from the ICMPv6 Code Fields Registry for ICMPv6 Message
   Type 1, with a code value of 7.

20.19.  Link-Local Scope Multicast Address

   The rules for assigning new IPv6 multicast addresses are defined in
   [RFC3307].  This specification requires the allocation of a new
   permanent multicast address with a link-local scope for RPL nodes
   called all-RPL-nodes, with a value of ff02::1a.

21.  Acknowledgements

   The authors would like to acknowledge the review, feedback, and
   comments from Emmanuel Baccelli, Dominique Barthel, Yusuf Bashir,
   Yoav Ben-Yehezkel, Phoebus Chen, Quynh Dang, Mischa Dohler, Mathilde
   Durvy, Joakim Eriksson, Omprakash Gnawali, Manhar Goindi, Mukul
   Goyal, Ulrich Herberg, Anders Jagd, JeongGil (John) Ko, Ajay Kumar,
   Quentin Lampin, Jerry Martocci, Matteo Paris, Alexandru Petrescu,
   Joseph Reddy, Michael Richardson, Don Sturek, Joydeep Tripathi, and
   Nicolas Tsiftes.

   The authors would like to acknowledge the guidance and input provided
   by the ROLL Chairs, David Culler and JP. Vasseur, and the Area
   Director, Adrian Farrel.




Winter, et al.               Standards Track                  [Page 138]
^L
RFC 6550                           RPL                        March 2012


   The authors would like to acknowledge prior contributions of Robert
   Assimiti, Mischa Dohler, Julien Abeille, Ryuji Wakikawa, Teco Boot,
   Patrick Wetterwald, Bryan Mclaughlin, Carlos J. Bernardos, Thomas
   Watteyne, Zach Shelby, Caroline Bontoux, Marco Molteni, Billy Moon,
   Jim Bound, Yanick Pouffary, Henning Rogge, and Arsalan Tavakoli, who
   have provided useful design considerations to RPL.

   RPL Security Design, found in Section 10, Section 19, and elsewhere
   throughout the document, is primarily the contribution of the
   Security Design Team: Tzeta Tsao, Roger Alexander, Dave Ward, Philip
   Levis, Kris Pister, Rene Struik, and Adrian Farrel.

   Thanks also to Jari Arkko and Ralph Droms for their attentive
   reviews, especially with respect to interoperability considerations
   and integration with other IETF specifications.

22.  Contributors

   Stephen Dawson-Haggerty
   UC Berkeley
   Soda Hall
   Berkeley, CA  94720
   USA

   EMail: stevedh@cs.berkeley.edu

23.  References

23.1.  Normative References

   [RFC2119]     Bradner, S., "Key words for use in RFCs to Indicate
                 Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2460]     Deering, S. and R. Hinden, "Internet Protocol, Version
                 6 (IPv6) Specification", RFC 2460, December 1998.

   [RFC3447]     Jonsson, J. and B. Kaliski, "Public-Key Cryptography
                 Standards (PKCS) #1: RSA Cryptography Specifications
                 Version 2.1", RFC 3447, February 2003.

   [RFC4191]     Draves, R. and D. Thaler, "Default Router Preferences
                 and More-Specific Routes", RFC 4191, November 2005.

   [RFC4302]     Kent, S., "IP Authentication Header", RFC 4302,
                 December 2005.






Winter, et al.               Standards Track                  [Page 139]
^L
RFC 6550                           RPL                        March 2012


   [RFC4443]     Conta, A., Deering, S., and M. Gupta, "Internet Control
                 Message Protocol (ICMPv6) for the Internet Protocol
                 Version 6 (IPv6) Specification", RFC 4443, March 2006.

   [RFC4861]     Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
                 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
                 September 2007.

   [RFC4862]     Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
                 Address Autoconfiguration", RFC 4862, September 2007.

   [RFC6206]     Levis, P., Clausen, T., Hui, J., Gnawali, O., and J.
                 Ko, "The Trickle Algorithm", RFC 6206, March 2011.

   [RFC6275]     Perkins, C., Johnson, D., and J. Arkko, "Mobility
                 Support in IPv6", RFC 6275, July 2011.

