1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
|
Internet Engineering Task Force (IETF) T. Mizrahi
Request for Comments: 7276 Marvell
Category: Informational N. Sprecher
ISSN: 2070-1721 Nokia Solutions and Networks
E. Bellagamba
Ericsson
Y. Weingarten
June 2014
An Overview of
Operations, Administration, and Maintenance (OAM) Tools
Abstract
Operations, Administration, and Maintenance (OAM) is a general term
that refers to a toolset for fault detection and isolation, and for
performance measurement. Over the years, various OAM tools have been
defined for various layers in the protocol stack.
This document summarizes some of the OAM tools defined in the IETF in
the context of IP unicast, MPLS, MPLS Transport Profile (MPLS-TP),
pseudowires, and Transparent Interconnection of Lots of Links
(TRILL). This document focuses on tools for detecting and isolating
failures in networks and for performance monitoring. Control and
management aspects of OAM are outside the scope of this document.
Network repair functions such as Fast Reroute (FRR) and protection
switching, which are often triggered by OAM protocols, are also out
of the scope of this document.
The target audience of this document includes network equipment
vendors, network operators, and standards development organizations.
This document can be used as an index to some of the main OAM tools
defined in the IETF. At the end of the document, a list of the OAM
toolsets and a list of the OAM functions are presented as a summary.
Mizrahi, et al. Informational [Page 1]
^L
RFC 7276 Overview of OAM Tools June 2014
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are a candidate for any level of Internet
Standard; see Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7276.
Copyright Notice
Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Mizrahi, et al. Informational [Page 2]
^L
RFC 7276 Overview of OAM Tools June 2014
Table of Contents
1. Introduction ....................................................4
1.1. Background .................................................5
1.2. Target Audience ............................................6
1.3. OAM-Related Work in the IETF ...............................6
1.4. Focusing on the Data Plane .................................7
2. Terminology .....................................................8
2.1. Abbreviations ..............................................8
2.2. Terminology Used in OAM Standards .........................10
2.2.1. General Terms ......................................10
2.2.2. Operations, Administration, and Maintenance ........10
2.2.3. Functions, Tools, and Protocols ....................11
2.2.4. Data Plane, Control Plane, and Management Plane ....11
2.2.5. The Players ........................................12
2.2.6. Proactive and On-Demand Activation .................13
2.2.7. Connectivity Verification and Continuity Checks ....14
2.2.8. Connection-Oriented vs. Connectionless
Communication ......................................15
2.2.9. Point-to-Point vs. Point-to-Multipoint Services ....16
2.2.10. Failures ..........................................16
3. OAM Functions ..................................................17
4. OAM Tools in the IETF - A Detailed Description .................18
4.1. IP Ping ...................................................18
4.2. IP Traceroute .............................................19
4.3. Bidirectional Forwarding Detection (BFD) ..................20
4.3.1. Overview ...........................................20
4.3.2. Terminology ........................................20
4.3.3. BFD Control ........................................20
4.3.4. BFD Echo ...........................................21
4.4. MPLS OAM ..................................................21
4.4.1. LSP Ping ...........................................21
4.4.2. BFD for MPLS .......................................22
4.4.3. OAM for Virtual Private Networks (VPNs) over MPLS ..23
4.5. MPLS-TP OAM ...............................................23
4.5.1. Overview ...........................................23
4.5.2. Terminology ........................................24
4.5.3. Generic Associated Channel .........................25
4.5.4. MPLS-TP OAM Toolset ................................25
4.5.4.1. Continuity Check and Connectivity
Verification ..............................26
4.5.4.2. Route Tracing .............................26
4.5.4.3. Lock Instruct .............................27
4.5.4.4. Lock Reporting ............................27
4.5.4.5. Alarm Reporting ...........................27
4.5.4.6. Remote Defect Indication ..................27
4.5.4.7. Client Failure Indication .................27
Mizrahi, et al. Informational [Page 3]
^L
RFC 7276 Overview of OAM Tools June 2014
4.5.4.8. Performance Monitoring ....................28
4.5.4.8.1. Packet Loss Measurement (LM) ...28
4.5.4.8.2. Packet Delay Measurement (DM) ..28
4.6. Pseudowire OAM ............................................29
4.6.1. Pseudowire OAM Using Virtual Circuit
Connectivity Verification (VCCV) ...................29
4.6.2. Pseudowire OAM Using G-ACh .........................30
4.6.3. Attachment Circuit - Pseudowire Mapping ............30
4.7. OWAMP and TWAMP ...........................................31
4.7.1. Overview ...........................................31
4.7.2. Control and Test Protocols .........................32
4.7.3. OWAMP ..............................................32
4.7.4. TWAMP ..............................................33
4.8. TRILL .....................................................33
5. Summary ........................................................34
5.1. Summary of OAM Tools ......................................34
5.2. Summary of OAM Functions ..................................37
5.3. Guidance to Network Equipment Vendors .....................38
6. Security Considerations ........................................38
7. Acknowledgments ................................................39
8. References .....................................................39
8.1. Normative References ......................................39
8.2. Informative References ....................................39
Appendix A. List of OAM Documents ................................ 46
A.1. List of IETF OAM Documents ............................... 46
A.2. List of Selected Non-IETF OAM Documents .................. 50
1. Introduction
"OAM" is a general term that refers to a toolset for detecting,
isolating, and reporting failures, and for monitoring network
performance.
There are several different interpretations of the "OAM" acronym.
This document refers to Operations, Administration, and Maintenance,
as recommended in Section 3 of [OAM-Def].
This document summarizes some of the OAM tools defined in the IETF in
the context of IP unicast, MPLS, MPLS Transport Profile (MPLS-TP),
pseudowires, and TRILL.
This document focuses on tools for detecting and isolating failures
and for performance monitoring. Hence, this document focuses on the
tools used for monitoring and measuring the data plane; control and
management aspects of OAM are outside the scope of this document.
Network repair functions such as Fast Reroute (FRR) and protection
switching, which are often triggered by OAM protocols, are also out
of the scope of this document.
Mizrahi, et al. Informational [Page 4]
^L
RFC 7276 Overview of OAM Tools June 2014
1.1. Background
OAM was originally used in traditional communication technologies
such as E1 and T1, evolving into Plesiochronous Digital Hierarchy
(PDH) and then later into Synchronous Optical Network / Synchronous
Digital Hierarchy (SONET/SDH). ATM was probably the first technology
to include inherent OAM support from day one, while in other
technologies OAM was typically defined in an ad hoc manner after the
technology was already defined and deployed. Packet-based networks
were traditionally considered unreliable and best effort. As packet-
based networks evolved, they have become the common transport for
both data and telephony, replacing traditional transport protocols.
Consequently, packet-based networks were expected to provide a
similar "carrier grade" experience, and specifically to support more
advanced OAM functions, beyond ICMP and router hellos, that were
traditionally used for fault detection.
As typical networks have a multi-layer architecture, the set of OAM
protocols similarly take a multi-layer structure; each layer has its
own OAM protocols. Moreover, OAM can be used at different levels of
hierarchy in the network to form a multi-layer OAM solution, as shown
in the example in Figure 1.
Figure 1 illustrates a network in which IP traffic between two
customer edges is transported over an MPLS provider network. MPLS
OAM is used at the provider level for monitoring the connection
between the two provider edges, while IP OAM is used at the customer
level for monitoring the end-to-end connection between the two
customer edges.
|<-------------- Customer-level OAM -------------->|
IP OAM (Ping, Traceroute, OWAMP, TWAMP)
|<- Provider-level OAM ->|
MPLS OAM (LSP Ping)
+-----+ +----+ +----+ +-----+
| | | |========================| | | |
| |-------| | MPLS | |-------| |
| | IP | | | | IP | |
+-----+ +----+ +----+ +-----+
Customer Provider Provider Customer
Edge Edge Edge Edge
Figure 1: Example of Multi-layer OAM
Mizrahi, et al. Informational [Page 5]
^L
RFC 7276 Overview of OAM Tools June 2014
1.2. Target Audience
The target audience of this document includes:
o Standards development organizations - Both IETF working groups and
non-IETF organizations can benefit from this document when
designing new OAM protocols, or when looking to reuse existing OAM
tools for new technologies.
o Network equipment vendors and network operators can use this
document as an index to some of the common IETF OAM tools.
It should be noted that some background in OAM is necessary in order
to understand and benefit from this document. Specifically, the
reader is assumed to be familiar with the term "OAM" [OAM-Def], the
motivation for using OAM, and the distinction between OAM and network
management [OAM-Mng].
1.3. OAM-Related Work in the IETF
This memo provides an overview of the different sets of OAM tools
defined by the IETF. The set of OAM tools described in this memo are
applicable to IP unicast, MPLS, pseudowires, MPLS Transport Profile
(MPLS-TP), and TRILL. While OAM tools that are applicable to other
technologies exist, they are beyond the scope of this memo.
This document focuses on IETF documents that have been published as
RFCs, while other ongoing OAM-related work is outside the scope.
The IETF has defined OAM protocols and tools in several different
contexts. We roughly categorize these efforts into a few sets of
OAM-related RFCs, listed in Table 1. Each set defines a logically
coupled set of RFCs, although the sets are in some cases intertwined
by common tools and protocols.
The discussion in this document is ordered according to these sets
(the acronyms and abbreviations are listed in Section 2.1).
Mizrahi, et al. Informational [Page 6]
^L
RFC 7276 Overview of OAM Tools June 2014
+--------------+------------+
| Toolset | Transport |
| | Technology |
+--------------+------------+
|IP Ping | IPv4/IPv6 |
+--------------+------------+
|IP Traceroute | IPv4/IPv6 |
+--------------+------------+
|BFD | generic |
+--------------+------------+
|MPLS OAM | MPLS |
+--------------+------------+
|MPLS-TP OAM | MPLS-TP |
+--------------+------------+
|Pseudowire OAM| Pseudowires|
+--------------+------------+
|OWAMP and | IPv4/IPv6 |
|TWAMP | |
+--------------+------------+
|TRILL OAM | TRILL |
+--------------+------------+
Table 1: OAM Toolset Packages in the IETF Documents
This document focuses on OAM tools that have been developed in the
IETF. A short summary of some of the significant OAM standards that
have been developed in other standard organizations is presented in
Appendix A.2.
