summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc6690.txt
blob: 37209dfcbda91cc415d84c21bc2c5326ef55c5d8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
Internet Engineering Task Force (IETF)                         Z. Shelby
Request for Comments: 6690                                     Sensinode
Category: Standards Track                                    August 2012
ISSN: 2070-1721


          Constrained RESTful Environments (CoRE) Link Format

Abstract

   This specification defines Web Linking using a link format for use by
   constrained web servers to describe hosted resources, their
   attributes, and other relationships between links.  Based on the HTTP
   Link Header field defined in RFC 5988, the Constrained RESTful
   Environments (CoRE) Link Format is carried as a payload and is
   assigned an Internet media type.  "RESTful" refers to the
   Representational State Transfer (REST) architecture.  A well-known
   URI is defined as a default entry point for requesting the links
   hosted by a server.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc6690.

Copyright Notice

   Copyright (c) 2012 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.



Shelby                       Standards Track                    [Page 1]
^L
RFC 6690                    CoRE Link Format                 August 2012


Table of Contents

   1. Introduction ....................................................3
      1.1. Web Linking in CoRE ........................................3
      1.2. Use Cases ..................................................4
           1.2.1. Discovery ...........................................4
           1.2.2. Resource Collections ................................5
           1.2.3. Resource Directory ..................................5
      1.3. Terminology ................................................6
   2. Link Format .....................................................6
      2.1. Target and Context URIs ....................................8
      2.2. Link Relations .............................................8
      2.3. Use of Anchors .............................................9
   3. CoRE Link Attributes ............................................9
      3.1. Resource Type 'rt' Attribute ...............................9
      3.2. Interface Description 'if' Attribute ......................10
      3.3. Maximum Size Estimate 'sz' Attribute ......................10
   4. Well-Known Interface ...........................................10
      4.1. Query Filtering ...........................................12
   5. Examples .......................................................13
   6. Security Considerations ........................................15
   7. IANA Considerations ............................................16
      7.1. Well-Known 'core' URI .....................................16
      7.2. New 'hosts' Relation Type .................................16
      7.3. New 'link-format' Internet Media Type .....................17
      7.4. Constrained RESTful Environments (CoRE) Parameters
           Registry ..................................................18
   8. Acknowledgments ................................................19
   9. References .....................................................20
      9.1. Normative References ......................................20
      9.2. Informative References ....................................20




















Shelby                       Standards Track                    [Page 2]
^L
RFC 6690                    CoRE Link Format                 August 2012


1.  Introduction

   The Constrained RESTful Environments (CoRE) realizes the
   Representational State Transfer (REST) architecture [REST] in a
   suitable form for the most constrained nodes (e.g., 8-bit
   microcontrollers with limited memory) and networks (e.g., IPv6 over
   Low-Power Wireless Personal Area Networks (6LoWPANs) [RFC4919]).
   CoRE is aimed at Machine-to-Machine (M2M) applications such as smart
   energy and building automation.

   The discovery of resources hosted by a constrained server is very
   important in machine-to-machine applications where there are no
   humans in the loop and static interfaces result in fragility.  The
   discovery of resources provided by an HTTP [RFC2616] web server is
   typically called "Web Discovery" and the description of relations
   between resources is called "Web Linking" [RFC5988].  In the present
   specification, we refer to the discovery of resources hosted by a
   constrained web server, their attributes, and other resource
   relations as CoRE Resource Discovery.

   The main function of such a discovery mechanism is to provide
   Universal Resource Identifiers (URIs, called links) for the resources
   hosted by the server, complemented by attributes about those
   resources and possible further link relations.  In CoRE, this
   collection of links is carried as a resource of its own (as opposed
   to HTTP headers delivered with a specific resource).  This document
   specifies a link format for use in CoRE Resource Discovery by
   extending the HTTP Link Header format [RFC5988] to describe these
   link descriptions.  The CoRE Link Format is carried as a payload and
   is assigned an Internet media type.  A well-known relative URI
   "/.well-known/core" is defined as a default entry point for
   requesting the list of links about resources hosted by a server and
   thus performing CoRE Resource Discovery.  This specification is
   applicable for use with Constrained Application Protocol (CoAP)
   [COAP], HTTP, or any other suitable web transfer protocol.  The link
   format can also be saved in file format.

1.1.  Web Linking in CoRE

   Technically, the CoRE Link Format is a serialization of a typed link
   as specified in [RFC5988], used to describe relationships between
   resources, so-called "Web Linking".  In this specification, Web
   Linking is extended with specific constrained M2M attributes; links
   are carried as a message payload rather than in an HTTP Link Header
   field, and a default interface is defined to discover resources
   hosted by a server.  This specification also defines a new relation





Shelby                       Standards Track                    [Page 3]
^L
RFC 6690                    CoRE Link Format                 August 2012


   type "hosts" (from the verb "to host"), which indicates that the
   resource is hosted by the server from which the link document was
   requested.

