1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
|
Independent Submission M. Chiba
Request for Comments: 6812 A. Clemm
Category: Informational S. Medley
ISSN: 2070-1721 J. Salowey
S. Thombare
E. Yedavalli
Cisco Systems
January 2013
Cisco Service-Level Assurance Protocol
Abstract
Cisco's Service-Level Assurance Protocol (Cisco's SLA Protocol) is a
Performance Measurement protocol that has been widely deployed. The
protocol is used to measure service-level parameters such as network
latency, delay variation, and packet/frame loss. This document
describes the Cisco SLA Protocol Measurement-Type UDP-Measurement, to
enable vendor interoperability.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This is a contribution to the RFC Series, independently of any other
RFC stream. The RFC Editor has chosen to publish this document at
its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by
the RFC Editor are not a candidate for any level of Internet
Standard; see Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc6812.
Copyright Notice
Copyright (c) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.
Chiba, et al. Informational [Page 1]
^L
RFC 6812 Cisco Service-Level Assurance Protocol January 2013
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 4
3. Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.1. Control Phase . . . . . . . . . . . . . . . . . . . . . . 6
3.1.1. Control-Request Message . . . . . . . . . . . . . . . 7
3.1.1.1. Command-Header . . . . . . . . . . . . . . . . . . 8
3.1.1.2. CSLDs . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2. Control-Response Message . . . . . . . . . . . . . . . 15
3.2. Measurement Phase . . . . . . . . . . . . . . . . . . . . 16
4. Implementation Notes . . . . . . . . . . . . . . . . . . . . . 19
5. Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 21
7. Security Considerations . . . . . . . . . . . . . . . . . . . 24
7.1. Message Authentication . . . . . . . . . . . . . . . . . . 24
7.2. IPsec Considerations . . . . . . . . . . . . . . . . . . . 24
7.2.1. Control Traffic . . . . . . . . . . . . . . . . . . . 24
7.2.2. Measurement Traffic . . . . . . . . . . . . . . . . . 24
7.3. Replay Protection . . . . . . . . . . . . . . . . . . . . 25
8. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 25
9. References . . . . . . . . . . . . . . . . . . . . . . . . . . 25
9.1. Normative References . . . . . . . . . . . . . . . . . . . 25
9.2. Informative References . . . . . . . . . . . . . . . . . . 26
Chiba, et al. Informational [Page 2]
^L
RFC 6812 Cisco Service-Level Assurance Protocol January 2013
1. Introduction
Active network performance measurements are becoming critical data
points for administrators monitoring the health of the network. As
service providers look to differentiate their offerings, performance
measurement is increasingly becoming an important tool to monitor
service-level guarantees and, in general, to monitor the health of a
network.
Performance metrics, both one-way and two-way, can be used for pre-
deployment validation as well as for measuring in-band live network-
performance characteristics. It can be used to measure service
levels in L2 and L3 networks as well as for applications running on
top of L3. Active performance measurements are gathered by analyzing
synthetically generated request and response packets or frames. This
is in contrast to passive measurements that analyze live traffic
flowing through a particular network element.
There is a growing body of work on Performance Measurement standards
that enable interoperability between different vendors' network
elements by describing common measurement protocols as well as
metrics. The IETF has actively developed Standards Track documents
on the subject, such as "A One-way Active Measurement Protocol
(OWAMP)" [RFC4656] and "Two-Way Active Measurement Protocol (TWAMP)"
[RFC5357].
Cisco's SLA Protocol is another example of a Performance Measurement
protocol that offers a rich set of measurement message types. The
measurement types can be classified as those that test connectivity
(ping like) by providing round-trip or one-way latency measures, and
those that provide a richer set of statistics including network
jitter and packet or frame loss. Each type of active measurement
exchange mimics an actual protocol exchange.
Cisco's SLA Protocol UDP-Measurement message exchanges, as covered in
this document to enable interoperability, simulate a UDP application
and can be used to simulate either Voice or Video traffic that is
encoded in RTP frames within UDP envelopes. The Measurement-Type
UDP-Measurement message exchanges carry information that provide the
ability to derive a robust set of statistics.
Chiba, et al. Informational [Page 3]
^L
RFC 6812 Cisco Service-Level Assurance Protocol January 2013
2. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].