1.4. Focusing on the Data Plane
OAM tools may, and quite often do, work in conjunction with a control
plane and/or management plane. OAM provides instrumentation tools
for measuring and monitoring the data plane. OAM tools often use
control-plane functions, e.g., to initialize OAM sessions and to
exchange various parameters. The OAM tools communicate with the
management plane to raise alarms, and often OAM tools may be
activated by the management plane (as well as by the control plane),
e.g., to locate and localize problems.
The considerations of the control-plane maintenance tools and the
functionality of the management plane are out of scope for this
document, which concentrates on presenting the data-plane tools that
are used for OAM. Network repair functions such as Fast Reroute
(FRR) and protection switching, which are often triggered by OAM
protocols, are also out of the scope of this document.
Mizrahi, et al. Informational [Page 7]
^L
RFC 7276 Overview of OAM Tools June 2014
Since OAM protocols are used for monitoring the data plane, it is
imperative for OAM tools to be capable of testing the actual data
plane with as much accuracy as possible. Thus, it is important to
enforce fate-sharing between OAM traffic that monitors the data plane
and the data-plane traffic it monitors.
2. Terminology
2.1. Abbreviations
ACH Associated Channel Header
AIS Alarm Indication Signal
ATM Asynchronous Transfer Mode
BFD Bidirectional Forwarding Detection
CC Continuity Check
CC-V Continuity Check and Connectivity Verification
CV Connectivity Verification
DM Delay Measurement
ECMP Equal-Cost Multipath
FEC Forwarding Equivalence Class
FRR Fast Reroute
G-ACh Generic Associated Channel
GAL Generic Associated Channel Label
ICMP Internet Control Message Protocol
L2TP Layer 2 Tunneling Protocol
L2VPN Layer 2 Virtual Private Network
L3VPN Layer 3 Virtual Private Network
LCCE L2TP Control Connection Endpoint
LDP Label Distribution Protocol
Mizrahi, et al. Informational [Page 8]
^L
RFC 7276 Overview of OAM Tools June 2014
LER Label Edge Router
LM Loss Measurement
LSP Label Switched Path
LSR Label Switching Router
ME Maintenance Entity
MEG Maintenance Entity Group
MEP MEG End Point
MIP MEG Intermediate Point
MP Maintenance Point
MPLS Multiprotocol Label Switching
MPLS-TP MPLS Transport Profile
MTU Maximum Transmission Unit
OAM Operations, Administration, and Maintenance
OWAMP One-Way Active Measurement Protocol
PDH Plesiochronous Digital Hierarchy
PE Provider Edge
PSN Public Switched Network
PW Pseudowire
PWE3 Pseudowire Emulation Edge-to-Edge
RBridge Routing Bridge
RDI Remote Defect Indication
SDH Synchronous Digital Hierarchy
SONET Synchronous Optical Network
TRILL Transparent Interconnection of Lots of Links
Mizrahi, et al. Informational [Page 9]
^L
RFC 7276 Overview of OAM Tools June 2014
TTL Time To Live
TWAMP Two-Way Active Measurement Protocol
VCCV Virtual Circuit Connectivity Verification
VPN Virtual Private Network
2.2. Terminology Used in OAM Standards
2.2.1. General Terms
A wide variety of terms is used in various OAM standards. This
section presents a comparison of the terms used in various OAM
standards, without fully quoting the definition of each term.
An interesting overview of the term "OAM" and its derivatives is
presented in [OAM-Def]. A thesaurus of terminology for MPLS-TP terms
is presented in [TP-Term], which provides a good summary of some of
the OAM-related terminology.
2.2.2. Operations, Administration, and Maintenance
The following definition of OAM is quoted from [OAM-Def]:
The components of the "OAM" acronym (and provisioning) are defined as
follows:
o Operations - Operation activities are undertaken to keep the
network (and the services that the network provides) up and
running. It includes monitoring the network and finding problems.
Ideally these problems should be found before users are affected.
o Administration - Administration activities involve keeping track
of resources in the network and how they are used. It includes
all the bookkeeping that is necessary to track networking
resources and the network under control.
o Maintenance - Maintenance activities are focused on facilitating
repairs and upgrades -- for example, when equipment must be
replaced, when a router needs a patch for an operating system
image, or when a new switch is added to a network. Maintenance
also involves corrective and preventive measures to make the
managed network run more effectively, e.g., adjusting device
configuration and parameters.
Mizrahi, et al. Informational [Page 10]
^L
RFC 7276 Overview of OAM Tools June 2014
2.2.3. Functions, Tools, and Protocols
OAM Function
An OAM function is an instrumentation measurement type or
diagnostic.
OAM functions are the atomic building blocks of OAM, where each
function defines an OAM capability.
Typical examples of OAM functions are presented in Section 3.
OAM Protocol
An OAM protocol is a protocol used for implementing one or more
OAM functions.
The OWAMP-Test [OWAMP] is an example of an OAM protocol.
OAM Tool
An OAM tool is a specific means of applying one or more OAM
functions.
In some cases, an OAM protocol *is* an OAM tool, e.g., OWAMP-Test.
In other cases, an OAM tool uses a set of protocols that are not
strictly OAM related; for example, Traceroute (Section 4.2) can be
implemented using UDP and ICMP messages, without using an OAM
protocol per se.
2.2.4. Data Plane, Control Plane, and Management Plane
Data Plane
The data plane is the set of functions used to transfer data in
the stratum or layer under consideration [ITU-Terms].
The data plane is also known as the forwarding plane or the user
plane.
Control Plane
The control plane is the set of protocols and mechanisms that
enable routers to efficiently learn how to forward packets towards
their final destination (based on [Comp]).
Mizrahi, et al. Informational [Page 11]
^L
RFC 7276 Overview of OAM Tools June 2014
Management Plane
The term "Management Plane", as described in [Mng], is used to
describe the exchange of management messages through management
protocols (often transported by IP and by IP transport protocols)
between management applications and the managed entities such as
network nodes.
Data Plane vs. Control Plane vs. Management Plane
The distinction between the planes is at times a bit vague. For
example, the definition of "Control Plane" above may imply that
OAM tools such as ping, BFD, and others are in fact in the control
plane.
This document focuses on tools used for monitoring the data plane.
While these tools could arguably be considered to be in the
control plane, these tools monitor the data plane, and hence it is
imperative to have fate-sharing between OAM traffic that monitors
the data plane and the data-plane traffic it monitors.
Another potentially vague distinction is between the management
plane and control plane. The management plane should be seen as
separate from, but possibly overlapping with, the control plane
(based on [Mng]).
2.2.5. The Players
An OAM tool is used between two (or more) peers. Various terms are
used in IETF documents to refer to the players that take part in OAM.
Table 2 summarizes the terms used in each of the toolsets discussed
in this document.
Mizrahi, et al. Informational [Page 12]
^L
RFC 7276 Overview of OAM Tools June 2014
+--------------------------+---------------------------+
| Toolset | Terms |
+--------------------------+---------------------------+
| Ping / Traceroute |- Host |
| ([ICMPv4], [ICMPv6], |- Node |
| [TCPIP-Tools]) |- Interface |
| |- Gateway |
+ ------------------------ + ------------------------- +
| BFD [BFD] |- System |
+ ------------------------ + ------------------------- +
| MPLS OAM [MPLS-OAM-FW] |- LSR |
+ ------------------------ + ------------------------- +
| MPLS-TP OAM [TP-OAM-FW] |- End Point - MEP |
| |- Intermediate Point - MIP |
+ ------------------------ + ------------------------- +
| Pseudowire OAM [VCCV] |- PE |
| |- LCCE |
+ ------------------------ + ------------------------- +
| OWAMP and TWAMP |- Host |
| ([OWAMP], [TWAMP]) |- End system |
+ ------------------------ + ------------------------- +
| TRILL OAM [TRILL-OAM] |- RBridge |
+--------------------------+---------------------------+
Table 2: Maintenance Point Terminology
2.2.6. Proactive and On-Demand Activation
The different OAM tools may be used in one of two basic types of
activation:
Proactive
Proactive activation - indicates that the tool is activated on a
continual basis, where messages are sent periodically, and errors
are detected when a certain number of expected messages are not
received.
On-demand
On-demand activation - indicates that the tool is activated
"manually" to detect a specific anomaly.
Mizrahi, et al. Informational [Page 13]
^L
RFC 7276 Overview of OAM Tools June 2014
2.2.7. Connectivity Verification and Continuity Checks
Two distinct classes of failure management functions are used in OAM
protocols: Connectivity Verification and Continuity Checks. The
distinction between these terms is defined in [MPLS-TP-OAM] and is
used similarly in this document.
Continuity Check
Continuity Checks are used to verify that a destination is
reachable, and are typically sent proactively, though they can be
invoked on-demand as well.
Connectivity Verification
A Connectivity Verification function allows Alice to check whether
she is connected to Bob or not. It is noted that while the CV
function is performed in the data plane, the "expected path" is
predetermined in either the control plane or the management plane.
A Connectivity Verification (CV) protocol typically uses a CV
message, followed by a CV reply that is sent back to the
originator. A CV function can be applied proactively or
on-demand.
Connectivity Verification tools often perform path verification as
well, allowing Alice to verify that messages from Bob are received
through the correct path, thereby verifying not only that the two
MPs are connected, but also that they are connected through the
expected path, allowing detection of unexpected topology changes.
Connectivity Verification functions can also be used for checking
the MTU of the path between the two peers.
Connectivity Verification and Continuity Checks are considered
complementary mechanisms and are often used in conjunction with
each other.
Mizrahi, et al. Informational [Page 14]
^L
RFC 7276 Overview of OAM Tools June 2014
2.2.8. Connection-Oriented vs. Connectionless Communication
Connection-Oriented
In connection-oriented technologies, an end-to-end connection is
established (by a control protocol or provisioned by a management
system) prior to the transmission of data.
Typically a connection identifier is used to identify the
connection. In connection-oriented technologies, it is often the
case (although not always) that all packets belonging to a
specific connection use the same route through the network.
Connectionless
In connectionless technologies, data is typically sent between end
points without prior arrangement. Packets are routed
independently based on their destination address, and hence
different packets may be routed in a different way across the
network.
Discussion
The OAM tools described in this document include tools that
support connection-oriented technologies, as well as tools for
connectionless technologies.