   [RFC6551]     Vasseur, JP., Ed., Kim, M., Ed., Pister, K., Dejean,
                 N., and D. Barthel, "Routing Metrics Used for Path
                 Calculation in Low-Power and Lossy Networks", RFC 6551,
                 March 2012.

   [RFC6552]     Thubert, P., Ed., "Objective Function Zero for the
                 Routing Protocol for Low-Power and Lossy Networks
                 (RPL)", RFC 6552, March 2012.

   [RFC6553]     Hui, J. and JP. Vasseur, "The Routing Protocol for Low-
                 Power and Lossy Networks (RPL) Option for Carrying RPL
                 Information in Data-Plane Datagrams", RFC 6553,
                 March 2012.

   [RFC6554]     Hui, J., Vasseur, JP., Culler, D., and V. Manral, "An
                 IPv6 Routing Header for Source Routes with the Routing
                 Protocol for Low-Power and Lossy Networks (RPL)",
                 RFC 6554, March 2012.

23.2.  Informative References

   [6LOWPAN-ND]  Shelby, Z., Ed., Chakrabarti, S., and E. Nordmark,
                 "Neighbor Discovery Optimization for Low Power and
                 Lossy Networks (6LoWPAN)", Work in Progress,
                 October 2011.

   [FIPS180]     National Institute of Standards and Technology, "FIPS
                 Pub 180-3, Secure Hash Standard (SHS)", US Department
                 of Commerce , February 2008,
                 <http://www.nist.gov/itl/upload/fips180-3_final.pdf>.




Winter, et al.               Standards Track                  [Page 140]
^L
RFC 6550                           RPL                        March 2012


   [Perlman83]   Perlman, R., "Fault-Tolerant Broadcast of Routing
                 Information", North-Holland Computer Networks,
                 Vol.7: p. 395-405, December 1983.

   [RFC1958]     Carpenter, B., "Architectural Principles of the
                 Internet", RFC 1958, June 1996.

   [RFC1982]     Elz, R. and R. Bush, "Serial Number Arithmetic",
                 RFC 1982, August 1996.

   [RFC2578]     McCloghrie, K., Ed., Perkins, D., Ed., and J.
                 Schoenwaelder, Ed., "Structure of Management
                 Information Version 2 (SMIv2)", STD 58, RFC 2578,
                 April 1999.

   [RFC3307]     Haberman, B., "Allocation Guidelines for IPv6 Multicast
                 Addresses", RFC 3307, August 2002.

   [RFC3410]     Case, J., Mundy, R., Partain, D., and B. Stewart,
                 "Introduction and Applicability Statements for
                 Internet-Standard Management Framework", RFC 3410,
                 December 2002.

   [RFC3535]     Schoenwaelder, J., "Overview of the 2002 IAB Network
                 Management Workshop", RFC 3535, May 2003.

   [RFC3610]     Whiting, D., Housley, R., and N. Ferguson, "Counter
                 with CBC-MAC (CCM)", RFC 3610, September 2003.

   [RFC3819]     Karn, P., Bormann, C., Fairhurst, G., Grossman, D.,
                 Ludwig, R., Mahdavi, J., Montenegro, G., Touch, J., and
                 L. Wood, "Advice for Internet Subnetwork Designers",
                 BCP 89, RFC 3819, July 2004.

   [RFC4101]     Rescorla, E. and IAB, "Writing Protocol Models",
                 RFC 4101, June 2005.

   [RFC4915]     Psenak, P., Mirtorabi, S., Roy, A., Nguyen, L., and P.
                 Pillay-Esnault, "Multi-Topology (MT) Routing in OSPF",
                 RFC 4915, June 2007.

   [RFC5120]     Przygienda, T., Shen, N., and N. Sheth, "M-ISIS: Multi
                 Topology (MT) Routing in Intermediate System to
                 Intermediate Systems (IS-ISs)", RFC 5120,
                 February 2008.






Winter, et al.               Standards Track                  [Page 141]
^L
RFC 6550                           RPL                        March 2012


   [RFC5184]     Teraoka, F., Gogo, K., Mitsuya, K., Shibui, R., and K.
                 Mitani, "Unified Layer 2 (L2) Abstractions for Layer 3
                 (L3)-Driven Fast Handover", RFC 5184, May 2008.