+-------------+-----------------------------------------------------+
| Term | Description |
+-------------+-----------------------------------------------------+
| Control | A phase during which a Control-Request and Control- |
| Phase | Response are exchanged. |
| --------- | -------------------------- |
| L2 | OSI Data-Link Layer |
| --------- | -------------------------- |
| L3 | OSI Network Layer |
| --------- | -------------------------- |
| Measurement | Active Measurement Phase that is marked by a |
| Phase | sequence of Measurement-Request and Measurement- |
| | Response exchanges. |
| --------- | -------------------------- |
| Metric | A particular characteristic of the network data |
| | traffic, for example, latency, jitter, packet or |
| | frame loss. |
| --------- | -------------------------- |
| Responder | A network element that responds to a message. |
| --------- | -------------------------- |
| RTP | Real-time Transport Protocol |
| --------- | -------------------------- |
| Sender | A network element that is the initiator of a |
| | message exchange. |
| --------- | -------------------------- |
| Service- | This is the level of service that is agreed upon |
| Level | between the Provider and the Customer. |
| --------- | -------------------------- |
| UDP | User Datagram Protocol |
+-------------+-----------------------------------------------------+
3. Protocol
The Cisco SLA Protocol consists of two distinct phases: the Control
Phase and the Measurement Phase. Each phase is comprised of
information exchanged between a network element acting as the Sender
and an element designated as the Responder.
The Control Phase is the first phase of message exchanges and forms
the base protocol. This phase establishes the identity of the Sender
and provides information for the Measurement Phase. A single message
pair of Control-Request and Control-Response marks this phase. The
Chiba, et al. Informational [Page 4]
^L
RFC 6812 Cisco Service-Level Assurance Protocol January 2013
Sender initiates a Control-Request message that is acknowledged by
the Responder with a Control-Response message. The Control-Request
may be sent multiple times if a Control-Response has not been
received; the number of times the message is retried is configurable
on the Sender element.
The Measurement Phase forms the second phase and is comprised of a
sequence of Measurement-Request and Measurement-Response messages.
These messages may be exchanged as often as required. Each
Measurement-Request message is acknowledged by the Responder with a
Measurement-Response message.
The number and frequency with which messages are sent SHOULD be
controlled by configuration on the Sender element, along with the
waiting time for a Control-Response.
The following sequence diagram depicts the message exchanges:
+-+-+-+-+-+-+-+ Control-Request +-+-+-+-+-+-+-+
| | | |
| Sender | | Responder |
| | | |
| | | |
+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+
| |
| Control-Request |
| -------------------------------------------->|
| |
| Control-Response |
|<---------------------------------------------|
| |
| |
| Measurement-Request(1) |
| -------------------------------------------->|
| |
| Measurement-Response(1) |
|<---------------------------------------------|
| |
. .
. .
. .
. .
. Measurement-Request(n) .
| -------------------------------------------->|
| |
| Measurement-Response(n) |
|<---------------------------------------------|
| |
Chiba, et al. Informational [Page 5]
^L
RFC 6812 Cisco Service-Level Assurance Protocol January 2013
3.1. Control Phase
The Control Phase begins with the Sender sending a Control-Request
message to the Responder. The Control-Request message is sent to UDP
port 1167 on the Responder requesting that a Measurement Phase UDP
port be opened and, in addition, indicates the duration for which the
port needs to remain open. The Responder replies by sending a
Control-Response with an appropriate Status indicating Success when
the Sender identity is verified and the requested UDP port was
successfully opened. In all other cases, a non-zero Status is
returned in the Command-Header Status field.
The sequence of exchanges is as indicated in the following diagram:
+-+-+-+-+-+-+-+ Control-Request +-+-+-+-+-+-+-+
| |------------------------------->| |
| Sender | | Responder |
| | Control-Response | |
| |<-------------------------------| |
+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+
Chiba, et al. Informational [Page 6]
^L
RFC 6812 Cisco Service-Level Assurance Protocol January 2013
3.1.1. Control-Request Message
The Control-Request message consists of a Command-Header followed by
one or more Command, Status, Length and Data sections (henceforth
known as CSLD). At a minimum, there SHOULD be two CSLD sections, one
of which is the authentication CSLD section and the other carries
information for the Measurement Phase simulation type.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ +
| Command-Header |
+ +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Command | Status |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Command-Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
. .
. Data .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Command | Status |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Command-Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
. .