In connection-oriented technologies, OAM is used to monitor a
*specific* connection; OAM packets are forwarded through the same
route as the data traffic and receive the same treatment. In
connectionless technologies, OAM is used between a source and
destination pair without defining a specific connection.
Moreover, in some cases, the route of OAM packets may differ from
the one of the data traffic. For example, the connectionless IP
Ping (Section 4.1) tests the reachability from a source to a given
destination, while the connection-oriented LSP Ping (Section
4.4.1) is used for monitoring a specific LSP (connection) and
provides the capability to monitor all the available paths used by
an LSP.
It should be noted that in some cases connectionless protocols are
monitored by connection-oriented OAM protocols. For example,
while IP is a connectionless protocol, it can be monitored by BFD
(Section 4.3), which is connection oriented.
Mizrahi, et al. Informational [Page 15]
^L
RFC 7276 Overview of OAM Tools June 2014
2.2.9. Point-to-Point vs. Point-to-Multipoint Services
Point-to-point (P2P)
A P2P service delivers data from a single source to a single
destination.
Point-to-multipoint (P2MP)
A P2MP service delivers data from a single source to a one or more
destinations (based on [Signal]).
An MP2MP service is a service that delivers data from more than
one source to one or more receivers (based on [Signal]).
Note: the two definitions for P2MP and MP2MP are quoted from
[Signal]. Although [Signal] describes a specific case of P2MP and
MP2MP that is MPLS-specific, these two definitions also apply to
non-MPLS cases.
Discussion
The OAM tools described in this document include tools for P2P
services, as well as tools for P2MP services.
The distinction between P2P services and P2MP services affects the
corresponding OAM tools. A P2P service is typically simpler to
monitor, as it consists of a single pair of endpoints. P2MP and
MP2MP services present several challenges. For example, in a P2MP
service, the OAM mechanism not only verifies that each of the
destinations is reachable from the source but also verifies that
the P2MP distribution tree is intact and loop-free.
2.2.10. Failures
The terms "Failure", "Fault", and "Defect" are used interchangeably
in the standards, referring to a malfunction that can be detected by
a Connectivity Verification or a Continuity Check. In some
standards, such as 802.1ag [IEEE802.1Q], there is no distinction
between these terms, while in other standards each of these terms
refers to a different type of malfunction.
Mizrahi, et al. Informational [Page 16]
^L
RFC 7276 Overview of OAM Tools June 2014
The terminology used in IETF MPLS-TP OAM is based on the ITU-T
terminology, which distinguishes between these three terms in
[ITU-T-G.806] as follows:
Fault
The term "Fault" refers to an inability to perform a required action,
e.g., an unsuccessful attempt to deliver a packet.
Defect
The term "Defect" refers to an interruption in the normal operation,
such as a consecutive period of time where no packets are delivered
successfully.
Failure
The term "Failure" refers to the termination of the required
function. While a Defect typically refers to a limited period of
time, a failure refers to a long period of time.
3. OAM Functions
This subsection provides a brief summary of the common OAM functions
used in OAM-related standards. These functions are used as building
blocks in the OAM standards described in this document.
o Connectivity Verification (CV), Path Verification, and Continuity
Check (CC):
As defined in Section 2.2.7.
o Path Discovery / Fault Localization:
This function can be used to trace the route to a destination,
i.e., to identify the nodes along the route to the destination.
When more than one route is available to a specific destination,
this function traces one of the available routes. When a failure
occurs, this function attempts to detect the location of the
failure.
Note that the term "route tracing" (or "Traceroute"), which is
used in the context of IP and MPLS, is sometimes referred to as
"path tracing" in the context of other protocols, such as TRILL.
Mizrahi, et al. Informational [Page 17]
^L
RFC 7276 Overview of OAM Tools June 2014
o Performance Monitoring:
Typically refers to:
* Loss Measurement (LM) - monitors the packet loss rate.
* Delay Measurement (DM) - monitors the delay and delay variation
(jitter).
4. OAM Tools in the IETF - A Detailed Description
This section presents a detailed description of the sets of OAM-
related tools in each of the toolsets in Table 1.
4.1. IP Ping
Ping is a common network diagnostic application for IP networks that
use ICMP. According to [NetTerms], 'Ping' is an abbreviation for
Packet internet groper, although the term has been so commonly used
that it stands on its own. As defined in [NetTerms], it is a program
used to test reachability of destinations by sending them an ICMP
Echo request and waiting for a reply.
The ICMP Echo request/reply exchange in Ping is used as a Continuity
Check function for the Internet Protocol. The originator transmits
an ICMP Echo request packet, and the receiver replies with an Echo
reply. ICMP Ping is defined in two variants: [ICMPv4] is used for
IPv4, and [ICMPv6] is used for IPv6.
Ping can be invoked to either a unicast destination or a multicast
destination. In the latter case, all members of the multicast group
send an Echo reply back to the originator.
Ping implementations typically use ICMP messages. UDP Ping is a
variant that uses UDP messages instead of ICMP Echo messages.
Ping is a single-ended Continuity Check, i.e., it allows the
*initiator* of the Echo request to test the reachability. If it is
desirable for both ends to test the reachability, both ends have to
invoke Ping independently.
Note that since ICMP filtering is deployed in some routers and
firewalls, the usefulness of Ping is sometimes limited in the wider
Internet. This limitation is equally relevant to Traceroute.
Mizrahi, et al. Informational [Page 18]
^L
RFC 7276 Overview of OAM Tools June 2014
4.2. IP Traceroute
Traceroute ([TCPIP-Tools], [NetTools]) is an application that allows
users to discover a path between an IP source and an IP destination.
The most common way to implement Traceroute [TCPIP-Tools] is
described as follows. Traceroute sends a sequence of UDP packets to
UDP port 33434 at the destination. By default, Traceroute begins by
sending three packets (the number of packets is configurable in most
Traceroute implementations), each with an IP Time-To-Live (or Hop
Limit in IPv6) value of one, to the destination. These packets
expire as soon as they reach the first router in the path.
Consequently, that router sends three ICMP Time Exceeded Messages
back to the Traceroute application. Traceroute now sends another
three UDP packets, each with the TTL value of 2. These messages
cause the second router to return ICMP messages. This process
continues, with ever-increasing values for the TTL field, until the
packets actually reach the destination. Because no application
listens to port 33434 at the destination, the destination returns
ICMP Destination Unreachable Messages indicating an unreachable port.
This event indicates to the Traceroute application that it is
finished. The Traceroute program displays the round-trip delay
associated with each of the attempts.
While Traceroute is a tool that finds *a* path from A to B, it should
be noted that traffic from A to B is often forwarded through Equal-
Cost Multipaths (ECMPs). Paris Traceroute [PARIS] is an extension to
Traceroute that attempts to discovers all the available paths from A
to B by scanning different values of header fields (such as UDP
ports) in the probe packets.
It is noted that Traceroute is an application, and not a protocol.
As such, it has various different implementations. One of the most
common ones uses UDP probe packets, as described above. Other
implementations exist that use other types of probe messages, such as
ICMP or TCP.
Note that IP routing may be asymmetric. While Traceroute discovers a
path between a source and destination, it does not reveal the reverse
path.
A few ICMP extensions ([ICMP-MP], [ICMP-Int]) have been defined in
the context of Traceroute. These documents define several
extensions, including extensions to the ICMP Destination Unreachable
message, that can be used by Traceroute applications.
Mizrahi, et al. Informational [Page 19]
^L
RFC 7276 Overview of OAM Tools June 2014
Traceroute allows path discovery to *unicast* destination addresses.
A similar tool [mtrace] was defined for multicast destination
addresses; it allows tracing the route that a multicast IP packet
takes from a source to a particular receiver.
4.3. Bidirectional Forwarding Detection (BFD)
4.3.1. Overview
While multiple OAM tools have been defined for various protocols in
the protocol stack, Bidirectional Forwarding Detection [BFD], defined
by the IETF BFD working group, is a generic OAM tool that can be
deployed over various encapsulating protocols, and in various medium
types. The IETF has defined variants of the protocol for IP
([BFD-IP], [BFD-Multi]), for MPLS LSPs [BFD-LSP], and for pseudowires
[BFD-VCCV]. The usage of BFD in MPLS-TP is defined in [TP-CC-CV].
BFD includes two main OAM functions, using two types of BFD packets:
BFD Control packets and BFD Echo packets.
4.3.2. Terminology
BFD operates between *systems*. The BFD protocol is run between two
or more systems after establishing a *session*.
4.3.3. BFD Control
BFD supports a bidirectional Continuity Check, using BFD Control
packets that are exchanged within a BFD session. BFD sessions
operate in one of two modes:
o Asynchronous mode (i.e., proactive): in this mode, BFD Control
packets are sent periodically. When the receiver detects that no
BFD Control packets have been received during a predetermined
period of time, a failure is reported.
o Demand mode: in this mode, BFD Control packets are sent on demand.
Upon need, a system initiates a series of BFD Control packets to
check the continuity of the session. BFD Control packets are sent
independently in each direction.
Each of the endpoints (referred to as systems) of the monitored path
maintains its own session identification, called a Discriminator;
both Discriminators are included in the BFD Control Packets that are
exchanged between the endpoints. At the time of session
establishment, the Discriminators are exchanged between the two
endpoints. In addition, the transmission (and reception) rate is
Mizrahi, et al. Informational [Page 20]
^L
RFC 7276 Overview of OAM Tools June 2014
negotiated between the two endpoints, based on information included
in the control packets. These transmission rates may be renegotiated
during the session.
During normal operation of the session, i.e., when no failures have
been detected, the BFD session is in the Up state. If no BFD Control
packets are received during a period of time called the Detection
Time, the session is declared to be Down. The detection time is a
function of the pre-configured or negotiated transmission rate and a
parameter called Detect Mult. Detect Mult determines the number of
missing BFD Control packets that cause the session to be declared as
Down. This parameter is included in the BFD Control packet.
4.3.4. BFD Echo
A BFD Echo packet is sent to a peer system and is looped back to the
originator. The echo function can be used proactively or on demand.
The BFD Echo function has been defined in BFD for IPv4 and IPv6
([BFD-IP]), but it is not used in BFD for MPLS LSPs or PWs, or in BFD
for MPLS-TP.
4.4. MPLS OAM
The IETF MPLS working group has defined OAM for MPLS LSPs. The
requirements and framework of this effort are defined in
[MPLS-OAM-FW] and [MPLS-OAM], respectively. The corresponding OAM
tool defined, in this context, is LSP Ping [LSP-Ping]. OAM for P2MP
services is defined in [MPLS-P2MP].