   [RFC5548]     Dohler, M., Watteyne, T., Winter, T., and D. Barthel,
                 "Routing Requirements for Urban Low-Power and Lossy
                 Networks", RFC 5548, May 2009.

   [RFC5673]     Pister, K., Thubert, P., Dwars, S., and T. Phinney,
                 "Industrial Routing Requirements in Low-Power and Lossy
                 Networks", RFC 5673, October 2009.

   [RFC5706]     Harrington, D., "Guidelines for Considering Operations
                 and Management of New Protocols and Protocol
                 Extensions", RFC 5706, November 2009.

   [RFC5826]     Brandt, A., Buron, J., and G. Porcu, "Home Automation
                 Routing Requirements in Low-Power and Lossy Networks",
                 RFC 5826, April 2010.

   [RFC5867]     Martocci, J., De Mil, P., Riou, N., and W. Vermeylen,
                 "Building Automation Routing Requirements in Low-Power
                 and Lossy Networks", RFC 5867, June 2010.

   [RFC5881]     Katz, D. and D. Ward, "Bidirectional Forwarding
                 Detection (BFD) for IPv4 and IPv6 (Single Hop)",
                 RFC 5881, June 2010.

   [RFC6130]     Clausen, T., Dearlove, C., and J. Dean, "Mobile Ad Hoc
                 Network (MANET) Neighborhood Discovery Protocol
                 (NHDP)", RFC 6130, April 2011.

   [ROLL-TERMS]  Vasseur, J., "Terminology in Low power And Lossy
                 Networks", Work in Progress, September 2011.

















Winter, et al.               Standards Track                  [Page 142]
^L
RFC 6550                           RPL                        March 2012


Appendix A.  Example Operation

   This appendix provides some examples to illustrate the dissemination
   of addressing information and prefixes with RPL.  The examples depict
   information being distributed with PIOs and RIOs and the use of DIO
   and DAO messages.  Note that this appendix is not normative, and that
   the specific details of a RPL addressing plan and autoconfiguration
   may vary according to specific implementations.  RPL merely provides
   a vehicle for disseminating information that may be built upon and
   used by other mechanisms.

   Note that these examples illustrate use of address autoconfiguration
   schemes supported by information distributed within RPL.  However, if
   an implementation includes another address autoconfiguration scheme,
   RPL nodes might be configured not to set the 'A' flag in PIO options,
   though the PIO can still be used to distribute prefix and addressing
   information.

A.1.  Example Operation in Storing Mode with Node-Owned Prefixes

   Figure 32 illustrates the logical addressing architecture of a simple
   RPL network operating in Storing mode.  In this example, each Node,
   A, B, C, and D, owns its own prefix and makes that prefix available
   for address autoconfiguration by on-link devices.  (This is conveyed
   by setting the 'A' flag and the 'L' flag in the PIO of the DIO
   messages).  Node A owns the prefix A::/64, Node B owns B::/64, and so
   on.  Node B autoconfigures an on-link address with respect to Node A,
   A::B.  Nodes C and D similarly autoconfigure on-link addresses from
   Node B's prefix, B::C and B::D, respectively.  Nodes have the option
   of setting the 'R' flag and publishing their address within the
   Prefix field of the PIO.




















Winter, et al.               Standards Track                  [Page 143]
^L
RFC 6550                           RPL                        March 2012


                              +-------------+
                              |    Root     |
                              |             |
                              |   Node A    |
                              |             |
                              |    A::A     |
                              +------+------+
                                     |
                                     |
                                     |
                              +------+------+
                              |    A::B     |
                              |             |
                              |   Node B    |
                              |             |
                              |    B::B     |
                              +------+------+
                                     |
                                     |
                      .--------------+--------------.
                     /                               \
                    /                                 \
            +------+------+                     +------+------+
            |    B::C     |                     |    B::D     |
            |             |                     |             |
            |   Node C    |                     |   Node D    |
            |             |                     |             |
            |    C::C     |                     |    D::D     |
            +-------------+                     +-------------+


