1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
|
Internet Engineering Task Force (IETF) D. Ceccarelli, Ed.
Request for Comments: 7138 Ericsson
Category: Standards Track F. Zhang
ISSN: 2070-1721 Huawei Technologies
S. Belotti
Alcatel-Lucent
R. Rao
Infinera Corporation
J. Drake
Juniper
March 2014
Traffic Engineering Extensions to OSPF
for GMPLS Control of Evolving G.709 Optical Transport Networks
Abstract
This document describes Open Shortest Path First - Traffic
Engineering (OSPF-TE) routing protocol extensions to support GMPLS
control of Optical Transport Networks (OTNs) specified in ITU-T
Recommendation G.709 as published in 2012. It extends mechanisms
defined in RFC 4203.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7138.
Ceccarelli, et al. Standards Track [Page 1]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
Copyright Notice
Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Ceccarelli, et al. Standards Track [Page 2]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
Table of Contents
1. Introduction ....................................................4
1.1. Terminology ................................................4
2. OSPF-TE Extensions ..............................................4
3. TE-Link Representation ..........................................6
4. ISCD Format Extensions ..........................................6
4.1. Switching Capability Specific Information ..................8
4.1.1. Switching Capability Specific Information
for Fixed Containers ................................9
4.1.2. Switching Capability Specific Information
for Variable Containers ............................10
4.1.3. Switching Capability Specific Information --
Field Values and Explanation .......................10
5. Examples .......................................................13
5.1. MAX LSP Bandwidth Fields in the ISCD ......................13
5.2. Example of T, S, and TS Granularity Utilization ...........17
5.2.1. Example of Different TS Granularities ..............18
5.3. Example of ODUflex Advertisement ..........................20
5.4. Example of Single-Stage Muxing ............................22
5.5. Example of Multi-Stage Muxing -- Unbundled Link ...........23
5.6. Example of Multi-Stage Muxing -- Bundled Links ............25
5.7. Example of Component Links with Non-Homogeneous
Hierarchies ...............................................27
6. OSPFv2 Scalability .............................................29
7. Compatibility ..................................................30
8. Security Considerations ........................................30
9. IANA Considerations ............................................31
9.1. Switching Types ...........................................31
9.2. New Sub-TLVs ..............................................31
10. Contributors ..................................................32
11. Acknowledgements ..............................................33
12. References ....................................................33
12.1. Normative References .....................................33
12.2. Informative References ...................................34
Ceccarelli, et al. Standards Track [Page 3]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
1. Introduction
G.709 ("Interfaces for the Optical Transport Network (OTN)")
[G.709-2012] includes new fixed and flexible ODU (Optical channel
Data Unit) containers, includes two types of tributary slots (i.e.,
1.25 Gbps and 2.5 Gbps), and supports various multiplexing
relationships (e.g., ODUj multiplexed into ODUk (j<k)), two different
tributary slots for ODUk (K=1, 2, 3), and the ODUflex service type.
In order to advertise this information in routing, this document
provides encoding specific to OTN technology for use in GMPLS OSPF-TE
as defined in [RFC4203].
For a short overview of OTN evolution and implications of OTN
requirements on GMPLS routing, please refer to [RFC7062]. The
information model and an evaluation against the current solution are
provided in [RFC7096]. The reader is supposed to be familiar with
both of these documents.
Routing information for Optical Channel (OCh) layer (i.e.,
wavelength) is beyond the scope of this document. Please refer to
[RFC6163] and [RFC6566] for further information.
1.1. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
2. OSPF-TE Extensions
In terms of GMPLS-based OTN networks, each Optical channel Transport
Unit-k (OTUk) can be viewed as a component link, and each component
link can carry one or more types of ODUj (j<k).
Each TE-Link State Advertisement (LSA) can carry a top-level link TLV
with several nested sub-TLVs to describe different attributes of a
TE-Link. Two top-level TLVs are defined in [RFC3630]: (1) The Router
Address TLV (referred to as the Node TLV) and (2) the TE-Link TLV.
One or more sub-TLVs can be nested into the two top-level TLVs. The
sub-TLV set for the two top-level TLVs are also defined in [RFC3630]
and [RFC4203].
As discussed in [RFC7062] and [RFC7096], OSPF-TE must be extended to
be able to advertise the termination and Switching Capabilities of
each different ODUj and ODUk/OTUk (Optical Transport Unit) and the
advertisement of related multiplexing capabilities. These
capabilities are carried in the Switching Capability specific
information field of the Interface Switching Capability Descriptor
Ceccarelli, et al. Standards Track [Page 4]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
(ISCD) using formats defined in this document. As discussed in
[RFC7062], the use of a technology-specific Switching Capability
specific information field necessitates the definition of a new
Switching Capability value and associated new Switching Capability.
In the following, we will use ODUj to indicate a service type that is
multiplexed into a higher-order (HO) ODU, ODUk to indicate a higher-
order ODU including an ODUj, and ODUk/OTUk to indicate the layer
mapped into the OTUk. Moreover, ODUj(S) and ODUk(S) are used to
indicate the ODUj and ODUk supporting Switching Capability only, and
the ODUj->ODUk format is used to indicate the ODUj-into-ODUk
multiplexing capability.