BFD for MPLS [BFD-LSP] is an alternative means for detecting data-
plane failures, as described below.
4.4.1. LSP Ping
LSP Ping is modeled after the Ping/Traceroute paradigm, and thus it
may be used in one of two modes:
o "Ping" mode: In this mode, LSP Ping is used for end-to-end
Connectivity Verification between two LERs.
o "Traceroute" mode: This mode is used for hop-by-hop fault
isolation.
Mizrahi, et al. Informational [Page 21]
^L
RFC 7276 Overview of OAM Tools June 2014
LSP Ping is based on the ICMP Ping operation (of data-plane
Connectivity Verification) with additional functionality to verify
data-plane vs. control-plane consistency for a Forwarding Equivalence
Class (FEC) and also to identify Maximum Transmission Unit (MTU)
problems.
The Traceroute functionality may be used to isolate and localize MPLS
faults, using the Time-To-Live (TTL) indicator to incrementally
identify the sub-path of the LSP that is successfully traversed
before the faulty link or node.
The challenge in MPLS networks is that the traffic of a given LSP may
be load-balanced across Equal-Cost Multipaths (ECMPs). LSP Ping
monitors all the available paths of an LSP by monitoring its
different FECs. Note that MPLS-TP does not use ECMP, and thus does
not require OAM over multiple paths.
Another challenge is that an MPLS LSP does not necessarily have a
return path; traffic that is sent back from the egress LSR to the
ingress LSR is not necessarily sent over an MPLS LSP, but it can be
sent through a different route, such as an IP route. Thus,
responding to an LSP Ping message is not necessarily as trivial as in
IP Ping, where the responder just swaps the source and destination IP
addresses. Note that this challenge is not applicable to MPLS-TP,
where a return path is always available.
It should be noted that LSP Ping supports unique identification of
the LSP within an addressing domain. The identification is checked
using the full FEC identification. LSP Ping is extensible to include
additional information needed to support new functionality, by use of
Type-Length-Value (TLV) constructs. The usage of TLVs is typically
handled by the control plane, as it is not easy to implement in
hardware.
LSP Ping supports both asynchronous and on-demand activation.
4.4.2. BFD for MPLS
BFD [BFD-LSP] can be used to detect MPLS LSP data-plane failures.
A BFD session is established for each MPLS LSP that is being
monitored. BFD Control packets must be sent along the same path as
the monitored LSP. If the LSP is associated with multiple FECs, a
BFD session is established for each FEC.
Mizrahi, et al. Informational [Page 22]
^L
RFC 7276 Overview of OAM Tools June 2014
While LSP Ping can be used for detecting MPLS data-plane failures and
for verifying the MPLS LSP data plane against the control plane, BFD
can only be used for the former. BFD can be used in conjunction with
LSP Ping, as is the case in MPLS-TP (see Section 4.5.4).
4.4.3. OAM for Virtual Private Networks (VPNs) over MPLS
The IETF has defined two classes of VPNs: Layer 2 VPNs (L2VPNs) and
Layer 3 VPNs (L3VPNs). [L2VPN-OAM] provides the requirements and
framework for OAM in the context of L2VPNs, and specifically it also
defines the OAM layering of L2VPNs over MPLS. [L3VPN-OAM] provides a
framework for the operation and management of L3VPNs.
4.5. MPLS-TP OAM
4.5.1. Overview
The MPLS working group has defined the OAM toolset that fulfills the
requirements for MPLS-TP OAM. The full set of requirements for
MPLS-TP OAM are defined in [MPLS-TP-OAM] and include both general
requirements for the behavior of the OAM tools and a set of
operations that should be supported by the OAM toolset. The set of
mechanisms required are further elaborated in [TP-OAM-FW], which
describes the general architecture of the OAM system and also gives
overviews of the functionality of the OAM toolset.
Some of the basic requirements for the OAM toolset for MPLS-TP are:
o MPLS-TP OAM must be able to support both an IP-based environment
and a non-IP-based environment. If the network is IP based, i.e.,
IP routing and forwarding are available, then the MPLS-TP OAM
toolset should rely on the IP routing and forwarding capabilities.
On the other hand, in environments where IP functionality is not
available, the OAM tools must still be able to operate without
dependence on IP forwarding and routing.
o OAM packets and the user traffic are required to be congruent
(i.e., OAM packets are transmitted in-band), and there is a need
to differentiate OAM packets from ordinary user packets in the
data plane. Inherent in this requirement is the principle that
MPLS-TP OAM be independent of any existing control plane, although
it should not preclude use of the control-plane functionality.
OAM packets are identified by the Generic Associated Channel Label
(GAL), which is a reserved MPLS label value (13).
Mizrahi, et al. Informational [Page 23]
^L
RFC 7276 Overview of OAM Tools June 2014
4.5.2. Terminology
Maintenance Entity (ME)
The MPLS-TP OAM tools are designed to monitor and manage a
Maintenance Entity (ME). An ME, as defined in [TP-OAM-FW],
defines a relationship between two points of a transport path to
which maintenance and monitoring operations apply.
The term "Maintenance Entity (ME)" is used in ITU-T
Recommendations (e.g., [ITU-T-Y1731]), as well as in the MPLS-TP
terminology ([TP-OAM-FW]).
Maintenance Entity Group (MEG)
The collection of one or more MEs that belong to the same
transport path and that are maintained and monitored as a group
are known as a Maintenance Entity Group (based on [TP-OAM-FW]).
Maintenance Point (MP)
A Maintenance Point (MP) is a functional entity that is defined at
a node in the network and can initiate and/or react to OAM
messages. This document focuses on the data-plane functionality
of MPs, while MPs interact with the control plane and with the
management plane as well.
The term "MP" is used in IEEE 802.1ag and was similarly adopted in
MPLS-TP ([TP-OAM-FW]).
MEG End Point (MEP)
A MEG End Point (MEP) is one of the endpoints of an ME, and can
initiate OAM messages and respond to them (based on [TP-OAM-FW]).
MEG Intermediate Point (MIP)
In between MEPs, there are zero or more intermediate points,
called MEG Intermediate Points (based on [TP-OAM-FW]).
A MEG Intermediate Point (MIP) is an intermediate point that does
not generally initiate OAM frames (one exception to this is the
use of AIS notifications) but is able to respond to OAM frames
that are destined to it. A MIP in MPLS-TP identifies OAM packets
destined to it by the expiration of the TTL field in the OAM
packet. The term "Maintenance Point" is a general term for MEPs
and MIPs.
Mizrahi, et al. Informational [Page 24]
^L
RFC 7276 Overview of OAM Tools June 2014
Up and Down MEPs
IEEE 802.1ag [IEEE802.1Q] defines a distinction between Up MEPs
and Down MEPs. A MEP monitors traffic in either the direction
facing the network or the direction facing the bridge. A Down MEP
is a MEP that receives OAM packets from and transmits them to the
direction of the network. An Up MEP receives OAM packets from and
transmits them to the direction of the bridging entity. MPLS-TP
([TP-OAM-FW]) uses a similar distinction on the placement of the
MEP -- at either the ingress, egress, or forwarding function of
the node (Down / Up MEPs). This placement is important for
localization of a failure.
Note that the terms "Up MEP" and "Down MEP" are entirely unrelated
to the conventional "Up"/"Down" terminology, where "Down" means
faulty and "Up" means not faulty.
The distinction between Up and Down MEPs was defined in
[TP-OAM-FW], but has not been used in other MPLS-TP RFCs, as of
the writing of this document.
4.5.3. Generic Associated Channel
In order to address the requirement for in-band transmission of
MPLS-TP OAM traffic, MPLS-TP uses a Generic Associated Channel
(G-ACh), defined in [G-ACh] for LSP-based OAM traffic. This
mechanism is based on the same concepts as the PWE3 ACH [PW-ACH] and
VCCV [VCCV] mechanisms. However, to address the needs of LSPs as
differentiated from PW, the following concepts were defined for
[G-ACh]:
o An Associated Channel Header (ACH), which uses a format similar to
the PW Control Word [PW-ACH], is a 4-byte header that is prepended
to OAM packets.
o A Generic Associated Channel Label (GAL). The GAL is a reserved
MPLS label value (13) that indicates that the packet is an ACH
packet and the payload follows immediately after the label stack.
It should be noted that while the G-ACh was defined as part of the
MPLS-TP definition effort, the G-ACh is a generic tool that can be
used in MPLS in general, and not only in MPLS-TP.
4.5.4. MPLS-TP OAM Toolset
To address the functionality that is required of the OAM toolset, the
MPLS WG conducted an analysis of the existing IETF and ITU-T OAM
tools and their ability to fulfill the required functionality. The
Mizrahi, et al. Informational [Page 25]
^L
RFC 7276 Overview of OAM Tools June 2014
conclusions of this analysis are documented in [OAM-Analys]. MPLS-TP
uses a mixture of OAM tools that are based on previous standards and
adapted to the requirements of [MPLS-TP-OAM]. Some of the main
building blocks of this solution are based on:
o Bidirectional Forwarding Detection ([BFD], [BFD-LSP]) for
proactive Continuity Check and Connectivity Verification.
o LSP Ping as defined in [LSP-Ping] for on-demand Connectivity
Verification.
o New protocol packets, using G-ACH, to address different
functionality.
o Performance measurement protocols.
The following subsections describe the OAM tools defined for MPLS-TP
as described in [TP-OAM-FW].
4.5.4.1. Continuity Check and Connectivity Verification
Continuity Checks and Connectivity Verification are presented in
Section 2.2.7 of this document. As presented there, these tools may
be used either proactively or on demand. When using these tools
proactively, they are generally used in tandem.
For MPLS-TP there are two distinct tools: the proactive tool is
defined in [TP-CC-CV], while the on-demand tool is defined in
[OnDemand-CV]. In on-demand mode, this function should support
monitoring between the MEPs and, in addition, between a MEP and MIP.
[TP-OAM-FW] highlights, when performing Connectivity Verification,
the need for the CC-V messages to include unique identification of
the MEG that is being monitored and the MEP that originated the
message.
