1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
|
Internet Engineering Task Force (IETF) J. Merkle
Request for Comments: 7027 secunet Security Networks
Updates: 4492 M. Lochter
Category: Informational BSI
ISSN: 2070-1721 October 2013
Elliptic Curve Cryptography (ECC) Brainpool Curves
for Transport Layer Security (TLS)
Abstract
This document specifies the use of several Elliptic Curve
Cryptography (ECC) Brainpool curves for authentication and key
exchange in the Transport Layer Security (TLS) protocol.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are a candidate for any level of Internet
Standard; see Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7027.
Copyright Notice
Copyright (c) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Merkle & Lochter Informational [Page 1]
^L
RFC 7027 ECC Brainpool Curves for TLS October 2013
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Brainpool NamedCurve Types . . . . . . . . . . . . . . . . . . 2
3. IANA Considerations . . . . . . . . . . . . . . . . . . . . . . 3
4. Security Considerations . . . . . . . . . . . . . . . . . . . . 3
5. References . . . . . . . . . . . . . . . . . . . . . . . . . . 4
5.1. Normative References . . . . . . . . . . . . . . . . . . . 4
5.2. Informative References . . . . . . . . . . . . . . . . . . 4
Appendix A. Test Vectors . . . . . . . . . . . . . . . . . . . . . 6
A.1. 256-Bit Curve . . . . . . . . . . . . . . . . . . . . . . . 7
A.2. 384-Bit Curve . . . . . . . . . . . . . . . . . . . . . . . 8
A.3. 512-Bit Curve . . . . . . . . . . . . . . . . . . . . . . . 9
1. Introduction
[RFC5639] specifies a new set of elliptic curve groups over finite
prime fields for use in cryptographic applications. These groups,
denoted as ECC Brainpool curves, were generated in a verifiably
pseudo-random way and comply with the security requirements of
relevant standards from ISO [ISO1] [ISO2], ANSI [ANSI1], NIST [FIPS],
and SecG [SEC2].
[RFC4492] defines the usage of elliptic curves for authentication and
key agreement in TLS 1.0 and TLS 1.1; these mechanisms may also be
used with TLS 1.2 [RFC5246]. While the ASN.1 object identifiers
defined in [RFC5639] already allow usage of the ECC Brainpool curves
for TLS (client or server) authentication through reference in X.509
certificates according to [RFC3279] and [RFC5480], their negotiation
for key exchange according to [RFC4492] requires the definition and
assignment of additional NamedCurve IDs. This document specifies
such values for three curves from [RFC5639].
2. Brainpool NamedCurve Types
According to [RFC4492], the name space NamedCurve is used for the
negotiation of elliptic curve groups for key exchange during a
handshake starting a new TLS session. This document adds new
NamedCurve types to three elliptic curves defined in [RFC5639] as
follows:
enum {
brainpoolP256r1(26),
brainpoolP384r1(27),
brainpoolP512r1(28)
} NamedCurve;
These curves are suitable for use with Datagram TLS [RFC6347].
Merkle & Lochter Informational [Page 2]
^L
RFC 7027 ECC Brainpool Curves for TLS October 2013
Test vectors for a Diffie-Hellman key exchange using these elliptic
curves are provided in Appendix A.
3. IANA Considerations
IANA has assigned numbers for the ECC Brainpool curves listed in
Section 2 in the "EC Named Curve" [IANA-TLS] registry of the
"Transport Layer Security (TLS) Parameters" registry as follows:
+-------+-----------------+---------+-----------+
| Value | Description | DTLS-OK | Reference |
+-------+-----------------+---------+-----------+
| 26 | brainpoolP256r1 | Y | RFC 7027 |
| 27 | brainpoolP384r1 | Y | RFC 7027 |
| 28 | brainpoolP512r1 | Y | RFC 7027 |
+-------+-----------------+---------+-----------+
Table 1
4. Security Considerations
The security considerations of [RFC5246] apply to the ECC Brainpool
curves described in this document.
The confidentiality, authenticity, and integrity of the TLS
communication is limited by the weakest cryptographic primitive
applied. In order to achieve a maximum security level when using one
of the elliptic curves from Table 1 for authentication and/or key
exchange in TLS, the key derivation function; the algorithms and key
lengths of symmetric encryption; and message authentication (as well
as the algorithm, bit length, and hash function used for signature
generation) should be chosen according to the recommendations of
[NIST800-57] and [RFC5639]. Furthermore, the private Diffie-Hellman
keys should be selected with the same bit length as the order of the
group generated by the base point G and with approximately maximum
entropy.
