1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
|
Internet Engineering Task Force (IETF) W. Wang
Request for Comments: 6956 Zhejiang Gongshang University
Category: Standards Track E. Haleplidis
ISSN: 2070-1721 University of Patras
K. Ogawa
NTT Corporation
C. Li
Hangzhou DPtech
J. Halpern
Ericsson
June 2013
Forwarding and Control Element Separation (ForCES)
Logical Function Block (LFB) Library
Abstract
This document defines basic classes of Logical Function Blocks (LFBs)
used in Forwarding and Control Element Separation (ForCES). The
basic LFB classes are defined according to the ForCES Forwarding
Element (FE) model and ForCES protocol specifications; they are
scoped to meet requirements of typical router functions and are
considered the basic LFB library for ForCES. The library includes
the descriptions of the LFBs and the XML definitions.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc6956.
Wang, et al. Standards Track [Page 1]
^L
RFC 6956 ForCES LFB Library June 2013
Copyright Notice
Copyright (c) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction ....................................................3
2. Terminology and Conventions .....................................4
2.1. Requirements Language ......................................4
2.2. Definitions ................................................4
3. Overview ........................................................6
3.1. Scope of the Library .......................................6
3.2. Overview of LFB Classes in the Library .....................8
3.2.1. LFB Design Choices ..................................8
3.2.2. LFB Class Groupings .................................9
3.2.3. Sample LFB Class Application .......................10
3.3. Document Structure ........................................11
4. Base Types .....................................................11
4.1. Data Types ................................................13
4.1.1. Atomic .............................................13
4.1.2. Compound Struct ....................................13
4.1.3. Compound Array .....................................14
4.2. Frame Types ...............................................14
4.3. Metadata Types ............................................15
4.4. XML for Base Type Library .................................16
5. LFB Class Descriptions .........................................41
5.1. Ethernet-Processing LFBs ..................................42
5.1.1. EtherPHYCop ........................................42
5.1.2. EtherMACIn .........................................44
5.1.3. EtherClassifier ....................................46
5.1.4. EtherEncap .........................................48
5.1.5. EtherMACOut ........................................50
5.2. IP Packet Validation LFBs .................................52
5.2.1. IPv4Validator ......................................52
5.2.2. IPv6Validator ......................................54
Wang, et al. Standards Track [Page 2]
^L
RFC 6956 ForCES LFB Library June 2013
5.3. IP Forwarding LFBs ........................................55
5.3.1. IPv4UcastLPM .......................................56
5.3.2. IPv4NextHop ........................................58
5.3.3. IPv6UcastLPM .......................................60
5.3.4. IPv6NextHop ........................................62
5.4. Redirect LFBs .............................................64
5.4.1. RedirectIn .........................................64
5.4.2. RedirectOut ........................................65
5.5. General Purpose LFBs ......................................66
5.5.1. BasicMetadataDispatch ..............................66
5.5.2. GenericScheduler ...................................68
6. XML for LFB Library ............................................69
7. LFB Class Use Cases ............................................97
7.1. IPv4 Forwarding ...........................................98
7.2. ARP Processing ...........................................101
8. IANA Considerations ...........................................102
8.1. LFB Class Names and LFB Class Identifiers ................103
8.2. Metadata ID ..............................................105
8.3. Exception ID .............................................106
8.4. Validate Error ID ........................................107
9. Security Considerations .......................................108
10. References ...................................................108
10.1. Normative References ....................................108
10.2. Informative References ..................................108
Appendix A. Acknowledgements ....................................110
Appendix B. Contributors ........................................110
1. Introduction
[RFC3746] specifies the Forwarding and Control Element Separation
(ForCES) framework. In the framework, Control Elements (CEs)
configure and manage one or more separate Forwarding Elements (FEs)
within a Network Element (NE) by use of a ForCES protocol. [RFC5810]
specifies the ForCES protocol. [RFC5812] specifies the Forwarding
Element (FE) model. In the model, resources in FEs are described by
classes of Logical Function Blocks (LFBs). The FE model defines the
structure and abstract semantics of LFBs and provides XML schema for
the definitions of LFBs.
This document conforms to the specifications of the FE model
[RFC5812] and specifies detailed definitions of classes of LFBs,
including detailed XML definitions of LFBs. These LFBs form a base
LFB library for ForCES. LFBs in the base library are expected to be
combined to form an LFB topology for a typical router to implement IP
forwarding. It should be emphasized that an LFB is an abstraction of
functions rather than implementation details. The purpose of the LFB
definitions is to represent functions so as to provide
interoperability between separate CEs and FEs.
Wang, et al. Standards Track [Page 3]
^L
RFC 6956 ForCES LFB Library June 2013
More LFB classes with more functions may be developed in the future
and documented by the IETF. Vendors may also develop proprietary LFB
classes as described in the FE model [RFC5812].
2. Terminology and Conventions
2.1. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
2.2. Definitions
This document follows the terminology defined by the ForCES protocol
in [RFC5810] and by the ForCES FE model in [RFC5812]. The
definitions below are repeated for clarity.
Control Element (CE) - A logical entity that implements the ForCES
protocol and uses it to instruct one or more FEs on how to process
packets. CEs handle functionality such as the execution of
control and signaling protocols.
Forwarding Element (FE) - A logical entity that implements the
ForCES protocol. FEs use the underlying hardware to provide per-
packet processing and handling as directed/controlled by one or
more CEs via the ForCES protocol.
ForCES Network Element (NE) - An entity composed of one or more
CEs and one or more FEs. To entities outside an NE, the NE
represents a single point of management. Similarly, an NE usually
hides its internal organization from external entities.
Logical Function Block (LFB) - The basic building block that is
operated on by the ForCES protocol. The LFB is a well-defined,
logically separable functional block that resides in an FE and is
controlled by the CE via the ForCES protocol. The LFB may reside
at the FE's data path and process packets or may be purely an FE
control or configuration entity that is operated on by the CE.
Note that the LFB is a functionally accurate abstraction of the
FE's processing capabilities but not a hardware-accurate
representation of the FE implementation.
FE Model - The FE model is designed to model the logical
processing functions of an FE, which is defined by the ForCES FE
model document [RFC5812]. The FE model proposed in this document
includes three components: the LFB modeling of individual Logical
Functional Blocks (LFB model), the logical interconnection between
Wang, et al. Standards Track [Page 4]
^L
RFC 6956 ForCES LFB Library June 2013
LFBs (LFB topology), and the FE-level attributes, including FE
capabilities. The FE model provides the basis to define the
information elements exchanged between the CE and the FE in the
ForCES protocol [RFC5810].
FE Topology - A representation of how the multiple FEs within a
single NE are interconnected. Sometimes this is called inter-FE
topology, to be distinguished from intra-FE topology (i.e., LFB
topology).
LFB Class and LFB Instance - LFBs are categorized by LFB classes.
An LFB instance represents an LFB class (or type) existence.
There may be multiple instances of the same LFB class (or type) in
an FE. An LFB class is represented by an LFB class ID, and an LFB
instance is represented by an LFB instance ID. As a result, an
LFB class ID associated with an LFB instance ID uniquely specifies
an LFB existence.
LFB Metadata - Metadata is used to communicate per-packet state
from one LFB to another but is not sent across the network. The
FE model defines how such metadata is identified, produced, and
consumed by the LFBs. It defines the functionality but not how
metadata is encoded within an implementation.
LFB Component - Operational parameters of the LFBs that must be
visible to the CEs are conceptualized in the FE model as the LFB
components. The LFB components include, for example, flags,
single parameter arguments, complex arguments, and tables that the
CE can read and/or write via the ForCES protocol (see below).
LFB Topology - Representation of how the LFB instances are
logically interconnected and placed along the data path within one
FE. Sometimes it is also called intra-FE topology, to be
distinguished from inter-FE topology.
Data Path - A conceptual path taken by packets within the
forwarding plane inside an FE. Note that more than one data path
can exist within an FE.
ForCES Protocol - While there may be multiple protocols used
within the overall ForCES architecture, the term "ForCES protocol"
and "protocol" refer to the Fp reference points in the ForCES
framework in [RFC3746]. This protocol does not apply to CE-to-CE
communication, FE-to-FE communication, or to communication between
FE and CE managers. Basically, the ForCES protocol works in a
master-slave mode in which FEs are slaves and CEs are masters.
Wang, et al. Standards Track [Page 5]
^L
RFC 6956 ForCES LFB Library June 2013
Physical Port - A port refers to a physical media input port or
output port of an FE. A physical port is usually assigned with a
physical port ID, abbreviated with a PHYPortID. This document
mainly deals with physical ports with Ethernet media.
Logical Port - A conceptually virtual port at the data link layer
(L2) or network layer (L3). A logical port is usually assigned
with a logical port ID, abbreviated with a LogicalPortID. The
logical ports can be further categorized with an L2 logical port
or an L3 logical port. An L2 logical port can be assigned with an
L2 logical port ID, abbreviated with an L2PortID. An L3 logical
port can be assigned with an L3 logical port ID, abbreviated with
an L3PortID. MAC-layer VLAN ports belong to logical ports, and
they belong to L2 logical ports.
LFB Port - The connection points where one LFB can be connected to
another within an FE. As described in [RFC5812], the CE can
connect LFBs together by establishing connections between an
output port of one LFB instance and an input port of another LFB
instance. Also see Section 3.2 of [RFC5812] for more details.
Singleton Port - A named input or output port of an LFB. This
port is referred to by a name. When the context is clear, the
term "singleton" by itself is used to refer to a singleton port.
Group Port - A named collection of input or output ports of an
LFB. A group port is referred to by a name. A group port
consists of a number of port instances, which are referred to by a
combination of a name and an index.
LFB Class Library - The LFB class library is a set of LFB classes
that has been identified as the most common functions found in
most FEs and hence should be defined first by the ForCES Working
Group. The LFB class library is defined by this document.
3. Overview
3.1. Scope of the Library
It is intended that the LFB classes described in this document are
designed to provide the functions of a typical router. [RFC1812]
specifies that a typical router is expected to provide functions to:
Wang, et al. Standards Track [Page 6]
^L
RFC 6956 ForCES LFB Library June 2013
(1) Interface to packet networks and implement the functions
required by that network. These functions typically include:
* Encapsulating and decapsulating the IP datagrams with the
connected network framing (e.g., an Ethernet header and
checksum),
* Sending and receiving IP datagrams up to the maximum size
supported by that network (this size is the network's Maximum
Transmission Unit or MTU),
* Translating the IP destination address into an appropriate
network-level address for the connected network (e.g., an
Ethernet hardware address), if needed, and
* Responding to network flow control and error indications, if
any.
(2) Conform to specific Internet protocols including the Internet
Protocol (IPv4 and/or IPv6), Internet Control Message Protocol
(ICMP), and others as necessary.
(3) Receive and forward Internet datagrams. Important issues in
this process are buffer management, congestion control, and
fairness.
* Recognize error conditions and generate ICMP error and
information messages as required.
* Drop datagrams whose time-to-live fields have reached zero.
* Fragment datagrams when necessary to fit into the MTU of the
next link or interface.
(4) Choose a next-hop destination for each IP datagram, based on the
information in its routing database.
(5) Usually support an interior gateway protocol (IGP) to carry out
distributed routing and reachability algorithms with the other
routers in the same autonomous system. In addition, some
routers will need to support an exterior gateway protocol (EGP)
to exchange topological information with other autonomous
systems. For all routers, it is essential to provide the
ability to manage static routing items.
(6) Provide network management and system support facilities,
including loading, debugging, status reporting, statistics
query, exception reporting, and control.
Wang, et al. Standards Track [Page 7]
^L
RFC 6956 ForCES LFB Library June 2013
The classical IP router utilizing the ForCES framework constitutes a
CE running some controlling IGP and/or EGP function or static route
setup and FEs implemented by use of Logical Function Blocks (LFBs)
conforming to the FE model [RFC5812] specification. The CE, in
conformance to the ForCES protocol [RFC5810] and the FE model
[RFC5812] specifications, instructs the LFBs on the FE how to treat
received/sent packets.
Packets in an IP router are received and transmitted on physical
media typically referred to as "ports". Different physical media
will have different ways for encapsulating outgoing frames and
decapsulating incoming frames. The different physical media will
also have different attributes that influence its behavior and how
frames get encapsulated or decapsulated. This document will only
deal with Ethernet physical media. Future documents may deal with
other types of media. This document will also interchangeably refer
to a port as an abstraction that constitutes a physical layer (PHY)
and a Media Access Control (MAC) layer, as described by LFBs like
EtherPHYCop, EtherMACIn, and EtherMACOut.
IP packets emanating from port LFBs are then processed by a
validation LFB before being further forwarded to the next LFB. After
the validation process, the packet is passed to an LFB where an IP
forwarding decision is made. In the IP Forwarding LFBs, a Longest
Prefix Match LFB is used to look up the destination information in a
packet and select a next-hop index for sending the packet onward. A
next-hop LFB uses the next-hop index metadata to apply the proper
headers to the IP packets and direct them to the proper egress. Note
that in the process of IP packet processing, in this document, we are
adhering to the weak-host model [RFC1122] since that is the most
usable model for a packet processing a Network Element.
3.2. Overview of LFB Classes in the Library
It is critical to classify functional requirements into various
classes of LFBs and construct a typical but also flexible enough base
LFB library for various IP forwarding equipments.
3.2.1. LFB Design Choices
A few design principles were factored into choosing what the base
LFBs look like:
o If a function can be designed by either one LFB or two or more
LFBs with the same cost, the choice is to go with two or more LFBs
so as to provide more flexibility for implementers.
Wang, et al. Standards Track [Page 8]
^L
RFC 6956 ForCES LFB Library June 2013
o An LFB should take advantage of its independence as much as
possible and have minimal coupling with other LFBs. The coupling
may be from LFB attributes definitions as well as physical
implementations.
o Unless there is a clear difference in functionality, similar
packet processing in the base LFB library should not be
represented simultaneously as two or more LFBs. For instance, it
should not be simultaneously defined with two different LFBs for
the same next-hop processing. Otherwise, it may add extra burden
on implementation to achieve interoperability.
3.2.2. LFB Class Groupings
This document defines groups of LFBs for typical router function
requirements:
(1) A group of Ethernet-processing LFBs are defined to abstract the
packet processing for Ethernet as the port media type. As
Ethernet is the most popular media type with rich processing
features, Ethernet media processing LFBs were a natural choice.
Definitions for processing of other port media types like Packet
over SONET (POS) or Asynchronous Transfer Mode (ATM) may be
incorporated in the library in future versions of this document
or in a separate document. The following LFBs are defined for
Ethernet processing:
* EtherPHYCop (Section 5.1.1)
* EtherMACIn (Section 5.1.2)
* EtherClassifier (Section 5.1.3)
* EtherEncap (Section 5.1.4)
* EtherMACOut (Section 5.1.5)
(2) A group of LFBs are defined for IP packet validation process.
The following LFBs are defined for IP validation processing:
* IPv4Validator (Section 5.2.1)
* IPv6Validator (Section 5.2.2)
(3) A group of LFBs are defined to abstract IP forwarding process.
The following LFBs are defined for IP forwarding processing:
* IPv4UcastLPM (Section 5.3.1)
Wang, et al. Standards Track [Page 9]
^L
RFC 6956 ForCES LFB Library June 2013
* IPv4NextHop (Section 5.3.2)
* IPv6UcastLPM (Section 5.3.3)
* IPv6NextHop (Section 5.3.4)
(4) A group of LFBs are defined to abstract the process for redirect
operation, i.e., data packet transmission between CE and FEs.
The following LFBs are defined for redirect processing:
* RedirectIn (Section 5.4.1)
* RedirectOut (Section 5.4.2)
(5) A group of LFBs are defined for abstracting some general purpose
packet processing. These processing processes are usually
general to many processing locations in an FE LFB topology. The
following LFBs are defined for redirect processing:
* BasicMetadataDispatch (Section 5.5.1)
* GenericScheduler (Section 5.5.2)
3.2.3. Sample LFB Class Application
Although Section 7 will present use cases for the LFBs defined in
this document, this section shows a simple sample LFB class
application in advance so that readers can get a quick overlook of
the LFB classes with the usage.
Figure 1 shows a simple LFB processing path for Ethernet packets
entered from Ethernet physical ports.
+-----+ +------+
| |EtherPHYIn | | from some LFB(s) that
| |<---------------|Ether |<---------- generate Ethernet
| | |MACOut| packets
| | | LFB |
|Ether| +------+
|PHY | +------+
|Cop | | |
|LFB |EtherPHYOut | Ether| to some LFB(s) that
| |--------------->| MACIn|----------> may classify Ethernet
| | | LFB | packets and do IP-layer
| | | | processing
+-----+ +------+
Figure 1: A Simple Sample LFB Use Case
Wang, et al. Standards Track [Page 10]
^L
RFC 6956 ForCES LFB Library June 2013
In the figure, Ethernet packets from outer networks enter via the
EtherPHYCop LFB (Section 5.1.1), which describes Ethernet copper
interface properties (like the link speed) at the physical layer.
After physical-layer processing, Ethernet packets are delivered to
the EtherMACIn LFB (Section 5.1.2) to describe its MAC-layer
processing functions (like locality check). The packets after the
EtherMACIn LFB may require further processing to implement various
functions (like IP-layer forwarding); therefore, some LFBs may follow
the EtherMACIn LFB in topology to describe followed processing
functions.
Meanwhile, packets generated by some LFB(s) may need to be submitted
to outer physical networks. The process is described in the figure
by an EtherMACOut LFB (Section 5.1.5) at the MAC layer and the
EtherPHYCop LFB at the physical layer.
3.3. Document Structure
Base type definitions, including data types, packet frame types, and
metadata types, are presented in advance for definitions of various
LFB classes. Section 4 ("Base Types") provides a description on the
base types used by this LFB library. To enable extensive use of
these base types by other LFB class definitions, the base type
definitions are provided as a separate library.
Within every group of LFB classes, a set of LFBs are defined for
individual function purposes. Section 5 ("LFB Class Descriptions")
provides text descriptions on the individual LFBs. Note that for a
complete definition of an LFB, a text description and an XML
definition are required.
LFB classes are finally defined by XML with specifications and schema
defined in the ForCES FE model [RFC5812]. Section 6 ("XML for LFB
Library") provides the complete XML definitions of the base LFB
classes library.
Section 7 provides several use cases on how some typical router
functions can be implemented using the base LFB library defined in
this document.
4. Base Types
The FE model [RFC5812] has specified predefined (built-in) atomic
data types: char, uchar, int16, uint16, int32, uint32, int64, uint64,
string[N], string, byte[N], boolean, octetstring[N], float16,
float32, and float64.
Wang, et al. Standards Track [Page 11]
^L
RFC 6956 ForCES LFB Library June 2013
Note that, unlike the Simple Network Management Protocol (SNMP)
information model, called the Structure of Management Information
(SMI) [RFC2578], the FE model has not defined specific atomic data
types for counting purposes. This document also does not define
specific counter types. To describe LFB elements for packet
statistics, which actually requires counters on packets, an unsigned
integer, like an uint32 or an uint64, is adopted. This document
states that any LFB element defined for counting purposes is
specified to monotonically increase until it reaches a maximum value,
when it wraps around and starts increasing again from zero. This
document also states that how the unsigned integer element might be
maintained to cope with issues like counter discontinuities when a
counter wraps or is reset for any reason is an implementation's
issue. If a CE is expected to understand more meanings of the
counter element than stated above, a private definition on the
element between the CE and FE may be required.
Based on the atomic data types and with the use of type definition
elements in the FE model XML schema, new data types, packet frame
types, and metadata types can be defined.
To define a base LFB library for typical router functions, a set of
base data types, frame types, and metadata types should be defined.
This section provides a brief description of the base types and a
full XML definition of them as well.
The base type XML definitions are provided with a separate XML
library file named "BaseTypeLibrary". Users can refer to this
library by the statement:
<load library="BaseTypeLibrary" location="..."/>
Wang, et al. Standards Track [Page 12]
^L
RFC 6956 ForCES LFB Library June 2013
4.1. Data Types
Data types defined in the base type library are categorized by the
following types: atomic, compound struct, and compound array.
4.1.1. Atomic
The following data types are defined as atomic data types and put in
the base type library:
Data Type Name Brief Description
-------------- -----------------
IPv4Addr IPv4 address
IPv6Addr IPv6 address
IEEEMAC IEEE MAC address
LANSpeedType LAN speed by value types
DuplexType Duplex types
PortStatusType The possible types of port status, used for
both administrative and operative status
VlanIDType The type of VLAN ID
VlanPriorityType The type of VLAN priority
SchdDisciplineType Scheduling discipline type
4.1.2. Compound Struct
The following compound struct types are defined in the base type
library:
Data Type Name Brief Description
-------------- -----------------
EtherDispatchEntryType Entry type for Ethernet dispatch table
VlanInputTableEntryType Entry type for VLAN input table
EncapTableEntryType Entry type for Ethernet encapsulation table
MACInStatsType Statistics type for EtherMACIn LFB
MACOutStatsType Statistics type for EtherMACOut LFB
EtherClassifyStatsType Entry type for statistics table in
EtherClassifier LFB
IPv4PrefixInfoType Entry type for IPv4 prefix table
IPv6PrefixInfoType Entry type for IPv6 prefix table
IPv4NextHopInfoType Entry type for IPv4 next-hop table
IPv6NextHopInfoType Entry type for IPv6 next-hop table
IPv4ValidatorStatsType Statistics type in IPv4validator LFB
IPv6ValidatorStatsType Statistics type in IPv6validator LFB
IPv4UcastLPMStatsType Statistics type in IPv4UcastLPM LFB
IPv6UcastLPMStatsType Statistics type in IPv6UcastLPM LFB
QueueStatsType Entry type for queue depth table
MetadataDispatchType Entry type for metadata dispatch table
Wang, et al. Standards Track [Page 13]
^L
RFC 6956 ForCES LFB Library June 2013
4.1.3. Compound Array
Compound array types are mostly created based on compound struct
types for LFB table components. The following compound array types
are defined in this base type library:
Data Type Name Brief Description
-------------- -----------------
EtherClassifyStatsTableType Type for Ethernet classifier statistics
information table
EtherDispatchTableType Type for Ethernet dispatch table
VlanInputTableType Type for VLAN input table
EncapTableType Type for Ethernet encapsulation table
IPv4PrefixTableType Type for IPv4 prefix table
IPv6PrefixTableType Type for IPv6 prefix table
IPv4NextHopTableType Type for IPv4 next-hop table
IPv6NextHopTableType Type for IPv6 next-hop table
MetadataDispatchTableType Type for Metadata dispatch table
QueueStatsTableType Type for Queue depth table
4.2. Frame Types
According to the FE model [RFC5812], frame types are used in LFB
definitions to define packet frame types that an LFB expects at its
input port and that the LFB emits at its output port. The <frameDef>
element in the FE model is used to define a new frame type.