             Figure 32: Storing Mode with Node-Owned Prefixes

A.1.1.  DIO Messages and PIO

   Node A, for example, will send DIO messages with a PIO as follows:
   'A' flag:       Set
   'L' flag:       Set
   'R' flag:       Clear
   Prefix Length:  64
   Prefix:         A::

   Node B, for example, will send DIO messages with a PIO as follows:
   'A' flag:       Set
   'L' flag:       Set
   'R' flag:       Set
   Prefix Length:  64
   Prefix:         B::B



Winter, et al.               Standards Track                  [Page 144]
^L
RFC 6550                           RPL                        March 2012


   Node C, for example, will send DIO messages with a PIO as follows:
   'A' flag:       Set
   'L' flag:       Set
   'R' flag:       Clear
   Prefix Length:  64
   Prefix:         C::

   Node D, for example, will send DIO messages with a PIO as follows:
   'A' flag:       Set
   'L' flag:       Set
   'R' flag:       Set
   Prefix Length:  64
   Prefix:         D::D

A.1.2.  DAO Messages

   Node B will send DAO messages to Node A with the following
   information:
       o  Target B::/64
       o  Target C::/64
       o  Target D::/64

   Node C will send DAO messages to Node B with the following
   information:
       o  Target C::/64

   Node D will send DAO messages to Node B with the following
   information:

       o  Target D::/64

A.1.3.  Routing Information Base

   Node A will conceptually collect the following information into its
   Routing Information Base (RIB):
       o  A::/64 connected
       o  B::/64 via B's link local
       o  C::/64 via B's link local
       o  D::/64 via B's link local

   Node B will conceptually collect the following information into its
   RIB:
       o  ::/0 via A's link local
       o  B::/64 connected
       o  C::/64 via C's link local
       o  D::/64 via D's link local





Winter, et al.               Standards Track                  [Page 145]
^L
RFC 6550                           RPL                        March 2012


   Node C will conceptually collect the following information into its
   RIB:
       o  ::/0 via B's link local
       o  C::/64 connected

   Node D will conceptually collect the following information into its
   RIB:
       o  ::/0 via B's link local
       o  D::/64 connected

A.2.  Example Operation in Storing Mode with Subnet-Wide Prefix

   Figure 33 illustrates the logical addressing architecture of a simple
   RPL network operating in Storing mode.  In this example, the root
   Node A sources a prefix that is used for address autoconfiguration
   over the entire RPL subnet.  (This is conveyed by setting the 'A'
   flag and clearing the 'L' flag in the PIO of the DIO messages.)
   Nodes A, B, C, and D all autoconfigure to the prefix A::/64.  Nodes
   have the option of setting the 'R' flag and publishing their address
   within the Prefix field of the PIO.































Winter, et al.               Standards Track                  [Page 146]
^L
RFC 6550                           RPL                        March 2012


                              +-------------+
                              |    Root     |
                              |             |
                              |   Node A    |
                              |    A::A     |
                              |             |
                              +------+------+
                                     |
                                     |
                                     |
                              +------+------+
                              |             |
                              |   Node B    |
                              |    A::B     |
                              |             |
                              +------+------+
                                     |
                                     |
                      .--------------+--------------.
                     /                               \
                    /                                 \
            +------+------+                     +------+------+
            |             |                     |             |
            |   Node C    |                     |   Node D    |
            |    A::C     |                     |    A::D     |
            |             |                     |             |
            +-------------+                     +-------------+

              Figure 33: Storing Mode with Subnet-Wide Prefix

A.2.1.  DIO Messages and PIO

   Node A, for example, will send DIO messages with a PIO as follows:
   'A' flag:       Set
   'L' flag:       Clear
   'R' flag:       Clear
   Prefix Length:  64
   Prefix:         A::

   Node B, for example, will send DIO messages with a PIO as follows:
   'A' flag:       Set
   'L' flag:       Clear
   'R' flag:       Set
   Prefix Length:  64
   Prefix:         A::B






Winter, et al.               Standards Track                  [Page 147]
^L
RFC 6550                           RPL                        March 2012


   Node C, for example, will send DIO messages with a PIO as follows:
   'A' flag:       Set
   'L' flag:       Clear
   'R' flag:       Clear
   Prefix Length:  64
   Prefix:         A::