This notation can be repeated as needed depending on the number of
multiplexing levels. In the following, the term "multiplexing tree"
is used to identify a multiplexing hierarchy where the root is always
a server ODUk/OTUk and any other supported multiplexed container is
represented with increasing granularity until reaching the leaf of
the tree. The tree can be structured with more than one branch if
the server ODUk/OTUk supports more than one hierarchy.
For example, if a multiplexing hierarchy like the following one is
considered:
ODU2 ODU0 ODUflex ODU0
\ / \ /
| |
ODU3 ODU2
\ /
\ /
\ /
\ /
ODU4
the ODU4 is the root of the muxing tree; ODU3 and ODU2 are containers
directly multiplexed into the server; and ODU2 and ODU0 are the
leaves of the ODU3 branch, while ODUflex and ODU0 are the leaves of
the ODU2 one. This means that it is possible to have the following
multiplexing capabilities:
ODU2->ODU3->ODU4
ODU0->ODU3->ODU4
ODUflex->ODU2->ODU4
ODU0->ODU2->ODU4
Ceccarelli, et al. Standards Track [Page 5]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
3. TE-Link Representation
G.709 ODUk/OTUk links are represented as TE-Links in GMPLS Traffic
Engineering Topology for supporting ODUj layer switching. These TE-
Links can be modeled in multiple ways.
OTUk physical link(s) can be modeled as a TE-Link(s). Figure 1 below
provides an illustration of one-hop OTUk TE-Links.
+-------+ +-------+ +-------+
| OTN | | OTN | | OTN |
|Switch |<- OTUk Link ->|Switch |<- OTUk Link ->|Switch |
| A | | B | | C |
+-------+ +-------+ +-------+
|<-- TE-Link -->| |<-- TE-Link -->|
Figure 1: OTUk TE-Links
It is possible to create TE-Links that span more than one hop by
creating forwarding adjacencies (FAs) between non-adjacent nodes (see
Figure 2). As in the one-hop case, multiple-hop TE-Links advertise
the ODU Switching Capability.
+-------+ +-------+ +-------+
| OTN | | OTN | | OTN |
|Switch |<- OTUk Link ->|Switch |<- OTUk Link ->|Switch |
| A | | B | | C |
+-------+ +-------+ +-------+
ODUk Switched
|<------------- ODUk Link ------------->|
|<-------------- TE-Link--------------->|
Figure 2: Multiple-Hop TE-Link
4. ISCD Format Extensions
The ISCD describes the Switching Capability of an interface and is
defined in [RFC4203]. This document defines a new Switching
Capability value for OTN [G.709-2012] as follows:
Value Type
----- ----
110 OTN-TDM capable
Ceccarelli, et al. Standards Track [Page 6]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
When supporting the extensions defined in this document, for both
fixed and flexible ODUs, the Switching Capability and Encoding values
MUST be used as follows:
o Switching Capability = OTN-TDM
o Encoding Type = G.709 ODUk (Digital Path) as defined in [RFC4328]
The same Switching Type and encoding values must be used for both
fixed and flexible ODUs. When Switching Capability and Encoding
fields are set to values as stated above, the Interface Switching
Capability Descriptor MUST be interpreted as defined in [RFC4203].
The MAX LSP Bandwidth field is used according to [RFC4203], i.e., 0
<= MAX LSP Bandwidth <= ODUk/OTUk, and intermediate values are those
on the branch of the OTN switching hierarchy supported by the
interface. For example, in the OTU4 link it could be possible to
have ODU4 as MAX LSP Bandwidth for some priorities, ODU3 for others,
ODU2 for some others, etc. The bandwidth unit is in bytes/second and
the encoding MUST be in IEEE floating point format. The discrete
values for various ODUs are shown in the table below (please note
that there are 1000 bits in a kilobit according to normal practices
in telecommunications).
+-------------------+-----------------------------+-----------------+
| ODU Type | ODU nominal bit rate |Value in Byte/Sec|
| | |(floating p. val)|
+-------------------+-----------------------------+-----------------+
| ODU0 | 1,244,160 kbps | 0x4D1450C0 |
| ODU1 | 239/238 x 2,488,320 kbps | 0x4D94F048 |
| ODU2 | 239/237 x 9,953,280 kbps | 0x4E959129 |
| ODU3 | 239/236 x 39,813,120 kbps | 0x4F963367 |
| ODU4 | 239/227 x 99,532,800 kbps | 0x504331E3 |
| ODU2e | 239/237 x 10,312,500 kbps | 0x4E9AF70A |
| | | |
| ODUflex for CBR | 239/238 x client signal | MAX LSP |
| Client signals | bit rate | Bandwidth |
| | | |
| ODUflex for GFP-F | | MAX LSP |
| Mapped client | Configured bit rate | Bandwidth |
| signal | | |
| | | |
| ODUflex | Configured bit rate | MAX LSP |
| resizable | | Bandwidth |
+-------------------+-----------------------------+-----------------+
Ceccarelli, et al. Standards Track [Page 7]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
A single ISCD MAY be used for the advertisement of unbundled or
bundled links supporting homogeneous multiplexing hierarchies and the
same TS (tributary slot) granularity. A different ISCD MUST be used
for each different muxing hierarchy (muxing tree in the following
examples) and different TS granularity supported within the TE-Link.
When a received LSA includes a sub-TLV not formatted accordingly to
the precise specifications in this document, the problem SHOULD be
logged and the wrongly formatted sub-TLV MUST NOT be used for path
computation.