   In HTTP, the Link Header can be used to carry link information about
   a resource along with an HTTP response.  This works well for the
   typical use case for a web server and browser, where further
   information about a particular resource is useful after accessing it.
   In CoRE, the main use case for Web Linking is the discovery of which
   resources a server hosts in the first place.  Although some resources
   may have further links associated with them, this is expected to be
   an exception.  For that reason, the CoRE Link Format serialization is
   carried as a resource representation of a well-known URI.  The CoRE
   Link Format does reuse the format of the HTTP Link Header
   serialization defined in [RFC5988].

1.2.  Use Cases

   Typical use cases for Web Linking on today's web include, e.g.,
   describing the author of a web page or describing relations between
   web pages (next chapter, previous chapter, etc.).  Web Linking can
   also be applied to M2M applications, where typed links are used to
   assist a machine client in finding and understanding how to use
   resources on a server.  In this section a few use cases are described
   for how the CoRE Link Format could be used in M2M applications.  For
   further technical examples, see Section 5.  As there is a large range
   of M2M applications, these use cases are purposely generic.  This
   specification assumes that different deployments or application
   domains will define the appropriate REST Interface Descriptions along
   with Resource Types to make discovery meaningful.

1.2.1.  Discovery

   In M2M applications, for example, home or building automation, there
   is a need for local clients and servers to find and interact with
   each other without human intervention.  The CoRE Link Format can be
   used by servers in such environments to enable Resource Discovery of
   the resources hosted by the server.

   Resource Discovery can be performed either unicast or multicast.
   When a server's IP address is already known, either a priori or
   resolved via the Domain Name System (DNS) [RFC1034][RFC1035], unicast
   discovery is performed in order to locate the entry point to the
   resource of interest.  In this specification, this is performed using
   a GET to "/.well-known/core" on the server, which returns a payload
   in the CoRE Link Format.  A client would then match the appropriate
   Resource Type, Interface Description, and possible media type




Shelby                       Standards Track                    [Page 4]
^L
RFC 6690                    CoRE Link Format                 August 2012


   [RFC2045] for its application.  These attributes may also be included
   in the query string in order to filter the number of links returned
   in a response.

   Multicast Resource Discovery is useful when a client needs to locate
   a resource within a limited scope, and that scope supports IP
   multicast.  A GET request to the appropriate multicast address is
   made for "/.well-known/core".  In order to limit the number and size
   of responses, a query string is recommended with the known
   attributes.  Typically, a resource would be discovered based on its
   Resource Type and/or Interface Description, along with possible
   application-specific attributes.

1.2.2.  Resource Collections

   RESTful designs of M2M interfaces often make use of collections of
   resources.  For example, an index of temperature sensors on a data
   collection node or a list of alarms on a home security controller.
   The CoRE Link Format can be used to make it possible to find the
   entry point to a collection and traverse its members.  The entry
   point of a collection would always be included in "/.well-known/core"
   to enable its discovery.  The members of the collection can be
   defined either through the Interface Description of the resource
   along with a parameter resource for the size of the collection or by
   using the link format to describe each resource in the collection.
   These links could be located under "/.well-known/core" or hosted, for
   example, in the root resource of the collection.

1.2.3.  Resource Directory

   In many deployment scenarios, for example, constrained networks with
   sleeping servers or large M2M deployments with bandwidth limited
   access networks, it makes sense to deploy resource directory entities
   that store links to resources stored on other servers.  Think of this
   as a limited search engine for constrained M2M resources.

   The CoRE Link Format can be used by a server to register resources
   with a resource directory or to allow a resource directory to poll
   for resources.  Resource registration can be achieved by having each
   server POST their resources to "/.well-known/core" on the resource
   directory.  This, in turn, adds links to the resource directory under
   an appropriate resource.  These links can then be discovered by any
   client by making a request to a resource directory lookup interface.








Shelby                       Standards Track                    [Page 5]
^L
RFC 6690                    CoRE Link Format                 August 2012


1.3.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   specification are to be interpreted as described in [RFC2119].

   This specification makes use of the Augmented Backus-Naur Form (ABNF)
   [RFC5234] notation, including the core rules defined in Appendix B of
   that document.

   This specification requires readers to be familiar with all the terms
   and concepts that are discussed in [RFC5988] and [RFC6454].  In
   addition, this specification makes use of the following terminology:

   Web Linking
      A framework for indicating the relationships between web
      resources.

   Link
      Also called "typed links" in [RFC5988].  A link is a typed
      connection between two resources identified by URI and is made up
      of a context URI, a link relation type, a target URI, and optional
      target attributes.

   Link Format
      A particular serialization of typed links.

   CoRE Link Format
      A particular serialization of typed links based on the HTTP Link
      Header field serialization defined in Section 5 of [RFC5988] but
      carried as a resource representation with a media type.