. Data .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Chiba, et al. Informational [Page 7]
^L
RFC 6812 Cisco Service-Level Assurance Protocol January 2013
3.1.1.1. Command-Header
The Command-Header is the first section of the Control-Request
message and is depicted below:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Version = 2 | Reserved | Status |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Total Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Send Timestamp |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Command-Header fields hold the following meaning:
+-----------+-----------+-------------------------------------------+
| Field | Size | Description |
| | (bits) | |
+-----------+-----------+-------------------------------------------+
| Version | 8 | Current version supported and is to be |
| | | set to 2. |
| --------- | --------- | -------------------------- |
| Reserved | 8 | Reserved field, MUST be set to 0. |
| --------- | --------- | -------------------------- |
| Status | 16 | Indicates success or failure for the |
| | | entire message. In a Control-Request, the|
| | | value of the Status field is ignored by |
| | | the receiver and SHOULD be set to 0. |
| --------- | --------- | -------------------------- |
| Sequence | 32 | Used to map requests to responses. This |
| Number | | is a monotonically increasing number. |
| | | Implementations MAY reset the sequence |
| | | number to 0 after a reboot, and it SHOULD |
| | | wrap around after all bits have been |
| | | exceeded. |
| --------- | --------- | -------------------------- |
| Total | 32 | Carries the total length of the Control |
| Length | | message in number of octets. |
| --------- | --------- | -------------------------- |
Chiba, et al. Informational [Page 8]
^L
RFC 6812 Cisco Service-Level Assurance Protocol January 2013
| --------- | --------- | -------------------------- |
| Send | 64 | This field is set to the time the command |
| Timestamp | | was submitted for transmission and is |
| | | updated for a response. This field MAY |
| | | be used when security is of concern in |
| | | order to prevent replay attacks. SHOULD |
| | | be updated when the response is sent. |
| | | When not being used, it MUST be set to all|
| | | 0's. The format is as given in RFC 5905. |
+-----------+-----------+-------------------------------------------+
The Sequence Number field MUST include a new number for each new
request and is monotonically increasing. When the Control-Request is
to be retried, the sequence number MUST remain unchanged.
3.1.1.2. CSLDs
The ordered list of the two CSLDs to be included along with the
Command-Header are:
o The Authentication CSLD
o A Measurement-Type CSLD
In this revision of the protocol, only a single Measurement-Type CSLD
has been defined, the UDP-Measurement CSLD. For future extensions,
it is possible to add more Measurement-Type CSLDs. For more details,
see Section 5 on extensions.
Chiba, et al. Informational [Page 9]
^L
RFC 6812 Cisco Service-Level Assurance Protocol January 2013
3.1.1.2.1. Authentication CSLD
The Authentication CSLD provides message authentication and verifies
that the requester knows the shared secret. The following is the
format for the Authentication CSLD:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Command = 1 | Status |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Command-Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Mode | Reserved | Key Id |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Random Number +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ +
| |
. .
. .
. Message Authentication Digest .
. .
. .
| |
+ +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Chiba, et al. Informational [Page 10]
^L
RFC 6812 Cisco Service-Level Assurance Protocol January 2013
The fields for the Authentication CSLD have the following meaning:
+----------------+-----------+--------------------------------------+
| Field | Size | Description |
| | (bits) | |
+----------------+-----------+--------------------------------------+
| Command | 16 | Indicates the CSLD is of type |
| | | Authentication. |
| --------- | --------- | -------------------------- |
| Status | 16 | Not used for a request and MUST be |
| | | set to 0. |
| --------- | --------- | -------------------------- |
| Command-Length | 32 | Indicates the length of the CSLD in |
| | | octets. |
| --------- | --------- | -------------------------- |
| Mode | 8 | Indicates the type of authentication |
| | | being used and is set as follows: |
| | | 0 - No Authentication, |
| | | 1 - SHA256 Authentication, |
| | | 2 - HMAC-SHA-256 |
| --------- | --------- | -------------------------- |
| Reserved | 8 | This field is reserved for future |
| | | extensions and MUST be set to 0. |
| --------- | --------- | -------------------------- |
| Key ID | 16 | Indicates the index number of the |
| | | shared secret to be used for |
| | | authenticating the Control-Request |
| | | message. |
| --------- | --------- | -------------------------- |
| Random Number | 128 | This field is to be unique over the |
| | | shared-secret life and is used to |
| | | make it difficult to predict the |
| | | shared secret via multiple packet |
| | | captures. The value is reflected in |
| | | a response message. This field MAY |
| | | be used when security is of concern |
| | | and is useful to prevent dictionary |
| | | attacks. When not being used, it |
| | | should be set to all 0's |
| --------- | --------- | -------------------------- |
| Message | 256 | Contains the message authentication |
| Authentication | | digest and is computed over the |
| Digest | | entire control packet, including this|
| | | field set to all 0s. |
+----------------+-----------+--------------------------------------+
Chiba, et al. Informational [Page 11]
^L
RFC 6812 Cisco Service-Level Assurance Protocol January 2013
3.1.1.2.2. UDP-Measurement CSLD
The UDP-Measurement CSLD indicates the Measurement-Type to be used
during the Measurement Phase and specifies the addresses and UDP port
to be opened as well as the duration that the port has to be kept
open for the Measurement Phase. The format of the CSLD is as
follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Command = 2 | Status |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Command-Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Address Type | Role | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Session Identifier |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| Control Source Address |
+ +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ +
| Control Destination Address |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ +
| Measurement Source Address |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Chiba, et al. Informational [Page 12]
^L
RFC 6812 Cisco Service-Level Assurance Protocol January 2013
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ +
| Measurement Destination Address |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Control Source Port | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Measurement Source Port | Measurement Destination Port |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Duration |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: Duration is specified in milliseconds.