4.1. Switching Capability Specific Information
The technology-specific part of the OTN-TDM ISCD may include a
variable number of sub-TLVs called Bandwidth sub-TLVs. Each sub-TLV
is encoded with the sub-TLV header as defined in [RFC3630],
Section 2.3.2. The muxing hierarchy tree MUST be encoded as an
order-independent list. Two types of Bandwidth sub-TLVs are defined
(TBA by IANA). Note that type values are defined in this document
and not in [RFC3630].
o Type 1 - Unreserved Bandwidth for fixed containers
o Type 2 - Unreserved/MAX LSP Bandwidth for flexible containers
The Switching Capability specific information (SCSI) MUST include one
Type 1 sub-TLV for each fixed container and one Type 2 sub-TLV for
each variable container. Each container type is identified by a
Signal Type. Signal Type values are defined in [RFC7139].
With respect to ODUflex, three different Signal Types are allowed:
o 20 - ODUflex(CBR) (i.e., 1.25*N Gbps)
o 21 - ODUflex(GFP-F), resizable (i.e., 1.25*N Gbps)
o 22 - ODUflex(GFP-F), non-resizable (i.e., 1.25*N Gbps)
where CBR stands for Constant Bit Rate, and GFP-F stands for Generic
Framing Procedure - Framed.
Each MUST always be advertised in separate Type 2 sub-TLVs as each
uses different adaptation functions [G.805]. In the case that both
GFP-F resizable and non-resizable (i.e., 21 and 22) are supported,
only Signal Type 21 SHALL be advertised as this type also implies
support for Type 22 adaptation.
Ceccarelli, et al. Standards Track [Page 8]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
4.1.1. Switching Capability Specific Information for Fixed Containers
The format of the Bandwidth sub-TLV for fixed containers is depicted
in the following figure:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Signal Type | Num of stages |T|S| TSG | Res | Priority |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1 | ... | Stage#N | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved ODUj at Prio 0 | ..... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved ODUj at Prio 7 | Unreserved Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: Bandwidth Sub-TLV -- Type 1
The values of the fields shown in Figure 3 are explained in
Section 4.1.3.
Ceccarelli, et al. Standards Track [Page 9]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
4.1.2. Switching Capability Specific Information for Variable
Containers
The format of the Bandwidth sub-TLV for variable containers is
depicted in the following figure:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 2 (Unres/MAX-var) | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Signal Type | Num of stages |T|S| TSG | Res | Priority |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1 | ... | Stage#N | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved Bandwidth at priority 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved Bandwidth at priority 7 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 7 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 4: Bandwidth Sub-TLV -- Type 2
The values of the fields shown in figure 4 are explained in
Section 4.1.3.
4.1.3. Switching Capability Specific Information -- Field Values and
Explanation
The fields in the Bandwidth sub-TLV MUST be filled as follows:
o Signal Type (8 bits): Indicates the ODU type being advertised.
Values are defined in [RFC7139].
o Num of stages (8 bits): This field indicates the number of
multiplexing stages used to transport the indicated Signal Type.
It MUST be set to the number of stages represented in the sub-TLV.
Ceccarelli, et al. Standards Track [Page 10]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
o Flags (8 bits):
* T Flag (bit 17): Indicates whether the advertised bandwidth can
be terminated. When the Signal Type can be terminated T MUST
be set, while when the Signal Type cannot be terminated T MUST
be cleared.
* S Flag (bit 18): Indicates whether the advertised bandwidth can
be switched. When the Signal Type can be switched, S MUST be
set; when the Signal Type cannot be switched, S MUST be
cleared.
* The value 0 in both the T bit and S bit MUST NOT be used.
o TSG (3 bits): Tributary Slot Granularity. Used for the
advertisement of the supported tributary slot granularity. The
following values MUST be used:
* 0 - Ignored
* 1 - 1.25 Gbps / 2.5 Gbps
* 2 - 2.5 Gbps only
* 3 - 1.25 Gbps only
* 4-7 - Reserved
A value of 1 MUST be used on interfaces that are configured to
support the fallback procedures defined in [G.798]. A value of 2
MUST be used on interfaces that only support 2.5 Gbps tributary
slots, such as [RFC4328] interfaces. A value of 3 MUST be used on
interfaces that are configured to only support 1.25 Gbps tributary
slots. A value of 0 MUST be used for non-multiplexed Signal Types
(i.e., a non-OTN client).
o Res (3 bits): Reserved bits. MUST be set to 0 and ignored on
receipt.
o Priority (8 bits): A bitmap used to indicate which priorities are
being advertised. The bitmap is in ascending order, with the
leftmost bit representing priority level 0 (i.e., the highest) and
the rightmost bit representing priority level 7 (i.e., the
lowest). A bit MUST be set (1) corresponding to each priority
represented in the sub-TLV and MUST NOT be set (0) when the
corresponding priority is not represented. At least one priority
level MUST be advertised that, unless overridden by local policy,
SHALL be at priority level 0.
Ceccarelli, et al. Standards Track [Page 11]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
o Stage (8 bits): Each Stage field indicates a Signal Type in the
multiplexing hierarchy used to transport the signal indicated in
the Signal Type field. The number of Stage fields included in a
sub-TLV MUST equal the value of the Num of stages field. The
Stage fields MUST be ordered to match the data plane in ascending
order (from the lowest order ODU to the highest order ODU). The
values of the Stage field are the same as those defined for the
Signal Type field. When the Num of stages field carries a 0, then
the Stage and Padding fields MUST be omitted.