   Attribute
      Properly called "Target Attribute" in [RFC5988].  A key/value pair
      that describes the link or its target.

   CoRE Resource Discovery
      When a client discovers the list of resources hosted by a server,
      their attributes, and other link relations by accessing
      "/.well-known/core".

2.  Link Format

   The CoRE Link Format extends the HTTP Link Header field specified in
   [RFC5988].  The format does not require special XML or binary
   parsing, is fairly compact, and is extensible -- all important
   characteristics for CoRE.  It should be noted that this link format
   is just one serialization of typed links defined in [RFC5988]; others



Shelby                       Standards Track                    [Page 6]
^L
RFC 6690                    CoRE Link Format                 August 2012


   include HTML links, Atom feed links [RFC4287], or HTTP Link Header
   fields.  It is expected that resources discovered in the CoRE Link
   Format may also be made available in alternative formats on the
   greater Internet.  The CoRE Link Format is only expected to be
   supported in constrained networks and M2M systems.

   Section 5 of [RFC5988] did not require an Internet media type for the
   defined link format, as it was defined to be carried in an HTTP
   header.  This specification thus defines the Internet media type
   'application/link-format' for the CoRE Link Format (see Section 7.3).
   Whereas the HTTP Link Header field depends on [RFC2616] for its
   encoding, the CoRE Link Format is encoded as UTF-8 [RFC3629].  A
   decoder of the format is not expected to validate UTF-8 encoding (but
   is not prohibited from doing so) and doesn't need to perform any
   UTF-8 normalization.  UTF-8 data can be compared bitwise, which
   allows values to contain UTF-8 data without any added complexity for
   constrained nodes.

   The CoRE Link Format is equivalent to the [RFC5988] link format;
   however, the ABNF in the present specification is repeated with
   improvements to be compliant with [RFC5234] and includes new link
   parameters.  The link parameter "href" is reserved for use as a query
   parameter for filtering in this specification (see Section 4.1) and
   MUST NOT be defined as a link parameter.  As in [RFC5988], multiple
   link descriptions are separated by commas.  Note that commas can also
   occur in quoted strings and URIs but do not end a description.  In
   order to convert an HTTP Link Header field to this link format, first
   the "Link:" HTTP header is removed, any linear whitespace (LWS) is
   removed, the header value is converted to UTF-8, and any percent-
   encodings are decoded.

    Link            = link-value-list
    link-value-list = [ link-value *[ "," link-value ]]
    link-value     = "<" URI-Reference ">" *( ";" link-param )
    link-param     = ( ( "rel" "=" relation-types )
                   / ( "anchor" "=" DQUOTE URI-Reference DQUOTE )
                   / ( "rev" "=" relation-types )
                   / ( "hreflang" "=" Language-Tag )
                   / ( "media" "=" ( MediaDesc
                          / ( DQUOTE MediaDesc DQUOTE ) ) )
                   / ( "title" "=" quoted-string )
                   / ( "title*" "=" ext-value )
                   / ( "type" "=" ( media-type / quoted-mt ) )
                   / ( "rt" "=" relation-types )
                   / ( "if" "=" relation-types )
                   / ( "sz" "=" cardinal )
                   / ( link-extension ) )
    link-extension = ( parmname [ "=" ( ptoken / quoted-string ) ] )



Shelby                       Standards Track                    [Page 7]
^L
RFC 6690                    CoRE Link Format                 August 2012


                   / ( ext-name-star "=" ext-value )
    ext-name-star  = parmname "*" ; reserved for RFC-2231-profiled
                                  ; extensions.  Whitespace NOT
                                  ; allowed in between.
    ptoken         = 1*ptokenchar
    ptokenchar     = "!" / "#" / "$" / "%" / "&" / "'" / "("
                   / ")" / "*" / "+" / "-" / "." / "/" / DIGIT
                   / ":" / "<" / "=" / ">" / "?" / "@" / ALPHA
                   / "[" / "]" / "^" / "_" / "`" / "{" / "|"
                   / "}" / "~"
    media-type     = type-name "/" subtype-name
    quoted-mt      = DQUOTE media-type DQUOTE
    relation-types = relation-type
                   / DQUOTE relation-type *( 1*SP relation-type ) DQUOTE
    relation-type  = reg-rel-type / ext-rel-type
    reg-rel-type   = LOALPHA *( LOALPHA / DIGIT / "." / "-" )
    ext-rel-type   = URI
    cardinal       = "0" / ( %x31-39 *DIGIT )
    LOALPHA        = %x61-7A   ; a-z
    quoted-string  = <defined in [RFC2616]>
    URI            = <defined in [RFC3986]>
    URI-Reference  = <defined in [RFC3986]>
    type-name      = <defined in [RFC4288]>
    subtype-name   = <defined in [RFC4288]>
    MediaDesc      = <defined in [W3C.HTML.4.01]>
    Language-Tag   = <defined in [RFC5646]>
    ext-value      = <defined in [RFC5987]>
    parmname       = <defined in [RFC5987]>

2.1.  Target and Context URIs

   Each link conveys one target URI as a URI-reference inside angle
   brackets ("<>").  The context URI of a link (also called the base URI
   in [RFC3986]) is determined by the following rules in this
   specification:

   (a)  The context URI is set to the anchor parameter, when specified.