The fields in the UDP-Measurement CSLD have the following meaning:
+-------------+-----------+-----------------------------------------+
| Field | Size | Description |
| | (bits) | |
+-------------+-----------+-----------------------------------------+
| Command | 16 | Indicates that the CSLD is to simulate |
| | | UDP traffic measurements. |
| --------- | --------- | -------------------------- |
| Status | 16 | Not used for a request and MUST be set |
| | | to 0. |
| --------- | --------- | -------------------------- |
| Command- | 32 | Indicates the length of the CSLD in |
| Length | | octets. |
| --------- | --------- | -------------------------- |
| Address | 8 | Indicates the address type and is set to|
| Type | | one of the values in the "Cisco SLA |
| | | Protocol Address Family Registry": |
| | | 2 - IPv4 addresses, 3 - IPv6 addresses. |
| --------- | --------- | -------------------------- |
| Role | 8 | Indicates the role of the endpoint |
| | | receiving the Control message and is |
| | | set as follows: 1 - Responder. |
| --------- | --------- | -------------------------- |
| Reserved | 16 | Reserved and MUST be set to 0. |
| --------- | --------- | -------------------------- |
Chiba, et al. Informational [Page 13]
^L
RFC 6812 Cisco Service-Level Assurance Protocol January 2013
| --------- | --------- | -------------------------- |
| Session | 32 | Carries a session identifier that is a |
| Identifier | | locally significant unique value to the |
| | | originator of the message. MUST be 0 |
| | | when not specified. |
| --------- | --------- | -------------------------- |
| Control | 128 | Set to the address from which the |
| Source | | Sender initiates Control messages. For |
| Address | | IPv4 addresses, only the first 32 bits |
| | | are filled and the remaining bits MUST |
| | | be set to 0. |
| --------- | --------- | -------------------------- |
| Control | 128 | Set to the address on the Responder |
| Destination | | where the Control message will be sent. |
| Address | | For IPv4 addresses, only the first 32 |
| | | bits are filled and the remaining bits |
| | | MUST be set to 0. |
| --------- | --------- | -------------------------- |
| Measurement | 128 | Set to the address of the Sender from |
| Source | | where the measurement packets will |
| Address | | originate. For IPv4 addresses, only the|
| | | first 32 bits are filled and the |
| | | remaining bits MUST be set to 0. |
| --------- | --------- | -------------------------- |
| Measurement | 128 | Set to the address on the Responder |
| Destination | | towards which the measurement packets |
| Address | | will be sent and is a way to identify |
| | | an ingress interface on the Responder. |
| | | For IPv4 addresses, only the first 32 |
| | | bits are filled and the remaining bits |
| | | MUST be set to 0. |
| --------- | --------- | -------------------------- |
| Control | 16 | Indicates the port on the Sender from |
| Source Port | | which the Control message is sent. If |
| | | not set, the value should be derived |
| | | from the incoming packet. |
| --------- | --------- | -------------------------- |
| Reserved | 16 | Reserved Field, MUST be set to 0. |
| --------- | --------- | -------------------------- |
| Measurement | 16 | Indicates the UDP Port on the Sender |
| Source Port | | from which the measurement packets will |
| | | be sent. |
| --------- | --------- | -------------------------- |
| Measurement | 16 | Indicates the UDP Port on the Responder |
| Destination | | towards which the measurement packets |
| Port | | will be sent. |
| --------- | --------- | -------------------------- |
Chiba, et al. Informational [Page 14]
^L
RFC 6812 Cisco Service-Level Assurance Protocol January 2013
| --------- | --------- | -------------------------- |
| Duration | 32 | This is the duration in milliseconds |
| | | that the port needs to be kept open for |
| | | accepting Measurement Phase messages. |
| | | Measurement messages received after the |
| | | duration MUST be ignored. |
+-------------+-----------+-----------------------------------------+
Note: The source addresses are only indicative of identity of the
originator and cannot be used as a destination address for responses
in a NAT environment.
3.1.2. Control-Response Message
In response to the Control-Request message, the network element
designated the Responder sends back a Control-Response message that
reflects the Command-Header with an updated Status field and includes
the two CSLD sections that also carry updated Status fields. Hence,
the format is identical to the Control-Request message as described
above.