* Example: For the ODU1->ODU2->OD3 hierarchy, the Signal Type
field is set to ODU1 and two Stage fields are present, the
first indicating ODU2 and the second ODU3 (server layer).
o Padding (variable): The Padding field is used to ensure the 32-bit
alignment of stage fields. The length of the Padding field is
always a multiple of 8 bits (1 byte). Its length can be
calculated, in bytes, as: 4 - ( "value of Num of stages field" %
4). The Padding field MUST be set to a zero (0) value on
transmission and MUST be ignored on receipt.
o Unreserved ODUj (16 bits): This field indicates the Unreserved
Bandwidth at a particular priority level. This field MUST be set
to the number of ODUs at the indicated the Signal Type for a
particular priority level. One field MUST be present for each bit
set in the Priority field, and the fields are ordered to match the
Priority field. Fields MUST NOT be present for priority levels
that are not indicated in the Priority field.
o Unreserved Padding (16 bits): The Padding field is used to ensure
the 32-bit alignment of the Unreserved ODUj fields. When present,
the Unreserved Padding field is 16 bits (2 bytes) long. When the
number of priorities is odd, the Unreserved Padding field MUST be
included. When the number of priorities is even, the Unreserved
Padding MUST be omitted.
o Unreserved Bandwidth (32 bits): This field indicates the
Unreserved Bandwidth at a particular priority level. This field
MUST be set to the bandwidth, in bytes/second in IEEE floating
point format, available at the indicated Signal Type for a
particular priority level. One field MUST be present for each bit
set in the Priority field, and the fields are ordered to match the
Priority field. Fields MUST NOT be present for priority levels
that are not indicated in the Priority field.
Ceccarelli, et al. Standards Track [Page 12]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
o Maximum LSP Bandwidth (32 bits): This field indicates the maximum
bandwidth that can be allocated for a single LSP at a particular
priority level. This field MUST be set to the maximum bandwidth,
in bytes/second in IEEE floating point format, available to a
single LSP at the indicated Signal Type for a particular priority
level. One field MUST be present for each bit set in the Priority
field, and the fields are ordered to match the Priority field.
Fields MUST NOT be present for priority levels that are not
indicated in the Priority field. The advertisement of the MAX LSP
Bandwidth MUST take into account HO OPUk bit rate tolerance and be
calculated according to the following formula:
* Max LSP BW = (# available TSs) * (ODTUk.ts nominal bit rate) *
(1-HO OPUk bit rate tolerance)
5. Examples
The examples in the following pages are not normative and are not
intended to imply or mandate any specific implementation.
5.1. MAX LSP Bandwidth Fields in the ISCD
This example shows how the MAX LSP Bandwidth fields of the ISCD are
filled according to the evolving of the TE-Link bandwidth occupancy.
In this example, an OTU4 link is considered, with supported
priorities 0,2,4,7 and muxing hierarchy ODU1->ODU2->ODU3->ODU4.
Ceccarelli, et al. Standards Track [Page 13]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
At time T0, with the link completely free, the advertisement would
be:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SwCap=OTN_TDM | Encoding = 12 | Reserved (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 0 = 100 Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 1 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 2 = 100 Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 3 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 4 = 100 Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 5 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 6 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 7 = 100 Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Switching Capability Specific Information |
| (variable length) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 5: MAX LSP Bandwidth Fields in the ISCD at T0
Ceccarelli, et al. Standards Track [Page 14]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
At time T1, an ODU3 at priority 2 is set up, so for priority 0, the
MAX LSP Bandwidth is still equal to the ODU4 bandwidth, while for
priorities from 2 to 7 (excluding the non-supported ones), the MAX
LSP Bandwidth is equal to ODU3, as no more ODU4s are available and
the next supported ODUj in the hierarchy is ODU3. The advertisement
is updated as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SwCap=OTN_TDM | Encoding = 12 | Reserved (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 0 = 100 Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 1 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 2 = 40 Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 3 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 4 = 40 Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 5 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 6 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 7 = 40 Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Switching Capability Specific Information |
| (variable length) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 6: MAX LSP Bandwidth Fields in the ISCD at T1
Ceccarelli, et al. Standards Track [Page 15]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
At time T2, an ODU2 at priority 4 is set up. The first ODU3 has not
been available since T1 as it was kept by the ODU3 LSP, while the
second is no longer available and just 3 ODU2s are left in it. ODU2
is now the MAX LSP Bandwidth for priorities higher than 4. The
advertisement is updated as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SwCap=OTN_TDM | Encoding = 12 | Reserved (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 0 = 100 Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 1 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 2 = 40 Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 3 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 4 = 10 Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 5 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 6 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 7 = 10 Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Switching Capability Specific Information |
| (variable length) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 7: MAX LSP Bandwidth Fields in the ISCD at T2
Ceccarelli, et al. Standards Track [Page 16]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
5.2. Example of T, S, and TS Granularity Utilization
In this example, an interface with tributary slot type 1.25 Gbps and
fallback procedure enabled is considered (TS granularity=1). It
supports the simple ODU1->ODU2->ODU3 hierarchy and priorities 0 and
3. Suppose that in this interface, the ODU3 Signal Type can be both
switched or terminated, the ODU2 can only be terminated, and the ODU1
can only be switched. Please note that since the ODU1 is not being
advertised to support ODU0, the value of its TSG field is "ignored"
(TS granularity=0). For the advertisement of the capabilities of
such an interface, a single ISCD is used. Its format is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU1 | #stages= 2 |0|1| 0 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU2 | Stage#2=ODU3 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU1 at Prio 0 | Unres ODU1 at Prio 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU2 | #stages= 1 |1|0| 1 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU3 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU2 at Prio 0 | Unres ODU2 at Prio 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU3 | #stages= 0 |1|1| 1 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU3 at Prio 0 | Unres ODU3 at Prio 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 8: T, S, and TS Granularity Utilization
Ceccarelli, et al. Standards Track [Page 17]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
5.2.1. Example of Different TS Granularities
In this example, two interfaces with homogeneous hierarchies but
different tributary slot types are considered. The first one
supports an [RFC4328] interface (TS granularity=2) while the second
one supports a G.709-2012 interface with fallback procedure disabled
(TS granularity=3). Both support the ODU1->ODU2->ODU3 hierarchy and
priorities 0 and 3. Suppose that in this interface, the ODU3 Signal
Type can be both switched or terminated, the ODU2 can only be
terminated, and the ODU1 can only be switched. For the advertisement
of the capabilities of such interfaces, two different ISCDs are used.