   (b)  Origin of the target URI, when specified.

   (c)  Origin of the link format resource's base URI.

2.2.  Link Relations

   Since links in the CoRE Link Format are typically used to describe
   resources hosted by a server, the new relation type "hosts" is
   assumed in the absence of the relation parameter (see Section 7.2).
   The "hosts" relation type (from the verb "to host") indicates that



Shelby                       Standards Track                    [Page 8]
^L
RFC 6690                    CoRE Link Format                 August 2012


   the target URI is a resource hosted by the server (i.e., server hosts
   resource) indicated by the context URI.  The target URI MUST be a
   relative URI of the context URI for this relation type.

   To express other relations, links can make use of any registered
   relation by including the relation parameter.  The context of a
   relation can be defined using the anchor parameter.  In this way,
   relations between resources hosted on a server or between hosted
   resources and external resources can be expressed.

2.3.  Use of Anchors

   As per Section 5.2 of [RFC5988], a link description MAY include an
   "anchor" parameter, in which case the context is the URI included in
   that attribute.  This is used to describe a relationship between two
   resources.  A consuming implementation can, however, choose to ignore
   such links.  It is not expected that all implementations will be able
   to derive useful information from explicitly anchored links.

3.  CoRE Link Attributes

   The following CoRE-specific target attributes are defined in addition
   to those already defined in [RFC5988].  These attributes describe
   information useful in accessing the target link of the relation and,
   in some cases, can use the syntactical form of a URI.  Such a URI MAY
   be dereferenced (for instance, to obtain a description of the link
   relation), but that is not part of the protocol and MUST NOT be done
   automatically on link evaluation.  When the values of attributes are
   compared, they MUST be compared as strings.

3.1.  Resource Type 'rt' Attribute

   The Resource Type 'rt' attribute is an opaque string used to assign
   an application-specific semantic type to a resource.  One can think
   of this as a noun describing the resource.  In the case of a
   temperature resource, this could be, e.g., an application-specific
   semantic type like "outdoor-temperature" or a URI referencing a
   specific concept in an ontology like
   "http://sweet.jpl.nasa.gov/2.0/phys.owl#Temperature".  Multiple
   Resource Types MAY be included in the value of this parameter, each
   separated by a space, similar to the relation attribute.  The
   registry for Resource Type values is defined in Section 7.4.

   The Resource Type attribute is not meant to be used to assign a
   human-readable name to a resource.  The "title" attribute defined in
   [RFC5988] is meant for that purpose.  The Resource Type attribute
   MUST NOT appear more than once in a link.




Shelby                       Standards Track                    [Page 9]
^L
RFC 6690                    CoRE Link Format                 August 2012


3.2.  Interface Description 'if' Attribute

   The Interface Description 'if' attribute is an opaque string used to
   provide a name or URI indicating a specific interface definition used
   to interact with the target resource.  One can think of this as
   describing verbs usable on a resource.  The Interface Description
   attribute is meant to describe the generic REST interface to interact
   with a resource or a set of resources.  It is expected that an
   Interface Description will be reused by different Resource Types.
   For example, the Resource Types "outdoor-temperature", "dew-point",
   and "rel-humidity" could all be accessible using the Interface
   Description "http://www.example.org/myapp.wadl#sensor".  Multiple
   Interface Descriptions MAY be included in the value of this
   parameter, each separated by a space, similar to the relation
   attribute.  The registry for Interface Description values is defined
   in Section 7.4.

   The Interface Description could be, for example, the URI of a Web
   Application Description Language (WADL) [WADL] definition of the
   target resource "http://www.example.org/myapp.wadl#sensor", a URN
   indicating the type of interface to the resource "urn:myapp:sensor",
   or an application-specific name "sensor".  The Interface Description
   attribute MUST NOT appear more than once in a link.

3.3.  Maximum Size Estimate 'sz' Attribute

   The maximum size estimate attribute 'sz' gives an indication of the
   maximum size of the resource representation returned by performing a
   GET on the target URI.  For links to CoAP resources, this attribute
   is not expected to be included for small resources that can
   comfortably be carried in a single Maximum Transmission Unit (MTU)
   but SHOULD be included for resources larger than that.  The maximum
   size estimate attribute MUST NOT appear more than once in a link.

   Note that there is no defined upper limit to the value of the 'sz'
   attributes.  Implementations MUST be prepared to accept large values.
   One implementation strategy is to convert any value larger than a
   reasonable size limit for this implementation to a special value
   "Big", which in further processing would indicate that a size value
   was given that was so big that it cannot be processed by this
   implementation.