The following table shows the supported values of the Status fields:
+-----------+-------------------------------------------------------+
| Status | Description |
| Value | |
+-----------+-------------------------------------------------------+
| 0 | Success |
| --------- | -------------------------- |
| 1 | Fail - catch all |
| --------- | -------------------------- |
| 2 | Authentication Failure |
| --------- | -------------------------- |
| 3 | Format error - sent when any CSLD type is not |
| | recognized or any part of a CSLD has a value that is |
| | not recognized |
| --------- | -------------------------- |
| 4 | Port in use - the UDP/TCP port is already being used |
| | by some other application and cannot be reserved |
| --------- | -------------------------- |
| 5+ | Future extension and experimental values; refer to |
| | the "Cisco SLA Protocol Status Types Registry" in the |
| | Considerations section (Section 6). |
+-----------+-------------------------------------------------------+
The Status field values are applicable to both Command-Header and
CSLD sections. In a Command-Header, the Status field indicates
Success only if all the CSLD sections have their Status set to
Chiba, et al. Informational [Page 15]
^L
RFC 6812 Cisco Service-Level Assurance Protocol January 2013
Success. The Command-Header Status field is set to non-zero
otherwise. The Status field in a Command-Header SHOULD only make use
of status values 0 through 3, whereas CSLDs can also make use of
other status values as applicable. Future extensions MAY extend
these values as appropriate.
The Control-Response message, aside from updating the Status fields,
SHOULD also update the Sent Timestamp (if used) in the Command-Header
and the Message Authentication Digest in the Authentication CSLD.
The Message Authentication Digest is computed in the same way as the
Control-Request message. The Random Number field MUST be reflected
without modification. The Session Identifier MAY be updated to
reflect a locally significant unique value; it MUST be 0 if not
specified.
3.2. Measurement Phase
Upon receiving the Control-Response message with the Status set to
Success, the second phase of the protocol, the Measurement Phase, is
initiated. In all other cases when the Status is not set to Success,
no measurement traffic is initiated. In the Measurement Phase, the
Sender sends a stream of measurement messages. The measurement
message stream consists of packets or frames that are spaced a
configured number of milliseconds apart.
+-+-+-+-+-+-+-+ Measurement-Request(n) +-+-+-+-+-+-+-+
| |------------------------------->| |
| Sender | | Responder |
| | Measurement-Response(n) | |
| |<-------------------------------| |
+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+
The format of the measurement messages as defined by this document
for UDP-Measurements is as shown below and is the same for the
exchange in both directions. That is, the format is the same when
sent from the Sender to the Responder and when sent back from the
Responder to the Sender with the only difference being the update of
those fields that are designated with the Responder prefix; all other
fields MUST remain unchanged.
Chiba, et al. Informational [Page 16]
^L
RFC 6812 Cisco Service-Level Assurance Protocol January 2013
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Measurement-Type = 3 | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sender Send Time |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Responder Receive Time |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Responder Send Time |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sender Receive Time |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sender Clock Offset |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Responder Clock Offset |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sender Sequence No. |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Responder Sequence No. |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
. .
. Data .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Chiba, et al. Informational [Page 17]
^L
RFC 6812 Cisco Service-Level Assurance Protocol January 2013
The fields for the UDP-Measurement Measurement-Request have the
following meaning:
+-------------+-----------+-----------------------------------------+
| Field | Size | Description |
| | (bits) | |
+-------------+-----------+-----------------------------------------+
| Measurement-| 16 | Carries the type of measurement being |
| Type | | performed; 1 - Reserved, 2 - Reserved, |
| | | 3 - UDP-Measurement |
| --------- | --------- | -------------------------- |
| Reserved | 16 | Reserved field and MUST be set to 0. |
| --------- | --------- | -------------------------- |
| Sender Send | 64 | Carries the timestamp when the |
| Time | | measurement message was submitted for |
| | | transmission by the Sender. |
| --------- | --------- | -------------------------- |
| Responder | 64 | Carries the timestamp when the |
| Receive | | measurement message was received by |
| Time | | the Responder. |
| --------- | --------- | -------------------------- |
| Responder | 64 | Carries the timestamp when the |
| Send Time | | measurement message was submitted for |
| | | transmission by the Responder. It MUST |
| | | be 0 in the Sender-to-Responder |
| | | direction. |
| --------- | --------- | -------------------------- |
| Sender | 64 | Carries the timestamp when the Sender |
| Receive | | received the measurement message. It |
| Time | | MUST be 0 in both directions on the |
| | | wire and is filled on the Sender side |
| | | as soon as the measurement message is |
| | | received. |
| --------- | --------- | -------------------------- |
| Sender | 64 | Gives an estimate of the Sender clock |
| Clock | | skew measured in seconds and fractional |
| Offset | | seconds. |
| --------- | --------- | -------------------------- |
| Responder | 64 | Gives an estimate of the Responder |
| Clock | | clock skew measured in seconds and |
| Offset | | fractional seconds. |
| --------- | --------- | -------------------------- |
| Sender | 32 | The sequence number of the measurement |
| Sequence | | message on the Sender side. This field |
| Number | | is monotonically increasing and MAY |
| | | wrap around. |
| --------- | --------- | -------------------------- |
Chiba, et al. Informational [Page 18]
^L
RFC 6812 Cisco Service-Level Assurance Protocol January 2013
| --------- | --------- | -------------------------- |
| Responder | 32 | The sequence number of the measurement |
| Sequence | | message on the Responder side. This |
| Number | | field is monotonically increasing and |
| | | MAY wrap around. |
| --------- | --------- | -------------------------- |
| Data | 32 bit | This field is used to pad up to the |
| | aligned | configured request data size. The |
| | | minimum size for this field SHOULD be |
| | | 64 octets. |
+-------------+-----------+-----------------------------------------+
Note: All timestamps have the default format as described in RFC 5905
[RFC5905] and is as follows: the first 32 bits represent the unsigned
integer number of seconds elapsed since 0 h on 1 January 1900; the
next 32 bits represent the fractional part of a second thereof. The
timestamp definition is also similar to that described in RFC 4656
[RFC4656].