The format of their SCSIs is as follows:
SCSI of ISCD 1 -- TS granularity=2
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU1 | #stages= 2 |0|1| 0 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU2 | Stage#2=ODU3 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU1 at Prio 0 | Unres ODU1 at Prio 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU2 | #stages= 1 |1|0| 1 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU3 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU2 at Prio 0 | Unres ODU2 at Prio 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU3 | #stages= 0 |1|1| 2 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU3 at Prio 0 | Unres ODU3 at Prio 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 9: Utilization of Different TS Granularities -- ISCD 1
Ceccarelli, et al. Standards Track [Page 18]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
SCSI of ISCD 2 -- TS granularity=3
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU1 | #stages= 2 |0|1| 0 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU2 | Stage#2=ODU3 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU1 at Prio 0 | Unres ODU1 at Prio 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU2 | #stages= 1 |1|0| 1 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU3 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU2 at Prio 0 | Unres ODU2 at Prio 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU3 | #stages= 0 |1|1| 3 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU3 at Prio 0 | Unres ODU3 at Prio 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 10: Utilization of Different TS Granularities -- ISCD 2
Hierarchies with the same muxing tree but with different exported TS
granularity MUST be considered as non-homogenous hierarchies. This
is the case in which an H-LSP and the client LSP are terminated on
the same egress node. What can happen is that a loose Explicit Route
Object (ERO) is used at the hop where the signaled LSP is nested into
the Hierarchical-LSP (H-LSP) (penultimate hop of the LSP).
In the following figure, node C receives a loose ERO from A; the ERO
goes towards node E, and node C must choose between the ODU2 H-LSP on
if1 or the one on if2. In this case, the H-LSP on if1 exports a
TS=1.25 Gbps, and the H-LSP on if2 exports a TS=2.5 Gbps; because the
service LSP being signaled needs a 1.25 Gbps tributary slot, only the
H-LSP on if1 can be used to reach node E. For further details,
please see Section 3.2 of [RFC7096].
Ceccarelli, et al. Standards Track [Page 19]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
ODU0-LSP
..........................................................+
| |
| ODU2-H-LSP |
| +-------------------------------+
| | |
+--+--+ +-----+ +-----+ if1 +-----+ +-----+
| | OTU3 | | OTU3 | |---------| |---------| |
| A +------+ B +------+ C | if2 | D | | E |
| | | | | |---------| |---------| |
+-----+ +-----+ +-----+ +-----+ +-----+
... Service LSP
--- H-LSP
Figure 11: Example of Service LSP and H-LSP Terminating
on the Same Node
5.3. Example of ODUflex Advertisement
In this example, the advertisement of an ODUflex->ODU3 hierarchy is
shown. In the case of ODUflex advertisement, the MAX LSP Bandwidth
needs to be advertised, and in some cases, information about the
Unreserved Bandwidth could also be useful. The amount of Unreserved
Bandwidth does not give a clear indication of how many ODUflex LSPs
can be set up either at the MAX LSP Bandwidth or at different rates,
as it gives no information about the spatial allocation of the free
TSs.
An indication of the amount of Unreserved Bandwidth could be useful
during the path computation process, as shown in the following
example. Suppose there are two TE-Links (A and B) with MAX LSP
Bandwidth equal to 10 Gbps each. In the case where 50 Gbps of
Unreserved Bandwidth are available on Link A, 10 Gbps on Link B, and
3 ODUflex LSPs of 10 Gbps each have to be restored, for sure only one
can be restored along Link B, and it is probable, but not certain,
that two of them can be restored along Link A. The T, S, and TSG
fields are not relevant to this example (filled with Xs).
In the case of ODUflex advertisement, the Type 2 Bandwidth sub-TLV is
used.