The following frame types are defined in the base type library:
Frame Name Brief Description
-------------- -----------------
EthernetII An Ethernet II frame
ARP An ARP packet frame
IPv4 An IPv4 packet frame
IPv6 An IPv6 packet frame
IPv4Unicast An IPv4 unicast packet frame
IPv4Multicast An IPv4 multicast packet frame
IPv6Unicast An IPv6 unicast packet frame
IPv6Multicast An IPv6 multicast packet frame
Arbitrary Any type of packet frames
Wang, et al. Standards Track [Page 14]
^L
RFC 6956 ForCES LFB Library June 2013
4.3. Metadata Types
LFB metadata is used to communicate per-packet state from one LFB to
another. The <metadataDef> element in the FE model is used to define
a new metadata type.
The following metadata types are currently defined in the base type
library.
Metadata Name Metadata ID Brief Description
------------ ----------- -----------------
PHYPortID 1 Metadata indicating a physical port ID
SrcMAC 2 Metadata indicating a source MAC address
DstMAC 3 Metadata indicating a destination MAC
address
LogicalPortID 4 Metadata of a logical port ID
EtherType 5 Metadata indicating an Ethernet type
VlanID 6 Metadata of a VLAN ID
VlanPriority 7 Metadata of a VLAN priority
NextHopIPv4Addr 8 Metadata representing a next-hop IPv4
address
NextHopIPv6Addr 9 Metadata representing a next-hop IPv6
address
HopSelector 10 Metadata indicating a hop selector
ExceptionID 11 Metadata indicating exception types for
exceptional cases during LFB processing
ValidateErrorID 12 Metadata indicating error types when a
packet passes validation process
L3PortID 13 Metadata indicating ID of an L3 logical
port
RedirectIndex 14 Metadata that CE sends to RedirectIn LFB,
indicating an associated packet a group
output port index of the LFB
MediaEncapInfoIndex 15 A search key a packet uses to look up a
table in related LFBs to select an
encapsulation media
Wang, et al. Standards Track [Page 15]
^L
RFC 6956 ForCES LFB Library June 2013
4.4. XML for Base Type Library
<?xml version="1.0" encoding="UTF-8"?>
<LFBLibrary xmlns="urn:ietf:params:xml:ns:forces:lfbmodel:1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
provides="BaseTypeLibrary">
<frameDefs>
<frameDef>
<name>EthernetAll</name>
<synopsis>Packet with any Ethernet type</synopsis>
</frameDef>
<frameDef>
<name>EthernetII</name>
<synopsis>Packet with Ethernet II type</synopsis>
</frameDef>
<frameDef>
<name>ARP</name>
<synopsis>ARP packet</synopsis>
</frameDef>
<frameDef>
<name>IPv4</name>
<synopsis>IPv4 packet</synopsis>
</frameDef>
<frameDef>
<name>IPv6</name>
<synopsis>IPv6 packet</synopsis>
</frameDef>
<frameDef>
<name>IPv4Unicast</name>
<synopsis>IPv4 unicast packet</synopsis>
</frameDef>
<frameDef>
<name>IPv4Multicast</name>
<synopsis>IPv4 multicast packet</synopsis>
</frameDef>
<frameDef>
<name>IPv6Unicast</name>
<synopsis>IPv6 unicast packet</synopsis>
</frameDef>
<frameDef>
<name>IPv6Multicast</name>
<synopsis>IPv6 multicast packet</synopsis>
</frameDef>
<frameDef>
<name>Arbitrary</name>
<synopsis>Any type of packet</synopsis>
</frameDef>
</frameDefs>
Wang, et al. Standards Track [Page 16]
^L
RFC 6956 ForCES LFB Library June 2013
<dataTypeDefs>
<dataTypeDef>
<name>IPv4Addr</name>
<synopsis>IPv4 address</synopsis>
<typeRef>byte[4]</typeRef>
</dataTypeDef>
<dataTypeDef>
<name>IPv6Addr</name>
<synopsis>IPv6 address</synopsis>
<typeRef>byte[16]</typeRef>
</dataTypeDef>
<dataTypeDef>
<name>IEEEMAC</name>
<synopsis>IEEE MAC address</synopsis>
<typeRef>byte[6]</typeRef>
</dataTypeDef>
<dataTypeDef>
<name>LANSpeedType</name>
<synopsis>LAN speed type</synopsis>
<atomic>
<baseType>uint32</baseType>
<specialValues>
<specialValue value="0x00000000">
<name>LAN_SPEED_NONE</name>
<synopsis>Nothing connected</synopsis>
</specialValue>
<specialValue value="0x00000001">
<name>LAN_SPEED_10M</name>
<synopsis>10M Ethernet</synopsis>
</specialValue>
<specialValue value="0x00000002">
<name>LAN_SPEED_100M</name>
<synopsis>100M Ethernet</synopsis>
</specialValue>
<specialValue value="0x00000003">
<name>LAN_SPEED_1G</name>
<synopsis>1G Ethernet</synopsis>
</specialValue>
<specialValue value="0x00000004">
<name>LAN_SPEED_10G</name>
<synopsis>10G Ethernet</synopsis>
</specialValue>
<specialValue value="0x00000005">
<name>LAN_SPEED_40G</name>
<synopsis>40G Ethernet</synopsis>
</specialValue>
<specialValue value="0x00000006">
<name>LAN_SPEED_100G</name>
Wang, et al. Standards Track [Page 17]
^L
RFC 6956 ForCES LFB Library June 2013
<synopsis>100G Ethernet</synopsis>
</specialValue>
<specialValue value="0x00000007">
<name>LAN_SPEED_400G</name>
<synopsis>400G Ethernet</synopsis>
</specialValue>
<specialValue value="0x00000008">
<name>LAN_SPEED_1T</name>
<synopsis>1T Ethernet</synopsis>
</specialValue>
<specialValue value="0x00000009">
<name>LAN_SPEED_OTHER</name>
<synopsis>Other LAN speed type</synopsis>
</specialValue>
<specialValue value="0x0000000A">
<name>LAN_SPEED_AUTO</name>
<synopsis>LAN speed by auto negotiation</synopsis>
</specialValue>
</specialValues>
</atomic>
</dataTypeDef>
<dataTypeDef>
<name>DuplexType</name>
<synopsis>Duplex mode type</synopsis>
<atomic>
<baseType>uint32</baseType>
<specialValues>
<specialValue value="0x00000001">
<name>Auto</name>
<synopsis>Auto negotiation</synopsis>
</specialValue>
<specialValue value="0x00000002">
<name>HalfDuplex</name>
<synopsis>Half duplex</synopsis>
</specialValue>
<specialValue value="0x00000003">
<name>FullDuplex</name>
<synopsis>Full duplex</synopsis>
</specialValue>
</specialValues>
</atomic>
</dataTypeDef>
<dataTypeDef>
<name>PortStatusType</name>
<synopsis>
Type for port status, used for both administrative and
operative status.
</synopsis>
Wang, et al. Standards Track [Page 18]
^L
RFC 6956 ForCES LFB Library June 2013
<atomic>
<baseType>uchar</baseType>
<specialValues>
<specialValue value="0">
<name>Disabled</name>
<synopsis>Port disabled</synopsis>
</specialValue>
<specialValue value="1">
<name>Up</name>
<synopsis>Port up</synopsis>
</specialValue>
<specialValue value="2">
<name>Down</name>
<synopsis>Port down</synopsis>
</specialValue>
</specialValues>
</atomic>
</dataTypeDef>
<dataTypeDef>
<name>MACInStatsType</name>
<synopsis>
Data type defined for statistics in EtherMACIn LFB.
</synopsis>
<struct>
<component componentID="1">
<name>NumPacketsReceived</name>
<synopsis>Number of packets received</synopsis>
<typeRef>uint64</typeRef>
</component>
<component componentID="2">
<name>NumPacketsDropped</name>
<synopsis>Number of packets dropped</synopsis>
<typeRef>uint64</typeRef>
</component>
</struct>
</dataTypeDef>
<dataTypeDef>
<name>MACOutStatsType</name>
<synopsis>
Data type defined for statistics in EtherMACOut LFB.
</synopsis>
<struct>
<component componentID="1">
<name>NumPacketsTransmitted</name>
<synopsis>Number of packets transmitted</synopsis>
<typeRef>uint64</typeRef>
</component>
<component componentID="2">
Wang, et al. Standards Track [Page 19]
^L
RFC 6956 ForCES LFB Library June 2013
<name>NumPacketsDropped</name>
<synopsis>Number of packets dropped</synopsis>
<typeRef>uint64</typeRef>
</component>
</struct>
</dataTypeDef>
<dataTypeDef>
<name>EtherDispatchEntryType</name>
<synopsis>
Data type defined for entry of Ethernet dispatch
table in EtherClassifier LFB.
</synopsis>
<struct>
<component componentID="1">
<name>LogicalPortID</name>
<synopsis>Logical port ID</synopsis>
<typeRef>uint32</typeRef>
</component>
<component componentID="2">
<name>EtherType</name>
<synopsis>
The Ethernet type of the Ethernet packet.
</synopsis>
<typeRef>uint16</typeRef>
</component>
<component componentID="3">
<name>Reserved</name>
<synopsis>
A reserved bit space mainly for purpose of padding
and packing efficiency.
</synopsis>
<typeRef>uint16</typeRef>
</component>
<component componentID="4">
<name>LFBOutputSelectIndex</name>
<synopsis>
Index for a packet to select an instance in the
group output port of EtherClassifier LFB to output.
</synopsis>
<typeRef>uint32</typeRef>
</component>
</struct>
</dataTypeDef>
<dataTypeDef>
Wang, et al. Standards Track [Page 20]
^L
RFC 6956 ForCES LFB Library June 2013
<name>EtherDispatchTableType</name>
<synopsis>
Data type defined for Ethernet dispatch table in
EtherClassifier LFB. The table is composed of an array
of entries with EtherDispatchEntryType data type.
</synopsis>
<array type="variable-size">
<typeRef>EtherDispatchEntryType</typeRef>
</array>
</dataTypeDef>
<dataTypeDef>
<name>VlanIDType</name>
<synopsis>Data type for VLAN ID</synopsis>
<atomic>
<baseType>uint16</baseType>
<rangeRestriction>
<allowedRange min="0" max="4095"/>
</rangeRestriction>
</atomic>
</dataTypeDef>
<dataTypeDef>
<name>VlanPriorityType</name>
<synopsis>Data type for VLAN priority</synopsis>
<atomic>
<baseType>uchar</baseType>
<rangeRestriction>
<allowedRange min="0" max="7"/>
</rangeRestriction>
</atomic>
</dataTypeDef>
<dataTypeDef>
<name>VlanInputTableEntryType</name>
<synopsis>
Data type for entry of VLAN input table in EtherClassifier
LFB. Each entry of the table contains an incoming port ID,
a VLAN ID and a logical port ID. Every input packet is
assigned with a new logical port ID according to the
packet incoming port ID and the VLAN ID.
</synopsis>
<struct>
<component componentID="1">
<name>IncomingPortID</name>
<synopsis>The incoming port ID</synopsis>
<typeRef>uint32</typeRef>
</component>
<component componentID="2">
<name>VlanID</name>
<synopsis>The VLAN ID</synopsis>
Wang, et al. Standards Track [Page 21]
^L
RFC 6956 ForCES LFB Library June 2013
<typeRef>VlanIDType</typeRef>
</component>
<component componentID="3">
<name>Reserved</name>
<synopsis>
A reserved bit space mainly for purpose of padding
and packing efficiency.
</synopsis>
<typeRef>uint16</typeRef>
</component>
<component componentID="4">
<name>LogicalPortID</name>
<synopsis>The logical port ID</synopsis>
<typeRef>uint32</typeRef>
</component>
</struct>
</dataTypeDef>
<dataTypeDef>
<name>VlanInputTableType</name>
<synopsis>
Data type for the VLAN input table in EtherClassifier
LFB. The table is composed of an array of entries with
VlanInputTableEntryType.
</synopsis>
<array type="variable-size">
<typeRef>VlanInputTableEntryType</typeRef>
</array>
</dataTypeDef>
<dataTypeDef>
<name>EtherClassifyStatsType</name>
<synopsis>
Data type for entry of statistics table in EtherClassifier
LFB.
</synopsis>
<struct>
<component componentID="1">
<name>EtherType</name>
<synopsis>
The Ethernet type of the Ethernet packet.
</synopsis>
<typeRef>uint16</typeRef>
</component>
<component componentID="2">
<name>Reserved</name>
<synopsis>
A reserved bit space mainly for purpose of padding
and packing efficiency.
</synopsis>
Wang, et al. Standards Track [Page 22]
^L
RFC 6956 ForCES LFB Library June 2013
<typeRef>uint16</typeRef>
</component>
<component componentID="3">
<name>PacketsNum</name>
<synopsis>Packets number</synopsis>
<typeRef>uint64</typeRef>
</component>
</struct>
</dataTypeDef>
<dataTypeDef>
<name>EtherClassifyStatsTableType</name>
<synopsis>
Data type for statistics table in EtherClassifier LFB.
</synopsis>
<array type="variable-size">
<typeRef>EtherClassifyStatsType</typeRef>
</array>
</dataTypeDef>
<dataTypeDef>
<name>IPv4ValidatorStatsType</name>
<synopsis>
Data type for statistics in IPv4validator LFB.
</synopsis>
<struct>
<component componentID="1">
<name>badHeaderPkts</name>
<synopsis>Number of packets with bad header</synopsis>
<typeRef>uint64</typeRef>
</component>
<component componentID="2">
<name>badTotalLengthPkts</name>
<synopsis>
Number of packets with bad total length
</synopsis>
<typeRef>uint64</typeRef>
</component>
<component componentID="3">
<name>badTTLPkts</name>
<synopsis>Number of packets with bad TTL</synopsis>
<typeRef>uint64</typeRef>
</component>
<component componentID="4">
<name>badChecksumPkts</name>
<synopsis>Number of packets with bad checksum</synopsis>
<typeRef>uint64</typeRef>
</component>
</struct>
</dataTypeDef>
Wang, et al. Standards Track [Page 23]
^L
RFC 6956 ForCES LFB Library June 2013
<dataTypeDef>
<name>IPv6ValidatorStatsType</name>
<synopsis>
Data type for statistics in IPv6validator LFB.
</synopsis>
<struct>
<component componentID="1">
<name>badHeaderPkts</name>
<synopsis>Number of packets with bad header</synopsis>
<typeRef>uint64</typeRef>
</component>
<component componentID="2">
<name>badTotalLengthPkts</name>
<synopsis>
Number of packets with bad total length.
</synopsis>
<typeRef>uint64</typeRef>
</component>
<component componentID="3">
<name>badHopLimitPkts</name>
<synopsis>
Number of packets with bad hop limit.
</synopsis>
<typeRef>uint64</typeRef>
</component>
</struct>
</dataTypeDef>
<dataTypeDef>
<name>IPv4PrefixInfoType</name>
<synopsis>Data type for entry of IPv4 longest prefix match
table in IPv4UcastLPM LFB. The destination IPv4 address
of every input packet is used as a search key to look up
the table to find out a next-hop selector.</synopsis>
<struct>
<component componentID="1">
<name>IPv4Address</name>
<synopsis>The destination IPv4 address</synopsis>
<typeRef>IPv4Addr</typeRef>
</component>
<component componentID="2">
<name>Prefixlen</name>
<synopsis>The prefix length</synopsis>
<atomic>
<baseType>uchar</baseType>
<rangeRestriction>
<allowedRange min="0" max="32"/>
</rangeRestriction>
</atomic>
Wang, et al. Standards Track [Page 24]
^L
RFC 6956 ForCES LFB Library June 2013
</component>
<component componentID="3">
<name>ECMPFlag</name>
<synopsis>The ECMP flag</synopsis>
<atomic>
<baseType>boolean</baseType>
<specialValues>
<specialValue value="false">
<name>False</name>
<synopsis>
ECMP false, indicating the route
does not have multiple next hops.
</synopsis>
</specialValue>
<specialValue value="true">
<name>True</name>
<synopsis>
ECMP true, indicating the route
has multiple next hops.
</synopsis>
</specialValue>
</specialValues>
</atomic>
</component>
<component componentID="4">
<name>DefaultRouteFlag</name>
<synopsis>Default route flag</synopsis>
<atomic>
<baseType>boolean</baseType>
<specialValues>
<specialValue value="false">
<name>False</name>
<synopsis>
Default route false, indicating the
route is not a default route.
</synopsis>
</specialValue>
<specialValue value="true">
<name>True</name>
<synopsis>
Default route true, indicating the
route is a default route.
</synopsis>
</specialValue>
</specialValues>
</atomic>
</component>
<component componentID="5">
Wang, et al. Standards Track [Page 25]
^L
RFC 6956 ForCES LFB Library June 2013
<name>Reserved</name>
<synopsis>
A reserved bit space mainly for purpose of padding
and packing efficiency.
</synopsis>
<typeRef>uchar</typeRef>
</component>
<component componentID="6">
<name>HopSelector</name>
<synopsis>
The HopSelector produced by the prefix matching LFB,
which will be output to downstream LFB to find next-
hop information.
</synopsis>
<typeRef>uint32</typeRef>
</component>
</struct>
</dataTypeDef>
<dataTypeDef>
<name>IPv4PrefixTableType</name>
<synopsis>
Data type for IPv4 longest prefix match table in
IPv4UcastLPM LFB. Entry of the table is
of IPv4PrefixInfoType data type.
</synopsis>
<array type="variable-size">
<typeRef>IPv4PrefixInfoType</typeRef>
</array>
</dataTypeDef>
<dataTypeDef>
<name>IPv4UcastLPMStatsType</name>
<synopsis>
Data type for statistics in IPv4UcastLPM LFB.
</synopsis>
<struct>
<component componentID="1">
<name>InRcvdPkts</name>
<synopsis>Number of received input packets.</synopsis>
<typeRef>uint64</typeRef>
</component>
<component componentID="2">
<name>FwdPkts</name>
<synopsis>Number of forwarded packets.</synopsis>
<typeRef>uint64</typeRef>
</component>
<component componentID="3">
Wang, et al. Standards Track [Page 26]
^L
RFC 6956 ForCES LFB Library June 2013
<name>NoRoutePkts</name>
<synopsis>
Number of packets with no route found.
</synopsis>
<typeRef>uint64</typeRef>
</component>
</struct>
</dataTypeDef>
<dataTypeDef>
<name>IPv6PrefixInfoType</name>
<synopsis>Data type for entry of IPv6 longest prefix match
table in IPv6UcastLPM LFB. The destination IPv6 address
of every input packet is used as a search key to look up
the table to find out a next-hop selector.</synopsis>
<struct>
<component componentID="1">
<name>IPv6Address</name>
<synopsis>The destination IPv6 address</synopsis>
<typeRef>IPv6Addr</typeRef>
</component>
<component componentID="2">
<name>Prefixlen</name>
<synopsis>The prefix length</synopsis>
<atomic>
<baseType>uchar</baseType>
<rangeRestriction>
<allowedRange min="0" max="128"/>
</rangeRestriction>
</atomic>
</component>
<component componentID="3">
<name>ECMPFlag</name>
<synopsis>ECMP flag</synopsis>
<atomic>
<baseType>boolean</baseType>
<specialValues>
<specialValue value="false">
<name>False</name>
<synopsis>ECMP false</synopsis>
</specialValue>
<specialValue value="true">
<name>True</name>
<synopsis>ECMP true</synopsis>
</specialValue>
</specialValues>
</atomic>
</component>
<component componentID="4">
Wang, et al. Standards Track [Page 27]
^L
RFC 6956 ForCES LFB Library June 2013
<name>DefaultRouteFlag</name>
<synopsis>Default route flag</synopsis>
<atomic>
<baseType>boolean</baseType>
<specialValues>
<specialValue value="false">
<name>False</name>
<synopsis>Default false</synopsis>
</specialValue>
<specialValue value="true">
<name>True</name>
<synopsis>Default route true</synopsis>
</specialValue>
</specialValues>
</atomic>
</component>
<component componentID="5">
<name>Reserved</name>
<synopsis>
A reserved bit space mainly for purpose of padding
and packing efficiency.
</synopsis>
<typeRef>uchar</typeRef>
</component>
<component componentID="6">
<name>HopSelector</name>
<synopsis>
The HopSelector produced by the prefix matching LFB,
which will be output to downstream LFB to find next-
hop information.
</synopsis>
<typeRef>uint32</typeRef>
</component>
</struct>
</dataTypeDef>
<dataTypeDef>
<name>IPv6PrefixTableType</name>
<synopsis>
Data type for IPv6 longest prefix match table in
IPv6UcastLPM LFB. Entry of the table is
of IPv6PrefixInfoType data type.