In addition, the timestamp format used can be as described for the
low-order 64 bits of the IEEE 1588-2008 (1588v2) Precision Time
Protocol timestamp format [IEEE1588]. This truncated format consists
of a 32-bit seconds field followed by a 32-bit nanoseconds field, and
is the same as the IEEE 1588v1 timestamp format. This timestamp
definition is similar to the default timestamp specified in RFC 6374
[RFC6374]
Implementations MUST use only one of the two formats. The chosen
format is negotiated out-of-band between the endpoints or defaults to
the format as defined in RFC 5905. [RFC5905]
4. Implementation Notes
Responder implementations SHOULD support simultaneous measurements
destined to a single port either from the same or a different Sender.
For different measurement instances that originate from the same
Sender, there MUST be a clear method for the Responder to distinguish
the traffic, for example, per a unique 5-tuple of protocol, source
address, source port, destination address, and destination port.
A Control-Request that is received for the same Measurement-Type
request as identified by the 5-tuples, for instance, SHOULD result in
the resetting of the duration timer as well as the Responder sequence
number.
A Control Phase followed by the Measurement Phase can be repeated in
order to have a continuous measurement over the entire lifetime of a
device.
Chiba, et al. Informational [Page 19]
^L
RFC 6812 Cisco Service-Level Assurance Protocol January 2013
The Authentication CSLD MUST always be included. The Random Number
field is used to prevent dictionary attacks and is to be set to a
random value in environments where security is a concern.
An implementation MUST include the Random Number and Message
Authentication fields when the mode is non-zero. The fields MAY be
included when the mode is set to 'No Authentication'; when present,
they MUST be set to 0. For the SHA256 authenticator mode, the shared
secret is prepended to the Control message and the authentication
algorithm is then run over the complete data including the shared
secret. The SHA256 mode is included for ease of implementation, and
use of the HMAC variant is strongly recommended for stronger
security.
If the UDP port indicated in the UDP-Measurement CSLD is busy, the
Responder MAY suggest an alternative port, in which case the Status
of the UDP-Measurement CSLD MUST be set to Success. The Sender MAY
set a value of 0 in the field, in which case the Responder MAY choose
to open a port and send that back along with the Status set to
Success. It should be noted that this behavior has security
ramifications and the port needs to be chosen very carefully by the
Responder.
The measurement stream typically consists of packets or frames with a
periodic inter-packet distribution. The Sender need not wait for a
Measurement-Response packet to arrive before sending another
Measurement-Request packet; in many cases, it will not be possible to
wait in order to maintain the desired inter-packet distribution.
The default format for all timestamps is as specified in RFC 5905
[RFC5905].
All messages and fields within a message are assumed to be in network
order. In addition, all data fields are unsigned unless mentioned
otherwise.
5. Extensions
This section describes how the protocol can be extended to allow for
additional functionality, such as new types of measurements.
In order to allow for new types of measurements, additional
Measurement-Type CSLDs can be defined to be carried within the
Control-Request and Control-Response messages in place of the UDP-
Measurement CSLD defined in this document. The meaning and precise
format of such a CSLD needs to be defined in a separate
specification. Such a specification will also need to describe the
appropriate formats for the messages in the Measurement Phase.
Chiba, et al. Informational [Page 20]
^L
RFC 6812 Cisco Service-Level Assurance Protocol January 2013
In addition, the protocol can be extended by adding support for new
values to registries defined in this document.
6. IANA Considerations
The registries defined below are needed for the extensibility of the
protocol. In the registries, the terms 'Private Use' and
'Experimental Use' have the same meaning as described in RFC 5226
[RFC5226].
Furthermore, for the following registries, the ranges designated
"Unassigned" are governed by the policy 'RFC Required' as described
in RFC 5226 [RFC5226].
Cisco SLA Protocol Version Number Registry
+-----------+------------------------+
| Version | Description |
+-----------+------------------------+
| 0 | Reserved |
| 1 | Reserved |
| 2 | Version 2 |
| 3 - 200 | Unassigned |
| 201 - 225 | Private Use |
| 226 - 255 | Experimental Use |
+-----------+------------------------+
The version number should be changed only when the structure of the
Command messages is different from the basic Command-Header and CSLD
structure described in this document.