4.  Well-Known Interface

   Resource discovery in CoRE is accomplished through the use of a well-
   known resource URI that returns a list of links about resources
   hosted by that server and other link relations.  Well-known resources




Shelby                       Standards Track                   [Page 10]
^L
RFC 6690                    CoRE Link Format                 August 2012


   have a path component that begins with "/.well-known/" as specified
   in [RFC5785].  This specification defines a new well-known resource
   for CoRE Resource Discovery: "/.well-known/core".

   A server implementing this specification MUST support this resource
   on the default port appropriate for the protocol for the purpose of
   resource discovery.  It is, however, up to the application which
   links are included and how they are organized.  The resource
   "/.well-known/core" is meant to be used to return links to the entry
   points of resource interfaces on a server.  More sophisticated link
   organization can be achieved by including links to CoRE Link Format
   resources located elsewhere on the server, for example, to achieve an
   index.  In the absence of any links, a zero-length payload is
   returned.  The resource representation of this resource MUST be the
   CoRE Link Format described in Section 2.

   The CoRE resource discovery interface supports the following
   interactions:

   o  Performing a GET on "/.well-known/core" to the default port
      returns a set of links available from the server (if any) in the
      CoRE Link Format.  These links might describe resources hosted on
      that server or on other servers or express other kinds of link
      relations as described in Section 2.

   o  Filtering may be performed on any of the link format attributes
      using a query string as specified in Section 4.1.  For example,
      [GET /.well-known/core?rt=temperature-c] would request resources
      with the Resource Type temperature-c.  A server is not, however,
      required to support filtering.

   o  More capable servers such as proxies could support a resource
      directory by requesting the resource descriptions of other end-
      points or allowing servers to POST requests to "/.well-known/
      core".  The details of such resource directory functionality is,
      however, out of the scope of this specification and is expected to
      be specified separately.














Shelby                       Standards Track                   [Page 11]
^L
RFC 6690                    CoRE Link Format                 August 2012


4.1.  Query Filtering

   A server implementing this specification MAY recognize the query part
   of a resource discovery URI as a filter on the resources to be
   returned.  The path and query components together should conform to
   the following level-4 URI Template [RFC6570]:

       /.well-known/core{?search*}

   where the variable "search" is a 1-element list that has a single
   name/value pair, where

   o  name is either "href", a link-param name defined in this
      specification, or any other link-extension name, and

   o  value is either a Complete Value String that does not end in an
      "*" (%2A), or a Prefix Value String followed by an "*" (%2A).

   The search name "href" refers to the URI-reference between the "<"
   and ">" characters of a link.  Both Value Strings match a target
   attribute only if it exists.  Value Strings are percent-decoded
   ([RFC3986], Section 2.1) before matching; similarly, any target
   attributes notated as quoted-string are interpreted as defined in
   Section 2.2 of [RFC2616].  After these steps, a Complete Value String
   matches a target attribute if it is bitwise identical.  A Prefix
   Value String matches a target attribute if it is a bitwise prefix of
   the target attribute (where any string is a prefix of itself).  Empty
   Prefix Value Strings are allowed; by the definition above, they match
   any target attribute that does exist.  Note that relation-type target
   attributes can contain multiple values, and each value MUST be
   treated as a separate target attribute when matching.

   It is not expected that very constrained nodes support filtering.
   Implementations not supporting filtering MUST simply ignore the query
   string and return the whole resource for unicast requests.

   When using a transfer protocol like the Constrained Application
   Protocol (CoAP) that supports multicast requests, special care needs
   to be taken.  A multicast request with a query string SHOULD NOT be
   responded to if filtering is not supported or if the filter does not
   match (to avoid a needless response storm).  The exception is in
   cases where the IP stack interface is not able to indicate that the
   destination address was multicast.








Shelby                       Standards Track                   [Page 12]
^L
RFC 6690                    CoRE Link Format                 August 2012


   The following are examples of valid query URIs:

   o  ?href=/foo matches a link-value that is anchored at /foo

   o  ?href=/foo* matches a link-value that is anchored at a URI that
      starts with /foo

   o  ?foo=bar matches a link-value that has a target attribute named
      foo with the exact value bar

   o  ?foo=bar* matches a link-value that has a target attribute named
      foo, the value of which starts with bar, e.g., bar or barley

   o  ?foo=* matches a link-value that has a target attribute named foo

5.  Examples

   A few examples of typical link descriptions in this format follows.
   Multiple resource descriptions in a representation are separated by
   commas.  Linefeeds are also included in these examples for
   readability.  Although the following examples use CoAP response
   codes, the examples are applicable to HTTP as well (the corresponding
   response code would be 200 OK).

   This example includes links to two different sensors sharing the same
   Interface Description.  Note that the default relation type for this
   link format is "hosts" in links with no rel= target attribute.  Thus,
   the links in this example tell that the Origin server from which
   /.well-known/core was requested (the context) hosts the resources
   /sensors/temp and /sensors/light (each a target).