</synopsis>
<array type="variable-size">
<typeRef>IPv6PrefixInfoType</typeRef>
</array>
</dataTypeDef>
<dataTypeDef>
Wang, et al. Standards Track [Page 28]
^L
RFC 6956 ForCES LFB Library June 2013
<name>IPv6UcastLPMStatsType</name>
<synopsis>Data type for statistics in IPv6UcastLPM LFB
</synopsis>
<struct>
<component componentID="1">
<name>InRcvdPkts</name>
<synopsis>Number of received input packets</synopsis>
<typeRef>uint64</typeRef>
</component>
<component componentID="2">
<name>FwdPkts</name>
<synopsis>Number of forwarded packets</synopsis>
<typeRef>uint64</typeRef>
</component>
<component componentID="3">
<name>NoRoutePkts</name>
<synopsis>
Number of packets with no route found.
</synopsis>
<typeRef>uint64</typeRef>
</component>
</struct>
</dataTypeDef>
<dataTypeDef>
<name>IPv4NextHopInfoType</name>
<synopsis>
Data type for entry of IPv4 next-hop information table
in IPv4NextHop LFB. The table uses a hop selector
received from upstream LFB as a search key to look up
index of the table to find the next-hop information.
</synopsis>
<struct>
<component componentID="1">
<name>L3PortID</name>
<synopsis>
The ID of the logical output port that is to pass
onto downstream LFB, indicating what port to the
neighbor is as defined by L3.
</synopsis>
<typeRef>uint32</typeRef>
</component>
<component componentID="2">
<name>MTU</name>
<synopsis>
Maximum Transmission Unit for outgoing port
</synopsis>
<typeRef>uint32</typeRef>
</component>
Wang, et al. Standards Track [Page 29]
^L
RFC 6956 ForCES LFB Library June 2013
<component componentID="3">
<name>NextHopIPAddr</name>
<synopsis>The next-hop IPv4 address</synopsis>
<typeRef>IPv4Addr</typeRef>
</component>
<component componentID="4">
<name>MediaEncapInfoIndex</name>
<synopsis>
The index passed onto a downstream encapsulation
LFB, used there as a search key to lookup further
encapsulation information.
</synopsis>
<typeRef>uint32</typeRef>
</component>
<component componentID="5">
<name>LFBOutputSelectIndex</name>
<synopsis>
The index for the IPv4NextHop LFB to choose an
instance in the group output port of the LFB to
output.
</synopsis>
<typeRef>uint32</typeRef>
</component>
</struct>
</dataTypeDef>
<dataTypeDef>
<name>IPv4NextHopTableType</name>
<synopsis>
Data type for IPv4 next-hop table in IPv4NextHop LFB.
Entry of the table is of IPv4NextHopInfoType data type.
</synopsis>
<array type="variable-size">
<typeRef>IPv4NextHopInfoType</typeRef>
</array>
</dataTypeDef>
<dataTypeDef>
<name>IPv6NextHopInfoType</name>
<synopsis>
Data type for entry of IPv6 next-hop information table
in IPv6NextHop LFB. The table uses a hop selector
received from upstream LFB as a search key to look up
index of the table to find the next-hop information.
</synopsis>
<struct>
<component componentID="1">
Wang, et al. Standards Track [Page 30]
^L
RFC 6956 ForCES LFB Library June 2013
<name>L3PortID</name>
<synopsis>
The ID of the logical output port that is to pass
onto downstream LFB, indicating what port to the
neighbor is as defined by L3.
</synopsis>
<typeRef>uint32</typeRef>
</component>
<component componentID="2">
<name>MTU</name>
<synopsis>
Maximum Transmission Unit for outgoing port
</synopsis>
<typeRef>uint32</typeRef>
</component>
<component componentID="3">
<name>NextHopIPAddr</name>
<synopsis>The next-hop IPv6 address</synopsis>
<typeRef>IPv6Addr</typeRef>
</component>
<component componentID="4">
<name>MediaEncapInfoIndex</name>
<synopsis>
The index passed onto a downstream encapsulation
LFB, used there as a search key to lookup further
encapsulation information.
</synopsis>
<typeRef>uint32</typeRef>
</component>
<component componentID="5">
<name>LFBOutputSelectIndex</name>
<synopsis>
The index for the IPv6NextHop LFB to choose an instance
in the group output port of the LFB to output.
</synopsis>
<typeRef>uint32</typeRef>
</component>
</struct>
</dataTypeDef>
<dataTypeDef>
<name>IPv6NextHopTableType</name>
<synopsis>
Data type for IPv6 next-hop table in IPv6NextHop LFB.
Entry of the table is of IPv6NextHopInfoType data type.
</synopsis>
<array type="variable-size">
<typeRef>IPv6NextHopInfoType</typeRef>
</array>
Wang, et al. Standards Track [Page 31]
^L
RFC 6956 ForCES LFB Library June 2013
</dataTypeDef>
<dataTypeDef>
<name>EncapTableEntryType</name>
<synopsis>
Data type for entry of Ethernet encapsulation table in
EtherEncap LFB. The LFB uses the MediaEncapInfoIndex
received from upstream LFB as index of the table to
find encapsulation information of every packet.
</synopsis>
<struct>
<component componentID="1">
<name>DstMac</name>
<synopsis>
Destination MAC address for Ethernet encapsulation of
the packet.
</synopsis>
<typeRef>IEEEMAC</typeRef>
</component>
<component componentID="2">
<name>SrcMac</name>
<synopsis>
Source MAC address for Ethernet encapsulation of the
packet.
</synopsis>
<typeRef>IEEEMAC</typeRef>
</component>
<component componentID="3">
<name>VlanID</name>
<synopsis>The VLAN ID assigned to the packet</synopsis>
<typeRef>VlanIDType</typeRef>
</component>
<component componentID="4">
<name>Reserved</name>
<synopsis>
A reserved bit space mainly for purpose of padding
and packing efficiency.
</synopsis>
<typeRef>uint16</typeRef>
</component>
<component componentID="5">
<name>L2PortID</name>
<synopsis>
The L2 logical output port ID for the packet.
</synopsis>
<typeRef>uint32</typeRef>
</component>
</struct>
</dataTypeDef>
Wang, et al. Standards Track [Page 32]
^L
RFC 6956 ForCES LFB Library June 2013
<dataTypeDef>
<name>EncapTableType</name>
<synopsis>
Data type for Ethernet encapsulation table in EtherEncap
LFB. Entry of the table is of EncapTableEntryType data
type.
</synopsis>
<array type="variable-size">
<typeRef>EncapTableEntryType</typeRef>
</array>
</dataTypeDef>
<dataTypeDef>
<name>MetadataDispatchType</name>
<synopsis>
Data type for entry of metadata dispatch table used in
BasicMetadataDispatch LFB. The LFB uses a metadata value
as a search key to look up the table to find an index of
the LFB group output port to output the packet.
</synopsis>
<struct>
<component componentID="1">
<name>MetadataValue</name>
<synopsis>The value of the dispatch metadata</synopsis>
<typeRef>uint32</typeRef>
</component>
<component componentID="2">
<name>OutputIndex</name>
<synopsis>
Index of a group output port for outgoing packets.
</synopsis>
<typeRef>uint32</typeRef>
</component>
</struct>
</dataTypeDef>
<dataTypeDef>
<name>MetadataDispatchTableType</name>
<synopsis>
Data type for metadata dispatch table used in
BasicMetadataDispatch LFB. Metadata value of
the table is also defined as a content key field.
</synopsis>
<array type="variable-size">
<typeRef>MetadataDispatchType</typeRef>
<contentKey contentKeyID="1">
<contentKeyField>MetadataValue</contentKeyField>
</contentKey>
</array>
</dataTypeDef>
Wang, et al. Standards Track [Page 33]
^L
RFC 6956 ForCES LFB Library June 2013
<dataTypeDef>
<name>SchdDisciplineType</name>
<synopsis>Scheduling discipline type</synopsis>
<atomic>
<baseType>uint32</baseType>
<specialValues>
<specialValue value="1">
<name>RR</name>
<synopsis>
Round Robin scheduling discipline
</synopsis>
</specialValue>
</specialValues>
</atomic>
</dataTypeDef>
<dataTypeDef>
<name>QueueStatsType</name>
<synopsis>
Data type for entry of queue statistics table in
GenericScheduler LFB.
</synopsis>
<struct>
<component componentID="1">
<name>QueueID</name>
<synopsis>The input queue ID</synopsis>
<typeRef>uint32</typeRef>
</component>
<component componentID="2">
<name>QueueDepthInPackets</name>
<synopsis>Current queue depth in packets</synopsis>
<typeRef>uint32</typeRef>
</component>
<component componentID="3">
<name>QueueDepthInBytes</name>
<synopsis>Current queue depth in bytes</synopsis>
<typeRef>uint32</typeRef>
</component>
</struct>
</dataTypeDef>
<dataTypeDef>
<name>QueueStatsTableType</name>
<synopsis>
Data type for queue statistics table in GenericScheduler
LFB. Entry of the table is of QueueStatsType data type.
</synopsis>
<array type="variable-size">
<typeRef>QueueStatsType</typeRef>
</array>
Wang, et al. Standards Track [Page 34]
^L
RFC 6956 ForCES LFB Library June 2013
</dataTypeDef>
</dataTypeDefs>
<metadataDefs>
<metadataDef>
<name>PHYPortID</name>
<synopsis>Metadata indicating physical port ID</synopsis>
<metadataID>1</metadataID>
<typeRef>uint32</typeRef>
</metadataDef>
<metadataDef>
<name>SrcMAC</name>
<synopsis>Metadata indicating source MAC address</synopsis>
<metadataID>2</metadataID>
<typeRef>IEEEMAC</typeRef>
</metadataDef>
<metadataDef>
<name>DstMAC</name>
<synopsis>
Metadata indicating destination MAC address.
</synopsis>
<metadataID>3</metadataID>
<typeRef>IEEEMAC</typeRef>
</metadataDef>
<metadataDef>
<name>LogicalPortID</name>
<synopsis>Metadata of logical port ID</synopsis>
<metadataID>4</metadataID>
<typeRef>uint32</typeRef>
</metadataDef>
<metadataDef>
<name>EtherType</name>
<synopsis>Metadata indicating Ethernet type</synopsis>
<metadataID>5</metadataID>
<typeRef>uint16</typeRef>
</metadataDef>
<metadataDef>
<name>VlanID</name>
<synopsis>Metadata of VLAN ID</synopsis>
<metadataID>6</metadataID>
<typeRef>VlanIDType</typeRef>
</metadataDef>
<metadataDef>
<name>VlanPriority</name>
<synopsis>Metadata of VLAN priority</synopsis>
<metadataID>7</metadataID>
<typeRef>VlanPriorityType</typeRef>
</metadataDef>
<metadataDef>
Wang, et al. Standards Track [Page 35]
^L
RFC 6956 ForCES LFB Library June 2013
<name>NextHopIPv4Addr</name>
<synopsis>
Metadata representing a next-hop IPv4 address
</synopsis>
<metadataID>8</metadataID>
<typeRef>IPv4Addr</typeRef>
</metadataDef>
<metadataDef>
<name>NextHopIPv6Addr</name>
<synopsis>
Metadata representing a next-hop IPv6 address
</synopsis>
<metadataID>9</metadataID>
<typeRef>IPv6Addr</typeRef>
</metadataDef>
<metadataDef>
<name>HopSelector</name>
<synopsis>Metadata indicating a hop selector</synopsis>
<metadataID>10</metadataID>
<typeRef>uint32</typeRef>
</metadataDef>
<metadataDef>
<name>ExceptionID</name>
<synopsis>
Metadata indicating exception types for exceptional cases
during packet processing.
</synopsis>
<metadataID>11</metadataID>
<atomic>
<baseType>uint32</baseType>
<specialValues>
<specialValue value="0">
<name>AnyUnrecognizedExceptionCase</name>
<synopsis>Any unrecognized exception case</synopsis>
</specialValue>
<specialValue value="1">
<name>ClassifyNoMatching</name>
<synopsis>
Exception case: no matching of tables in
EtherClassifier LFB.
</synopsis>
</specialValue>
<specialValue value="2">
<name>MediaEncapInfoIndexInvalid</name>
<synopsis>
Exception case: the MediaEncapInfoIndex value of
the packet is invalid and cannot be allocated in
the EncapTable in EtherEncap LFB.
Wang, et al. Standards Track [Page 36]
^L
RFC 6956 ForCES LFB Library June 2013
</synopsis>
</specialValue>
<specialValue value="3">
<name>EncapTableLookupFailed</name>
<synopsis>
Exception case: the packet fails lookup of the
EncapTable table in EtherEncap LFB even though the
MediaEncapInfoIndex is valid.
</synopsis>
</specialValue>
<specialValue value="4">
<name>BadTTL</name>
<synopsis>
Exception case: packet with expired TTL
</synopsis>
</specialValue>
<specialValue value="5">
<name>IPv4HeaderLengthMismatch</name>
<synopsis>
Exception case: packet with header length more
than 5 words.
</synopsis>
</specialValue>
<specialValue value="6">
<name>RouterAlertOptions</name>
<synopsis>
Exception case: packet IP head includes router
alert options.
</synopsis>
</specialValue>
<specialValue value="7">
<name>IPv6HopLimitZero</name>
<synopsis>
Exception case: packet with the hop limit to zero.
</synopsis>
</specialValue>
<specialValue value="8">
<name>IPv6NextHeaderHBH</name>
<synopsis>
Exception case: packet with next header set to
Hop-by-Hop.
</synopsis>
</specialValue>
<specialValue value="9">
<name>SrcAddressException</name>
<synopsis>
Exception case: packet with exceptional source
address.
Wang, et al. Standards Track [Page 37]
^L
RFC 6956 ForCES LFB Library June 2013
</synopsis>
</specialValue>
<specialValue value="10">
<name>DstAddressException</name>
<synopsis>
Exception case: packet with exceptional destination
address.
</synopsis>
</specialValue>
<specialValue value="11">
<name>LPMLookupFailed</name>
<synopsis>
Exception case: packet failed the LPM table lookup
in a prefix match LFB.
</synopsis>
</specialValue>
<specialValue value="12">
<name>HopSelectorInvalid</name>
<synopsis>
Exception case: HopSelector for the packet is
invalid.
</synopsis>
</specialValue>
<specialValue value="13">
<name>NextHopLookupFailed</name>
<synopsis>
Exception case: packet failed lookup of a next-hop
table even though HopSelector is valid.
</synopsis>
</specialValue>
<specialValue value="14">
<name>FragRequired</name>
<synopsis>
Exception case: packet fragmentation is required
</synopsis>
</specialValue>
<specialValue value="15">
<name>MetadataNoMatching</name>
<synopsis>
Exception case: there is no matching when looking
up the metadata dispatch table in
BasicMetadataDispatch LFB.
</synopsis>
</specialValue>
</specialValues>
</atomic>
</metadataDef>
<metadataDef>
Wang, et al. Standards Track [Page 38]
^L
RFC 6956 ForCES LFB Library June 2013
<name>ValidateErrorID</name>
<synopsis>
Metadata indicating error types when a packet passes
validation process.
</synopsis>
<metadataID>12</metadataID>
<atomic>
<baseType>uint32</baseType>
<specialValues>
<specialValue value="0">
<name>AnyUnrecognizedValidateErrorCase</name>
<synopsis>
Any unrecognized validate error case.
</synopsis>
</specialValue>
<specialValue value="1">
<name>InvalidIPv4PacketSize</name>
<synopsis>
Error case: packet length reported by the link
layer is less than 20 bytes.
</synopsis>
</specialValue>
<specialValue value="2">
<name>NotIPv4Packet</name>
<synopsis>
Error case: packet is not IP version 4</synopsis>
</specialValue>
<specialValue value="3">
<name>InvalidIPv4HeaderLengthSize</name>
<synopsis>
Error case: packet with header length field in
the header less than 5 words.
</synopsis>
</specialValue>
<specialValue value="4">
<name>InvalidIPv4LengthFieldSize</name>
<synopsis>
Error case: packet with total length field in the
header less than 20 bytes.
</synopsis>
</specialValue>
<specialValue value="5">
<name>InvalidIPv4Checksum</name>
<synopsis>
Error case: packet with invalid checksum.
</synopsis>
</specialValue>
<specialValue value="6">
Wang, et al. Standards Track [Page 39]
^L
RFC 6956 ForCES LFB Library June 2013
<name>InvalidIPv4SrcAddr</name>
<synopsis>
Error case: packet with invalid IPv4 source
address.
</synopsis>
</specialValue>
<specialValue value="7">
<name>InvalidIPv4DstAddr</name>
<synopsis>
Error case: packet with invalid IPv4 destination
address.
</synopsis>
</specialValue>
<specialValue value="8">
<name>InvalidIPv6PacketSize</name>
<synopsis>
Error case: packet size is less than 40 bytes.
</synopsis>
</specialValue>
<specialValue value="9">
<name>NotIPv6Packet</name>
<synopsis>
Error case: packet is not IP version 6
</synopsis>
</specialValue>
<specialValue value="10">
<name>InvalidIPv6SrcAddr</name>
<synopsis>
Error case: packet with invalid IPv6 source address.
</synopsis>
</specialValue>
<specialValue value="11">
<name>InvalidIPv6DstAddr</name>
<synopsis>
Error case: packet with invalid IPv6 destination
address.
</synopsis>
</specialValue>
</specialValues>
</atomic>
</metadataDef>
<metadataDef>
<name>L3PortID</name>
<synopsis>
Metadata indicating ID of an L3 logical port
</synopsis>
<metadataID>13</metadataID>
<typeRef>uint32</typeRef>
Wang, et al. Standards Track [Page 40]
^L
RFC 6956 ForCES LFB Library June 2013
</metadataDef>
<metadataDef>
<name>RedirectIndex</name>
<synopsis>
Metadata that CE sends to RedirectIn LFB, indicating
the index of the LFB group output port.
</synopsis>
<metadataID>14</metadataID>
<typeRef>uint32</typeRef>
</metadataDef>
<metadataDef>
<name>MediaEncapInfoIndex</name>
<synopsis>
A search key a packet uses to look up a table to select
an encapsulation media.
</synopsis>
<metadataID>15</metadataID>
<typeRef>uint32</typeRef>
</metadataDef>
</metadataDefs>
</LFBLibrary>
5. LFB Class Descriptions
According to ForCES specifications, an LFB (Logical Function Block)
is a well-defined, logically separable functional block that resides
in an FE and is a functionally accurate abstraction of the FE's
processing capabilities. An LFB class (or type) is a template that
represents a fine-grained, logically separable aspect of FE
processing. Most LFBs are related to packet processing in the data
path. LFB classes are the basic building blocks of the FE model.
Note that [RFC5810] has already defined an 'FE Protocol LFB', which
is a logical entity in each FE to control the ForCES protocol.
[RFC5812] has already defined an 'FE Object LFB'. Information like
the FE Name, FE ID, FE State, and LFB Topology in the FE are
represented in this LFB.
As specified in Section 3.1, this document focuses on the base LFB
library for implementing typical router functions, especially for IP
forwarding functions. As a result, LFB classes in the library are
all base LFBs to implement router forwarding.
In this section, the terms "upstream LFB" and "downstream LFB" are
used. These are used relative to the LFB that is being described.
An "upstream LFB" is one whose output ports are connected to input
ports of the LFB under consideration such that output (typically
packets with metadata) can be sent from the "upstream LFB" to the LFB
under consideration. Similarly, a "downstream LFB" whose input ports
Wang, et al. Standards Track [Page 41]
^L
RFC 6956 ForCES LFB Library June 2013
are connected to output ports of the LFB under consideration such
that the LFB under consideration can send information to the
"downstream LFB". Note that in some rare topologies, an LFB may be
both upstream and downstream relative to another LFB.
Also note that, as a default provision of [RFC5812], in the FE model,
all metadata produced by upstream LFBs will pass through all
downstream LFBs by default without being specified by input port or
output port. Only those metadata that will be used (consumed) by an
LFB will be explicitly marked in the input of the LFB as expected
metadata. For instance, in downstream LFBs of a physical-layer LFB,
even if there is no specific metadata expected, metadata like
PHYPortID produced by the physical-layer LFB will always pass through
all downstream LFBs regardless of whether or not the metadata has
been expected by the LFBs.
5.1. Ethernet-Processing LFBs
As the most popular physical- and data-link-layer protocol, Ethernet
is widely deployed. It becomes a basic requirement for a router to
be able to process various Ethernet data packets.
Note that different versions of Ethernet formats exist, like Ethernet
V2, 802.3 RAW, IEEE 802.3/802.2, and IEEE 802.3/802.2 SNAP.
Varieties of LAN techniques based on Ethernet also exist, like
various VLANs, MACinMAC, etc. Ethernet-processing LFBs defined here
are intended to be able to cope with all these variations of Ethernet
technology.
There are also various types of Ethernet physical interface media.
Among them, copper and fiber media may be the most popular ones. As
a base LFB definition and a starting point, this document only
defines an Ethernet physical LFB with copper media. For other media
interfaces, specific LFBs may be defined in future versions of the
library.
5.1.1. EtherPHYCop
EtherPHYCop LFB abstracts an Ethernet interface physical layer with
media limited to copper.
5.1.1.1. Data Handling
This LFB is the interface to the Ethernet physical media. The LFB
handles Ethernet frames coming in from or going out of the FE.
Ethernet frames sent and received cover all packets encapsulated with
different versions of Ethernet protocols, like Ethernet V2, 802.3
RAW, IEEE 802.3/802.2, and IEEE 802.3/802.2 SNAP, including packets
Wang, et al. Standards Track [Page 42]
^L
RFC 6956 ForCES LFB Library June 2013
encapsulated with varieties of LAN techniques based on Ethernet, like
various VLANs, MACinMAC, etc. Therefore, in the XML, an EthernetAll
frame type has been introduced.
Ethernet frames are received from the physical media port and passed
downstream to LFBs, such as EtherMACIn LFBs, via a singleton output
known as "EtherPHYOut". A PHYPortID metadata, which indicates the
physical port from which the frame came in from the external world,
is passed along with the frame.