The proactive tool [TP-CC-CV] is based on extensions to BFD (see
Section 4.3) with the additional limitation that the transmission and
receiving rates are based on configuration by the operator. The
on-demand tool [OnDemand-CV] is an adaptation of LSP Ping (see
Section 4.4.1) for the required behavior of MPLS-TP.
4.5.4.2. Route Tracing
[MPLS-TP-OAM] defines that there is a need for functionality that
would allow a path endpoint to identify the intermediate and
endpoints of the path. This function would be used in on-demand
mode. Normally, this path will be used for bidirectional PW, LSP,
Mizrahi, et al. Informational [Page 26]
^L
RFC 7276 Overview of OAM Tools June 2014
and Sections; however, unidirectional paths may be supported only if
a return path exists. The tool for this is based on the LSP Ping
(see Section 4.4.1) functionality and is described in [OnDemand-CV].
4.5.4.3. Lock Instruct
The Lock Instruct function [Lock-Loop] is used to notify a transport-
path endpoint of an administrative need to disable the transport
path. This functionality will generally be used in conjunction with
some intrusive OAM function, e.g., performance measurement or
diagnostic testing, to minimize the side-effect on user data traffic.
4.5.4.4. Lock Reporting
Lock Reporting is a function used by an endpoint of a path to report
to its far-end endpoint that a lock condition has been affected on
the path.
4.5.4.5. Alarm Reporting
Alarm reporting [TP-Fault] provides the means to suppress alarms
following detection of defect conditions at the server sub-layer.
Alarm reporting is used by an intermediate point of a path, that
becomes aware of a fault on the path, to report to the endpoints of
the path. [TP-OAM-FW] states that this may occur as a result of a
defect condition discovered at a server sub-layer. This generates an
Alarm Indication Signal (AIS) that continues until the fault is
cleared. The consequent action of this function is detailed in
[TP-OAM-FW].
4.5.4.6. Remote Defect Indication
Remote Defect Indication (RDI) is used proactively by a path endpoint
to report to its peer endpoint that a defect is detected on a
bidirectional connection between them. [MPLS-TP-OAM] points out that
this function may be applied to a unidirectional LSP only if a return
path exists. [TP-OAM-FW] points out that this function is associated
with the proactive CC-V function.
4.5.4.7. Client Failure Indication
Client Failure Indication (CFI) is defined in [MPLS-TP-OAM] to allow
the propagation information from one edge of the network to the
other. The information concerns a defect to a client, in the case
that the client does not support alarm notification.
Mizrahi, et al. Informational [Page 27]
^L
RFC 7276 Overview of OAM Tools June 2014
4.5.4.8. Performance Monitoring
The definition of MPLS performance monitoring was motivated by the
MPLS-TP requirements [MPLS-TP-OAM] but was defined generically for
MPLS in [MPLS-LM-DM]. An additional document [TP-LM-DM] defines a
performance monitoring profile for MPLS-TP.
4.5.4.8.1. Packet Loss Measurement (LM)
Packet Loss Measurement is a function used to verify the quality of
the service. Packet loss, as defined in [IPPM-1LM] and
[MPLS-TP-OAM], indicates the ratio of the number of user packets lost
to the total number of user packets sent during a defined time
interval.
There are two possible ways of determining this measurement:
o Using OAM packets, it is possible to compute the statistics based
on a series of OAM packets. This, however, has the disadvantage
of being artificial and may not be representative since part of
the packet loss may be dependent upon packet sizes and upon the
implementation of the MEPs that take part in the protocol.
o Delimiting messages can be sent at the start and end of a
measurement period during which the source and sink of the path
count the packets transmitted and received. After the end
delimiter, the ratio would be calculated by the path OAM entity.
4.5.4.8.2. Packet Delay Measurement (DM)
Packet Delay Measurement is a function that is used to measure one-
way or two-way delay of a packet transmission between a pair of the
endpoints of a path (PW, LSP, or Section). Where:
o One-way packet delay, as defined in [IPPM-1DM], is the time
elapsed from the start of transmission of the first bit of the
packet by a source node until the reception of the last bit of
that packet by the destination node. Note that one-way delay
measurement requires the clocks of the two endpoints to be
synchronized.
o Two-way packet delay, as defined in [IPPM-2DM], is the time
elapsed from the start of transmission of the first bit of the
packet by a source node until the reception of the last bit of the
looped-back packet by the same source node, when the loopback is
performed at the packet's destination node. Note that due to
possible path asymmetry, the one-way packet delay from one
endpoint to another is not necessarily equal to half of the
Mizrahi, et al. Informational [Page 28]
^L
RFC 7276 Overview of OAM Tools June 2014
two-way packet delay. As opposed to one-way delay measurement,
two-way delay measurement does not require the two endpoints to be
synchronized.
For each of these two metrics, the DM function allows the MEP to
measure the delay, as well as the delay variation. Delay
measurement is performed by exchanging timestamped OAM packets
between the participating MEPs.
4.6. Pseudowire OAM
4.6.1. Pseudowire OAM Using Virtual Circuit Connectivity Verification
(VCCV)
VCCV, as defined in [VCCV], provides a means for end-to-end fault
detection and diagnostic tools to be used for PWs (regardless of the
underlying tunneling technology). The VCCV switching function
provides a Control Channel associated with each PW. [VCCV] defines
three Control Channel (CC) types, i.e., three possible methods for
transmitting and identifying OAM messages:
o Control Channel Type 1: In-band VCCV, as described in [VCCV], is
also referred to as "PWE3 Control Word with 0001b as first
nibble". It uses the PW Associated Channel Header [PW-ACH].
o Control Channel Type 2: Out-of-band VCCV, as described in [VCCV],
is also referred to as "MPLS Router Alert Label". In this case,
the Control Channel is created by using the MPLS router alert
label [MPLS-ENCAPS] immediately above the PW label.
o Control Channel Type 3: TTL expiry VCCV, as described in [VCCV],
is also referred to as "MPLS PW Label with TTL == 1", i.e., the
Control Channel is identified when the value of the TTL field in
the PW label is set to 1.
VCCV currently supports the following OAM tools: ICMP Ping, LSP Ping,
and BFD. ICMP and LSP Ping are IP encapsulated before being sent
over the PW ACH. BFD for VCCV [BFD-VCCV] supports two modes of
encapsulation -- either IP/UDP encapsulated (with IP/UDP header) or
PW-ACH encapsulated (with no IP/UDP header) -- and provides support
to signal the AC status. The use of the VCCV Control Channel
provides the context, based on the MPLS-PW label, required to bind
and bootstrap the BFD session to a particular pseudowire (FEC),
eliminating the need to exchange Discriminator values.
Mizrahi, et al. Informational [Page 29]
^L
RFC 7276 Overview of OAM Tools June 2014
VCCV consists of two components: (1) the signaled component to
communicate VCCV capabilities as part of the VC label, and (2) the
switching component to cause the PW payload to be treated as a
control packet.
VCCV is not directly dependent upon the presence of a control plane.
The VCCV capability advertisement may be performed as part of the PW
signaling when LDP is used. In case of manual configuration of the
PW, it is the responsibility of the operator to set consistent
options at both ends. The manual option was created specifically to
handle MPLS-TP use cases where no control plane was a requirement.
However, new use cases such as pure mobile backhaul find this
functionality useful too.
The PWE3 working group has conducted an implementation survey of VCCV
[VCCV-SURVEY] that analyzes which VCCV mechanisms are used in
practice.
4.6.2. Pseudowire OAM Using G-ACh
As mentioned above, VCCV enables OAM for PWs by using a Control
Channel for OAM packets. When PWs are used in MPLS-TP networks,
rather than the Control Channels defined in VCCV, the G-ACh can be
used as an alternative Control Channel. The usage of the G-ACh for
PWs is defined in [PW-G-ACh].
4.6.3. Attachment Circuit - Pseudowire Mapping
The PWE3 working group has defined a mapping and notification of
defect states between a pseudowire (PW) and the Attachment Circuits
(ACs) of the end-to-end emulated service. This mapping is of key
importance to the end-to-end functionality. Specifically, the
mapping is provided by [PW-MAP], by [L2TP-EC] for L2TPv3 pseudowires,
and by Section 5.3 of [ATM-L2] for ATM.
[L2VPN-OAM] provides the requirements and framework for OAM in the
context of Layer 2 Virtual Private Networks (L2VPNs), and
specifically it also defines the OAM layering of L2VPNs over
pseudowires.
The mapping defined in [Eth-Int] allows an end-to-end emulated
Ethernet service over pseudowires.
Mizrahi, et al. Informational [Page 30]
^L
RFC 7276 Overview of OAM Tools June 2014
4.7. OWAMP and TWAMP
4.7.1. Overview
The IPPM working group in the IETF defines common criteria and
metrics for measuring performance of IP traffic ([IPPM-FW]). Some of
the key RFCs published by this working group have defined metrics for
measuring connectivity [IPPM-Con], delay ([IPPM-1DM], [IPPM-2DM]),
and packet loss [IPPM-1LM]. It should be noted that the work of the
IETF in the context of performance metrics is not limited to IP
networks; [PM-CONS] presents general guidelines for considering new
performance metrics.
The IPPM working group has defined not only metrics for performance
measurement but also protocols that define how the measurement is
carried out. The One-Way Active Measurement Protocol [OWAMP] and the
Two-Way Active Measurement Protocol [TWAMP] each define a method and
protocol for measuring performance metrics in IP networks.
OWAMP [OWAMP] enables measurement of one-way characteristics of IP
networks, such as one-way packet loss and one-way delay. For its
proper operation, OWAMP requires accurate time-of-day setting at its
endpoints.
TWAMP [TWAMP] is a similar protocol that enables measurement of both
one-way and two-way (round-trip) characteristics.
OWAMP and TWAMP are each comprised of two separate protocols:
o OWAMP-Control/TWAMP-Control: used to initiate, start, and stop
test sessions and to fetch their results. Continuity Check and
Connectivity Verification are tested and confirmed by establishing
the OWAMP/TWAMP Control Protocol TCP connection.
o OWAMP-Test/TWAMP-Test: used to exchange test packets between two
measurement nodes. Enables the loss and delay measurement
functions, as well as detection of other anomalies, such as packet
duplication and packet reordering.
It should be noted that while [OWAMP] and [TWAMP] define tools for
performance measurement, they do not define the accuracy of these
tools. The accuracy depends on scale, implementation, and network
configurations.