Cisco SLA Protocol CSLD Command Registry
+---------------+--------------------------+
| CSLD Type | Description |
+---------------+--------------------------+
| 0 | Reserved |
| 1 | Authentication CSLD |
| 2 | UDP-Measurement |
| 3 - 52 | Reserved |
| 53 - 10239 | Unassigned |
| 10240 - 20479 | Private Use |
| 20480 - 65535 | Experimental Use |
+---------------+--------------------------+
It is envisioned that future documents will provide their own
Measurement-Type number and format of the Data portion.
Chiba, et al. Informational [Page 21]
^L
RFC 6812 Cisco Service-Level Assurance Protocol January 2013
Cisco SLA Protocol Authenticator Modes Registry
+-----------+--------------------------+
| Mode | Description |
+-----------+--------------------------+
| 0 | No Authentication |
| 1 | SHA256 |
| 2 | HMAC-SHA-256 |
| 3 - 200 | Unassigned |
| 201 - 225 | Private Use |
| 226 - 255 | Experimental Use |
+-----------+--------------------------+
Cisco SLA Protocol Roles Registry
+-----------+--------------------------+
| Role | Description |
+-----------+--------------------------+
| 0 | Reserved |
| 1 | Sender |
| 2 | Responder |
| 3 - 200 | Unassigned |
| 201 - 225 | Private Use |
| 226 - 255 | Experimental Use |
+-----------+--------------------------+
Cisco SLA Protocol Measurement Type Registry
+------------------+------------------------+
| Measurement Type | Description |
+------------------+------------------------+
| 0 | Reserved |
| 1 | Reserved |
| 2 | Reserved |
| 3 | UDP |
| 4 - 52 | Reserved |
| 53-10239 | Unassigned |
| 10240 - 20479 | Private Use |
| 20480 - 65535 | Experimental Use |
+------------------+------------------------+
Chiba, et al. Informational [Page 22]
^L
RFC 6812 Cisco Service-Level Assurance Protocol January 2013
The following registry is also needed for the extensibility of the
protocol. However, the range designated "Unassigned" is governed by
the policy 'First Come First Served' as described in RFC 5226
[RFC5226].
Cisco SLA Protocol Status Types Registry
+-----------+-------------------------------------------------------+
| Status | Description |
+-----------+-------------------------------------------------------+
| 0 | Success |
| --------- | -------------------------- |
| 1 | Fail - catch all |
| --------- | -------------------------- |
| 2 | Authentication failure |
| --------- | -------------------------- |
| 3 | Format error - sent when any CSLD type is not |
| | recognized or any part of a CSLD has a value that is |
| | not recognized |
| --------- | -------------------------- |
| 4 | Port in use - the UDP/TCP port is already being used |
| | by some other application and cannot be reserved |
| --------- | -------------------------- |
| 5 - 40959 | Unassigned |
| --------- | -------------------------- |
| 40960 - | Experimental Use |
| 65535 | |
+-----------+-------------------------------------------------------+
Finally, the following registry is also needed for the extensibility
of the protocol. However, the range designated "Unassigned" is
governed by the policy 'Specification Required' as described in RFC
5226 [RFC5226].
Cisco SLA Protocol Address Family Registry
+--------------+------------------------+
| Address Type | Description |
+--------------+------------------------+
| 0 | Reserved |
| 1 | Reserved |
| 2 | IPv4 |
| 3 | IPv6 |
| 4 - 200 | Unassigned |
| 201 - 225 | Private Use |
| 226 - 255 | Experimental Use |
+--------------+------------------------+
Chiba, et al. Informational [Page 23]
^L
RFC 6812 Cisco Service-Level Assurance Protocol January 2013
7. Security Considerations
7.1. Message Authentication
When the mode for the Authentication CSLD is set to 1, the Message
Authentication Digest is generated using the SHA256 algorithm and is
to be calculated over the entire packet including the Message
Authentication Digest field, which MUST be set to all 0s.
When the mode for the Authentication CSLD is set to 2, the Message
Authentication Digest is generated using the HMAC-SHA-256 algorithm
as described in RFC 4868 [RFC4868] and is to be calculated over the
entire packet including the Message Authentication Digest field,
which MUST be set to all 0s.
When the mode field is set to 0, the Random Number and the Message
Authentication Digest fields MAY be included; when present, they MUST
be set to all 0s.
7.2. IPsec Considerations
It is RECOMMENDED that IPsec be employed to afford better security.
IPsec provides enhanced privacy as well as an automated key-
distribution mechanism. The recommendations below are similar to
those in Section 2 of RFC 3579 [RFC3579].