   Node D, for example, will send DIO messages with a PIO as follows:
   'A' flag:       Set
   'L' flag:       Clear
   'R' flag:       Set
   Prefix Length:  64
   Prefix:         A::D

A.2.2.  DAO Messages

   Node B will send DAO messages to Node A with the following
   information:
       o  Target A::B/128
       o  Target A::C/128
       o  Target A::D/128

   Node C will send DAO messages to Node B with the following
   information:
       o  Target A::C/128

   Node D will send DAO messages to Node B with the following
   information:
       o  Target A::D/128

A.2.3.  Routing Information Base

   Node A will conceptually collect the following information into its
   RIB:
       o  A::A/128 connected
       o  A::B/128 via B's link local
       o  A::C/128 via B's link local
       o  A::D/128 via B's link local

   Node B will conceptually collect the following information into its
   RIB:
       o  ::/0 via A's link local
       o  A::B/128 connected
       o  A::C/128 via C's link local
       o  A::D/128 via D's link local






Winter, et al.               Standards Track                  [Page 148]
^L
RFC 6550                           RPL                        March 2012


   Node C will conceptually collect the following information into its
   RIB:
       o  ::/0 via B's link local
       o  A::C/128 connected

   Node D will conceptually collect the following information into its
   RIB:
       o  ::/0 via B's link local
       o  A::D/128 connected

A.3.  Example Operation in Non-Storing Mode with Node-Owned Prefixes

   Figure 34 illustrates the logical addressing architecture of a simple
   RPL network operating in Non-Storing mode.  In this example, each
   Node, A, B, C, and D, owns its own prefix, and makes that prefix
   available for address autoconfiguration by on-link devices.  (This is
   conveyed by setting the 'A' flag and the 'L' flag in the PIO of the
   DIO messages.)  Node A owns the prefix A::/64, Node B owns B::/64,
   and so on.  Node B autoconfigures an on-link address with respect to
   Node A, A::B.  Nodes C and D similarly autoconfigure on-link
   addresses from Node B's prefix, B::C and B::D, respectively.  Nodes
   have the option of setting the 'R' flag and publishing their address
   within the Prefix field of the PIO.




























Winter, et al.               Standards Track                  [Page 149]
^L
RFC 6550                           RPL                        March 2012


                              +-------------+
                              |    Root     |
                              |             |
                              |   Node A    |
                              |             |
                              |    A::A     |
                              +------+------+
                                     |
                                     |
                                     |
                              +------+------+
                              |    A::B     |
                              |             |
                              |   Node B    |
                              |             |
                              |    B::B     |
                              +------+------+
                                     |
                                     |
                      .--------------+--------------.
                     /                               \
                    /                                 \
            +------+------+                     +------+------+
            |    B::C     |                     |    B::D     |
            |             |                     |             |
            |   Node C    |                     |   Node D    |
            |             |                     |             |
            |    C::C     |                     |    D::D     |
            +-------------+                     +-------------+

           Figure 34: Non-Storing Mode with Node-Owned Prefixes

A.3.1.  DIO Messages and PIO

   The PIO contained in the DIO messages in the Non-Storing mode with
   node-owned prefixes can be considered to be identical to those in the
   Storing mode with node-owned prefixes case (Appendix A.1.1).

A.3.2.  DAO Messages

   Node B will send DAO messages to Node A with the following
   information:

       o  Target B::/64, Transit A::B

   Node C will send DAO messages to Node A with the following
   information:
       o  Target C::/64, Transit B::C



Winter, et al.               Standards Track                  [Page 150]
^L
RFC 6550                           RPL                        March 2012


   Node D will send DAO messages to Node A with the following
   information:
       o  Target D::/64, Transit B::D

A.3.3.  Routing Information Base

   Node A will conceptually collect the following information into its
   RIB.  Note that Node A has enough information to construct source
   routes by doing recursive lookups into the RIB:
       o  A::/64 connected
       o  B::/64 via A::B
       o  C::/64 via B::C
       o  D::/64 via B::D

   Node B will conceptually collect the following information into its
   RIB:
       o  ::/0 via A's link local
       o  B::/64 connected

   Node C will conceptually collect the following information into its
   RIB:
       o  ::/0 via B's link local
       o  C::/64 connected