Ceccarelli, et al. Standards Track [Page 20]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 2 (Unres/MAX-var) | Length = 72 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|S. type=ODUflex| #stages= 1 |X|X|X X X|0 0 0| Priority(8) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU3 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved Bandwidth at priority 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved Bandwidth at priority 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved Bandwidth at priority 2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved Bandwidth at priority 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved Bandwidth at priority 4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved Bandwidth at priority 5 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved Bandwidth at priority 6 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved Bandwidth at priority 7 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 5 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 6 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 7 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 12: ODUflex Advertisement
Ceccarelli, et al. Standards Track [Page 21]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
5.4. Example of Single-Stage Muxing
Suppose there is 1 OTU4 component link supporting single-stage muxing
of ODU1, ODU2, ODU3, and ODUflex, the supported hierarchy can be
summarized in a tree as in the following figure. For the sake of
simplicity, we also assume that only priorities 0 and 3 are
supported. The T, S, and TSG fields are not relevant to this example
(filled with Xs).
ODU1 ODU2 ODU3 ODUflex
\ \ / /
\ \ / /
\ \/ /
ODU4
The related SCSIs are as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU4 | #stages= 0 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU4 at Prio 0 =1 | Unres ODU4 at Prio 3 =1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU1 | #stages= 1 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU1 at Prio 0 =40 | Unres ODU1 at Prio 3 =40 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU2 | #stages= 1 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU2 at Prio 0 =10 | Unres ODU2 at Prio 3 =10 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU3 | #stages= 1 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU4 | Padding (all zeros) |
Ceccarelli, et al. Standards Track [Page 22]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU3 at Prio 0 =2 | Unres ODU3 at Prio 3 =2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 2 (Unres/MAX-var) | Length = 24 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|S. type=ODUflex| #stages= 1 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved Bandwidth at priority 0 =100 Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved Bandwidth at priority 3 =100 Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 0 =100 Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 3 =100 Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 13: Single-Stage Muxing
5.5. Example of Multi-Stage Muxing -- Unbundled Link
Suppose there is 1 OTU4 component link with muxing capabilities as
shown in the following figure:
ODU2 ODU0 ODUflex ODU0
\ / \ /
| |
ODU3 ODU2
\ /
\ /
\ /
\ /
ODU4
Considering only supported priorities 0 and 3, the advertisement is
composed by the following Bandwidth sub-TLVs (T and S fields are not
relevant to this example and filled with Xs):
Ceccarelli, et al. Standards Track [Page 23]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU4 | #stages= 0 |X|X| 1 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU4 at Prio 0 =1 | Unres ODU4 at Prio 3 =1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU3 | #stages= 1 |X|X| 1 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU3 at Prio 0 =2 | Unres ODU3 at Prio 3 =2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU2 | #stages= 1 |X|X| 1 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU2 at Prio 0 =10 | Unres ODU2 at Prio 3 =10 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU2 | #stages= 2 |X|X| 0 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU3 | Stage#2=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU2 at Prio 0 =8 | Unres ODU2 at Prio 3 =8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU0 | #stages= 2 |X|X| 0 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU3 | Stage#2=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU0 at Prio 0 =64 | Unres ODU0 at Prio 3 =64 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU0 | #stages= 2 |X|X| 0 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU2 | Stage#2=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU0 at Prio 0 =80 | Unres ODU0 at Prio 3 =80 |
Ceccarelli, et al. Standards Track [Page 24]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 2 (Unres/MAX-var) | Length = 24 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|S.type=ODUflex | #stages= 2 |X|X| 0 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU2 | Stage#2=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved Bandwidth at priority 0 =100 Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved Bandwidth at priority 3 =100 Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 0 =10 Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 3 =10 Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 14: Multi-Stage Muxing -- Unbundled Link
5.6. Example of Multi-Stage Muxing -- Bundled Links
In this example, 2 OTU4 component links with the same supported TS
granularity and homogeneous muxing hierarchies are considered. The
following muxing capabilities trees are supported:
Component Link#1 Component Link#2
ODU2 ODU0 ODU2 ODU0
\ / \ /
| |
ODU3 ODU3
| |
ODU4 ODU4
Ceccarelli, et al. Standards Track [Page 25]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
Considering only supported priorities 0 and 3, the advertisement is
as follows (the T, S, and TSG fields are not relevant to this example
and filled with Xs):
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU4 | #stages= 0 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU4 at Prio 0 =2 | Unres ODU4 at Prio 3 =2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU3 | #stages= 1 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU3 at Prio 0 =4 | Unres ODU3 at Prio 3 =4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU2 | #stages= 2 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU3 | Stage#2=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU2 at Prio 0 =16 | Unres ODU2 at Prio 3 =16 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU0 | #stages= 2 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU3 | Stage#2=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU0 at Prio 0 =128 | Unres ODU0 at Prio 3 =128 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 15: Multi-Stage Muxing -- Bundled Links
Ceccarelli, et al. Standards Track [Page 26]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
5.7. Example of Component Links with Non-Homogeneous Hierarchies
In this example, 2 OTU4 component links with the same supported TS
granularity and non-homogeneous muxing hierarchies are considered.