7.2.1. Control Traffic
For Senders implementing this specification, the IPsec policy would
be "Initiate IPsec, from me to any, destination port UDP 1167". This
causes the Sender to initiate IPsec when sending control traffic to
any Responder. If some Responders contacted by the Sender do not
support IPsec, then a more granular policy will be required, such as
"Initiate IPsec, from me to IPsec-Capable-Responder, destination port
UDP 1167".
For Responders implementing this specification, the IPsec policy
would be "Require IPsec, from any to me, destination port UDP 1167".
This causes the Responder to require use of IPsec. If some Sender
does not support IPsec, then a more granular policy will be required:
"Require IPsec, from IPsec-Capable-Sender to me".
7.2.2. Measurement Traffic
As the Control Phase occurs before the Measurement Phase, it should
be possible to build an IPsec Security Association once a successful
Control-Response is received.
Chiba, et al. Informational [Page 24]
^L
RFC 6812 Cisco Service-Level Assurance Protocol January 2013
For Senders implementing this specification, the IPsec policy would
be "Initiate IPsec, from me to negotiated address, destination is
negotiated port". This causes the Sender to initiate IPsec when
sending measurement traffic to the Responder. If some Responders
contacted by the Sender do not support IPsec, then a more granular
policy will be required, such as "Initiate IPsec, from me to IPsec-
Capable-Responder, destination is negotiated port".
For Responders implementing this specification, the IPsec policy
would be "Require IPsec, from negotiated address to me, destination
is negotiated port". This causes the Responder to require use of
IPsec. If some Sender does not support IPsec, then a more granular
policy will be required: "Require IPsec, from IPsec-Capable-Sender to
me, destination is negotiated port".
7.3. Replay Protection
For the Control messages, the originator of the message MAY choose to
include a current value in the Sent Timestamp field indicating the
time the message was submitted for transmission; otherwise, it MUST
be set to 0. The receiver of the message MAY choose to validate it
if the timestamp is within an acceptable range. The measurement
traffic described in this document contains a timestamp to indicate
the sent time and hence no new field is required.
8. Acknowledgements
The authors wish to acknowledge the contributions of several key
people who contributed to the current form of the document: Hanlin
Fang, David Wang, Anantha Ramaiah, Max Pritikin, Malini Vijayamohan,
and Susan Boyle.
9. References
9.1. Normative References
[IEEE1588] IEEE, "1588-2008 Standard for a Precision Clock
Synchronization Protocol for Networked Measurement and
Control Systems", March 2008.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC4868] Kelly, S. and S. Frankel, "Using HMAC-SHA-256, HMAC-
SHA-384, and HMAC-SHA-512 with IPsec", RFC 4868, May 2007.
Chiba, et al. Informational [Page 25]
^L
RFC 6812 Cisco Service-Level Assurance Protocol January 2013
[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", BCP 26, RFC 5226,
May 2008.
[RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
"Network Time Protocol Version 4: Protocol and Algorithms
Specification", RFC 5905, June 2010.
9.2. Informative References
[RFC3579] Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication
Dial In User Service) Support For Extensible
Authentication Protocol (EAP)", RFC 3579, September 2003.
[RFC4656] Shalunov, S., Teitelbaum, B., Karp, A., Boote, J., and M.
Zekauskas, "A One-way Active Measurement Protocol
(OWAMP)", RFC 4656, September 2006.
[RFC5357] Hedayat, K., Krzanowski, R., Morton, A., Yum, K., and J.
Babiarz, "A Two-Way Active Measurement Protocol (TWAMP)",
RFC 5357, October 2008.
[RFC6374] Frost, D. and S. Bryant, "Packet Loss and Delay
Measurement for MPLS Networks", RFC 6374, September 2011.
Authors' Addresses
Murtaza S. Chiba
Cisco Systems
170 West Tasman Drive
San Jose, 95134
USA
Phone: 1-408-526-4000
EMail: mchiba@cisco.com
Alexander Clemm
Cisco Systems
170 West Tasman Drive
San Jose, 95134
USA
Phone: 1-408-526-4000
EMail: alex@cisco.com
Chiba, et al. Informational [Page 26]
^L
RFC 6812 Cisco Service-Level Assurance Protocol January 2013
Steven Medley
Cisco Systems
170 West Tasman Drive
San Jose, 95134
USA
Phone: 1-408-526-4000
EMail: stmedley@cisco.com
Joseph Salowey
Cisco Systems
170 West Tasman Drive
San Jose, 95134
USA
Phone: 1-408-526-4000
EMail: jsalowey@cisco.com
Sudhir Thombare
Cisco Systems
170 West Tasman Drive
San Jose, 95134
USA
Phone: 1-408-526-4000
EMail: thombare@cisco.com
Eshwar Yedavalli
Cisco Systems
170 West Tasman Drive
San Jose, 95134
USA
Phone: 1-408-526-4000
EMail: eshwar@cisco.com
Chiba, et al. Informational [Page 27]
^L
|