   Node D will conceptually collect the following information into its
   RIB:
       o  ::/0 via B's link local
       o  D::/64 connected

A.4.  Example Operation in Non-Storing Mode with Subnet-Wide Prefix

   Figure 35 illustrates the logical addressing architecture of a simple
   RPL network operating in Non-Storing mode.  In this example, the root
   Node A sources a prefix that is used for address autoconfiguration
   over the entire RPL subnet.  (This is conveyed by setting the 'A'
   flag and clearing the 'L' flag in the PIO of the DIO messages.)
   Nodes A, B, C, and D all autoconfigure to the prefix A::/64.  Nodes
   must set the 'R' flag and publish their address within the Prefix
   field of the PIO, in order to inform their children which address to
   use in the transit option.











Winter, et al.               Standards Track                  [Page 151]
^L
RFC 6550                           RPL                        March 2012


                              +-------------+
                              |    Root     |
                              |             |
                              |   Node A    |
                              |    A::A     |
                              |             |
                              +------+------+
                                     |
                                     |
                                     |
                              +------+------+
                              |             |
                              |   Node B    |
                              |    A::B     |
                              |             |
                              +------+------+
                                     |
                                     |
                      .--------------+--------------.
                     /                               \
                    /                                 \
            +------+------+                     +------+------+
            |             |                     |             |
            |   Node C    |                     |   Node D    |
            |    A::C     |                     |    A::D     |
            |             |                     |             |
            +-------------+                     +-------------+

            Figure 35: Non-Storing Mode with Subnet-Wide Prefix

A.4.1.  DIO Messages and PIO

   Node A, for example, will send DIO messages with a PIO as follows:
   'A' flag:       Set
   'L' flag:       Clear
   'R' flag:       Set
   Prefix Length:  64
   Prefix:         A::A

   Node B, for example, will send DIO messages with a PIO as follows:
   'A' flag:       Set
   'L' flag:       Clear
   'R' flag:       Set
   Prefix Length:  64
   Prefix:         A::B






Winter, et al.               Standards Track                  [Page 152]
^L
RFC 6550                           RPL                        March 2012


   Node C, for example, will send DIO messages with a PIO as follows:
   'A' flag:       Set
   'L' flag:       Clear
   'R' flag:       Set
   Prefix Length:  64
   Prefix:         A::C

   Node D, for example, will send DIO messages with a PIO as follows:
   'A' flag:       Set
   'L' flag:       Clear
   'R' flag:       Set
   Prefix Length:  64
   Prefix:         A::D

A.4.2.  DAO Messages

   Node B will send DAO messages to Node A with the following
   information:
       o  Target A::B/128, Transit A::A

   Node C will send DAO messages to Node A with the following
   information:
       o  Target A::C/128, Transit A::B

   Node D will send DAO messages to Node A with the following
   information:
       o  Target A::D/128, Transit A::B

A.4.3.  Routing Information Base

   Node A will conceptually collect the following information into its
   RIB.  Note that Node A has enough information to construct source
   routes by doing recursive lookups into the RIB:
       o  A::A/128 connected
       o  A::B/128 via A::A
       o  A::C/128 via A::B
       o  A::D/128 via A::B

   Node B will conceptually collect the following information into its
   RIB:
       o  ::/0 via A's link local
       o  A::B/128 connected

   Node C will conceptually collect the following information into its
   RIB:
       o  ::/0 via B's link local
       o  A::C/128 connected




Winter, et al.               Standards Track                  [Page 153]
^L
RFC 6550                           RPL                        March 2012


   Node D will conceptually collect the following information into its
   RIB:
       o  ::/0 via B's link local
       o  A::D/128 connected

A.5.  Example with External Prefixes

   Consider the simple network illustrated in Figure 36.  In this
   example, there are a group of routers participating in a RPL network:
   a DODAG root, Nodes A, Y, and Z.  The DODAG root and Node Z also have
   connectivity to different external network domains (i.e., external to
   the RPL network).  Note that those external networks could be RPL
   networks or another type of network altogether.