The following muxing capabilities trees are supported:
Component Link#1 Component Link#2
ODU2 ODU0 ODU1 ODU0
\ / \ /
| |
ODU3 ODU2
| |
ODU4 ODU4
Ceccarelli, et al. Standards Track [Page 27]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
Considering only supported priorities 0 and 3, the advertisement uses
two different ISCDs, one for each hierarchy (the T, S, and TSG fields
are not relevant to this example and filled with Xs). In the
following figure, the SCSI of each ISCD is shown:
SCSI of ISCD 1 -- Component Link#1
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU4 | #stages= 0 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU4 at Prio 0 =1 | Unres ODU4 at Prio 3 =1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU3 | #stages= 1 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU3 at Prio 0 =2 | Unres ODU3 at Prio 3 =2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU2 | #stages= 2 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU3 | Stage#2=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU2 at Prio 0 =8 | Unres ODU2 at Prio 3 =8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU0 | #stages= 2 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU3 | Stage#2=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU0 at Prio 0 =64 | Unres ODU0 at Prio 3 =64 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 16: Multi-Stage Muxing -- Non-Homogeneous Hierarchies --
ISCD 1
Ceccarelli, et al. Standards Track [Page 28]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
SCSI of ISCD 2 -- Component Link#2
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU4 | #stages= 0 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU4 at Prio 0 =1 | Unres ODU4 at Prio 3 =1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU2 | #stages= 1 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU2 at Prio 0 =10 | Unres ODU2 at Prio 3 =10 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU1 | #stages= 2 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU2 | Stage#2=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU1 at Prio 0 =40 | Unres ODU1 at Prio 3 =40 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU0 | #stages= 2 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU2 | Stage#2=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU0 at Prio 0 =80 | Unres ODU0 at Prio 3 =80 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 17: Multi-Stage Muxing -- Non-Homogeneous Hierarchies --
ISCD 2
6. OSPFv2 Scalability
This document does not introduce OSPF scalability issues with respect
to existing GMPLS encoding and does not require any modification to
flooding frequency. Moreover, the design of the encoding has been
carried out taking into account bandwidth optimization, in
particular:
Ceccarelli, et al. Standards Track [Page 29]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
o Only unreserved and MAX LSP Bandwidth related to supported
priorities are advertised.
o For fixed containers, only the number of available containers is
advertised instead of the available bandwidth in order to use only
16 bits per container instead of 32 (as per former GMPLS
encoding).
In order to further reduce the amount of data advertised it is
RECOMMENDED to bundle component links with homogeneous hierarchies as
described in [RFC4201] and illustrated in Section 5.6.
7. Compatibility
All implementations of this document MAY also support advertisement
as defined in [RFC4203]. When nodes support both the advertisement
method in [RFC4203] and the one in this document, implementations
MUST support the configuration of which advertisement method is
followed. The choice of which is used is based on policy and beyond
the scope of this document. This enables nodes following each method
to identify similar supporting nodes and compute paths using only the
appropriate nodes.
8. Security Considerations
This document extends [RFC4203]. As with [RFC4203], it specifies the
contents of Opaque LSAs in OSPFv2. As Opaque LSAs are not used for
Shortest Path First (SPF) computation or normal routing, the
extensions specified here have no direct effect on IP routing.
Tampering with GMPLS TE LSAs may have an effect on the underlying
transport (optical and/or Synchronous Optical Network - Synchronous
Digital Hierarchy (SONET-SDH) network. [RFC3630] notes that the
security mechanisms described in [RFC2328] apply to Opaque LSAs
carried in OSPFv2. An analysis of the security of OSPF is provided
in [RFC6863] and applies to the extensions to OSPF as described in
this document. Any new mechanisms developed to protect the
transmission of information carried in Opaque LSAs will also
automatically protect the extensions defined in this document.
Please refer to [RFC5920] for details on security threats; defensive
techniques; monitoring, detection, and reporting of security attacks;
and requirements.
Ceccarelli, et al. Standards Track [Page 30]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
9. IANA Considerations
9.1. Switching Types
IANA has made the following assignment in the "Switching Types"
section of the "Generalized Multi-Protocol Label Switching (GMPLS)
Signaling Parameters" registry located at
<http://www.iana.org/assignments/gmpls-sig-parameters>:
Value Name Reference
--------- -------------------------- ----------
110 OTN-TDM capable [RFC7138]
The same type of modification has been applied to the IANA-GMPLS-TC-
MIB at <https://www.iana.org/assignments/ianagmplstc-mib>, where the
value:
OTN-TDM (110), -- Time-Division-Multiplex OTN-TDM capable
has been added to the IANAGmplsSwitchingTypeTC ::= TEXTUAL-CONVENTION
syntax list.
9.2. New Sub-TLVs
This document defines 2 new sub-TLVs that are carried in Interface
Switching Capability Descriptors [RFC4203] with the Signal Type OTN-
TDM. Each sub-TLV includes a 16-bit type identifier (the T-field).
The same T-field values are applicable to the new sub-TLV.
IANA has created and will maintain a new sub-registry, the "Types for
sub-TLVs of OTN-TDM SCSI (Switching Capability Specific Information)"
registry under the "Open Shortest Path First (OSPF) Traffic
Engineering TLVs" registry, see
<http://www.iana.org/assignments/ospf-traffic-eng-tlvs>, with the
sub-TLV types as follows:
Value Sub-TLV Reference
--------- -------------------------- ----------
0 Reserved [RFC7138]
1 Unreserved Bandwidth for [RFC7138]
fixed containers
2 Unreserved/MAX Bandwidth for [RFC7138]
flexible containers
3-65535 Unassigned
Types are to be assigned via Standards Action as defined in
[RFC5226].