Alternative protocols for performance monitoring are defined, for
example, in MPLS-TP OAM ([MPLS-LM-DM], [TP-LM-DM]) and in Ethernet
OAM [ITU-T-Y1731].
Mizrahi, et al. Informational [Page 31]
^L
RFC 7276 Overview of OAM Tools June 2014
4.7.2. Control and Test Protocols
OWAMP and TWAMP control protocols run over TCP, while the test
protocols run over UDP. The purpose of the control protocols is to
initiate, start, and stop test sessions, and for OWAMP to fetch
results. The test protocols introduce test packets (which contain
sequence numbers and timestamps) along the IP path under test
according to a schedule, and they record statistics of packet
arrival. Multiple sessions may be simultaneously defined, each with
a session identifier, and defining the number of packets to be sent,
the amount of padding to be added (and thus the packet size), the
start time, and the send schedule (which can be either a constant
time between test packets or exponentially distributed
pseudorandomly). Statistics recorded conform to the relevant IPPM
RFCs.
From a security perspective, OWAMP and TWAMP test packets are hard to
detect because they are simply UDP streams between negotiated port
numbers, with potentially nothing static in the packets. OWAMP and
TWAMP also include optional authentication and encryption for both
control and test packets.
4.7.3. OWAMP
OWAMP defines the following logical roles: Session-Sender,
Session-Receiver, Server, Control-Client, and Fetch-Client. The
Session-Sender originates test traffic that is received by the
Session-Receiver. The Server configures and manages the session, as
well as returning the results. The Control-Client initiates requests
for test sessions, triggers their start, and may trigger their
termination. The Fetch-Client requests the results of a completed
session. Multiple roles may be combined in a single host -- for
example, one host may play the roles of Control-Client, Fetch-Client,
and Session-Sender, and a second may play the roles of Server and
Session-Receiver.
In a typical OWAMP session, the Control-Client establishes a TCP
connection to port 861 of the Server, which responds with a Server
greeting message indicating supported security/integrity modes. The
Control-Client responds with the chosen communications mode, and the
Server accepts the mode. The Control-Client then requests and fully
describes a test session to which the Server responds with its
acceptance and supporting information. More than one test session
may be requested with additional messages. The Control-Client then
starts a test session; the Server acknowledges and then instructs the
Session-Sender to start the test. The Session-Sender then sends test
packets with pseudorandom padding to the Session-Receiver until the
session is complete or until the Control-Client stops the session.
Mizrahi, et al. Informational [Page 32]
^L
RFC 7276 Overview of OAM Tools June 2014
Once finished, the Session-Sender reports to the Server, which
recovers data from the Session-Receiver. The Fetch-Client can then
send a fetch request to the Server, which responds with an
acknowledgement and, immediately thereafter, the result data.
4.7.4. TWAMP
TWAMP defines the following logical roles: Session-Sender,
Session-Reflector, Server, and Control-Client. These are similar to
the OWAMP roles, except that the Session-Reflector does not collect
any packet information, and there is no need for a Fetch-Client.
In a typical TWAMP session, the Control-Client establishes a TCP
connection to port 862 of the Server, and the mode is negotiated as
in OWAMP. The Control-Client then requests sessions and starts them.
The Session-Sender sends test packets with pseudorandom padding to
the Session-Reflector, which returns them with timestamps inserted.
4.8. TRILL
The requirements of OAM in TRILL are defined in [TRILL-OAM]. The
challenge in TRILL OAM, much like in MPLS networks, is that traffic
between RBridges RB1 and RB2 may be forwarded through more than one
path. Thus, an OAM protocol between RBridges RB1 and RB2 must be
able to monitor all the available paths between the two RBridges.
During the writing of this document, the detailed definition of the
TRILL OAM tools is still work in progress. This subsection presents
the main requirements of TRILL OAM.
The main requirements defined in [TRILL-OAM] are:
o Continuity Checking (CC) - the TRILL OAM protocol must support a
function for CC between any two RBridges RB1 and RB2.
o Connectivity Verification (CV) - connectivity between two RBridges
RB1 and RB2 can be verified on a per-flow basis.
o Path Tracing - allows an RBridge to trace all the available paths
to a peer RBridge.
o Performance monitoring - allows an RBridge to monitor the packet
loss and packet delay to a peer RBridge.
Mizrahi, et al. Informational [Page 33]
^L
RFC 7276 Overview of OAM Tools June 2014
5. Summary
This section summarizes the OAM tools and functions presented in this
document. This summary is an index to some of the main OAM tools
defined in the IETF. This compact index can be useful to all readers
from network operators to standards development organizations. The
summary includes a short subsection that presents some guidance to
network equipment vendors.
5.1. Summary of OAM Tools
This subsection provides a short summary of each of the OAM toolsets
described in this document.
A detailed list of the RFCs related to each toolset is given in
Appendix A.1.
Mizrahi, et al. Informational [Page 34]
^L
RFC 7276 Overview of OAM Tools June 2014
+-----------+------------------------------------------+------------+
| Toolset | Description | Transport |
| | | Technology |
+-----------+------------------------------------------+------------+
|IP Ping | Ping ([IntHost], [NetTerms]) is a simple | IPv4/IPv6 |
| | application for testing reachability that| |
| | uses ICMP Echo messages ([ICMPv4], | |
| | [ICMPv6]). | |
+-----------+------------------------------------------+------------+
|IP | Traceroute ([TCPIP-Tools], [NetTools]) is| IPv4/IPv6 |
|Traceroute | an application that allows users to trace| |
| | the path between an IP source and an IP | |
| | destination, i.e., to identify the nodes | |
| | along the path. If more than one path | |
| | exists between the source and | |
| | destination, Traceroute traces *a* path. | |
| | The most common implementation of | |
| | Traceroute uses UDP probe messages, | |
| | although there are other implementations | |
| | that use different probes, such as ICMP | |
| | or TCP. Paris Traceroute [PARIS] is an | |
| | extension that attempts to discover all | |
| | the available paths from A to B by | |
| | scanning different values of header | |
| | fields. | |
+-----------+------------------------------------------+------------+
|BFD | Bidirectional Forwarding Detection (BFD) | generic |
| | is defined in [BFD] as a framework for a | |
| | lightweight generic OAM tool. The | |
| | intention is to define a base tool | |
| | that can be used with various | |
| | encapsulation types, network | |
| | environments, and various medium | |
| | types. | |
+-----------+------------------------------------------+------------+
|MPLS OAM | MPLS LSP Ping, as defined in [MPLS-OAM], | MPLS |
| | [MPLS-OAM-FW], and [LSP-Ping], is an OAM | |
| | tool for point-to-point and | |
| | point-to-multipoint MPLS LSPs. | |
| | It includes two main functions: Ping and | |
| | Traceroute. | |
| | BFD [BFD-LSP] is an alternative means for| |
| | detecting MPLS LSP data-plane failures. | |
Mizrahi, et al. Informational [Page 35]
^L
RFC 7276 Overview of OAM Tools June 2014
+-----------+------------------------------------------+------------+
|MPLS-TP OAM| MPLS-TP OAM is defined in a set of RFCs. | MPLS-TP |
| | The OAM requirements for MPLS Transport | |
| | Profile (MPLS-TP) are defined in | |
| | [MPLS-TP-OAM]. Each of the tools in the | |
| | OAM toolset is defined in its own RFC, as| |
| | specified in Appendix A.1. | |
+-----------+------------------------------------------+------------+
|Pseudowire | The PWE3 OAM architecture defines Control| Pseudowire |
|OAM | Channels that support the use of existing| |
| | IETF OAM tools to be used for a pseudo- | |
| | wire (PW). The Control Channels that are| |
| | defined in [VCCV] and [PW-G-ACh] may be | |
| | used in conjunction with ICMP Ping, LSP | |
| | Ping, and BFD to perform CC and CV | |
| | functionality. In addition, the channels| |
| | support use of any of the MPLS-TP-based | |
| | OAM tools for completing their respective| |
| | OAM functionality for a PW. | |
+-----------+------------------------------------------+------------+
|OWAMP and | The One-Way Active Measurement Protocol | IPv4/IPv6 |
|TWAMP | [OWAMP] and the Two-Way Active Measure- | |
| | ment Protocol [TWAMP] are two protocols | |
| | defined in the IP Performance Metrics | |
| | (IPPM) working group in the IETF. These | |
| | protocols allow various performance | |
| | metrics to be measured, such as packet | |
| | loss, delay, delay variation, | |
| | duplication, and reordering. | |
+-----------+------------------------------------------+------------+
|TRILL OAM | The requirements of OAM in TRILL are | TRILL |
| | defined in [TRILL-OAM]. These | |
| | requirements include Continuity Checking,| |
| | Connectivity Verification, path tracing, | |
| | and performance monitoring. During the | |
| | writing of this document, the detailed | |
| | definition of the TRILL OAM tools | |
| | is work in progress. | |
+-----------+------------------------------------------+------------+
Table 3: Summary of OAM-Related IETF Tools
Mizrahi, et al. Informational [Page 36]
^L
RFC 7276 Overview of OAM Tools June 2014
5.2. Summary of OAM Functions
Table 4 summarizes the OAM functions that are supported in each of
the toolsets that were analyzed in this section. The columns of this
table are the typical OAM functions described in Section 1.3.