   REQ: GET /.well-known/core

   RES: 2.05 Content
   </sensors/temp>;if="sensor",
   </sensors/light>;if="sensor"

   Without the linefeeds inserted here for readability, the format
   actually looks as follows.

   </sensors/temp>;if="sensor",</sensors/light>;if="sensor"

   This example arranges link descriptions hierarchically, with the
   entry point including a link to a sub-resource containing links about
   the sensors.






Shelby                       Standards Track                   [Page 13]
^L
RFC 6690                    CoRE Link Format                 August 2012


   REQ: GET /.well-known/core

   RES: 2.05 Content
   </sensors>;ct=40

   REQ: GET /sensors

   RES: 2.05 Content
   </sensors/temp>;rt="temperature-c";if="sensor",
   </sensors/light>;rt="light-lux";if="sensor"

   An example query filter may look like:

   REQ: GET /.well-known/core?rt=light-lux

   RES: 2.05 Content
   </sensors/light>;rt="light-lux";if="sensor"

   Note that relation-type attributes like 'rt', 'if', and 'rel' can
   have multiple values separated by spaces.  A query filter parameter
   can match any one of those values, as in this example:

   REQ: GET /.well-known/core?rt=light-lux

   RES: 2.05 Content
   </sensors/light>;rt="light-lux core.sen-light";if="sensor"

   This example shows the use of an "anchor" attribute to relate the
   temperature sensor resource to an external description and to an
   alternative URI.

   REQ: GET /.well-known/core

   RES: 2.05 Content
   </sensors>;ct=40;title="Sensor Index",
   </sensors/temp>;rt="temperature-c";if="sensor",
   </sensors/light>;rt="light-lux";if="sensor",
   <http://www.example.com/sensors/t123>;anchor="/sensors/temp"
   ;rel="describedby",
   </t>;anchor="/sensors/temp";rel="alternate"











Shelby                       Standards Track                   [Page 14]
^L
RFC 6690                    CoRE Link Format                 August 2012


   If a client is interested in finding relations about a particular
   resource, it can perform a query on the anchor parameter:

   REQ: GET /.well-known/core?anchor=/sensors/temp

   RES: 2.05 Content
   <http://www.example.com/sensors/temp123>;anchor="/sensors/temp"
   ;rel="describedby",
   </t>;anchor="/sensors/temp";rel="alternate"

   The following example shows a large firmware resource with a size
   attribute.  The consumer of this link would use the 'sz' attribute to
   determine if the resource representation is too large and if block
   transfer would be required to request it.  In this case, a client
   with only a 64 KiB flash might only support a 16-bit integer for
   storing the 'sz' attribute.  Thus, a special flag or value should be
   used to indicate "Big" (larger than 64 KiB).

   REQ: GET /.well-known/core?rt=firmware

   RES: 2.05 Content
   </firmware/v2.1>;rt="firmware";sz=262144

6.  Security Considerations

   This specification has the same security considerations as described
   in Section 7 of [RFC5988].  The "/.well-known/core" resource MAY be
   protected, e.g., using Datagram Transport Layer Security (DTLS) when
   hosted on a CoAP server as per [COAP], Section 9.1.

   Some servers might provide resource discovery services to a mix of
   clients that are trusted to different levels.  For example, a
   lighting control system might allow any client to read state
   variables, but only certain clients to write state (turn lights on or
   off).  Servers that have authentication and authorization features
   SHOULD support authentication features of the underlying transport
   protocols (HTTP or DTLS/TLS) and allow servers to return different
   lists of links based on a client's identity and authorization.  While
   such servers might not return all links to all requesters, not
   providing the link does not, by itself, control access to the
   relevant resource -- a bad actor could know or guess the right URIs.
   Servers can also lie about the resources available.  If it is
   important for a client to only get information from a known source,
   then that source needs to be authenticated.







Shelby                       Standards Track                   [Page 15]
^L
RFC 6690                    CoRE Link Format                 August 2012


   Multicast requests using CoAP for the well-known link-format
   resources could be used to perform denial of service on a constrained
   network.  A multicast request SHOULD only be accepted if the request
   is sufficiently authenticated and secured using, e.g., IPsec or an
   appropriate object security mechanism.

   CoRE Link Format parsers should be aware that a link description may
   be cyclical, i.e., contain a link to itself.  These cyclical links
   could be direct or indirect (i.e., through referenced link
   resources).  Care should be taken when parsing link descriptions and
   accessing cyclical links.

7.  IANA Considerations

7.1.  Well-Known 'core' URI

   This memo registers the 'core' well-known URI in the Well-Known URIs
   registry as defined by [RFC5785].

   URI suffix: core

   Change controller: IETF

   Specification document(s): RFC 6690

   Related information: None

7.2.  New 'hosts' Relation Type

   This memo registers the new "hosts" Web Linking relation type as per
   [RFC5988].