Implementations of elliptic curve cryptography for TLS may be
susceptible to side-channel attacks. Particular care should be taken
for implementations that internally transform curve points to points
on the corresponding "twisted curve", using the map (x',y') = (x*Z^2,
y*Z^3) with the coefficient Z specified for that curve in [RFC5639],
in order to take advantage of an efficient arithmetic based on the
twisted curve's special parameters (A = -3). Although the twisted
curve itself offers the same level of security as the corresponding
random curve (through mathematical equivalence), an arithmetic based
on small curve parameters may be harder to protect against side-
Merkle & Lochter Informational [Page 3]
^L
RFC 7027 ECC Brainpool Curves for TLS October 2013
channel attacks. General guidance on resistance of elliptic curve
cryptography implementations against side-channel-attacks is given in
[BSI1] and [HMV].
5. References
5.1. Normative References
[IANA-TLS] Internet Assigned Numbers Authority, "Transport Layer
Security (TLS) Parameters",
<http://www.iana.org/assignments/tls-parameters>.
[RFC4492] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and
B. Moeller, "Elliptic Curve Cryptography (ECC) Cipher
Suites for Transport Layer Security (TLS)", RFC 4492,
May 2006.
[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer
Security (TLS) Protocol Version 1.2", RFC 5246,
August 2008.
[RFC5639] Lochter, M. and J. Merkle, "Elliptic Curve Cryptography
(ECC) Brainpool Standard Curves and Curve Generation",
RFC 5639, March 2010.
[RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
Security Version 1.2", RFC 6347, January 2012.
5.2. Informative References
[ANSI1] American National Standards Institute, "Public Key
Cryptography For The Financial Services Industry: The
Elliptic Curve Digital Signature Algorithm (ECDSA)",
ANSI X9.62, 2005.
[BSI1] Bundesamt fuer Sicherheit in der Informationstechnik,
"Minimum Requirements for Evaluating Side-Channel
Attack Resistance of Elliptic Curve Implementations",
July 2011.
[FIPS] National Institute of Standards and Technology,
"Digital Signature Standard (DSS)", FIPS PUB 186-2,
December 1998.
[HMV] Hankerson, D., Menezes, A., and S. Vanstone, "Guide to
Elliptic Curve Cryptography", Springer Verlag, 2004.
Merkle & Lochter Informational [Page 4]
^L
RFC 7027 ECC Brainpool Curves for TLS October 2013
[ISO1] International Organization for Standardization,
"Information Technology - Security Techniques - Digital
Signatures with Appendix - Part 3: Discrete Logarithm
Based Mechanisms", ISO/IEC 14888-3, 2006.
[ISO2] International Organization for Standardization,
"Information Technology - Security Techniques -
Cryptographic Techniques Based on Elliptic Curves -
Part 2: Digital signatures", ISO/IEC 15946-2, 2002.
[NIST800-57] National Institute of Standards and Technology,
"Recommendation for Key Management - Part 1: General
(Revised)", NIST Special Publication 800-57,
March 2007.
[RFC3279] Bassham, L., Polk, W., and R. Housley, "Algorithms and
Identifiers for the Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation
List (CRL) Profile", RFC 3279, April 2002.
[RFC5480] Turner, S., Brown, D., Yiu, K., Housley, R., and T.
Polk, "Elliptic Curve Cryptography Subject Public Key
Information", RFC 5480, March 2009.
[SEC1] Certicom Research, "Elliptic Curve Cryptography",
Standards for Efficient Cryptography (SEC) 1,
September 2000.
[SEC2] Certicom Research, "Recommended Elliptic Curve Domain
Parameters", Standards for Efficient Cryptography
(SEC) 2, September 2000.
Merkle & Lochter Informational [Page 5]
^L
RFC 7027 ECC Brainpool Curves for TLS October 2013
Appendix A. Test Vectors
This section provides some test vectors for example Diffie-Hellman
key exchanges using each of the curves defined in Table 1. The
following notation is used in the subsequent sections:
d_A: the secret key of party A
x_qA: the x-coordinate of the public key of party A
y_qA: the y-coordinate of the public key of party A
d_B: the secret key of party B
x_qB: the x-coordinate of the public key of party B
y_qB: the y-coordinate of the public key of party B
x_Z: the x-coordinate of the shared secret that results from
completion of the Diffie-Hellman computation, i.e., the hex
representation of the pre-master secret
y_Z: the y-coordinate of the shared secret that results from
completion of the Diffie-Hellman computation
The field elements x_qA, y_qA, x_qB, y_qB, x_Z, and y_Z are
represented as hexadecimal values using the FieldElement-to-
OctetString conversion method specified in [SEC1].