Ethernet packets are received by this LFB from upstream LFBs, such as
EtherMacOut LFBs, via the singleton input known as "EtherPHYIn"
before being sent out to the external world.
5.1.1.2. Components
The AdminStatus component is defined for the CE to administratively
manage the status of the LFB. The CE may administratively start up
or shut down the LFB by changing the value of AdminStatus. The
default value is set to 'Down'.
An OperStatus component captures the physical port operational
status. A PHYPortStatusChanged event is defined so the LFB can
report to the CE whenever there is an operational status change of
the physical port.
The PHYPortID component is a unique identification for a physical
port. It is defined as 'read-only' by the CE. Its value is
enumerated by FE. The component will be used to produce a PHYPortID
metadata at the LFB output and to associate it to every Ethernet
packet this LFB receives. The metadata will be handed to downstream
LFBs for them to use the PHYPortID.
A group of components are defined for link speed management. The
AdminLinkSpeed is for the CE to configure link speed for the port,
and the OperLinkSpeed is for the CE to query the actual link speed in
operation. The default value for the AdminLinkSpeed is set to auto-
negotiation mode.
A group of components are defined for duplex mode management. The
AdminDuplexMode is for the CE to configure proper duplex mode for the
port, and the OperDuplexMode is for CE to query the actual duplex
mode in operation. The default value for the AdminDuplexMode is set
to auto-negotiation mode.
A CarrierStatus component captures the status of the carrier and
specifies whether the port link is operationally up. The default
value for the CarrierStatus is 'false'.
Wang, et al. Standards Track [Page 43]
^L
RFC 6956 ForCES LFB Library June 2013
5.1.1.3. Capabilities
The capability information for this LFB includes the link speeds that
are supported by the FE (SupportedLinkSpeed) as well as the supported
duplex modes (SupportedDuplexMode).
5.1.1.4. Events
Several events are generated. There is an event for changes in the
status of the physical port (PhyPortStatusChanged). Such an event
will notify that the physical port status has been changed, and the
report will include the new status of the physical port.
Another event captures changes in the operational link speed
(LinkSpeedChanged). Such an event will notify the CE that the
operational speed has been changed, and the report will include the
new negotiated operational speed.
A final event captures changes in the duplex mode
(DuplexModeChanged). Such an event will notify the CE that the
duplex mode has been changed and the report will include the new
negotiated duplex mode.
5.1.2. EtherMACIn
EtherMACIn LFB abstracts an Ethernet port at the MAC data link layer.
This LFB describes Ethernet processing functions like checking MAC
address locality, deciding if the Ethernet packets should be bridged,
providing Ethernet-layer flow control, etc.
5.1.2.1. Data Handling
The LFB is expected to receive all types of Ethernet packets (via a
singleton input known as "EtherPktsIn"), which are usually output
from some Ethernet physical-layer LFB, like an EtherPHYCop LFB, along
with a metadata indicating the physical port ID of the port on which
the packet arrived.
The LFB is defined with two separate singleton outputs. All output
packets are emitted in the original Ethernet format received at the
physical port, unchanged, and cover all Ethernet types.
The first singleton output is known as "NormalPathOut". It usually
outputs Ethernet packets to some LFB, like an EtherClassifier LFB,
for further L3 forwarding process along with a PHYPortID metadata
indicating the physical port from which the packet came.
Wang, et al. Standards Track [Page 44]
^L
RFC 6956 ForCES LFB Library June 2013
The second singleton output is known as "L2BridgingPathOut".
Although the LFB library this document defines is basically to meet
typical router functions, it will attempt to be forward compatible
with future router functions. The L2BridgingPathOut is defined to
meet the requirement that L2 bridging functions may be optionally
supported simultaneously with L3 processing and some L2 bridging LFBs
that may be defined in the future. If the FE supports L2 bridging,
the CE can enable or disable it by means of a "L2BridgingPathEnable"
component in the FE. If it is enabled, by also instantiating some L2
bridging LFB instances following the L2BridgingPathOut, FEs are
expected to fulfill L2 bridging functions. L2BridgingPathOut will
output packets exactly the same as in the NormalPathOut output.
This LFB can be set to work in a promiscuous mode, allowing all
packets to pass through the LFB without being dropped. Otherwise, a
locality check will be performed based on the local MAC addresses.
All packets that do not pass through the locality check will be
dropped.
This LFB can optionally participate in Ethernet flow control in
cooperation with EtherMACOut LFB. This document does not go into the
details of how this is implemented. This document also does not
describe how the buffers that induce the flow control messages behave
-- it is assumed that such artifacts exist, and describing them is
out of scope in this document.
5.1.2.2. Components
The AdminStatus component is defined for the CE to administratively
manage the status of the LFB. The CE may administratively start up
or shut down the LFB by changing the value of AdminStatus. The
default value is set to 'Down'.
The LocalMACAddresses component specifies the local MAC addresses
based on which locality checks will be made. This component is an
array of MAC addresses and of 'read-write' access permission.
An L2BridgingPathEnable component captures whether the LFB is set to
work as an L2 bridge. An FE that does not support bridging will
internally set this flag to false and additionally set the flag
property as read-only. The default value for the component is
'false'.
The PromiscuousMode component specifies whether the LFB is set to
work in a promiscuous mode. The default value for the component is
'false'.
Wang, et al. Standards Track [Page 45]
^L
RFC 6956 ForCES LFB Library June 2013
The TxFlowControl component defines whether the LFB is performing
flow control on sending packets. The default value is 'false'. Note
that the component is defined as "optional". If an FE does not
implement the component while a CE tries to configure the component
to that FE, an error from the FE may be responded to the CE with an
error code like 0x09 (E_COMPONENT_DOES_NOT_EXIST) or 0x15
(E_NOT_SUPPORTED), depending on the FE processing. See [RFC5810] for
details.
The RxFlowControl component defines whether the LFB is performing
flow control on receiving packets. The default value is 'false'.
The component is defined as "optional".
A struct component, MACInStats, defines a set of statistics for this
LFB, including the number of received packets and the number of
dropped packets. Note that this statistics component is optional to
implementers. If a CE tries to query the component while it is not
implemented in an FE, an error code will be responded to the CE
indicating the error type like 0x09 (E_COMPONENT_DOES_NOT_EXIST) or
0x15 (E_NOT_SUPPORTED), depending on the FE implementation.
5.1.2.3. Capabilities
This LFB does not have a list of capabilities.
5.1.2.4. Events
This LFB does not have any events specified.
5.1.3. EtherClassifier
The EtherClassifier LFB abstracts the process to decapsulate Ethernet
packets and then classify them.
5.1.3.1. Data Handling
This LFB describes the process of decapsulating Ethernet packets and
classifying them into various network-layer data packets according to
information included in the Ethernet packets headers.
The LFB is expected to receive all types of Ethernet packets (via a
singleton input known as "EtherPktsIn"), which are usually output
from an upstream LFB like EtherMACIn LFB. This input is also capable
of multiplexing to allow for multiple upstream LFBs to be connected.
For instance, when an L2 bridging function is enabled in the
EtherMACIn LFB, some L2 bridging LFBs may be applied. In this case,
after L2 processing, some Ethernet packets may have to be input to
the EtherClassifier LFB for classification, while simultaneously,
Wang, et al. Standards Track [Page 46]
^L
RFC 6956 ForCES LFB Library June 2013
packets directly output from EtherMACIn may also need to input to
this LFB. This input is capable of handling such a case. Usually,
all expected Ethernet packets will be associated with a PHYPortID
metadata, indicating the physical port from which the packet comes.
In some cases, for instance, in a MACinMAC case, a LogicalPortID
metadata may be expected to associate with the Ethernet packet to
further indicate the logical port to which the Ethernet packet
belongs. Note that PHYPortID metadata is always expected while
LogicalPortID metadata is optionally expected.
Two output LFB ports are defined.
The first output is a group output port known as "ClassifyOut".
Types of network-layer protocol packets are output to instances of
the port group. Because there may be various types of protocol
packets at the output ports, the produced output frame is defined as
arbitrary for the purpose of wide extensibility in the future.
Metadata to be carried along with the packet data is produced at this
LFB for consumption by downstream LFBs. The metadata passed
downstream includes PHYPortID, as well as information on Ethernet
type, source MAC address, destination MAC address, and the logical
port ID. If the original packet is a VLAN packet and contains a VLAN
ID and a VLAN priority value, then the VLAN ID and the VLAN priority
value are also carried downstream as metadata. As a result, the VLAN
ID and priority metadata are defined with the availability of
"conditional".
The second output is a singleton output port known as "ExceptionOut",
which will output packets for which the data processing failed, along
with an additional ExceptionID metadata to indicate what caused the
exception. Currently defined exception types include:
o There is no matching when classifying the packet.
Usually, the ExceptionOut port may point to nowhere, indicating
packets with exceptions are dropped, while in some cases, the output
may be pointed to the path to the CE for further processing,
depending on individual implementations.
5.1.3.2. Components
An EtherDispatchTable array component is defined in the LFB to
dispatch every Ethernet packet to the output group according to the
logical port ID assigned by the VlanInputTable to the packet and the
Ethernet type in the Ethernet packet header. Each row of the array
is a struct containing a logical port ID, an EtherType and an output
index. With the CE configuring the dispatch table, the LFB can be
expected to classify various network-layer protocol type packets and
Wang, et al. Standards Track [Page 47]
^L
RFC 6956 ForCES LFB Library June 2013
output them at different output ports. It is expected that the LFB
classify packets according to protocols like IPv4, IPv6, MPLS,
Address Resolution Protocol (ARP), Neighbor Discovery (ND), etc.
A VlanInputTable array component is defined in the LFB to classify
VLAN Ethernet packets. Each row of the array is a struct containing
an incoming port ID, a VLAN ID, and a logical port ID. According to
IEEE VLAN specifications, all Ethernet packets can be recognized as
VLAN types by defining that if there is no VLAN encapsulation in a
packet, a case with VLAN tag 0 is considered. Every input packet is
assigned with a new LogicalPortID according to the packet's incoming
port ID and the VLAN ID. A packet's incoming port ID is defined as a
logical port ID if a logical port ID is associated with the packet or
a physical port ID if no logical port ID is associated. The VLAN ID
is exactly the VLAN ID in the packet if it is a VLAN packet, or 0 if
it is not. Note that a logical port ID of a packet may be rewritten
with a new one by the VlanInputTable processing.
Note that the logical port ID and physical port ID mentioned above
are all originally configured by the CE, and are globally effective
within a ForCES NE (Network Element). To distinguish a physical port
ID from a logical port ID in the incoming port ID field of the
VlanInputTable, physical port ID and logical port ID must be assigned
with separate number spaces.
An array component, EtherClassifyStats, defines a set of statistics
for this LFB, measuring the number of packets per EtherType. Each
row of the array is a struct containing an EtherType and a packet
number. Note that this statistics component is optional to
implementers.
5.1.3.3. Capabilities
This LFB does not have a list of capabilities.
5.1.3.4. Events
This LFB has no events specified.
5.1.4. EtherEncap
The EtherEncap LFB abstracts the process to replace or attach
appropriate Ethernet headers to the packet.
5.1.4.1. Data Handling
This LFB abstracts the process of encapsulating Ethernet headers onto
received packets. The encapsulation is based on passed metadata.
Wang, et al. Standards Track [Page 48]
^L
RFC 6956 ForCES LFB Library June 2013
The LFB is expected to receive IPv4 and IPv6 packets (via a singleton
input port known as "EncapIn"), which may be connected to an upstream
LFB like IPv4NextHop, IPv6NextHop, BasicMetadataDispatch, or any LFB
that requires output packets for Ethernet encapsulation. The LFB
always expects from upstream LFBs the MediaEncapInfoIndex metadata,
which is used as a search key to look up the encapsulation table
EncapTable by the search key matching the table index. An input
packet may also optionally receive a VLAN priority metadata,
indicating that the packet originally had a priority value. The
priority value will be loaded back to the packet when encapsulating.
The optional VLAN priority metadata is defined with a default value
of 0.
Two singleton output LFB ports are defined.
The first singleton output is known as "SuccessOut". Upon a
successful table lookup, the destination and source MAC addresses and
the logical media port (L2PortID) are found in the matching table
entry. The CE may set the VlanID in case VLANs are used. By
default, the table entry for VlanID of 0 is used as per IEEE rules
[IEEE.802-1Q]. Whatever the value of VlanID, if the input metadata
VlanPriority is non-zero, the packet will have a VLAN tag. If the
VlanPriority and the VlanID are all zero, there is no VLAN tag for
this packet. After replacing or attaching the appropriate Ethernet
headers to the packet is complete, the packet is passed out on the
"SuccessOut" LFB port to a downstream LFB instance along with the
L2PortID.
The second singleton output is known as "ExceptionOut" and will
output packets for which the table lookup fails, along with an
additional ExceptionID metadata. Currently defined exception types
only include the following cases:
o The MediaEncapInfoIndex value of the packet is invalid and can not
be allocated in the EncapTable.
o The packet failed lookup of the EncapTable table even though the
MediaEncapInfoIndex is valid.
The upstream LFB may be programmed by the CE to pass along a
MediaEncapInfoIndex that does not exist in the EncapTable. This
allows for resolution of the L2 headers, if needed, to be made at the
L2 encapsulation level, in this case, Ethernet via ARP or ND (or
other methods depending on the link-layer technology), when a table
miss occurs.
For neighbor L2 header resolution (table miss exception), the
processing LFB may pass this packet to the CE via the redirect LFB or
Wang, et al. Standards Track [Page 49]
^L
RFC 6956 ForCES LFB Library June 2013
FE software or another LFB instance for further resolution. In such
a case, the metadata NextHopIPv4Addr or NextHopIPv6Addr generated by
the next-hop LFB is also passed to the exception handling. Such an
IP address could be used to do activities such as ARP or ND by the
handler to which it is passed.
The result of the L2 resolution is to update the EncapTable as well
as the next-hop LFB so subsequent packets do not fail EncapTable
lookup. The EtherEncap LFB does not make any assumptions of how the
EncapTable is updated by the CE (or whether ARP/ND is used
dynamically or static maps exist).
Downstream LFB instances could be either an EtherMACOut type or a
BasicMetadataDispatch type. If the final packet L2 processing is on
a per-media-port basis, resides on a different FE, or needs L2 header
resolution, then it makes sense for the model to use a
BasicMetadataDispatch LFB to fan out to different LFB instances. If
there is a direct egress port point, then it makes sense for the
model to have a downstream LFB instance be an EtherMACOut.
5.1.4.2. Components
This LFB has only one component named EncapTable, which is defined as
an array. Each row of the array is a struct containing the
destination MAC address, the source MAC address, the VLAN ID with a
default value of zero, and the output logical L2 port ID.
5.1.4.3. Capabilities
This LFB does not have a list of capabilities.
5.1.4.4. Events
This LFB does not have any events specified.
5.1.5. EtherMACOut
The EtherMACOut LFB abstracts an Ethernet port at the MAC data link
layer. This LFB describes Ethernet packet output process. Ethernet
output functions are closely related to Ethernet input functions;
therefore, many components defined in this LFB are aliases of
EtherMACIn LFB components.
Wang, et al. Standards Track [Page 50]
^L
RFC 6956 ForCES LFB Library June 2013
5.1.5.1. Data Handling
The LFB is expected to receive all types of Ethernet packets (via a
singleton input known as "EtherPktsIn"), which are usually output
from an Ethernet encapsulation LFB along with a metadata indicating
the ID of the physical port that the packet will go through.
The LFB is defined with a singleton output port known as
"EtherPktsOut". All output packets are in Ethernet format, possibly
with various Ethernet types, along with a metadata indicating the ID
of the physical port that the packet is to go through. This output
links to a downstream LFB that is usually an Ethernet physical LFB
like the EtherPHYCop LFB.
This LFB can optionally participate in Ethernet flow control in
cooperation with the EtherMACIn LFB. This document does not go into
the details of how this is implemented. This document also does not
describe how the buffers that induce the flow control messages behave
-- it is assumed that such artifacts exist, but describing them is
out of the scope of this document.
Note that as a base definition, functions like multiple virtual MAC
layers are not supported in this LFB version. It may be supported in
the future by defining a subclass or a new version of this LFB.
5.1.5.2. Components
The AdminStatus component is defined for the CE to administratively
manage the status of the LFB. The CE may administratively start up
or shut down the LFB by changing the value of AdminStatus. The
default value is set to 'Down'. Note that this component is defined
as an alias of the AdminStatus component in the EtherMACIn LFB. This
infers that an EtherMACOut LFB usually coexists with an EtherMACIn
LFB, both of which share the same administrative status management by
the CE. Alias properties, as defined in the ForCES FE model
[RFC5812], will be used by the CE to declare the target component to
which the alias refers, which includes the target LFB class and
instance IDs as well as the path to the target component.
The MTU component defines the maximum transmission unit.
The optional TxFlowControl component defines whether or not the LFB
is performing flow control on sending packets. The default value is
'false'. Note that this component is defined as an alias of the
TxFlowControl component in the EtherMACIn LFB.
The optional RxFlowControl component defines whether or not the LFB
is performing flow control on receiving packets. The default value
Wang, et al. Standards Track [Page 51]
^L
RFC 6956 ForCES LFB Library June 2013
is 'false'. Note that this component is defined as an alias of the
RxFlowControl component in the EtherMACIn LFB.
A struct component, MACOutStats, defines a set of statistics for this
LFB, including the number of transmitted packets and the number of
dropped packets. This statistics component is optional to
implementers.
5.1.5.3. Capabilities
This LFB does not have a list of capabilities.
5.1.5.4. Events
This LFB does not have any events specified.
5.2. IP Packet Validation LFBs
The LFBs are defined to abstract the IP packet validation process.
An IPv4Validator LFB is specifically for IPv4 protocol validation,
and an IPv6Validator LFB is specifically for IPv6.
5.2.1. IPv4Validator
The IPv4Validator LFB performs IPv4 packet validation.
5.2.1.1. Data Handling
This LFB performs IPv4 validation according to [RFC1812] and its
updates. The IPv4 packet will be output to the corresponding LFB
port, indicating whether the packet is unicast or multicast or
whether an exception has occurred or the validation failed.
This LFB always expects, as input, packets that have been indicated
as IPv4 packets by an upstream LFB, like an EtherClassifier LFB.
There is no specific metadata expected by the input of the LFB.
Four output LFB ports are defined.
All validated IPv4 unicast packets will be output at the singleton
port known as "IPv4UnicastOut". All validated IPv4 multicast packets
will be output at the singleton port known as "IPv4MulticastOut"
port.
A singleton port known as "ExceptionOut" is defined to output packets
that have been validated as exception packets. An exception ID
metadata is produced to indicate what has caused the exception. An
exception case is the case when a packet needs further processing
Wang, et al. Standards Track [Page 52]
^L
RFC 6956 ForCES LFB Library June 2013
before being normally forwarded. Currently defined exception types
include:
o Packet with expired TTL
o Packet with header length more than 5 words
o Packet IP head including router alert options
o Packet with exceptional source address
o Packet with exceptional destination address
Note that although Time to Live (TTL) is checked in this LFB for
validity, operations like TTL decrement are made by the downstream
forwarding LFB.
The final singleton port known as "FailOut" is defined for all
packets that have errors and failed the validation process. An error
case is when a packet is unable to be further processed or forwarded
without being dropped. An error ID is associated with a packet to
indicate the failure reason. Currently defined failure reasons
include:
o Packet with size reported less than 20 bytes
o Packet with version not IPv4
o Packet with header length less than 5 words
o Packet with total length field less than 20 bytes
o Packet with invalid checksum
o Packet with invalid source address
o Packet with invalid destination address
5.2.1.2. Components
This LFB has only one struct component, the
IPv4ValidatorStatisticsType, which defines a set of statistics for
validation process, including the number of bad header packets, the
number of bad total length packets, the number of bad TTL packets,
and the number of bad checksum packets. This statistics component is
optional to implementers.
Wang, et al. Standards Track [Page 53]
^L
RFC 6956 ForCES LFB Library June 2013
5.2.1.3. Capabilities
This LFB does not have a list of capabilities
5.2.1.4. Events
This LFB does not have any events specified.
5.2.2. IPv6Validator
The IPv6Validator LFB performs IPv6 packet validation.
5.2.2.1. Data Handling
This LFB performs IPv6 validation according to [RFC2460] and its
updates. Then the IPv6 packet will be output to the corresponding
port regarding of the validation result, indicating whether the
packet is a unicast or a multicast one, an exception has occurred or
the validation failed.
This LFB always expects, as input, packets that have been indicated
as IPv6 packets by an upstream LFB, like an EtherClassifier LFB.
There is no specific metadata expected by the input of the LFB.
Similar to the IPv4validator LFB, the IPv6Validator LFB has also
defined four output ports to emit packets with various validation
results.
All validated IPv6 unicast packets will be output at the singleton
port known as "IPv6UnicastOut". All validated IPv6 multicast packets
will be output at the singleton port known as "IPv6MulticastOut".
There is no metadata produced at this LFB.
A singleton port known as "ExceptionOut" is defined to output packets
that have been validated as exception packets. An exception case is
when a packet needs further processing before being normally
forwarded. An exception ID metadata is produced to indicate what
caused the exception. Currently defined exception types include:
o Packet with hop limit to zero
o Packet with next header set to hop-by-hop
o Packet with exceptional source address
o Packet with exceptional destination address
Wang, et al. Standards Track [Page 54]
^L
RFC 6956 ForCES LFB Library June 2013
The final singleton port known as "FailOut" is defined for all
packets that have errors and failed the validation process. An error
case when a packet is unable to be further processed or forwarded
without being dropped. A validate error ID is associated to every
failed packet to indicate the reason. Currently defined reasons
include:
o Packet with size reported less than 40 bytes
o Packet with version not IPv6
o Packet with invalid source address
o Packet with invalid destination address
Note that in the base type library, definitions for exception ID and
validate error ID metadata are applied to both IPv4Validator and
IPv6Validator LFBs, i.e., the two LFBs share the same metadata
definition, with different ID assignment inside.