                          RPL Network        +-------------------+
                           RPL::/64          |                   |
                                             |     External      |
              [RPL::Root]    (Root)----------+      Prefix       |
                               |             |    EXT_1::/64     |
                               |             |                   |
                               |             +-------------------+
                 [RPL::A]     (A)
                               :
                               :
                               :
                 [RPL::Y]     (Y)
                               |             +-------------------+
                               |             |                   |
                               |             |     External      |
                 [RPL::Z]     (Z)------------+      Prefix       |
                               :             |    EXT_2::/64     |
                               :             |                   |
                               :             +-------------------+

                     Figure 36: Simple Network Example

   In this example, the DODAG root makes a prefix available to the RPL
   subnet for address autoconfiguration.  Here, the entire RPL subnet
   uses that same prefix, RPL::/64, for address autoconfiguration,
   though in other implementations more complex/hybrid schemes could be
   employed.

   The DODAG root has connectivity to an external (with respect to that
   RPL network) prefix EXT_1::/64.  The DODAG root may have learned of
   connectivity to this prefix, for example, via explicit configuration
   or IPv6 ND on a non-RPL interface.  The DODAG root is configured to
   announce information on the connectivity to this prefix.



Winter, et al.               Standards Track                  [Page 154]
^L
RFC 6550                           RPL                        March 2012


   Similarly, Node Z has connectivity to an external prefix EXT_2::/64.
   Node Z also has a sub-DODAG underneath of it.

   1.  The DODAG root adds a RIO to its DIO messages.  The RIO contains
       the external prefix EXT_1::/64.  This information may be repeated
       in the DIO messages emitted by the other nodes within the DODAG.
       Thus, the reachability to the prefix EXT_1::/64 is disseminated
       down the DODAG.

   2.  Node Z may advertise reachability to the Target network
       EXT_2::/64 by sending DAO messages using EXT_2::/64 as a Target
       in the Target option and itself (Node Z) as a parent in the
       Transit Information option.  (In Storing mode, that Transit
       Information option does not need to contain the address of Node
       Z).  A non-storing root then becomes aware of the 1-hop link
       (Node Z -- EXT_2::/64) for use in constructing source routes.
       Node Z may additionally advertise its reachability to EXT_2::/64
       to nodes in its sub-DODAG by sending DIO messages with a PIO,
       with the 'A' flag cleared.
































Winter, et al.               Standards Track                  [Page 155]
^L
RFC 6550                           RPL                        March 2012


Authors' Addresses

   Tim Winter (editor)

   EMail: wintert@acm.org


   Pascal Thubert (editor)
   Cisco Systems
   Village d'Entreprises Green Side
   400, Avenue de Roumanille
   Batiment T3
   Biot - Sophia Antipolis  06410
   France

   Phone: +33 497 23 26 34
   EMail: pthubert@cisco.com


   Anders Brandt
   Sigma Designs
   Emdrupvej 26A, 1.
   Copenhagen  DK-2100
   Denmark

   EMail: abr@sdesigns.dk


   Jonathan W. Hui
   Arch Rock Corporation
   501 2nd St., Suite 410
   San Francisco, CA  94107
   USA

   EMail: jhui@archrock.com


   Richard Kelsey
   Ember Corporation
   Boston, MA
   USA

   Phone: +1 617 951 1225
   EMail: kelsey@ember.com







Winter, et al.               Standards Track                  [Page 156]
^L
RFC 6550                           RPL                        March 2012


   Philip Levis
   Stanford University
   358 Gates Hall, Stanford University
   Stanford, CA  94305-9030
   USA

   EMail: pal@cs.stanford.edu


   Kris Pister
   Dust Networks
   30695 Huntwood Ave.
   Hayward, CA  94544
   USA

   EMail: kpister@dustnetworks.com


   Rene Struik
   Struik Security Consultancy

   EMail: rstruik.ext@gmail.com


   JP. Vasseur
   Cisco Systems
   11, Rue Camille Desmoulins
   Issy Les Moulineaux  92782
   France

   EMail: jpv@cisco.com


   Roger K. Alexander
   Cooper Power Systems
   20201 Century Blvd., Suite 250
   Germantown, MD  20874
   USA

   Phone: +1 240 454 9817
   EMail: roger.alexander@cooperindustries.com










Winter, et al.               Standards Track                  [Page 157]
^L