   Relation Name: hosts

   Description: Refers to a resource hosted by the server indicated by
   the link context.

   Reference: RFC 6690

   Notes: This relation is used in CoRE where links are retrieved as a
   "/.well-known/core" resource representation and is the default
   relation type in the CoRE Link Format.

   Application Data: None







Shelby                       Standards Track                   [Page 16]
^L
RFC 6690                    CoRE Link Format                 August 2012


7.3.  New 'link-format' Internet Media Type

   This memo registers the a new Internet media type for the CoRE Link
   Format, 'application/link-format'.

   Type name: application

   Subtype name: link-format

   Required parameters: None

   Optional parameters: None

   Encoding considerations: Binary data (UTF-8)

   Security considerations:

   Multicast requests using CoAP for the well-known link-format
   resources could be used to perform denial of service on a constrained
   network.  A multicast request SHOULD only be accepted if the request
   is sufficiently authenticated and secured using, e.g., IPsec or an
   appropriate object security mechanism.

   CoRE Link Format parsers should be aware that a link description may
   be cyclical, i.e., contain a link to itself.  These cyclical links
   could be direct or indirect (i.e., through referenced link
   resources).  Care should be taken when parsing link descriptions and
   accessing cyclical links.

   Interoperability considerations: None

   Published specification: RFC 6690

   Applications that use this media type: CoAP server and client
   implementations for resource discovery and HTTP applications that use
   the link-format as a payload.

   Additional information:

   Magic number(s):

   File extension(s): *.wlnk

   Macintosh file type code(s):

   Intended usage: COMMON

   Restrictions on usage: None



Shelby                       Standards Track                   [Page 17]
^L
RFC 6690                    CoRE Link Format                 August 2012


   Author: CoRE WG

   Change controller: IETF

7.4.  Constrained RESTful Environments (CoRE) Parameters Registry

   This specification establishes a new Constrained RESTful Environments
   (CoRE) Parameters registry, which contains two new sub-registries of
   Link Target Attribute values (defined in [RFC5988]), one for Resource
   Type (rt=) Link Target Attribute values and the other for Interface
   Description (if=) Link Target Attribute values.  No initial entries
   are defined by this specification for either sub-registry.

   For both sub-registries, values starting with the characters "core"
   are registered using the IETF Review registration policy [RFC5226].
   All other values are registered using the Specification Required
   policy, which requires review by a designated expert appointed by the
   IESG or their delegate.

   The designated expert will enforce the following requirements:

   o  Registration values MUST be related to the intended purpose of
      these attributes as described in Section 3.

   o  Registered values MUST conform to the ABNF reg-rel-type definition
      of Section 2, meaning that the value starts with a lowercase
      alphabetic character, followed by a sequence of lowercase
      alphabetic, numeric, ".", or "-" characters, and contains no white
      space.

   o  It is recommended that the period "." character be used for
      dividing name segments and that the dash "-" character be used for
      making a segment more readable.  Example Interface Description
      values might be "core.batch" and "core.link-batch".

   o  URIs are reserved for free use as extension values for these
      attributes and MUST NOT be registered.

   Registration requests consist of the completed registration template
   below, with the reference pointing to the required specification.  To
   allow for the allocation of values prior to publication, the
   designated expert may approve registration once they are satisfied
   that a specification will be published.

   Note that Link Target Attribute Values can be registered by third
   parties if the Designated Expert determines that an unregistered Link
   Target Attribute Value is widely deployed and not likely to be
   registered in a timely manner.



Shelby                       Standards Track                   [Page 18]
^L
RFC 6690                    CoRE Link Format                 August 2012


   The registration template for both sub-registries is:

   o  Attribute Value:

   o  Description:

   o  Reference:

   o  Notes: [optional]

   Registration requests should be sent to the core-parameters@ietf.org
   mailing list, marked clearly in the subject line (e.g., "NEW RESOURCE
   TYPE - example" to register an "example" relation type or "NEW
   INTERFACE DESCRIPTION - example" to register an "example" Interface
   Description).

   Within at most 14 days of the request, the Designated Expert(s) will
   either approve or deny the registration request, communicating this
   decision to the review list and IANA.  Denials should include an
   explanation and, if applicable, suggestions as to how to make the
   request successful.

   Decisions (or lack thereof) made by the Designated Expert can be
   first appealed to Application Area Directors (contactable using the
   app-ads@tools.ietf.org email address or directly by looking up their
   email addresses on http://www.iesg.org/ website) and, if the
   appellant is not satisfied with the response, to the full IESG (using
   the iesg@ietf.org mailing list).

8.  Acknowledgments

   Special thanks to Peter Bigot, who has made a considerable number of
   reviews and text contributions that greatly improved the document.
   In particular, Peter is responsible for early improvements to the
   ABNF descriptions and the idea for a new 'hosts' relation type.