5.2.2.2. Components
This LFB has only one struct component, the
IPv6ValidatorStatisticsType, which defines a set of statistics for
the validation process, including the number of bad header packets,
the number of bad total length packets, and the number of bad hop
limit packets. Note that this component is optional to implementers.
5.2.2.3. Capabilities
This LFB does not have a list of capabilities.
5.2.2.4. Events
This LFB does not have any events specified.
5.3. IP Forwarding LFBs
IP Forwarding LFBs are specifically defined to abstract the IP
forwarding processes. As definitions for a base LFB library, this
document restricts its LFB definition scope only to IP unicast
forwarding. IP multicast may be defined in future documents.
The two fundamental tasks performed in IP unicast forwarding
constitute looking up the forwarding information table to find next-
hop information and then using the resulting next-hop details to
forward packets out on specific physical output ports. This document
models the forwarding processes by abstracting out the described two
Wang, et al. Standards Track [Page 55]
^L
RFC 6956 ForCES LFB Library June 2013
steps. Whereas this document describes functional LFB models that
are modular, there may be multiple ways to implement the abstracted
models. It is not intended or expected that the provided LFB models
constrain implementations.
Based on the IP forwarding abstraction, two kinds of typical IP
unicast forwarding LFBs are defined: unicast LPM lookup LFB and next-
hop application LFB. They are further distinguished by IPv4 and IPv6
protocols.
5.3.1. IPv4UcastLPM
The IPv4UcastLPM LFB abstracts the IPv4 unicast Longest Prefix Match
(LPM) process.
This LFB also provides facilities to support users to implement
equal-cost multipath (ECMP) routing or reverse path forwarding (RPF).
However, this LFB itself does not provide ECMP or RPF. To fully
implement ECMP or RPF, additional specific LFBs, like a specific ECMP
LFB or an RPF LFB, will have to be defined.
5.3.1.1. Data Handling
This LFB performs the IPv4 unicast LPM table lookup. It always
expects as input IPv4 unicast packets from one singleton input known
as "PktsIn". Then, the LFB uses the destination IPv4 address of
every packet as a search key to look up the IPv4 prefix table and
generate a hop selector as the matching result. The hop selector is
passed as packet metadata to downstream LFBs and will usually be used
there as a search index to find more next-hop information.
Three singleton output LFB ports are defined.
The first singleton output is known as "NormalOut" and outputs IPv4
unicast packets that succeed the LPM lookup (and got a hop selector).
The hop selector is associated with the packet as a metadata.
Downstream from the LPM LFB is usually a next-hop application LFB,
like an IPv4NextHop LFB.
The second singleton output is known as "ECMPOut" and is defined to
provide support for users wishing to implement ECMP.
An ECMP flag is defined in the LPM table to enable the LFB to support
ECMP. When a table entry is created with the flag set to true, it
indicates this table entry is for ECMP only. A packet that has
passed through this prefix lookup will always output from the
"ECMPOut" output port, with the hop selector being its lookup result.
The output will usually go directly to a downstream ECMP processing
Wang, et al. Standards Track [Page 56]
^L
RFC 6956 ForCES LFB Library June 2013
LFB, where the hop selector can usually further generate optimized
one or multiple next-hop routes by use of ECMP algorithms.
A default route flag is defined in the LPM table to enable the LFB to
support a default route as well as loose RPF. When this flag is set
to true, the table entry is identified as a default route, which also
implies that the route is forbidden for RPF. If a user wants to
implement RPF on FE, a specific RPF LFB will have to be defined. In
such an RPF LFB, a component can be defined as an alias of the prefix
table component of this LFB, as described below.
The final singleton output is known as "ExceptionOut" of the
IPv4UcastLPM LFB and is defined to output exception packets after the
LFB processing, along with an ExceptionID metadata to indicate what
caused the exception. Currently defined exception types include:
o The packet failed the LPM lookup of the prefix table.
The upstream LFB of this LFB is usually an IPv4Validator LFB. If RPF
is to be adopted, the upstream can be an RPF LFB, when defined.
The downstream LFB is usually an IPv4NextHop LFB. If ECMP is
adopted, the downstream can be an ECMP LFB, when defined.
5.3.1.2. Components
This LFB has two components.
The IPv4PrefixTable component is defined as an array component of the
LFB. Each row of the array contains an IPv4 address, a prefix
length, a hop selector, an ECMP flag and a default route flag. The
LFB uses the destination IPv4 address of every input packet as a
search key to look up this table in order extract a next-hop
selector. The ECMP flag is for the LFB to support ECMP. The default
route flag is for the LFB to support a default route and for loose
RPF.
The IPv4UcastLPMStats component is a struct component that collects
statistics information, including the total number of input packets
received, the IPv4 packets forwarded by this LFB, and the number of
IP datagrams discarded due to no route found. Note that this
component is defined as optional to implementers.
5.3.1.3. Capabilities
This LFB does not have a list of capabilities.
Wang, et al. Standards Track [Page 57]
^L
RFC 6956 ForCES LFB Library June 2013
5.3.1.4. Events
This LFB does not have any events specified.
5.3.2. IPv4NextHop
This LFB abstracts the process of selecting IPv4 next-hop action.
5.3.2.1. Data Handling
The LFB abstracts the process of next-hop information application to
IPv4 packets. It receives an IPv4 packet with an associated next-hop
identifier (HopSelector) and uses the identifier as a table index to
look up a next-hop table to find an appropriate LFB output port.
The LFB is expected to receive unicast IPv4 packets, via a singleton
input known as "PktsIn", along with a HopSelector metadata, which is
used as a table index to look up the NextHop table. The data
processing involves the forwarding TTL decrement and IP checksum
recalculation.
Two output LFB ports are defined.
The first output is a group output port known as "SuccessOut". On
successful data processing, the packet is sent out from an LFB port
from within the LFB port group as selected by the
LFBOutputSelectIndex value of the matched table entry. The packet is
sent to a downstream LFB along with the L3PortID and
MediaEncapInfoIndex metadata.
The second output is a singleton output port known as "ExceptionOut",
which will output packets for which the data processing failed, along
with an additional ExceptionID metadata to indicate what caused the
exception. Currently defined exception types include:
o The HopSelector for the packet is invalid.
o The packet failed lookup of the next-hop table even though the
HopSelector is valid.
o The MTU for outgoing interface is less than the packet size.
Downstream LFB instances could be either a BasicMetadataDispatch type
(Section 5.5.1), used to fan out to different LFB instances or a
media-encapsulation-related type, such as an EtherEncap type or a
RedirectOut type (Section 5.4.2). For example, if there are Ethernet
and other tunnel encapsulation, then a BasicMetadataDispatch LFB can
Wang, et al. Standards Track [Page 58]
^L
RFC 6956 ForCES LFB Library June 2013
use the L3PortID metadata (Section 5.3.2.2) to dispatch packets to a
different encapsulator.
5.3.2.2. Components
This LFB has only one component, IPv4NextHopTable, which is defined
as an array. The HopSelector received is used to match the array
index of IPv4NextHopTable to find out a row of the table as the next-
hop information result. Each row of the array is a struct
containing:
o The L3PortID, which is the ID of the logical output port that is
passed on to the downstream LFB instance. This ID indicates what
kind of encapsulating port the neighbor is to use. This is L3-
derived information that affects L2 processing and so needs to be
based from one LFB to another as metadata. Usually, this ID is
used for the next-hop LFB to distinguish packets that need
different L2 encapsulating. For instance, some packets may
require general Ethernet encapsulation while others may require
various types of tunnel encapsulations. In such a case, different
L3PortIDs are assigned to the packets and are passed as metadata
to a downstream LFB. A BasicMetadataDispatch LFB (Section 5.5.1)
may have to be applied as the downstream LFB so as to dispatch
packets to different encapsulation LFB instances according to the
L3PortIDs.
o MTU, the Maximum Transmission Unit for the outgoing port.
o NextHopIPAddr, the IPv4 next-hop address.
o MediaEncapInfoIndex, the index that passes on to the downstream
encapsulation LFB instance and that is used there as a search key
to look up a table (typically media-encapsulation-related) for
further encapsulation information. The search key looks up the
table by matching the table index. Note that the encapsulation
LFB instance that uses this metadata may not be the LFB instance
that immediately follows this LFB instance in the processing. The
MediaEncapInfoIndex metadata is attached here and is passed
through intermediate LFBs until it is used by the encapsulation
LFB instance. In some cases, depending on implementation, the CE
may set the MediaEncapInfoIndex passed downstream to a value that
will fail lookup when it gets to a target encapsulation LFB; such
a lookup failure at that point is an indication that further
resolution is needed. For an example of this approach, refer to
Section 7.2, which discusses ARP and mentions this approach.
Wang, et al. Standards Track [Page 59]
^L
RFC 6956 ForCES LFB Library June 2013
o LFBOutputSelectIndex, the LFB group output port index to select
the downstream LFB port. This value identifies the specific port
within the SuccessOut port group out of which packets that
successfully use this next-hop entry are to be sent.
5.3.2.3. Capabilities
This LFB does not have a list of capabilities.
5.3.2.4. Events
This LFB does not have any events specified.
5.3.3. IPv6UcastLPM
The IPv6UcastLPM LFB abstracts the IPv6 unicast Longest Prefix Match
(LPM) process. The definition of this LFB is similar to the
IPv4UcastLPM LFB except that all IP addresses refer to IPv6
addresses.
This LFB also provides facilities to support users to implement
equal-cost multipath (ECMP) routing or reverse path forwarding (RPF).
However, this LFB itself does not provide ECMP or RPF. To fully
implement ECMP or RPF, additional specific LFBs, like a specific ECMP
LFB or an RPF LFB, will have to be defined. This work may be done in
future versions of this document.
5.3.3.1. Data Handling
This LFB performs the IPv6 unicast LPM table lookup. It always
expects as input IPv6 unicast packets from one singleton input known
as "PktsIn". The destination IPv6 address of an incoming packet is
used as a search key to look up the IPv6 prefix table and generate a
hop selector. This hop selector result is associated to the packet
as a metadata and sent to downstream LFBs; it will usually be used in
downstream LFBs as a search key to find more next-hop information.
Three singleton output LFB ports are defined.
The first singleton output is known as "NormalOut" and outputs IPv6
unicast packets that succeed the LPM lookup (and got a hop selector).
The hop selector is associated with the packet as a metadata.
Downstream from the LPM LFB is usually a next-hop application LFB,
like an IPv6NextHop LFB.
The second singleton output is known as "ECMPOut" and is defined to
provide support for users wishing to implement ECMP.
Wang, et al. Standards Track [Page 60]
^L
RFC 6956 ForCES LFB Library June 2013
An ECMP flag is defined in the LPM table to enable the LFB to support
ECMP. When a table entry is created with the flag set to true, it
indicates this table entry is for ECMP only. A packet that has
passed through this prefix lookup will always output from the
"ECMPOut" output port, with the hop selector being its lookup result.
The output will usually go directly to a downstream ECMP processing
LFB, where the hop selector can usually further generate optimized
one or multiple next-hop routes by use of ECMP algorithms.
A default route flag is defined in the LPM table to enable the LFB to
support a default route as well as loose RPF. When this flag is set
to true, the table entry is identified as a default route, which also
implies that the route is forbidden for RPF.
If a user wants to implement RPF on FE, a specific RPF LFB will have
to be defined. In such an RPF LFB, a component can be defined as an
alias of the prefix table component of this LFB, as described below.
The final singleton output is known as "ExceptionOut" of the
IPv6UcastLPM LFB and is defined to output exception packets after the
LFB processing, along with an ExceptionID metadata to indicate what
caused the exception. Currently defined exception types include:
o The packet failed the LPM lookup of the prefix table.
The upstream LFB of this LFB is usually an IPv6Validator LFB. If RPF
is to be adopted, the upstream can be an RPF LFB, when defined.
The downstream LFB is usually an IPv6NextHop LFB. If ECMP is
adopted, the downstream can be an ECMP LFB, when defined.
5.3.3.2. Components
This LFB has two components.
The IPv6PrefixTable component is defined as an array component of the
LFB. Each row of the array contains an IPv6 address, a prefix
length, a hop selector, an ECMP flag, and a default route flag. The
ECMP flag is so the LFB can support ECMP. The default route flag is
for the LFB to support a default route and for loose RPF, as
described earlier.
The IPv6UcastLPMStats component is a struct component that collects
statistics information, including the total number of input packets
received, the IPv6 packets forwarded by this LFB and the number of IP
datagrams discarded due to no route found. Note that the component
is defined as optional to implementers.
Wang, et al. Standards Track [Page 61]
^L
RFC 6956 ForCES LFB Library June 2013
5.3.3.3. Capabilities
This LFB does not have a list of capabilities.
5.3.3.4. Events
This LFB does not have any events specified.
5.3.4. IPv6NextHop
This LFB abstracts the process of selecting IPv6 next-hop action.
5.3.4.1. Data Handling
The LFB abstracts the process of next-hop information application to
IPv6 packets. It receives an IPv6 packet with an associated next-hop
identifier (HopSelector) and uses the identifier to look up a next-
hop table to find an appropriate output port from the LFB.
The LFB is expected to receive unicast IPv6 packets, via a singleton
input known as "PktsIn", along with a HopSelector metadata, which is
used as a table index to look up the next-hop table.
Two output LFB ports are defined.
The first output is a group output port known as "SuccessOut". On
successful data processing, the packet is sent out from an LFB port
from within the LFB port group as selected by the
LFBOutputSelectIndex value of the matched table entry. The packet is
sent to a downstream LFB along with the L3PortID and
MediaEncapInfoIndex metadata.
The second output is a singleton output port known as "ExceptionOut",
which will output packets for which the data processing failed, along
with an additional ExceptionID metadata to indicate what caused the
exception. Currently defined exception types include:
o The HopSelector for the packet is invalid.
o The packet failed lookup of the next-hop table even though the
HopSelector is valid.
o The MTU for outgoing interface is less than the packet size.
Downstream LFB instances could be either a BasicMetadataDispatch
type, used to fan out to different LFB instances, or a media
encapsulation related type, such as an EtherEncap type or a
RedirectOut type. For example, when the downstream LFB is
Wang, et al. Standards Track [Page 62]
^L
RFC 6956 ForCES LFB Library June 2013
BasicMetadataDispatch and Ethernet and other tunnel encapsulation
exist downstream from BasicMetadataDispatch, then the
BasicMetadataDispatch LFB can use the L3PortID metadata (see section
below) to dispatch packets to the different encapsulator LFBs.
5.3.4.2. Components
This LFB has only one component named IPv6NextHopTable, which is
defined as an array. The array index of IPv6NextHopTable is used for
a HopSelector to find out a row of the table as the next-hop
information. Each row of the array is a struct containing:
o The L3PortID, which is the ID of the logical output port that is
passed onto the downstream LFB instance. This ID indicates what
kind of encapsulating port the neighbor is to use. This is L3-
derived information that affects L2 processing and so needs to be
based from one LFB to another as metadata. Usually, this ID is
used for the next-hop LFB to distinguish packets that need
different L2 encapsulating. For instance, some packets may
require general Ethernet encapsulation while others may require
various types of tunnel encapsulations. In such a case, different
L3PortIDs are assigned to the packets and are passed as metadata
to a downstream LFB. A BasicMetadataDispatch LFB (Section 5.5.1)
may have to be applied as the downstream LFB so as to dispatch
packets to different encapsulation LFB instances according to the
L3PortIDs.
o MTU, the Maximum Transmission Unit for the outgoing port.
o NextHopIPAddr, the IPv6 next-hop address.
o MediaEncapInfoIndex, the index that is passed on to the downstream
encapsulation LFB instance and that is used there as a search key
to look up a table (typically media-encapsulation-related) for
further encapsulation information. The search key looks up the
table by matching the table index. Note that the encapsulation
LFB instance that uses this metadata may not be the LFB instance
that immediately follows this LFB instance in the processing. The
MediaEncapInfoIndex metadata is attached here and is passed
through intermediate LFBs until it is used by the encapsulation
LFB instance. In some cases, depending on implementation, the CE
may set the MediaEncapInfoIndex passed downstream to a value that
will fail lookup when it gets to a target encapsulation LFB; such
a lookup failure at that point is an indication that further
resolution is needed. For an example of this approach, refer to
Section 7.2, which discusses ARP and mentions this approach.
Wang, et al. Standards Track [Page 63]
^L
RFC 6956 ForCES LFB Library June 2013
o LFBOutputSelectIndex, the LFB group output port index to select
the downstream LFB port. This value identifies the specific port
within the SuccessOut port group out of which packets that
successfully use this next-hop entry are to be sent.
5.3.4.3. Capabilities
This LFB does not have a list of capabilities.
5.3.4.4. Events
This LFB does not have any events specified.
5.4. Redirect LFBs
Redirect LFBs abstract the data packet transportation process between
the CE and FE. Some packets output from some LFBs may have to be
delivered to the CE for further processing, and some packets
generated by the CE may have to be delivered to the FE and further to
some specific LFBs for data path processing. According to [RFC5810],
data packets and their associated metadata are encapsulated in a
ForCES redirect message for transportation between CE and FE. We
define two LFBs to abstract the process: a RedirectIn LFB and a
RedirectOut LFB. Usually, in an LFB topology of an FE, only one
RedirectIn LFB instance and one RedirectOut LFB instance exist.
5.4.1. RedirectIn
The RedirectIn LFB abstracts the process for the CE to inject data
packets into the FE data path.
5.4.1.1. Data Handling
A RedirectIn LFB abstracts the process for the CE to inject data
packets into the FE LFB topology so as to input data packets into FE
data paths. From the LFB topology's point of view, the RedirectIn
LFB acts as a source point for data packets coming from the CE;
therefore, the RedirectIn LFB is defined with a single output LFB
port (and no input LFB port).
The single output port of RedirectIn LFB is defined as a group output
type with the name of "PktsOut". Packets produced by this output
will have arbitrary frame types decided by the CE that generated the
packets. Possible frames may include IPv4, IPv6, or ARP protocol
packets. The CE may associate some metadata to indicate the frame
types and may also associate other metadata to indicate various
information on the packets. Among them, there MUST exist a
RedirectIndex metadata, which is an integer acting as an index. When
Wang, et al. Standards Track [Page 64]
^L
RFC 6956 ForCES LFB Library June 2013
the CE transmits the metadata along with the packet to a RedirectIn
LFB, the LFB will read the RedirectIndex metadata and output the
packet to one of its group output port instances, whose port index is
indicated by this metadata. Any other metadata, in addition to
RedirectIndex, will be passed untouched along the packet delivered by
the CE to the downstream LFB. This means the RedirectIndex metadata
from CE will be "consumed" by the RedirectIn LFB and will not be
passed to downstream LFB. Note that a packet from the CE without a
RedirectIndex metadata associated will be dropped by the LFB. Note
that all metadata visible to the LFB need to be global and IANA
controlled. See Section 8 ("IANA Considerations") of this document
for more details about a metadata ID space that can be used by
vendors and is "Reserved for Private Use".
5.4.1.2. Components
An optional statistics component is defined to collect the number of
packets received by the LFB from the CE. There are no other
components defined for the current version of the LFB.
5.4.1.3. Capabilities
This LFB does not have a list of capabilities.
5.4.1.4. Events
This LFB does not have any events specified.
5.4.2. RedirectOut
RedirectOut LFB abstracts the process for LFBs in the FE to deliver
data packets to the CE.
5.4.2.1. Data Handling
A RedirectOut LFB abstracts the process for LFBs in the FE to deliver
data packets to the CE. From the LFB topology's point of view, the
RedirectOut LFB acts as a sink point for data packets going to the
CE; therefore, the RedirectOut LFB is defined with a single input LFB
port (and no output LFB port).
The RedirectOut LFB has only one singleton input, known as "PktsIn",
but is capable of receiving packets from multiple LFBs by
multiplexing this input. The input expects any kind of frame type;
therefore, the frame type has been specified as arbitrary, and also
all types of metadata are expected. All associated metadata produced
(but not consumed) by previous processed LFBs should be delivered to
the CE via the ForCES protocol redirect message [RFC5810]. The CE
Wang, et al. Standards Track [Page 65]
^L
RFC 6956 ForCES LFB Library June 2013
can decide how to process the redirected packet by referencing the
associated metadata. As an example, a packet could be redirected by
the FE to the CE because the EtherEncap LFB is not able to resolve L2
information. The metadata "ExceptionID" created by the EtherEncap
LFB is passed along with the packet and should be sufficient for the
CE to do the necessary processing and resolve the L2 entry required.
Note that all metadata visible to the LFB need to be global and IANA
controlled. See Section 8 ("IANA Considerations") of this document
for more details about a metadata ID space that can be used by
vendors and is "Reserved for Private Use".
5.4.2.2. Components
An optional statistics component is defined to collect the number of
packets sent by the LFB to the CE. There are no other components
defined for the current version of the LFB.
5.4.2.3. Capabilities
This LFB does not have a list of capabilities.
5.4.2.4. Events
This LFB does not have any events specified.
5.5. General Purpose LFBs
5.5.1. BasicMetadataDispatch
The BasicMetadataDispatch LFB is defined to abstract the process in
which a packet is dispatched to some output path based on its
associated metadata value.
5.5.1.1. Data Handling
The BasicMetadataDispatch LFB has only one singleton input known as
"PktsIn". Every input packet should be associated with a metadata
that will be used by the LFB to do the dispatch. This LFB contains a
metadata ID and a dispatch table named MetadataDispatchTable, all
configured by the CE. The metadata ID specifies which metadata is to
be used for dispatching packets. The MetadataDispatchTable contains
entries of a metadata value and an OutputIndex, specifying that the
packet with the metadata value must go out from the LFB group output
port instance with the OutputIndex.