+-----------+----------+-------------+----------+----------+-----------+
| |Continuity|Connectivity |Path |Perf. |Other |
| Toolset |Check |Verification |Discovery |Monitoring|Functions |
| | | | | | |
+-----------+----------+-------------+----------+----------+-----------+
|IP Ping |Echo | | | | |
+-----------+----------+-------------+----------+----------+-----------+
|IP | | |Traceroute| | |
|Traceroute | | | | | |
+-----------+----------+-------------+----------+----------+-----------+
|BFD |BFD |BFD Control | | |RDI using |
| |Control/ | | | |BFD Control|
| |Echo | | | | |
+-----------+----------+-------------+----------+----------+-----------+
|MPLS OAM | |"Ping" mode |"Trace- | | |
|(LSP Ping) | | |route" | | |
| | | |mode | | |
+-----------+----------+-------------+----------+----------+-----------+
|MPLS-TP |CC |CV/proactive |Route |-LM |-Diagnostic|
|OAM | |or on demand |Tracing |-DM | Test |
| | | | | |-Lock |
| | | | | |-Alarm |
| | | | | | Reporting |
| | | | | |-Client |
| | | | | | Failure |
| | | | | | Indication|
| | | | | |-RDI |
+-----------+----------+-------------+----------+----------+-----------+
|Pseudowire |BFD |-BFD |LSP Ping | | |
|OAM | |-ICMP Ping | | | |
| | |-LSP Ping | | | |
+-----------+----------+-------------+----------+----------+-----------+
|OWAMP and | - control | |-DM | |
|TWAMP | protocol | |-LM | |
+-----------+----------+-------------+----------+----------+-----------+
|TRILL OAM |CC |CV |Path |-DM | |
| | | |tracing |-LM | |
+-----------+----------+-------------+----------+----------+-----------+
Table 4: Summary of the OAM Functionality in IETF OAM Tools
Mizrahi, et al. Informational [Page 37]
^L
RFC 7276 Overview of OAM Tools June 2014
5.3. Guidance to Network Equipment Vendors
As mentioned in Section 1.4, it is imperative for OAM tools to be
capable of testing the actual data plane with as much accuracy as
possible. While this guideline may appear obvious, it is worthwhile
to emphasize the key importance of enforcing fate-sharing between OAM
traffic that monitors the data plane and the data-plane traffic it
monitors.
6. Security Considerations
OAM is tightly coupled with the stability of the network. A
successful attack on an OAM protocol can create a false illusion of
nonexistent failures or prevent the detection of actual ones. In
both cases, the attack may result in denial of service.
Some of the OAM tools presented in this document include security
mechanisms that provide integrity protection, thereby preventing
attackers from forging or tampering with OAM packets. For example,
[BFD] includes an optional authentication mechanism for BFD Control
packets, using either SHA1, MD5, or a simple password. [OWAMP] and
[TWAMP] have three modes of security: unauthenticated, authenticated,
and encrypted. The authentication uses SHA1 as the HMAC algorithm,
and the encrypted mode uses AES encryption.
Confidentiality is typically not considered a requirement for OAM
protocols. However, the use of encryption (e.g., [OWAMP] and
[TWAMP]) can make it difficult for attackers to identify OAM packets,
thus making it more difficult to attack the OAM protocol.
OAM can also be used as a means for network reconnaissance;
information about addresses, port numbers, and the network topology
and performance can be gathered by either passively eavesdropping on
OAM packets or actively sending OAM packets and gathering information
from the respective responses. This information can then be used
maliciously to attack the network. Note that some of this
information, e.g., addresses and port numbers, can be gathered even
when encryption is used ([OWAMP], [TWAMP]).
For further details about the security considerations of each OAM
protocol, the reader is encouraged to review the Security
Considerations section of each document referenced by this memo.
Mizrahi, et al. Informational [Page 38]
^L
RFC 7276 Overview of OAM Tools June 2014
7. Acknowledgments
The authors gratefully acknowledge Sasha Vainshtein, Carlos
Pignataro, David Harrington, Dan Romascanu, Ron Bonica, Benoit
Claise, Stewart Bryant, Tom Nadeau, Elwyn Davies, Al Morton, Sam
Aldrin, Thomas Narten, and other members of the OPSA WG for their
helpful comments on the mailing list.
This document was originally prepared using 2-Word-v2.0.template.dot.
8. References
8.1. Normative References
[OAM-Def] Andersson, L., van Helvoort, H., Bonica, R., Romascanu,
D., and S. Mansfield, "Guidelines for the Use of the
"OAM" Acronym in the IETF", BCP 161, RFC 6291, June
2011.
8.2. Informative References
[ATM-L2] Singh, S., Townsley, M., and C. Pignataro,
"Asynchronous Transfer Mode (ATM) over Layer 2
Tunneling Protocol Version 3 (L2TPv3)", RFC 4454, May
2006.
[BFD] Katz, D. and D. Ward, "Bidirectional Forwarding
Detection (BFD)", RFC 5880, June 2010.
[BFD-Gen] Katz, D. and D. Ward, "Generic Application of
Bidirectional Forwarding Detection (BFD)", RFC 5882,
June 2010.
[BFD-IP] Katz, D. and D. Ward, "Bidirectional Forwarding
Detection (BFD) for IPv4 and IPv6 (Single Hop)", RFC
5881, June 2010.
[BFD-LSP] Aggarwal, R., Kompella, K., Nadeau, T., and G. Swallow,
"Bidirectional Forwarding Detection (BFD) for MPLS
Label Switched Paths (LSPs)", RFC 5884, June 2010.
[BFD-Multi] Katz, D. and D. Ward, "Bidirectional Forwarding
Detection (BFD) for Multihop Paths", RFC 5883, June
2010.
Mizrahi, et al. Informational [Page 39]
^L
RFC 7276 Overview of OAM Tools June 2014
[BFD-VCCV] Nadeau, T., Ed., and C. Pignataro, Ed., "Bidirectional
Forwarding Detection (BFD) for the Pseudowire Virtual
Circuit Connectivity Verification (VCCV)", RFC 5885,
June 2010.
[Comp] Bonaventure, O., "Computer Networking: Principles,
Protocols and Practice", 2008.
[Dup] Uijterwaal, H., "A One-Way Packet Duplication Metric",
RFC 5560, May 2009.
[Eth-Int] Mohan, D., Ed., Bitar, N., Ed., Sajassi, A., Ed.,
DeLord, S., Niger, P., and R. Qiu, "MPLS and Ethernet
Operations, Administration, and Maintenance (OAM)
Interworking", RFC 7023, October 2013.
[G-ACh] Bocci, M., Ed., Vigoureux, M., Ed., and S. Bryant, Ed.,
"MPLS Generic Associated Channel", RFC 5586, June 2009.
[ICMP-Ext] Bonica, R., Gan, D., Tappan, D., and C. Pignataro,
"ICMP Extensions for Multiprotocol Label Switching",
RFC 4950, August 2007.
[ICMP-Int] Atlas, A., Ed., Bonica, R., Ed., Pignataro, C., Ed.,
Shen, N., and JR. Rivers, "Extending ICMP for Interface
and Next-Hop Identification", RFC 5837, April 2010.
[ICMP-MP] Bonica, R., Gan, D., Tappan, D., and C. Pignataro,
"Extended ICMP to Support Multi-Part Messages", RFC
4884, April 2007.
[ICMPv4] Postel, J., "Internet Control Message Protocol", STD 5,
RFC 792, September 1981.
[ICMPv6] Conta, A., Deering, S., and M. Gupta, Ed., "Internet
Control Message Protocol (ICMPv6) for the Internet
Protocol Version 6 (IPv6) Specification", RFC 4443,
March 2006.
[IEEE802.1Q] IEEE, "IEEE Standard for Local and metropolitan area
networks - Media Access Control (MAC) Bridges and
Virtual Bridged Local Area Networks", IEEE 802.1Q,
October 2012.
Mizrahi, et al. Informational [Page 40]
^L
RFC 7276 Overview of OAM Tools June 2014
[IEEE802.3ah] IEEE, "IEEE Standard for Information technology - Local
and metropolitan area networks - Carrier sense multiple
access with collision detection (CSMA/CD) access method
and physical layer specifications", IEEE 802.3ah,
clause 57, December 2008.
[IntHost] Braden, R., Ed., "Requirements for Internet Hosts -
Communication Layers", STD 3, RFC 1122, October 1989.
[IPPM-1DM] Almes, G., Kalidindi, S., and M. Zekauskas, "A One-way
Delay Metric for IPPM", RFC 2679, September 1999.
[IPPM-1LM] Almes, G., Kalidindi, S., and M. Zekauskas, "A One-way
Packet Loss Metric for IPPM", RFC 2680, September 1999.
[IPPM-2DM] Almes, G., Kalidindi, S., and M. Zekauskas, "A Round-
trip Delay Metric for IPPM", RFC 2681, September 1999.
[IPPM-Con] Mahdavi, J. and V. Paxson, "IPPM Metrics for Measuring
Connectivity", RFC 2678, September 1999.
[IPPM-FW] Paxson, V., Almes, G., Mahdavi, J., and M. Mathis,
"Framework for IP Performance Metrics", RFC 2330, May
1998.
[ITU-G8113.1] ITU-T, "Operations, Administration and Maintenance
mechanism for MPLS-TP in Packet Transport Network
(PTN)", ITU-T Recommendation G.8113.1/Y.1372.1,
November 2012.
[ITU-G8113.2] ITU-T, "Operations, administration and maintenance
mechanisms for MPLS-TP networks using the tools defined
for MPLS", ITU-T Recommendation G.8113.2/Y.1372.2,
November 2012.
[ITU-T-CT] Betts, M., "Allocation of a Generic Associated Channel
Type for ITU-T MPLS Transport Profile Operation,
Maintenance, and Administration (MPLS-TP OAM)", RFC
6671, November 2012.
[ITU-T-G.806] ITU-T, "Characteristics of transport equipment -
Description methodology and generic functionality",
ITU-T Recommendation G.806, January 2009.
[ITU-T-Y1711] ITU-T, "Operation & Maintenance mechanism for MPLS
networks", ITU-T Recommendation Y.1711, February 2004.
Mizrahi, et al. Informational [Page 41]
^L
RFC 7276 Overview of OAM Tools June 2014
[ITU-T-Y1731] ITU-T, "OAM Functions and Mechanisms for Ethernet-based
Networks", ITU-T Recommendation G.8013/Y.1731, July
2011.
[ITU-Terms] ITU-R/ITU-T, "ITU-R/ITU-T Terms and Definitions", 2013,
<http://www.itu.int/pub/R-TER-DB>.
[L2TP-EC] McGill, N. and C. Pignataro, "Layer 2 Tunneling
Protocol Version 3 (L2TPv3) Extended Circuit Status
Values", RFC 5641, August 2009.
[L2VPN-OAM] Sajassi, A., Ed., and D. Mohan, Ed., "Layer 2 Virtual
Private Network (L2VPN) Operations, Administration, and
Maintenance (OAM) Requirements and Framework", RFC
6136, March 2011.
[L3VPN-OAM] El Mghazli, Y., Ed., Nadeau, T., Boucadair, M., Chan,
K., and A. Gonguet, "Framework for Layer 3 Virtual
Private Networks (L3VPN) Operations and Management",
RFC 4176, October 2005.