   Thanks to Mark Nottingham and Eran Hammer-Lahav for the discussions
   and ideas that led to this document, and to Carsten Bormann, Martin
   Thomson, Alexey Melnikov, Julian Reschke, Joel Halpern, Richard
   Barnes, Barry Leiba, and Peter Saint-Andre for extensive comments and
   contributions that improved the text.

   Thanks to Michael Stuber, Richard Kelsey, Cullen Jennings, Guido
   Moritz, Peter Van Der Stok, Adriano Pezzuto, Lisa Dussealt, Alexey
   Melnikov, Gilbert Clark, Salvatore Loreto, Petri Mutka, Szymon Sasin,
   Robert Quattlebaum, Robert Cragie, Angelo Castellani, Tom Herbst, Ed
   Beroset, Gilman Tolle, Robby Simpson, Colin O'Flynn, and David Ryan
   for helpful comments and discussions that have shaped the document.



Shelby                       Standards Track                   [Page 19]
^L
RFC 6690                    CoRE Link Format                 August 2012


9.  References

9.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2616]  Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
              Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
              Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

   [RFC3629]  Yergeau, F., "UTF-8, a transformation format of ISO
              10646", STD 63, RFC 3629, November 2003.

   [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
              Resource Identifier (URI): Generic Syntax", STD 66,
              RFC 3986, January 2005.

   [RFC4288]  Freed, N. and J. Klensin, "Media Type Specifications and
              Registration Procedures", BCP 13, RFC 4288, December 2005.

   [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
              IANA Considerations Section in RFCs", BCP 26, RFC 5226,
              May 2008.

   [RFC5234]  Crocker, D. and P. Overell, "Augmented BNF for Syntax
              Specifications: ABNF", STD 68, RFC 5234, January 2008.

   [RFC5646]  Phillips, A. and M. Davis, "Tags for Identifying
              Languages", BCP 47, RFC 5646, September 2009.

   [RFC5987]  Reschke, J., "Character Set and Language Encoding for
              Hypertext Transfer Protocol (HTTP) Header Field
              Parameters", RFC 5987, August 2010.

   [RFC5988]  Nottingham, M., "Web Linking", RFC 5988, October 2010.

   [RFC6570]  Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
              and D. Orchard, "URI Template", RFC 6570, March 2012.

9.2.  Informative References

   [COAP]     Shelby, Z., Hartke, K., Bormann, C., and B. Frank,
              "Constrained Application Protocol (CoAP)", Work in
              Progress, July 2012.






Shelby                       Standards Track                   [Page 20]
^L
RFC 6690                    CoRE Link Format                 August 2012


   [REST]     Fielding, R., "Architectural Styles and the Design of
              Network-based Software Architectures", 2000,
              <http://www.ics.uci.edu/~fielding/pubs/dissertation/
              top.htm>.

   [RFC1034]  Mockapetris, P., "Domain names - concepts and facilities",
              STD 13, RFC 1034, November 1987.

   [RFC1035]  Mockapetris, P., "Domain names - implementation and
              specification", STD 13, RFC 1035, November 1987.

   [RFC2045]  Freed, N. and N. Borenstein, "Multipurpose Internet Mail
              Extensions (MIME) Part One: Format of Internet Message
              Bodies", RFC 2045, November 1996.

   [RFC2231]  Freed, N. and K. Moore, "MIME Parameter Value and Encoded
              Word Extensions: Character Sets, Languages, and
              Continuations", RFC 2231, November 1997.

   [RFC4287]  Nottingham, M., Ed. and R. Sayre, Ed., "The Atom
              Syndication Format", RFC 4287, December 2005.

   [RFC4919]  Kushalnagar, N., Montenegro, G., and C. Schumacher, "IPv6
              over Low-Power Wireless Personal Area Networks (6LoWPANs):
              Overview, Assumptions, Problem Statement, and Goals",
              RFC 4919, August 2007.

   [RFC5785]  Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
              Uniform Resource Identifiers (URIs)", RFC 5785,
              April 2010.

   [RFC6454]  Barth, A., "The Web Origin Concept", RFC 6454,
              December 2011.

   [W3C.HTML.4.01]
              Raggett, D., Le Hors, A., and I. Jacobs, "HTML 4.01
              Specification", World Wide Web Consortium
              Recommendation REC-html401-19991224, December 1999,
              <http://www.w3.org/TR/1999/REC-html401-19991224>.

   [WADL]     Hadley, M., "Web Application Description Language (WADL)",
              2009, <http://java.net/projects/wadl/sources/svn/content/
              trunk/www/wadl20090202.pdf>.








Shelby                       Standards Track                   [Page 21]
^L
RFC 6690                    CoRE Link Format                 August 2012


Author's Address

   Zach Shelby
   Sensinode
   Kidekuja 2
   Vuokatti  88600
   Finland

   Phone: +358407796297
   EMail: zach@sensinode.com









































Shelby                       Standards Track                   [Page 22]
^L