Two output LFB ports are defined.
Wang, et al. Standards Track [Page 66]
^L
RFC 6956 ForCES LFB Library June 2013
The first output is a group output port known as "PktsOut". A packet
with its associated metadata having found an OutputIndex by
successfully looking up the dispatch table will be output to the
group port instance with the corresponding index.
The second output is a singleton output port known as "ExceptionOut",
which will output packets for which the data processing failed, along
with an additional ExceptionID metadata to indicate what caused the
exception. Currently defined exception types only include one case:
o There is no matching when looking up the metadata dispatch table.
As an example, if the CE decides to dispatch packets according to a
physical port ID (PHYPortID), the CE may set the ID of PHYPortID
metadata to the LFB first. Moreover, the CE also sets the PHYPortID
actual values (the metadata values) and assigned OutputIndex for the
values to the dispatch table in the LFB. When a packet arrives, a
PHYPortID metadata is found associated with the packet, and the
metadata value is further used as a key to look up the dispatch table
to find out an output port instance for the packet.
Currently, the BasicMetadataDispatch LFB only allows the metadata
value of the dispatch table entry to be a 32-bit integer. A metadata
with other value types is not supported in this version. A more
complex metadata dispatch LFB may be defined in future versions of
the library. In that LFB, multiple tuples of metadata with more
value types supported may be used to dispatch packets.
5.5.1.2. Components
This LFB has two components. One component is MetadataID and the
other is MetadataDispatchTable. Each row entry of the dispatch table
is a struct containing the metadata value and the OutputIndex. Note
that currently, the metadata value is only allowed to be a 32-bit
integer. The metadata value is also defined as a content key for the
table. The concept of content key is a searching key for tables,
which is defined in the ForCES FE model [RFC5812]. With the content
key, the CE can manipulate the table by means of a specific metadata
value rather than by the table index only. See the ForCES FE model
[RFC5812] and also the ForCES protocol [RFC5810] for more details on
the definition and use of a content key.
5.5.1.3. Capabilities
This LFB does not have a list of capabilities.
Wang, et al. Standards Track [Page 67]
^L
RFC 6956 ForCES LFB Library June 2013
5.5.1.4. Events
This LFB does not have any events specified.
5.5.2. GenericScheduler
This is a preliminary generic scheduler LFB for abstracting a simple
scheduling process.
5.5.2.1. Data Handling
There exist various kinds of scheduling strategies with various
implementations. As a base LFB library, this document only defines a
preliminary generic scheduler LFB for abstracting a simple scheduling
process. Users may use this LFB as a basic LFB to further construct
more complex scheduler LFBs by means of "inheritance", as described
in [RFC5812].
Packets of any arbitrary frame type are received via a group input
known as "PktsIn" with no additional metadata expected. This group
input is capable of multiple input port instances. Each port
instance may be connected to a different upstream LFB output. Inside
the LFB, it is abstracted that each input port instance is connected
to a queue, and the queue is marked with a queue ID whose value is
exactly the same as the index of corresponding group input port
instance. Scheduling disciplines are applied to all queues and also
all packets in the queues. The group input port property
PortGroupLimits in ObjectLFB, as defined by the ForCES FE model
[RFC5810], provides means for the CE to query the capability of total
queue numbers the scheduler supports. The CE can then decide how
many queues it may use for a scheduling application.
Scheduled packets are output from a singleton output port of the LFB
knows as "PktsOut" with no corresponding metadata.
More complex scheduler LFBs may be defined with more complex
scheduling disciplines by succeeding this LFB. For instance, a
priority scheduler LFB may be defined by inheriting this LFB and
defining a component to indicate priorities for all input queues.
5.5.2.2. Components
The SchedulingDiscipline component is for the CE to specify a
scheduling discipline to the LFB. Currently defined scheduling
disciplines only include Round Robin (RR) strategy. The default
scheduling discipline is thus RR.
Wang, et al. Standards Track [Page 68]
^L
RFC 6956 ForCES LFB Library June 2013
The QueueStats component is defined to allow the CE to query every
queue status of the scheduler. It is an array component, and each
row of the array is a struct containing a queue ID. Currently
defined queue status includes the queue depth in packets and the
queue depth in bytes. Using the queue ID as the index, the CE can
query every queue for its used length in unit of packets or bytes.
Note that the QueueStats component is defined as optional to
implementers.
5.5.2.3. Capabilities
The following capability is currently defined for the
GenericScheduler.
o The queue length limit providing the storage ability for every
queue.
5.5.2.4. Events
This LFB does not have any events specified.
6. XML for LFB Library
<?xml version="1.0" encoding="UTF-8"?>
<LFBLibrary xmlns="urn:ietf:params:xml:ns:forces:lfbmodel:1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
provides="BaseLFBLibrary">
<load library="BaseTypeLibrary"/>
<LFBClassDefs>
<LFBClassDef LFBClassID="3">
<name>EtherPHYCop</name>
<synopsis>
The EtherPHYCop LFB describes an Ethernet interface
that limits the physical media to copper.
</synopsis>
<version>1.0</version>
<inputPorts>
<inputPort>
<name>EtherPHYIn</name>
<synopsis>
The input port of the EtherPHYCop LFB. It expects any
type of Ethernet frame.
</synopsis>
<expectation>
<frameExpected>
<ref>EthernetAll</ref>
</frameExpected>
</expectation>
Wang, et al. Standards Track [Page 69]
^L
RFC 6956 ForCES LFB Library June 2013
</inputPort>
</inputPorts>
<outputPorts>
<outputPort>
<name>EtherPHYOut</name>
<synopsis>
The output port of the EtherPHYCop LFB. The output
packet has the same Ethernet frame type as the
input packet, associated with a metadata indicating
the ID of the physical port.
</synopsis>
<product>
<frameProduced>
<ref>EthernetAll</ref>
</frameProduced>
<metadataProduced>
<ref>PHYPortID</ref>
</metadataProduced>
</product>
</outputPort>
</outputPorts>
<components>
<component componentID="1" access="read-only">
<name>PHYPortID</name>
<synopsis>
The identification of the physical port
</synopsis>
<typeRef>uint32</typeRef>
</component>
<component componentID="2" access="read-write">
<name>AdminStatus</name>
<synopsis>
The port status administratively requested
</synopsis>
<typeRef>PortStatusType</typeRef>
<defaultValue>2</defaultValue>
</component>
<component componentID="3" access="read-only">
<name>OperStatus</name>
<synopsis>
The port actual operational status
</synopsis>
<typeRef>PortStatusType</typeRef>
</component>
<component componentID="4" access="read-write">
<name>AdminLinkSpeed</name>
<synopsis>
The port link speed administratively requested
Wang, et al. Standards Track [Page 70]
^L
RFC 6956 ForCES LFB Library June 2013
</synopsis>
<typeRef>LANSpeedType</typeRef>
<defaultValue>LAN_SPEED_AUTO</defaultValue>
</component>
<component componentID="5" access="read-only">
<name>OperLinkSpeed</name>
<synopsis>
The port actual operational link speed
</synopsis>
<typeRef>LANSpeedType</typeRef>
</component>
<component componentID="6" access="read-write">
<name>AdminDuplexMode</name>
<synopsis>
The port duplex mode administratively requested
</synopsis>
<typeRef>DuplexType</typeRef>
<defaultValue>Auto</defaultValue>
</component>
<component componentID="7" access="read-only">
<name>OperDuplexMode</name>
<synopsis>
The port actual operational duplex mode
</synopsis>
<typeRef>DuplexType</typeRef>
</component>
<component componentID="8" access="read-only">
<name>CarrierStatus</name>
<synopsis>The carrier status of the port </synopsis>
<typeRef>boolean</typeRef>
<defaultValue>false</defaultValue>
</component>
</components>
<capabilities>
<capability componentID="30">
<name>SupportedLinkSpeed</name>
<synopsis>
A list of link speeds the port supports
</synopsis>
<array>
<typeRef>LANSpeedType</typeRef>
</array>
</capability>
<capability componentID="31">
<name>SupportedDuplexMode</name>
<synopsis>
A list of duplex modes the port supports
</synopsis>
Wang, et al. Standards Track [Page 71]
^L
RFC 6956 ForCES LFB Library June 2013
<array>
<typeRef>DuplexType</typeRef>
</array>
</capability>
</capabilities>
<events baseID="60">
<event eventID="1">
<name>PHYPortStatusChanged</name>
<synopsis>
An event reporting change on operational status of the
physical port.
</synopsis>
<eventTarget>
<eventField>OperStatus</eventField>
</eventTarget>
<eventChanged/>
<eventReports>
<eventReport>
<eventField>OperStatus</eventField>
</eventReport>
</eventReports>
</event>
<event eventID="2">
<name>LinkSpeedChanged</name>
<synopsis>
An event reporting change on operational link speed
of the physical port.
</synopsis>
<eventTarget>
<eventField>OperLinkSpeed</eventField>
</eventTarget>
<eventChanged/>
<eventReports>
<eventReport>
<eventField>OperLinkSpeed</eventField>
</eventReport>
</eventReports>
</event>
<event eventID="3">
<name>DuplexModeChanged</name>
<synopsis>
An event reporting change on operational duplex mode
of the physical port.
</synopsis>
<eventTarget>
<eventField>OperDuplexMode</eventField>
</eventTarget>
<eventChanged/>
Wang, et al. Standards Track [Page 72]
^L
RFC 6956 ForCES LFB Library June 2013
<eventReports>
<eventReport>
<eventField>OperDuplexMode</eventField>
</eventReport>
</eventReports>
</event>
</events>
</LFBClassDef>
<LFBClassDef LFBClassID="4">
<name>EtherMACIn</name>
<synopsis>
EtherMACIn LFB describes an Ethernet port at MAC data link
layer. The LFB describes Ethernet processing functions
of MAC address locality check, deciding if the Ethernet
packets should be bridged, providing Ethernet-layer flow
control, etc.
</synopsis>
<version>1.0</version>
<inputPorts>
<inputPort group="false">
<name>EtherPktsIn</name>
<synopsis>
The input port of the EtherMACIn LFB. It expects any
type of Ethernet frame.
</synopsis>
<expectation>
<frameExpected>
<ref>EthernetAll</ref>
</frameExpected>
<metadataExpected>
<ref>PHYPortID</ref>
</metadataExpected>
</expectation>
</inputPort>
</inputPorts>
<outputPorts>
<outputPort group="false">
<name>NormalPathOut</name>
<synopsis>
An output port in the EtherMACIn LFB. It outputs
Ethernet packets to downstream LFBs for normal
processing like Ethernet packet classification and
other L3 IP-layer processing.
</synopsis>
<product>
<frameProduced>
<ref>EthernetAll</ref>
</frameProduced>
Wang, et al. Standards Track [Page 73]
^L
RFC 6956 ForCES LFB Library June 2013
<metadataProduced>
<ref>PHYPortID</ref>
</metadataProduced>
</product>
</outputPort>
<outputPort>
<name>L2BridgingPathOut</name>
<synopsis>
An output port in
the EtherMACIn LFB. It outputs Ethernet packets
to downstream LFBs for layer 2 bridging processing.
The port is switched on or off by the
L2BridgingPathEnable flag in the LFB.
</synopsis>
<product>
<frameProduced>
<ref>EthernetAll</ref>
</frameProduced>
<metadataProduced>
<ref>PHYPortID</ref>
</metadataProduced>
</product>
</outputPort>
</outputPorts>
<components>
<component componentID="1" access="read-write">
<name>AdminStatus</name>
<synopsis>
The LFB status administratively requested, which has
the same data type with a port status. Default is in
'Down' status.
</synopsis>
<typeRef>PortStatusType</typeRef>
<defaultValue>2</defaultValue>
</component>
<component componentID="2" access="read-write">
<name>LocalMACAddresses</name>
<synopsis>
Local MAC address(es) of the Ethernet port the LFB
represents.
</synopsis>
<array>
<typeRef>IEEEMAC</typeRef>
</array>
</component>
<component componentID="3" access="read-write">
<name>L2BridgingPathEnable</name>
<synopsis>
Wang, et al. Standards Track [Page 74]
^L
RFC 6956 ForCES LFB Library June 2013
A flag indicating if the LFB L2 BridgingPath output
port is enabled or not. Default is not enabled.
</synopsis>
<typeRef>boolean</typeRef>
<defaultValue>false</defaultValue>
</component>
<component componentID="4" access="read-write">
<name>PromiscuousMode</name>
<synopsis>
A flag indicating whether the LFB is in promiscuous
mode or not. Default is not.
</synopsis>
<typeRef>boolean</typeRef>
<defaultValue>false</defaultValue>
</component>
<component componentID="5" access="read-write">
<name>TxFlowControl</name>
<synopsis>
A flag indicating whether transmit flow control is
applied or not. Default is not.
</synopsis>
<optional/>
<typeRef>boolean</typeRef>
<defaultValue>false</defaultValue>
</component>
<component componentID="6" access="read-write">
<name>RxFlowControl</name>
<synopsis>
A flag indicating whether receive flow control is
applied or not. Default is not.
</synopsis>
<optional/>
<typeRef>boolean</typeRef>
<defaultValue>false</defaultValue>
</component>
<component componentID="7" access="read-reset">
<name>MACInStats</name>
<synopsis>
The statistics of the EtherMACIn LFB
</synopsis>
<optional/>
<typeRef>MACInStatsType</typeRef>
</component>
</components>
</LFBClassDef>
<LFBClassDef LFBClassID="5">
<name>EtherClassifier</name>
<synopsis>
Wang, et al. Standards Track [Page 75]
^L
RFC 6956 ForCES LFB Library June 2013
EtherClassifier LFB describes the process to decapsulate
Ethernet packets and then classify them into various
network-layer packets according to information in the
Ethernet headers. It is expected the LFB classifies packets
by packet types like IPv4, IPv6, MPLS, ARP, ND, etc.
</synopsis>
<version>1.0</version>
<inputPorts>
<inputPort>
<name>EtherPktsIn</name>
<synopsis>
Input port of Ethernet packets. PHYPortID metadata is
always expected while LogicalPortID metadata is
optionally expected to associate with every input
Ethernet packet.
</synopsis>
<expectation>
<frameExpected>
<ref>EthernetAll</ref>
</frameExpected>
<metadataExpected>
<ref>PHYPortID</ref>
<ref dependency="optional" defaultValue="0">
LogicalPortID</ref>
</metadataExpected>
</expectation>
</inputPort>
</inputPorts>
<outputPorts>
<outputPort group="true">
<name>ClassifyOut</name>
<synopsis>
A group port for output of Ethernet classifying
results.
</synopsis>
<product>
<frameProduced>
<ref>Arbitrary</ref>
</frameProduced>
<metadataProduced>
<ref>PHYPortID</ref>
<ref>SrcMAC</ref>
<ref>DstMAC</ref>
<ref>EtherType</ref>
<ref availability="conditional">VlanID</ref>
<ref availability="conditional">VlanPriority</ref>
</metadataProduced>
</product>
Wang, et al. Standards Track [Page 76]
^L
RFC 6956 ForCES LFB Library June 2013
</outputPort>
<outputPort group="false">
<name>ExceptionOut</name>
<synopsis>
A singleton port for output of all Ethernet packets
that fail the classifying process. An ExceptionID
metadata indicates the failure reason.
</synopsis>
<product>
<frameProduced>
<ref>Arbitrary</ref>
</frameProduced>
<metadataProduced>
<ref>ExceptionID</ref>
</metadataProduced>
</product>
</outputPort>
</outputPorts>
<components>
<component access="read-write" componentID="1">
<name>EtherDispatchTable</name>
<synopsis>
An EtherDispatchTable array component that is defined
in the LFB to dispatch every Ethernet packet to output
ports according to logical port ID assigned by the
VlanInputTable in the LFB and Ethernet type in the
Ethernet packet header.
</synopsis>
<typeRef>EtherDispatchTableType</typeRef>
</component>
<component access="read-write" componentID="2">
<name>VlanInputTable</name>
<synopsis>
A VlanInputTable array component that is defined in
the LFB to classify VLAN Ethernet packets. Every input
packet is assigned with a new LogicalPortID according
to the packet's incoming port ID and VLAN ID.
</synopsis>
<typeRef>VlanInputTableType</typeRef>
</component>
<component access="read-reset" componentID="3">
<name>EtherClassifyStats</name>
<synopsis>
A table recording statistics on the Ethernet
classifying process in the LFB.
</synopsis>
<optional/>
<typeRef>EtherClassifyStatsTableType</typeRef>
Wang, et al. Standards Track [Page 77]
^L
RFC 6956 ForCES LFB Library June 2013
</component>
</components>
</LFBClassDef>
<LFBClassDef LFBClassID="6">
<name>EtherEncap</name>
<synopsis>
The EtherEncap LFB abstracts the process of encapsulating
Ethernet headers onto received packets. The encapsulation
is based on passed metadata.
</synopsis>
<version>1.0</version>
<inputPorts>
<inputPort group="false">
<name>EncapIn</name>
<synopsis>
An input port receiving IPv4 and/or IPv6 packets for
encapsulation. A MediaEncapInfoIndex metadata is
expected, and a VLAN priority metadata is optionally
expected with every input packet.
</synopsis>
<expectation>
<frameExpected>
<ref>IPv4</ref>
<ref>IPv6</ref>
</frameExpected>
<metadataExpected>
<ref>MediaEncapInfoIndex</ref>
<ref dependency="optional" defaultValue="0">
VlanPriority</ref>
</metadataExpected>
</expectation>
</inputPort>
</inputPorts>
<outputPorts>
<outputPort group="false">
<name>SuccessOut</name>
<synopsis>
An output port for packets that have found Ethernet
L2 information and have been successfully encapsulated
into an Ethernet packet. An L2PortID metadata is
produced for every output packet.
</synopsis>
<product>
<frameProduced>
<ref>IPv4</ref>
<ref>IPv6</ref>
</frameProduced>
<metadataProduced>
Wang, et al. Standards Track [Page 78]
^L
RFC 6956 ForCES LFB Library June 2013
<ref>L2PortID</ref>
</metadataProduced>
</product>
</outputPort>
<outputPort group="false">
<name>ExceptionOut</name>
<synopsis>
An output port for packets that fail encapsulation
in the LFB. An ExceptionID metadata indicates failure
reason.
</synopsis>
<product>
<frameProduced>
<ref>IPv4</ref>
<ref>IPv6</ref>
</frameProduced>
<metadataProduced>
<ref>ExceptionID</ref>
<ref>MediaEncapInfoIndex</ref>
<ref availability="conditional">VlanPriority</ref>
</metadataProduced>
</product>
</outputPort>
</outputPorts>
<components>
<component componentID="1" access="read-write">
<name>EncapTable</name>
<synopsis>
An array table for Ethernet encapsulation information
lookup. Each row of the array contains destination MAC
address, source MAC address, VLAN ID, and output
logical L2 port ID.
</synopsis>
<typeRef>EncapTableType</typeRef>
</component>
</components>
</LFBClassDef>
<LFBClassDef LFBClassID="7">
<name>EtherMACOut</name>
<synopsis>
EtherMACOut LFB abstracts an Ethernet port at MAC data link
layer. It specifically describes Ethernet packet process
for output to physical port. A downstream LFB is usually
an Ethernet physical LFB like EtherPHYCop LFB. Note that
Ethernet output functions are closely related to Ethernet
input functions; therefore, some components defined in this
LFB are aliases of EtherMACIn LFB components.
</synopsis>
Wang, et al. Standards Track [Page 79]
^L
RFC 6956 ForCES LFB Library June 2013
<version>1.0</version>
<inputPorts>
<inputPort group="false">
<name>EtherPktsIn</name>
<synopsis>
The input port of the EtherMACOut LFB. It expects
any type of Ethernet frame.
</synopsis>
<expectation>
<frameExpected>
<ref>EthernetAll</ref>
</frameExpected>
<metadataExpected>
<ref>PHYPortID</ref>
</metadataExpected>
</expectation>
</inputPort>
</inputPorts>
<outputPorts>
<outputPort group="false">
<name>EtherPktsOut</name>
<synopsis>
A port to output all Ethernet packets, each with a
metadata indicating the ID of the physical port
that the packet is to go through.
</synopsis>
<product>
<frameProduced>
<ref>EthernetAll</ref>
</frameProduced>
<metadataProduced>
<ref>PHYPortID</ref>
</metadataProduced>
</product>
</outputPort>
</outputPorts>
<components>
<component componentID="1" access="read-write">
<name>AdminStatus</name>
<synopsis>
The LFB status administratively requested, which has
the same data type with a port status. The
component is defined as an alias of AdminStatus
component in EtherMACIn LFB.
</synopsis>
<alias>PortStatusType</alias>
</component>
<component componentID="2" access="read-write">
Wang, et al. Standards Track [Page 80]
^L
RFC 6956 ForCES LFB Library June 2013
<name>MTU</name>
<synopsis>Maximum transmission unit (MTU) </synopsis>
<typeRef>uint32</typeRef>
</component>
<component componentID="3" access="read-write">
<name>TxFlowControl</name>
<synopsis>
A flag indicating whether transmit flow control is
applied, defined as an alias of TxFlowControl
component in EtherMACIn LFB.
</synopsis>
<optional/>
<alias>boolean</alias>
</component>
<component componentID="4" access="read-write">
<name>RxFlowControl</name>
<synopsis>
A flag indicating whether receive flow control is
applied, defined as an alias of RxFlowControl
component in EtherMACIn LFB.