Ceccarelli, et al. Standards Track [Page 31]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
10. Contributors
Diego Caviglia
Ericsson
Via E. Melen, 77
Genova
Italy
EMail: diego.caviglia@ericsson.com
Dan Li
Huawei Technologies
Bantian, Longgang District
Shenzhen 518129
P.R. China
EMail: danli@huawei.com
Pietro Vittorio Grandi
Alcatel-Lucent
Via Trento, 30
Vimercate
Italy
EMail: pietro_vittorio.grandi@alcatel-lucent.com
Khuzema Pithewan
Infinera Corporation
140 Caspian CT.
Sunnyvale, CA
USA
EMail: kpithewan@infinera.com
Xiaobing Zi
Huawei Technologies
EMail: zixiaobing@huawei.com
Francesco Fondelli
Ericsson
EMail: francesco.fondelli@ericsson.com
Marco Corsi
EMail: corsi.marco@gmail.com
Eve Varma
Alcatel-Lucent
EMail: eve.varma@alcatel-lucent.com
Jonathan Sadler
Tellabs
EMail: jonathan.sadler@tellabs.com
Ceccarelli, et al. Standards Track [Page 32]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
Lyndon Ong
Ciena
EMail: lyong@ciena.com
Ashok Kunjidhapatham
EMail: akunjidhapatham@infinera.com
Snigdho Bardalai
EMail: sbardalai@infinera.com
Steve Balls
EMail: Steve.Balls@metaswitch.com
Jonathan Hardwick
EMail: Jonathan.Hardwick@metaswitch.com
Xihua Fu
EMail: fu.xihua@zte.com.cn
Cyril Margaria
EMail: cyril.margaria@nsn.com
Malcolm Betts
EMail: Malcolm.betts@zte.com.cn
11. Acknowledgements
The authors would like to thank Fred Gruman and Lou Berger for their
valuable comments and suggestions.
12. References
12.1. Normative References
[G.709-2012] ITU-T, "Interface for the optical transport network",
Recommendation G.709/Y.1331, February 2012.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC3630] Katz, D., Kompella, K., and D. Yeung, "Traffic
Engineering (TE) Extensions to OSPF Version 2", RFC
3630, September 2003.
[RFC4201] Kompella, K., Rekhter, Y., and L. Berger, "Link Bundling
in MPLS Traffic Engineering (TE)", RFC 4201, October
2005.
Ceccarelli, et al. Standards Track [Page 33]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
[RFC4203] Kompella, K. and Y. Rekhter, "OSPF Extensions in Support
of Generalized Multi-Protocol Label Switching (GMPLS)",
RFC 4203, October 2005.
[RFC4328] Papadimitriou, D., "Generalized Multi-Protocol Label
Switching (GMPLS) Signaling Extensions for G.709 Optical
Transport Networks Control", RFC 4328, January 2006.
12.2. Informative References
[G.798] ITU-T, "Characteristics of optical transport network
hierarchy equipment functional blocks", Recommendation
G.798, December 2012.
[G.805] ITU-T, "Generic functional architecture of transport
networks", Recommendation G.805, March 2000.
[RFC2328] Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.
[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", BCP 26, RFC 5226,
May 2008.
[RFC5920] Fang, L., "Security Framework for MPLS and GMPLS
Networks", RFC 5920, July 2010.
[RFC6163] Lee, Y., Bernstein, G., and W. Imajuku, "Framework for
GMPLS and Path Computation Element (PCE) Control of
Wavelength Switched Optical Networks (WSONs)", RFC 6163,
April 2011.
[RFC6566] Lee, Y., Bernstein, G., Li, D., and G. Martinelli, "A
Framework for the Control of Wavelength Switched Optical
Networks (WSONs) with Impairments", RFC 6566, March
2012.
[RFC6863] Hartman, S. and D. Zhang, "Analysis of OSPF Security
According to the Keying and Authentication for Routing
Protocols (KARP) Design Guide", RFC 6863, March 2013.
[RFC7062] Zhang, F., Li, D., Li, H., Belotti, S., and D.
Ceccarelli, "Framework for GMPLS and PCE Control of
G.709 Optical Transport Networks", RFC 7062, November
2013.
Ceccarelli, et al. Standards Track [Page 34]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
[RFC7096] Belotti, S., Grandi, P., Ceccarelli, D., Ed., Caviglia,
D., and F. Zhang, "Evaluation of Existing GMPLS Encoding
against G.709v3 Optical Transport Networks (OTNs)", RFC
7096, January 2014.
[RFC7139] Zhang, F., Ed., Zhang, G., Belotti, S., Ceccarelli, D.,
and K. Pithewan, "GMPLS Signaling Extensions for
Control of Evolving G.709 Optical Transport Networks",
RFC 7139, March 2014.
Ceccarelli, et al. Standards Track [Page 35]
^L
RFC 7138 OSPF-TE Extensions for OTN Support March 2014
Authors' Addresses
Daniele Ceccarelli (editor)
Ericsson
Via E.Melen 77
Genova - Erzelli
Italy
EMail: daniele.ceccarelli@ericsson.com
Fatai Zhang
Huawei Technologies
F3-5-B R&D Center, Huawei Base
Bantian, Longgang District
Shenzhen 518129
P.R. China
Phone: +86-755-28972912
EMail: zhangfatai@huawei.com
Sergio Belotti
Alcatel-Lucent
Via Trento, 30
Vimercate
Italy
EMail: sergio.belotti@alcatel-lucent.com
Rajan Rao
Infinera Corporation
140, Caspian CT.
Sunnyvale, CA-94089
USA
EMail: rrao@infinera.com
John E. Drake
Juniper
EMail: jdrake@juniper.net
Ceccarelli, et al. Standards Track [Page 36]
^L
|