Merkle & Lochter Informational [Page 6]
^L
RFC 7027 ECC Brainpool Curves for TLS October 2013
A.1. 256-Bit Curve
Curve brainpoolP256r1
dA =
81DB1EE100150FF2EA338D708271BE38300CB54241D79950F77B063039804F1D
x_qA =
44106E913F92BC02A1705D9953A8414DB95E1AAA49E81D9E85F929A8E3100BE5
y_qA =
8AB4846F11CACCB73CE49CBDD120F5A900A69FD32C272223F789EF10EB089BDC
dB =
55E40BC41E37E3E2AD25C3C6654511FFA8474A91A0032087593852D3E7D76BD3
x_qB =
8D2D688C6CF93E1160AD04CC4429117DC2C41825E1E9FCA0ADDD34E6F1B39F7B
y_qB =
990C57520812BE512641E47034832106BC7D3E8DD0E4C7F1136D7006547CEC6A
x_Z =
89AFC39D41D3B327814B80940B042590F96556EC91E6AE7939BCE31F3A18BF2B
y_Z =
49C27868F4ECA2179BFD7D59B1E3BF34C1DBDE61AE12931648F43E59632504DE
Merkle & Lochter Informational [Page 7]
^L
RFC 7027 ECC Brainpool Curves for TLS October 2013
A.2. 384-Bit Curve
Curve brainpoolP384r1
dA = 1E20F5E048A5886F1F157C74E91BDE2B98C8B52D58E5003D57053FC4B0BD6
5D6F15EB5D1EE1610DF870795143627D042
x_qA = 68B665DD91C195800650CDD363C625F4E742E8134667B767B1B47679358
8F885AB698C852D4A6E77A252D6380FCAF068
y_qA = 55BC91A39C9EC01DEE36017B7D673A931236D2F1F5C83942D049E3FA206
07493E0D038FF2FD30C2AB67D15C85F7FAA59
dB = 032640BC6003C59260F7250C3DB58CE647F98E1260ACCE4ACDA3DD869F74E
01F8BA5E0324309DB6A9831497ABAC96670
x_qB = 4D44326F269A597A5B58BBA565DA5556ED7FD9A8A9EB76C25F46DB69D19
DC8CE6AD18E404B15738B2086DF37E71D1EB4
y_qB = 62D692136DE56CBE93BF5FA3188EF58BC8A3A0EC6C1E151A21038A42E91
85329B5B275903D192F8D4E1F32FE9CC78C48
x_Z = 0BD9D3A7EA0B3D519D09D8E48D0785FB744A6B355E6304BC51C229FBBCE2
39BBADF6403715C35D4FB2A5444F575D4F42
y_Z = 0DF213417EBE4D8E40A5F76F66C56470C489A3478D146DECF6DF0D94BAE9
E598157290F8756066975F1DB34B2324B7BD
Merkle & Lochter Informational [Page 8]
^L
RFC 7027 ECC Brainpool Curves for TLS October 2013
A.3. 512-Bit Curve
Curve brainpoolP512r1
dA = 16302FF0DBBB5A8D733DAB7141C1B45ACBC8715939677F6A56850A38BD87B
D59B09E80279609FF333EB9D4C061231FB26F92EEB04982A5F1D1764CAD5766542
2
x_qA = 0A420517E406AAC0ACDCE90FCD71487718D3B953EFD7FBEC5F7F27E28C6
149999397E91E029E06457DB2D3E640668B392C2A7E737A7F0BF04436D11640FD0
9FD
y_qA = 72E6882E8DB28AAD36237CD25D580DB23783961C8DC52DFA2EC138AD472
A0FCEF3887CF62B623B2A87DE5C588301EA3E5FC269B373B60724F5E82A6AD147F
DE7
dB = 230E18E1BCC88A362FA54E4EA3902009292F7F8033624FD471B5D8ACE49D1
2CFABBC19963DAB8E2F1EBA00BFFB29E4D72D13F2224562F405CB80503666B2542
9
x_qB = 9D45F66DE5D67E2E6DB6E93A59CE0BB48106097FF78A081DE781CDB31FC
E8CCBAAEA8DD4320C4119F1E9CD437A2EAB3731FA9668AB268D871DEDA55A54731
99F
y_qB = 2FDC313095BCDD5FB3A91636F07A959C8E86B5636A1E930E8396049CB48
1961D365CC11453A06C719835475B12CB52FC3C383BCE35E27EF194512B7187628
5FA
x_Z = A7927098655F1F9976FA50A9D566865DC530331846381C87256BAF322624
4B76D36403C024D7BBF0AA0803EAFF405D3D24F11A9B5C0BEF679FE1454B21C4CD
1F
y_Z = 7DB71C3DEF63212841C463E881BDCF055523BD368240E6C3143BD8DEF8B3
B3223B95E0F53082FF5E412F4222537A43DF1C6D25729DDB51620A832BE6A26680
A2
Merkle & Lochter Informational [Page 9]
^L
RFC 7027 ECC Brainpool Curves for TLS October 2013
Authors' Addresses
Johannes Merkle
secunet Security Networks
Mergenthaler Allee 77
65760 Eschborn
Germany
Phone: +49 201 5454 3091
EMail: johannes.merkle@secunet.com
Manfred Lochter
Bundesamt fuer Sicherheit in der Informationstechnik (BSI)
Postfach 200363
53133 Bonn
Germany
Phone: +49 228 9582 5643
EMail: manfred.lochter@bsi.bund.de
Merkle & Lochter Informational [Page 10]
^L
|