</synopsis>
<optional/>
<alias>boolean</alias>
</component>
<component componentID="5" access="read-reset">
<name>MACOutStats</name>
<synopsis>
The statistics of the EtherMACOut LFB
</synopsis>
<optional/>
<typeRef>MACOutStatsType</typeRef>
</component>
</components>
</LFBClassDef>
<LFBClassDef LFBClassID="8">
<name>IPv4Validator</name>
<synopsis>
This LFB performs IPv4 validation according to RFC 1812 and
its updates. The IPv4 packet will be output to the
corresponding LFB port, indicating whether the packet is
unicast or multicast or whether an exception has occurred
or the validation failed.
</synopsis>
<version>1.0</version>
<inputPorts>
<inputPort>
<name>ValidatePktsIn</name>
<synopsis>
Wang, et al. Standards Track [Page 81]
^L
RFC 6956 ForCES LFB Library June 2013
Input port for data packets to be validated
</synopsis>
<expectation>
<frameExpected>
<ref>Arbitrary</ref>
</frameExpected>
</expectation>
</inputPort>
</inputPorts>
<outputPorts>
<outputPort>
<name>IPv4UnicastOut</name>
<synopsis>
Output port for validated IPv4 unicast packets
</synopsis>
<product>
<frameProduced>
<ref>IPv4Unicast</ref>
</frameProduced>
</product>
</outputPort>
<outputPort>
<name>IPv4MulticastOut</name>
<synopsis>
Output port for validated IPv4 multicast packets
</synopsis>
<product>
<frameProduced>
<ref>IPv4Multicast</ref>
</frameProduced>
</product>
</outputPort>
<outputPort>
<name>ExceptionOut</name>
<synopsis>
Output port for all packets with exceptional cases
when validating. An ExceptionID metadata indicates
the exception case type.
</synopsis>
<product>
<frameProduced>
<ref>IPv4</ref>
</frameProduced>
<metadataProduced>
<ref>ExceptionID</ref>
</metadataProduced>
</product>
</outputPort>
Wang, et al. Standards Track [Page 82]
^L
RFC 6956 ForCES LFB Library June 2013
<outputPort>
<name>FailOut</name>
<synopsis>
Output port for packets that failed validating
process. A ValidateErrorID metadata indicates the
error type or failure reason.
</synopsis>
<product>
<frameProduced>
<ref>IPv4</ref>
</frameProduced>
<metadataProduced>
<ref>ValidateErrorID</ref>
</metadataProduced>
</product>
</outputPort>
</outputPorts>
<components>
<component access="read-write" componentID="1">
<name>IPv4ValidatorStats</name>
<synopsis>
The statistics information for validating process in
the LFB.
</synopsis>
<optional/>
<typeRef>IPv4ValidatorStatsType</typeRef>
</component>
</components>
</LFBClassDef>
<LFBClassDef LFBClassID="9">
<name>IPv6Validator</name>
<synopsis>
This LFB performs IPv6 validation according to RFC 2460 and
its updates. Then, the IPv6 packet will be output to the
corresponding port, indicating whether the packet is
unicast or multicast or whether an exception has occurred
or the validation failed.
</synopsis>
<version>1.0</version>
<inputPorts>
<inputPort>
<name>ValidatePktsIn</name>
<synopsis>
Input port for data packets to be validated
</synopsis>
<expectation>
<frameExpected>
<ref>Arbitrary</ref>
Wang, et al. Standards Track [Page 83]
^L
RFC 6956 ForCES LFB Library June 2013
</frameExpected>
</expectation>
</inputPort>
</inputPorts>
<outputPorts>
<outputPort>
<name>IPv6UnicastOut</name>
<synopsis>
Output port for validated IPv6 unicast packets
</synopsis>
<product>
<frameProduced>
<ref>IPv6Unicast</ref>
</frameProduced>
</product>
</outputPort>
<outputPort>
<name>IPv6MulticastOut</name>
<synopsis>
Output port for validated IPv6 multicast packets
</synopsis>
<product>
<frameProduced>
<ref>IPv6Multicast</ref>
</frameProduced>
</product>
</outputPort>
<outputPort>
<name>ExceptionOut</name>
<synopsis>
Output port for packets with exceptional cases when
validating. An ExceptionID metadata indicates the
exception case type.
</synopsis>
<product>
<frameProduced>
<ref>IPv6</ref>
</frameProduced>
<metadataProduced>
<ref>ExceptionID</ref>
</metadataProduced>
</product>
</outputPort>
<outputPort>
<name>FailOut</name>
<synopsis>
Output port for packets failed validating process.
A ValidateErrorID metadata indicates the error type
Wang, et al. Standards Track [Page 84]
^L
RFC 6956 ForCES LFB Library June 2013
or failure reason.
</synopsis>
<product>
<frameProduced>
<ref>IPv6</ref>
</frameProduced>
<metadataProduced>
<ref>ValidateErrorID</ref>
</metadataProduced>
</product>
</outputPort>
</outputPorts>
<components>
<component access="read-write" componentID="1">
<name>IPv6ValidatorStats</name>
<synopsis>
The statistics information for validating process in
the LFB.
</synopsis>
<optional/>
<typeRef>IPv6ValidatorStatsType</typeRef>
</component>
</components>
</LFBClassDef>
<LFBClassDef LFBClassID="10">
<name>IPv4UcastLPM</name>
<synopsis>
The IPv4UcastLPM LFB abstracts the IPv4 unicast Longest
Prefix Match (LPM) process. This LFB supports
implementing equal-cost multipath (ECMP) routing and
reverse path forwarding (RPF).
</synopsis>
<version>1.0</version>
<inputPorts>
<inputPort group="false">
<name>PktsIn</name>
<synopsis>
A port for input of packets to be processed.
IPv4 unicast packets are expected.
</synopsis>
<expectation>
<frameExpected>
<ref>IPv4Unicast</ref>
</frameExpected>
</expectation>
</inputPort>
</inputPorts>
<outputPorts>
Wang, et al. Standards Track [Page 85]
^L
RFC 6956 ForCES LFB Library June 2013
<outputPort group="false">
<name>NormalOut</name>
<synopsis>
An output port to output IPv4 unicast packets that
successfully passed the LPM lookup. A HopSelector
metadata is produced to associate every output packet
for downstream LFB to do next-hop action.
</synopsis>
<product>
<frameProduced>
<ref>IPv4Unicast</ref>
</frameProduced>
<metadataProduced>
<ref>HopSelector</ref>
</metadataProduced>
</product>
</outputPort>
<outputPort group="false">
<name>ECMPOut</name>
<synopsis>
The port to output packets needing further ECMP
processing. A downstream ECMP processing LFB is
usually followed to the port. If ECMP is not
required, no downstream LFB may be connected to
the port.
</synopsis>
<product>
<frameProduced>
<ref>IPv4Unicast</ref>
</frameProduced>
<metadataProduced>
<ref>HopSelector</ref>
</metadataProduced>
</product>
</outputPort>
<outputPort group="false">
<name>ExceptionOut</name>
<synopsis>
The port to output all packets with exceptional cases
happened during LPM process. An ExceptionID metadata
is associated to indicate what caused the exception.
</synopsis>
<product>
<frameProduced>
<ref>IPv4Unicast</ref>
</frameProduced>
<metadataProduced>
<ref>ExceptionID</ref>
Wang, et al. Standards Track [Page 86]
^L
RFC 6956 ForCES LFB Library June 2013
</metadataProduced>
</product>
</outputPort>
</outputPorts>
<components>
<component componentID="1" access="read-write">
<name>IPv4PrefixTable</name>
<synopsis>
A table for IPv4 Longest Prefix Match(LPM). The
destination IPv4 address of every input packet is
used as a search key to look up the table to find
out a next-hop selector.
</synopsis>
<typeRef>IPv4PrefixTableType</typeRef>
</component>
<component componentID="2" access="read-reset">
<name>IPv4UcastLPMStats</name>
<synopsis>
The statistics information for the IPv4 unicast LPM
process in the LFB.
</synopsis>
<optional/>
<typeRef>IPv4UcastLPMStatsType</typeRef>
</component>
</components>
</LFBClassDef>
<LFBClassDef LFBClassID="11">
<name>IPv6UcastLPM</name>
<synopsis>
The IPv6UcastLPM LFB abstracts the IPv6 unicast Longest
Prefix Match (LPM) process. This LFB supports
implementing equal-cost multipath (ECMP) routing and
reverse path forwarding (RPF).
</synopsis>
<version>1.0</version>
<inputPorts>
<inputPort group="false">
<name>PktsIn</name>
<synopsis>
A port for input of packets to be processed.
IPv6 unicast packets are expected.
</synopsis>
<expectation>
<frameExpected>
<ref>IPv6Unicast</ref>
</frameExpected>
</expectation>
</inputPort>
Wang, et al. Standards Track [Page 87]
^L
RFC 6956 ForCES LFB Library June 2013
</inputPorts>
<outputPorts>
<outputPort group="false">
<name>NormalOut</name>
<synopsis>
An output port to output IPv6 unicast packets that
successfully passed the LPM lookup. A HopSelector
metadata is produced to associate every output packet
for downstream LFB to do next-hop action.
</synopsis>
<product>
<frameProduced>
<ref>IPv6Unicast</ref>
</frameProduced>
<metadataProduced>
<ref>HopSelector</ref>
</metadataProduced>
</product>
</outputPort>
<outputPort group="false">
<name>ECMPOut</name>
<synopsis>
The port to output packets needing further ECMP
processing. A downstream ECMP processing LFB is
usually followed to the port. If ECMP is not
required, no downstream LFB may be connected to
the port.
</synopsis>
<product>
<frameProduced>
<ref>IPv6Unicast</ref>
</frameProduced>
<metadataProduced>
<ref>HopSelector</ref>
</metadataProduced>
</product>
</outputPort>
<outputPort group="false">
<name>ExceptionOut</name>
<synopsis>
The port to output all packets with exceptional cases
happened during LPM process. An ExceptionID metadata
is associated to indicate what caused the exception.
</synopsis>
<product>
<frameProduced>
<ref>IPv6Unicast</ref>
</frameProduced>
Wang, et al. Standards Track [Page 88]
^L
RFC 6956 ForCES LFB Library June 2013
<metadataProduced>
<ref>ExceptionID</ref>
</metadataProduced>
</product>
</outputPort>
</outputPorts>
<components>
<component componentID="1" access="read-write">
<name>IPv6PrefixTable</name>
<synopsis>
A table for IPv6 Longest Prefix Match (LPM). The
destination IPv6 address of every input packet is
used as a search key to look up the table to find
out a next-hop selector.
</synopsis>
<typeRef>IPv6PrefixTableType</typeRef>
</component>
<component componentID="2" access="read-reset">
<name>IPv6UcastLPMStats</name>
<synopsis>
The statistics information for the IPv6 unicast LPM
process in the LFB.
</synopsis>
<optional/>
<typeRef>IPv6UcastLPMStatsType</typeRef>
</component>
</components>
</LFBClassDef>
<LFBClassDef LFBClassID="12">
<name>IPv4NextHop</name>
<synopsis>
The IPv4NextHop LFB abstracts the process of next-hop
information application to IPv4 packets. It receives an
IPv4 packet with an associated next-hop identifier
(HopSelector) and uses the identifier as a table index
to look up a next-hop table to find an appropriate output
port. The data processing also involves the forwarding
TTL decrement and IP checksum recalculation.
</synopsis>
<version>1.0</version>
<inputPorts>
<inputPort group="false">
<name>PktsIn</name>
<synopsis>
A port for input of unicast IPv4 packets, along with
a HopSelector metadata.
</synopsis>
<expectation>
Wang, et al. Standards Track [Page 89]
^L
RFC 6956 ForCES LFB Library June 2013
<frameExpected>
<ref>IPv4Unicast</ref>
</frameExpected>
<metadataExpected>
<ref>HopSelector</ref>
</metadataExpected>
</expectation>
</inputPort>
</inputPorts>
<outputPorts>
<outputPort group="true">
<name>SuccessOut</name>
<synopsis>
The group port for output of packets that
successfully found next-hop information. Some
metadata are associated with every packet.
</synopsis>
<product>
<frameProduced>
<ref>IPv4Unicast</ref>
</frameProduced>
<metadataProduced>
<ref>L3PortID</ref>
<ref>NextHopIPv4Addr</ref>
<ref availability="conditional">
MediaEncapInfoIndex</ref>
</metadataProduced>
</product>
</outputPort>
<outputPort group="false">
<name>ExceptionOut</name>
<synopsis>
The output port for packets with exceptional or
failure cases. An ExceptionID metadata indicates
what caused the case.
</synopsis>
<product>
<frameProduced>
<ref>IPv4Unicast</ref>
</frameProduced>
<metadataProduced>
<ref>ExceptionID</ref>
</metadataProduced>
</product>
</outputPort>
</outputPorts>
<components>
<component componentID="1">
Wang, et al. Standards Track [Page 90]
^L
RFC 6956 ForCES LFB Library June 2013
<name>IPv4NextHopTable</name>
<synopsis>
The IPv4NextHopTable component. A
HopSelector is used to match the table index
to find out a row that contains the next-hop
information result.
</synopsis>
<typeRef>IPv4NextHopTableType</typeRef>
</component>
</components>
</LFBClassDef>
<LFBClassDef LFBClassID="13">
<name>IPv6NextHop</name>
<synopsis>
The LFB abstracts the process of next-hop information
application to IPv6 packets. It receives an IPv6 packet
with an associated next-hop identifier (HopSelector) and
uses the identifier as a table index to look up a next-hop
table to find an appropriate output port.
</synopsis>
<version>1.0</version>
<inputPorts>
<inputPort group="false">
<name>PktsIn</name>
<synopsis>
A port for input of unicast IPv6 packets, along with
a HopSelector metadata.
</synopsis>
<expectation>
<frameExpected>
<ref>IPv6Unicast</ref>
</frameExpected>
<metadataExpected>
<ref>HopSelector</ref>
</metadataExpected>
</expectation>
</inputPort>
</inputPorts>
<outputPorts>
<outputPort group="true">
<name>SuccessOut</name>
<synopsis>
The group port for output of packets that successfully
found next-hop information. Some metadata are
associated with every packet.
</synopsis>
<product>
<frameProduced>
Wang, et al. Standards Track [Page 91]
^L
RFC 6956 ForCES LFB Library June 2013
<ref>IPv6Unicast</ref>
</frameProduced>
<metadataProduced>
<ref>L3PortID</ref>
<ref>NextHopIPv6Addr</ref>
<ref availability="conditional">
MediaEncapInfoIndex</ref>
</metadataProduced>
</product>
</outputPort>
<outputPort group="false">
<name>ExceptionOut</name>
<synopsis>
The output port for packets with exceptional or
failure cases. An ExceptionID metadata indicates
what caused the case.
</synopsis>
<product>
<frameProduced>
<ref>IPv6Unicast</ref>
</frameProduced>
<metadataProduced>
<ref>ExceptionID</ref>
</metadataProduced>
</product>
</outputPort>
</outputPorts>
<components>
<component componentID="1">
<name>IPv6NextHopTable</name>
<synopsis>
The IPv6NextHopTable component. A HopSelector is
used to match the table index to find out a row that
contains the next-hop information result.
</synopsis>
<typeRef>IPv6NextHopTableType</typeRef>
</component>
</components>
</LFBClassDef>
<LFBClassDef LFBClassID="14">
<name>RedirectIn</name>
<synopsis>
The RedirectIn LFB abstracts the process for the ForCES CE to
inject data packets into the ForCES FE LFBs.
</synopsis>
<version>1.0</version>
<outputPorts>
<outputPort group="true">
Wang, et al. Standards Track [Page 92]
^L
RFC 6956 ForCES LFB Library June 2013
<name>PktsOut</name>
<synopsis>
The output port of RedirectIn LFB, which is defined as
a group port type. From the LFB topology's point of
view, the RedirectIn LFB acts as a source point for
data packets coming from CE; therefore, the LFB is
defined with a singleton output port (and no input
port).
</synopsis>
<product>
<frameProduced>
<ref>Arbitrary</ref>
</frameProduced>
</product>
</outputPort>
</outputPorts>
<components>
<component componentID="1">
<name>NumPacketsReceived</name>
<synopsis>
Number of packets received from CE.
</synopsis>
<optional/>
<typeRef>uint64</typeRef>
</component>
</components>
</LFBClassDef>
<LFBClassDef LFBClassID="15">
<name>RedirectOut</name>
<synopsis>
The RedirectOut LFB abstracts the process for LFBs in a
ForCES FE to deliver data packets to the ForCES CE.
</synopsis>
<version>1.0</version>
<inputPorts>
<inputPort group="false">
<name>PktsIn</name>
<synopsis>
The input port for the RedirectOut LFB. From the LFB
topology's point of view, the RedirectOut LFB acts as
a sink point for data packets going to the CE;
therefore, RedirectOut LFB is defined with a
singleton input port (and no output port).
</synopsis>
<expectation>
<frameExpected>
<ref>Arbitrary</ref>
</frameExpected>
Wang, et al. Standards Track [Page 93]
^L
RFC 6956 ForCES LFB Library June 2013
</expectation>
</inputPort>
</inputPorts>
<components>
<component componentID="1">
<name>NumPacketsSent</name>
<synopsis>
Number of packets sent to CE.
</synopsis>
<optional/>
<typeRef>uint64</typeRef>
</component>
</components>
</LFBClassDef>
<LFBClassDef LFBClassID="16">
<name>BasicMetadataDispatch</name>
<synopsis>
The BasicMetadataDispatch LFB is defined to abstract the
process by which packets are dispatched to various output
paths based on associated metadata value. Current
version of the LFB only allows the metadata value to be
a 32-bit integer.
</synopsis>
<version>1.0</version>
<inputPorts>
<inputPort>
<name>PktsIn</name>
<synopsis>
The packet input port for dispatching. Every input
packet should be associated with a metadata that will
be used by the LFB to do the dispatch.
</synopsis>
<expectation>
<frameExpected>
<ref>Arbitrary</ref>
</frameExpected>
<metadataExpected>
<ref>Arbitrary</ref>
</metadataExpected>
</expectation>
</inputPort>
</inputPorts>
<outputPorts>
<outputPort group="true">
<name>PktsOut</name>
<synopsis>
The group output port that outputs dispatching
results. A packet with its associated metadata
Wang, et al. Standards Track [Page 94]
^L
RFC 6956 ForCES LFB Library June 2013
having found an OutputIndex by successfully looking
up the dispatch table will be output to the group
port instance with the corresponding index.
</synopsis>
<product>
<frameProduced>
<ref>Arbitrary</ref>
</frameProduced>
</product>
</outputPort>
<outputPort group="false">
<name>ExceptionOut</name>
<synopsis>
The output port that outputs packets that failed
to process. An ExceptionID metadata indicates what
caused the exception.
</synopsis>
<product>
<frameProduced>
<ref>Arbitrary</ref>
</frameProduced>
<metadataProduced>
<ref>ExceptionID</ref>
</metadataProduced>
</product>
</outputPort>
</outputPorts>
<components>
<component access="read-write" componentID="1">
<name>MetadataID</name>
<synopsis>
The ID of the metadata to be
used for dispatching packets.
</synopsis>
<typeRef>uint32</typeRef>
</component>
<component access="read-write" componentID="2">
<name>MetadataDispatchTable</name>
<synopsis>
The MetadataDispatchTable component, which contains
entries of a metadata value and an output index,
specifying that a packet with the metadata value must
go out from the instance with the output index of the
LFB group output port.
</synopsis>
<typeRef>MetadataDispatchTableType</typeRef>
</component>
</components>
Wang, et al. Standards Track [Page 95]
^L
RFC 6956 ForCES LFB Library June 2013
</LFBClassDef>
<LFBClassDef LFBClassID="17">
<name>GenericScheduler</name>
<synopsis>
This is a preliminary generic scheduler LFB abstracting
a simple scheduling process, which may be used as a
basic LFB to construct a more complex scheduler LFB.
</synopsis>
<version>1.0</version>
<inputPorts>
<inputPort group="true">
<name>PktsIn</name>
<synopsis>
The group input port of the LFB. Inside the LFB,
each instance of the group port is connected to
a queue marked with a queue ID, whose value is
index of the port instance.
</synopsis>
<expectation>
<frameExpected>
<ref>Arbitrary</ref>
</frameExpected>
</expectation>
</inputPort>
</inputPorts>
<outputPorts>
<outputPort>
<name>PktsOut</name>
<synopsis>
The output port of the LFB. Scheduled packets are
output from the port.
</synopsis>
<product>
<frameProduced>
<ref>Arbitrary</ref>
</frameProduced>
</product>
</outputPort>
</outputPorts>
<components>
<component access="read-write" componentID="1">
<name>SchedulingDiscipline</name>
<synopsis>
The SchedulingDiscipline component, which is for the
CE to specify a scheduling discipline to the LFB.
</synopsis>
<typeRef>SchdDisciplineType</typeRef>
<defaultValue>1</defaultValue>
Wang, et al. Standards Track [Page 96]
^L
RFC 6956 ForCES LFB Library June 2013
</component>
<component access="read-only" componentID="2">
<name>QueueStats</name>
<synopsis>
The QueueStats component, which is defined to allow
the CE to query every queue statistics in the
scheduler.
</synopsis>
<optional/>
<typeRef>QueueStatsTableType</typeRef>
</component>
</components>
<capabilities>
<capability componentID="30">
<name>QueueLenLimit</name>
<synopsis>
The QueueLenLimit capability, which specifies
maximum length of each queue. The length unit is in
bytes.
</synopsis>
<typeRef>uint32</typeRef>
</capability>
</capabilities>
</LFBClassDef>
</LFBClassDefs>
</LFBLibrary>
7. LFB Class Use Cases
This section demonstrates examples on how the LFB classes defined by
the base LFB library in Section 6 can be applied to achieve some
typical router functions. The functions demonstrated are:
o IPv4 forwarding
o ARP processing
It is assumed the LFB topology on the FE described has already been
established by the CE and maps to the use cases illustrated in this
section.
The use cases demonstrated in this section are mere examples and by
no means should be treated as the only way one would construct router
functionality from LFBs; based on the capability of the FE(s), a CE
should be able to express different NE applications.
Wang, et al. Standards Track [Page 97]
^L
RFC 6956 ForCES LFB Library June 2013
7.1. IPv4 Forwarding
Figure 2 shows the typical LFB processing path for an IPv4 unicast
forwarding case with Ethernet media interfaces by use of the base LFB
classes. Note that in the figure, to focus on the IP forwarding
function, some inputs or outputs of LFBs that are not related to the
IPv4 forwarding function are not shown. For example, an
EtherClassifier LFB normally has two output ports: a "ClassifyOut"
group output port and an "ExceptionOut" singleton output port, with
the group port containing various port instances according to various
classified packet types (Section 5.1.3). In this figure, only the
IPv4 and IPv6 packet output port instances are shown for displaying
the mere IPv4 forwarding processing function.
Wang, et al. Standards Track [Page 98]
^L
RFC 6956 ForCES LFB Library June 2013
+-----+ +------+
| | | |
| |<---------------|Ether |<----------------------------+
| | |MACOut| |
| | | | |
|Ether| +------+ |
|PHY | |
|Cop | +---+ |
|#1 | +-----+ | |----->IPv6 Packets |
| | | | | | |
| | |Ether| | | IPv4 Packets |
| |->|MACIn|-->| |-+ +----+ |
+-----+ | | | | | | |---> Multicast Packets |
+-----+ +---+ | | | +-----+ +---+ |
Ether +->| |------->| | | | |
. Classifier| | |Unicast |IPv4 | | | |
. | | |Packets |Ucast|->| |--+ |
. | +----+ |LPM | | | | |
+---+ | IPv4 +-----+ +---+ | |
+-----+ | | | Validator IPv4 | |
| | | | | NextHop| |
+-----+ |Ether| | |-+ IPv4 Packets | |
| |->|MACIn|-->| | | |
| | | | | |----->IPv6 Packets | |
|Ether| +-----+ +---+ | |
|PHY | Ether +----+ | |
|Cop | Classifier | | +-------+ | |
|#n | +------+ | | |Ether | | |
| | | | | |<--|Encap |<-+ |
| | | |<------| | | | |
| |<---------------|Ether | ...| | +-------+ |
| | |MACOut| +---| | |
| | | | | +----+ |
+-----+ +------+ | BasicMetadataDispatch |
+----------->-------------+
Figure 2: LFB Use Case for IPv4 Forwarding
In the LFB use case, a number of EtherPHYCop LFB (Section 5.1.1)
instances are used to describe physical-layer functions of the ports.
PHYPortID metadata is generated by the EtherPHYCop LFB and is used by
all the subsequent downstream LFBs. An EtherMACIn LFB
(Section 5.1.2), which describes the MAC-layer processing, follows
every EtherPHYCop LFB. The EtherMACIn LFB may do a locality check of
MAC addresses if the CE configures the appropriate EtherMACIn LFB
component.
Wang, et al. Standards Track [Page 99]
^L
RFC 6956 ForCES LFB Library June 2013
Ethernet packets out of the EtherMACIn LFB are sent to an
EtherClassifier LFB (Section 5.1.3) to be decapsulated and classified
into network-layer types like IPv4, IPv6, ARP, etc. In the example
use case, every physical Ethernet interface is associated with one
Classifier instance; although not illustrated, it is also feasible
that all physical interfaces are associated with only one Ethernet
Classifier instance.
EtherClassifier uses the PHYPortID metadata, the Ethernet type of the
input packet, and VlanID (if present in the input Ethernet packets)
to decide the packet network-layer type and the LFB output port to
the downstream LFB. The EtherClassifier LFB also assigns a new
logical port ID metadata to the packet for later use. The
EtherClassifier may also generate some new metadata for every packet,
like EtherType, SrcMAC, DstMAC, LogicPortID, etc., for consumption by
downstream LFBs.
If a packet is classified as an IPv4 packet, it is sent downstream to
an IPv4Validator LFB (Section 5.2.1) to validate the IPv4 packet. In
the validator LFB, IPv4 packets are validated and are additionally
classified into either IPv4 unicast packets or multicast packets.
IPv4 unicast packets are sent to downstream to the IPv4UcastLPM LFB
(Section 5.3.1).
The IPv4UcastLPM LFB is where the longest prefix match decision is
made, and a next-hop selection is selected. The next-hop ID metadata
is generated by the IPv4UcastLPM LFB to be consumed downstream by the
IPv4NextHop LFB (Section 5.3.2).
The IPv4NextHop LFB uses the next-hop ID metadata to derive where the
packet is to go next and the media encapsulation type for the port,
etc. The IPv4NextHop LFB generates the L3PortID metadata used to
identify a next-hop output physical/logical port. In the example use
case, the next-hop output port is an Ethernet type; as a result, the
packet and its L3 port ID metadata are sent downstream to an
EtherEncap LFB (Section 5.1.4).
The EtherEncap LFB encapsulates the incoming packet into an Ethernet
frame. A BasicMetadataDispatch LFB (Section 5.5.1) follows the
EtherEncap LFB. The BasicMetadataDispatch LFB is where packets are
finally dispatched to different output physical/logical ports based
on the L3PortID metadata sent to the LFB.
Wang, et al. Standards Track [Page 100]
^L
RFC 6956 ForCES LFB Library June 2013
7.2. ARP Processing
Figure 3 shows the processing path for the Address Resolution
Protocol (ARP) in the case the CE implements the ARP processing
function. By no means is this the only way ARP processing could be
achieved; as an example, ARP processing could happen at the FE, but
that discussion is out of the scope of this use case.
+---+ +---+
| | ARP packets | |
| |-------------->---------+--->| | To CE
...-->| | . | | |
| | . | +---+
| | . | RedirectOut
+---+ ^
Ether EtherEncap | IPv4 packets lack
Classifier +---+ | address resolution information
| | |
Packets need | |--------->---+
...--------->| |
L2 Encapsulation| |
+---+ | | +------+
| | +-->| |--+ +---+ |Ether |
| | | +---+ | | |--------->|MACOut|-->...
From CE| |--+ +-->| | . +------+
| |ARP Packets | | .
| |from CE | | . +------+
| | | |--------> |Ether |-->...
+---+ +---+ |MACOut|
RedirectIn BasicMetadata +------+
Dispatch
Figure 3: LFB Use Case for ARP
There are two ways ARP processing could be triggered in the CE as
illustrated in Figure 3:
o ARP packets arriving from outside of the NE.
o IPV4 packets failing to resolve within the FE.
ARP packets from network interfaces are filtered out by
EtherClassifier LFB. The classified ARP packets and associated
metadata are then sent downstream to the RedirectOut LFB
(Section 5.4.2) to be transported to CE.
Wang, et al. Standards Track [Page 101]
^L
RFC 6956 ForCES LFB Library June 2013
The EtherEncap LFB, as described in Section 5.1.4, receives packets
that need Ethernet L2 encapsulating. When the EtherEncap LFB fails
to find the necessary L2 Ethernet information with which to
encapsulate the packet, it outputs the packet to its ExceptionOut LFB
port. Downstream to EtherEncap LFB's ExceptionOut LFB port is the
RedirectOut LFB, which transports the packet to the CE (see
Section 5.1.4 on EtherEncap LFB for details).
To achieve its goal, the CE needs to generate ARP request and
response packets and send them to external (to the NE) networks. ARP
request and response packets from the CE are redirected to an FE via
a RedirectIn LFB (Section 5.4.1).
As was the case with forwarded IPv4 packets, outgoing ARP packets are
also encapsulated to Ethernet format by the EtherEncap LFB, and then
dispatched to different interfaces via a BasicMetadataDispatch LFB.
The BasicMetadataDispatch LFB dispatches the packets according to the
L3PortID metadata included in every ARP packet sent from CE.
8. IANA Considerations
IANA has created a registry of ForCES LFB class names and the
corresponding ForCES LFB class identifiers, with the location of the
definition of the ForCES LFB class, in accordance with the rules to
use the namespace.
This document registers the unique class names and numeric class
identifiers for the LFBs listed in Section 8.1. Besides, this
document defines the following namespaces:
o Metadata ID, defined in Sections 4.3 and 4.4
o Exception ID, defined in Section 4.4
o Validate Error ID, defined in Section 4.4
Wang, et al. Standards Track [Page 102]
^L
RFC 6956 ForCES LFB Library June 2013
8.1. LFB Class Names and LFB Class Identifiers
LFB classes defined by this document belong to LFBs defined by
Standards Track RFCs. According to IANA, the registration procedure
is Standards Action for the range 0 to 65535 and First Come First
Served with any publicly available specification for over 65535.
The assignment of LFB class names and LFB class identifiers is as in
the following table.
+----------+--------------- +------------------------+--------------+
|LFB Class | LFB Class Name | Description | Reference |
|Identifier| | | |
+----------+--------------- +------------------------+--------------+
| 3 | EtherPHYCop | Define an Ethernet port| RFC 6956, |
| | | abstracted at physical | Section 5.1.1|
| | | layer. | |
| | | | |
| 4 | EtherMACIn | Define an Ethernet | RFC 6956, |
| | | input port at MAC data | Section 5.1.2|
| | | link layer. | |
| | | | |
| 5 |EtherClassifier | Define the process to | RFC 6956, |
| | | decapsulate Ethernet | Section 5.1.3|
| | | packets and classify | |
| | | the packets. | |
| | | | |
| 6 | EtherEncap | Define the process to | RFC 6956, |
| | | encapsulate IP packets | Section 5.1.4|
| | | to Ethernet packets. | |
| | | | |
| 7 | EtherMACOut | Define an Ethernet | RFC 6956 |
| | | output port at MAC | Section 5.1.5|
| | | data link layer. | |
| | | | |
| 8 | IPv4Validator | Perform IPv4 packets | RFC 6956, |
| | | validation. | Section 5.2.1|
| | | | |
| 9 | IPv6Validator | Perform IPv6 packets | RFC 6956, |
| | | validation. | Section 5.2.2|
| | | | |
| 10 | IPv4UcastLPM | Perform IPv4 Longest | RFC 6956, |
| | | Prefix Match Lookup. | Section 5.3.1|
| | | | |
| 11 | IPv6UcastLPM | Perform IPv6 Longest | RFC 6956, |
| | | Prefix Match Lookup. | Section 5.3.3|
| | | | |
Wang, et al. Standards Track [Page 103]
^L
RFC 6956 ForCES LFB Library June 2013
| 12 | IPv4NextHop | Define the process of | RFC 6956, |
| | | selecting IPv4 next-hop| Section 5.3.2|
| | | action. | |
| | | | |
| 13 | IPv6NextHop | Define the process of | RFC 6956, |
| | | selecting IPv6 next-hop| Section 5.3.4|
| | | action. | |
| | | | |
| 14 | RedirectIn | Define the process for | RFC 6956, |
| | | CE to inject data | Section 5.4.1|
| | | packets into FE LFB | |
| | | topology. | |
| | | | |
| 15 | RedirectOut | Define the process for | RFC 6956, |
| | | LFBs in FE to deliver | Section 5.4.2|
| | | data packets to CE. | |
| | | | |
| 16 | BasicMetadata | Dispatch input packets | RFC 6956, |
| | Dispatch | to a group output | Section 5.5.1|
| | | according to a metadata| |
| | | | |
| 17 |GenericScheduler| Define a preliminary | RFC 6956, |
| | | generic scheduling | Section 5.5.2|
| | | process. | |
+----------+--------------- +------------------------+--------------+
Table 1
Wang, et al. Standards Track [Page 104]
^L
RFC 6956 ForCES LFB Library June 2013
8.2. Metadata ID
The Metadata ID namespace is 32 bits long. Below are the guidelines
for managing the namespace.
Metadata IDs in the range of 0x00000001-0x7FFFFFFF are Specification
Required [RFC5226]. A metadata ID using this range MUST be
documented in an RFC or other permanent and readily available
reference.
Values assigned by this specification:
+--------------+-------------------------+--------------------------+
| Value | Name | Definition |
+--------------+-------------------------+--------------------------+
| 0x00000000 | Reserved | RFC 6956 |
| 0x00000001 | PHYPortID | RFC 6956, Section 4.4 |
| 0x00000002 | SrcMAC | RFC 6956, Section 4.4 |
| 0x00000003 | DstMAC | RFC 6956, Section 4.4 |
| 0x00000004 | LogicalPortID | RFC 6956, Section 4.4 |
| 0x00000005 | EtherType | RFC 6956, Section 4.4 |
| 0x00000006 | VlanID | RFC 6956, Section 4.4 |
| 0x00000007 | VlanPriority | RFC 6956, Section 4.4 |
| 0x00000008 | NextHopIPv4Addr | RFC 6956, Section 4.4 |
| 0x00000009 | NextHopIPv6Addr | RFC 6956, Section 4.4 |
| 0x0000000A | HopSelector | RFC 6956, Section 4.4 |
| 0x0000000B | ExceptionID | RFC 6956, Section 4.4 |
| 0x0000000C | ValidateErrorID | RFC 6956, Section 4.4 |
| 0x0000000D | L3PortID | RFC 6956, Section 4.4 |
| 0x0000000E | RedirectIndex | RFC 6956, Section 4.4 |
| 0x0000000F | MediaEncapInfoIndex | RFC 6956, Section 4.4 |
| 0x80000000- | Reserved for | RFC 6956 |
| 0xFFFFFFFF | Private Use | |
+--------------+-------------------------+--------------------------+
Table 2
Wang, et al. Standards Track [Page 105]
^L
RFC 6956 ForCES LFB Library June 2013
8.3. Exception ID
The Exception ID namespace is 32 bits long. Below are the guidelines
for managing the namespace.
Exception IDs in the range of 0x00000000-0x7FFFFFFF are Specification
Required [RFC5226]. An exception ID using this range MUST be
documented in an RFC or other permanent and readily available
reference.
Values assigned by this specification:
+--------------+---------------------------------+------------------+
| Value | Name | Definition |
+--------------+---------------------------------+------------------+
| 0x00000000 | AnyUnrecognizedExceptionCase | See Section 4.4 |
| 0x00000001 | ClassifyNoMatching | See Section 4.4 |
| 0x00000002 | MediaEncapInfoIndexInvalid | See Section 4.4 |
| 0x00000003 | EncapTableLookupFailed | See Section 4.4 |
| 0x00000004 | BadTTL | See Section 4.4 |
| 0x00000005 | IPv4HeaderLengthMismatch | See Section 4.4 |
| 0x00000006 | RouterAlertOptions | See Section 4.4 |
| 0x00000007 | IPv6HopLimitZero | See Section 4.4 |
| 0x00000008 | IPv6NextHeaderHBH | See Section 4.4 |
| 0x00000009 | SrcAddressException | See Section 4.4 |
| 0x0000000A | DstAddressException | See Section 4.4 |
| 0x0000000B | LPMLookupFailed | See Section 4.4 |
| 0x0000000C | HopSelectorInvalid | See Section 4.4 |
| 0x0000000D | NextHopLookupFailed | See Section 4.4 |
| 0x0000000E | FragRequired | See Section 4.4 |
| 0x0000000F | MetadataNoMatching | See Section 4.4 |
| 0x80000000- | Reserved for | RFC 6956 |
| 0xFFFFFFFF | Private Use | |
+--------------+---------------------------------+------------------+
Table 3
Wang, et al. Standards Track [Page 106]
^L
RFC 6956 ForCES LFB Library June 2013
8.4. Validate Error ID
The Validate Error ID namespace is 32 bits long. Below are the
guidelines for managing the namespace.
Validate Error IDs in the range of 0x00000000-0x7FFFFFFF are
Specification Required [RFC5226]. A Validate Error ID using this
range MUST be documented in an RFC or other permanent and readily
available reference.
Values assigned by this specification:
+--------------+---------------------------------+------------------+
| Value | Name | Definition |
+--------------+---------------------------------+------------------+
| 0x00000000 | AnyUnrecognizedValidateErrorCase| See Section 4.4 |
| 0x00000001 | InvalidIPv4PacketSize | See Section 4.4 |
| 0x00000002 | NotIPv4Packet | See Section 4.4 |
| 0x00000003 | InvalidIPv4HeaderLengthSize | See Section 4.4 |
| 0x00000004 | InvalidIPv4LengthFieldSize | See Section 4.4 |
| 0x00000005 | InvalidIPv4Checksum | See Section 4.4 |
| 0x00000006 | InvalidIPv4SrcAddr | See Section 4.4 |
| 0x00000007 | InvalidIPv4DstAddr | See Section 4.4 |
| 0x00000008 | InvalidIPv6PacketSize | See Section 4.4 |
| 0x00000009 | NotIPv6Packet | See Section 4.4 |
| 0x0000000A | InvalidIPv6SrcAddr | See Section 4.4 |
| 0x0000000B | InvalidIPv6DstAddr | See Section 4.4 |
| 0x80000000- | Reserved for | RFC 6956 |
| 0xFFFFFFFF | Private Use | |
+--------------+---------------------------------+------------------+
Table 4
Wang, et al. Standards Track [Page 107]
^L
RFC 6956 ForCES LFB Library June 2013
9. Security Considerations
The ForCES framework document [RFC3746] provides a description of the
security needs for the overall ForCES architecture. For example, the
ForCES protocol entities must be authenticated per the ForCES
requirements before they can access the information elements
described in this document via ForCES. The ForCES protocol document
[RFC5810] includes a comprehensive set of security mechanisms that
implementations are required to support to meet these needs. SCTP-
based Transport Mapping Layer (TML) for the ForCES protocol [RFC5811]
specifies security mechanisms for transport mapping for the ForCES
protocol. The LFBs defined in this document are similar to other
LFBs modeled by the FE model [RFC5812]. In particular, they have the
same security properties. Thus, the security mechanisms and
considerations from the ForCES protocol document [RFC5810] apply to
this document.
10. References
10.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC5810] Doria, A., Hadi Salim, J., Haas, R., Khosravi, H.,
Wang, W., Dong, L., Gopal, R., and J. Halpern,
"Forwarding and Control Element Separation (ForCES)
Protocol Specification", RFC 5810, March 2010.
[RFC5811] Hadi Salim, J. and K. Ogawa, "SCTP-Based Transport
Mapping Layer (TML) for the Forwarding and Control
Element Separation (ForCES) Protocol", RFC 5811,
March 2010.
[RFC5812] Halpern, J. and J. Hadi Salim, "Forwarding and Control
Element Separation (ForCES) Forwarding Element Model",
RFC 5812, March 2010.
10.2. Informative References
[IEEE.802-1Q] IEEE, "IEEE Standard for Local and metropolitan area
networks -- Media Access Control (MAC) Bridges and
Virtual Bridged Local Area Networks", IEEE Standard
802.1Q, 2011.
[RFC1122] Braden, R., "Requirements for Internet Hosts -
Communication Layers", STD 3, RFC 1122, October 1989.
Wang, et al. Standards Track [Page 108]
^L
RFC 6956 ForCES LFB Library June 2013
[RFC1812] Baker, F., "Requirements for IP Version 4 Routers",
RFC 1812, June 1995.
[RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version
6 (IPv6) Specification", RFC 2460, December 1998.
[RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J.
Schoenwaelder, Ed., "Structure of Management
Information Version 2 (SMIv2)", STD 58, RFC 2578,
April 1999.
[RFC3746] Yang, L., Dantu, R., Anderson, T., and R. Gopal,
"Forwarding and Control Element Separation (ForCES)
Framework", RFC 3746, April 2004.
[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing
an IANA Considerations Section in RFCs", BCP 26,
RFC 5226, May 2008.
Wang, et al. Standards Track [Page 109]
^L
RFC 6956 ForCES LFB Library June 2013
Appendix A. Acknowledgements
The authors would like to acknowledge the following people, whose
input was particularly helpful during development of this document:
Edward Crabbe
Adrian Farrel
Rong Jin
Bin Zhuge
Ming Gao
Jingjing Zhou
Xiaochun Wu
Derek Atkins
Stephen Farrell
Meral Shirazipour
Jari Arkko
Martin Stiemerling
Stewart Bryant
Richard Barnes
Appendix B. Contributors
The authors would like to thank Jamal Hadi Salim, Ligang Dong, and
Fenggen Jia, all of whom made major contributions to the development
of this document. Ligang Dong and Fenggen Jia were also two of the
authors of earlier documents from which this document evolved.
Jamal Hadi Salim
Mojatatu Networks
Ottawa, Ontario
Canada
EMail: hadi@mojatatu.com
Ligang Dong
Zhejiang Gongshang University
18 Xuezheng Str., Xiasha University Town
Hangzhou 310018
P.R. China
EMail: donglg@zjsu.edu.cn
Fenggen Jia
National Digital Switching Center (NDSC)
Jianxue Road
Zhengzhou 452000
P.R. China
EMail: jfg@mail.ndsc.com.cn
Wang, et al. Standards Track [Page 110]
^L
RFC 6956 ForCES LFB Library June 2013
Authors' Addresses
Weiming Wang
Zhejiang Gongshang University
18 Xuezheng Str., Xiasha University Town
Hangzhou 310018
P.R. China
Phone: +86 571 28877751
EMail: wmwang@zjsu.edu.cn
Evangelos Haleplidis
University of Patras
Department of Electrical & Computer Engineering
Patras 26500
Greece
EMail: ehalep@ece.upatras.gr
Kentaro Ogawa
NTT Corporation
Tokyo
Japan
EMail: ogawa.kentaro@lab.ntt.co.jp
Chuanhuang Li
Hangzhou DPtech
6th Floor, Zhongcai Group, 68 Tonghe Road, Binjiang District
Hangzhou 310051
P.R. China
EMail: chuanhuang_li@zjsu.edu.cn
Joel Halpern
Ericsson
P.O. Box 6049
Leesburg, VA 20178
USA
Phone: +1 703 371 3043
EMail: joel.halpern@ericsson.com
Wang, et al. Standards Track [Page 111]
^L
|