[Lock-Loop] Boutros, S., Ed., Sivabalan, S., Ed., Aggarwal, R.,
Ed., Vigoureux, M., Ed., and X. Dai, Ed., "MPLS
Transport Profile Lock Instruct and Loopback
Functions", RFC 6435, November 2011.
[LSP-Ping] Kompella, K. and G. Swallow, "Detecting Multi-Protocol
Label Switched (MPLS) Data Plane Failures", RFC 4379,
February 2006.
[Mng] Farrel, A., "Inclusion of Manageability Sections in
Path Computation Element (PCE) Working Group Drafts",
RFC 6123, February 2011.
[MPLS-ENCAPS] Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,
Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack
Encoding", RFC 3032, January 2001.
[MPLS-LM-DM] Frost, D. and S. Bryant, "Packet Loss and Delay
Measurement for MPLS Networks", RFC 6374, September
2011.
[MPLS-OAM] Nadeau, T., Morrow, M., Swallow, G., Allan, D., and S.
Matsushima, "Operations and Management (OAM)
Requirements for Multi-Protocol Label Switched (MPLS)
Networks", RFC 4377, February 2006.
Mizrahi, et al. Informational [Page 42]
^L
RFC 7276 Overview of OAM Tools June 2014
[MPLS-OAM-FW] Allan, D., Ed., and T. Nadeau, Ed., "A Framework for
Multi-Protocol Label Switching (MPLS) Operations and
Management (OAM)", RFC 4378, February 2006.
[MPLS-P2MP] Yasukawa, S., Farrel, A., King, D., and T. Nadeau,
"Operations and Management (OAM) Requirements for
Point-to-Multipoint MPLS Networks", RFC 4687, September
2006.
[MPLS-TP-OAM] Vigoureux, M., Ed., Ward, D., Ed., and M. Betts, Ed.,
"Requirements for Operations, Administration, and
Maintenance (OAM) in MPLS Transport Networks", RFC
5860, May 2010.
[mtrace] Fenner, W. and S. Casner, "A "traceroute" facility for
IP Multicast", Work in Progress, July 2000.
[NetTerms] Jacobsen, O. and D. Lynch, "A Glossary of Networking
Terms", RFC 1208, March 1991.
[NetTools] Enger, R. and J. Reynolds, "FYI on a Network Management
Tool Catalog: Tools for Monitoring and Debugging TCP/IP
Internets and Interconnected Devices", FYI 2, RFC 1470,
June 1993.
[OAM-Analys] Sprecher, N. and L. Fang, "An Overview of the
Operations, Administration, and Maintenance (OAM)
Toolset for MPLS-Based Transport Networks", RFC 6669,
July 2012.
[OAM-Label] Ohta, H., "Assignment of the 'OAM Alert Label' for
Multiprotocol Label Switching Architecture (MPLS)
Operation and Maintenance (OAM) Functions", RFC 3429,
November 2002.
[OAM-Mng] Ersue, M., Ed., and B. Claise, "An Overview of the IETF
Network Management Standards", RFC 6632, June 2012.
[OnDemand-CV] Gray, E., Bahadur, N., Boutros, S., and R. Aggarwal,
"MPLS On-Demand Connectivity Verification and Route
Tracing", RFC 6426, November 2011.
[OWAMP] Shalunov, S., Teitelbaum, B., Karp, A., Boote, J., and
M. Zekauskas, "A One-way Active Measurement Protocol
(OWAMP)", RFC 4656, September 2006.
Mizrahi, et al. Informational [Page 43]
^L
RFC 7276 Overview of OAM Tools June 2014
[PARIS] Augustin, B., Friedman, T., and R. Teixeira, "Measuring
Load-balanced Paths in the Internet", IMC '07
Proceedings of the 7th ACM SIGCOMM conference on
Internet measurement, 2007.
[PM-CONS] Clark, A. and B. Claise, "Guidelines for Considering
New Performance Metric Development", BCP 170, RFC 6390,
October 2011.
[PW-ACH] Bryant, S., Swallow, G., Martini, L., and D. McPherson,
"Pseudowire Emulation Edge-to-Edge (PWE3) Control Word
for Use over an MPLS PSN", RFC 4385, February 2006.
[PW-G-ACh] Li, H., Martini, L., He, J., and F. Huang, "Using the
Generic Associated Channel Label for Pseudowire in the
MPLS Transport Profile (MPLS-TP)", RFC 6423, November
2011.
[PW-MAP] Aissaoui, M., Busschbach, P., Martini, L., Morrow, M.,
Nadeau, T., and Y(J). Stein, "Pseudowire (PW)
Operations, Administration, and Maintenance (OAM)
Message Mapping", RFC 6310, July 2011.
[Reorder] Morton, A., Ciavattone, L., Ramachandran, G., Shalunov,
S., and J. Perser, "Packet Reordering Metrics", RFC
4737, November 2006.
[Signal] Yasukawa, S., Ed., "Signaling Requirements for Point-
to-Multipoint Traffic-Engineered MPLS Label Switched
Paths (LSPs)", RFC 4461, April 2006.
[TCPIP-Tools] Kessler, G. and S. Shepard, "A Primer On Internet and
TCP/IP Tools and Utilities", FYI 30, RFC 2151, June
1997.
[TP-CC-CV] Allan, D., Ed., Swallow Ed., G., and J. Drake Ed.,
"Proactive Connectivity Verification, Continuity Check,
and Remote Defect Indication for the MPLS Transport
Profile", RFC 6428, November 2011.
[TP-Fault] Swallow, G., Ed., Fulignoli, A., Ed., Vigoureux, M.,
Ed., Boutros, S., and D. Ward, "MPLS Fault Management
Operations, Administration, and Maintenance (OAM)", RFC
6427, November 2011.
[TP-LM-DM] Frost, D., Ed., and S. Bryant, Ed., "A Packet Loss and
Delay Measurement Profile for MPLS-Based Transport
Networks", RFC 6375, September 2011.
Mizrahi, et al. Informational [Page 44]
^L
RFC 7276 Overview of OAM Tools June 2014
[TP-OAM-FW] Busi, I., Ed., and D. Allan, Ed., "Operations,
Administration, and Maintenance Framework for MPLS-
Based Transport Networks", RFC 6371, September 2011.
[TP-Term] van Helvoort, H., Ed., Andersson, L., Ed., and N.
Sprecher, Ed., "A Thesaurus for the Interpretation of
Terminology Used in MPLS Transport Profile (MPLS-TP)
Internet-Drafts and RFCs in the Context of the ITU-T's
Transport Network Recommendations", RFC 7087, December
2013.
[TRILL-OAM] Senevirathne, T., Bond, D., Aldrin, S., Li, Y., and R.
Watve, "Requirements for Operations, Administration,
and Maintenance (OAM) in Transparent Interconnection of
Lots of Links (TRILL)", RFC 6905, March 2013.
[TWAMP] Hedayat, K., Krzanowski, R., Morton, A., Yum, K., and
J. Babiarz, "A Two-Way Active Measurement Protocol
(TWAMP)", RFC 5357, October 2008.
[VCCV] Nadeau, T., Ed., and C. Pignataro, Ed., "Pseudowire
Virtual Circuit Connectivity Verification (VCCV): A
Control Channel for Pseudowires", RFC 5085, December
2007.
[VCCV-SURVEY] Del Regno, N., Ed., and A. Malis, Ed., "The Pseudowire
(PW) and Virtual Circuit Connectivity Verification
(VCCV) Implementation Survey Results", RFC 7079,
November 2013.
Mizrahi, et al. Informational [Page 45]
^L
RFC 7276 Overview of OAM Tools June 2014
Appendix A. List of OAM Documents
A.1. List of IETF OAM Documents
Table 5 summarizes the OAM-related RFCs produced by the IETF.
It is important to note that the table lists various RFCs that are
different by nature. For example, some of these documents define OAM
tools or OAM protocols (or both), while others define protocols that
are not strictly OAM related, but are used by OAM tools. The table
also includes RFCs that define the requirements or the framework of
OAM in a specific context (e.g., MPLS-TP).
The RFCs in the table are categorized in a few sets as defined in
Section 1.3.
+-----------+--------------------------------------+----------+
| Toolset | Title | RFC |
+-----------+--------------------------------------+----------+
|IP Ping | Requirements for Internet Hosts -- | RFC 1122 |
| | Communication Layers [IntHost] | |
| +--------------------------------------+----------+
| | A Glossary of Networking Terms | RFC 1208 |
| | [NetTerms] | |
| +--------------------------------------+----------+
| | Internet Control Message Protocol | RFC 792 |
| | [ICMPv4] | |
| +--------------------------------------+----------+
| | Internet Control Message Protocol | RFC 4443 |
| | (ICMPv6) for the Internet Protocol | |
| | Version 6 (IPv6) Specification | |
| | [ICMPv6] | |
+-----------+--------------------------------------+----------+
|IP | A Primer On Internet and TCP/IP | RFC 2151 |
|Traceroute | Tools and Utilities [TCPIP-Tools] | |
| +--------------------------------------+----------+
| | FYI on a Network Management Tool | RFC 1470 |
| | Catalog: Tools for Monitoring and | |
| | Debugging TCP/IP Internets and | |
| | Interconnected Devices [NetTools] | |
| +--------------------------------------+----------+
| | Internet Control Message Protocol | RFC 792 |
| | [ICMPv4] | |
| +--------------------------------------+----------+
| | Internet Control Message Protocol | RFC 4443 |
| | (ICMPv6) for the Internet Protocol | |
| | Version 6 (IPv6) Specification | |
| | [ICMPv6] | |
Mizrahi, et al. Informational [Page 46]
^L
RFC 7276 Overview of OAM Tools June 2014
| +--------------------------------------+----------+
| | Extended ICMP to Support Multi-Part | RFC 4884 |
| | Messages [ICMP-MP] | |
| +--------------------------------------+----------+
| | Extending ICMP for Interface and | RFC 5837 |
| | Next-Hop Identification [ICMP-Int] | |
+-----------+--------------------------------------+----------+
|BFD | Bidirectional Forwarding Detection | RFC 5880 |
| | (BFD) [BFD] | |
| +--------------------------------------+----------+
| | Bidirectional Forwarding Detection | RFC 5881 |
| | (BFD) for IPv4 and IPv6 (Single Hop) | |
| | [BFD-IP] | |
| +--------------------------------------+----------+
| | Generic Application of Bidirectional | RFC 5882 |
| | Forwarding Detection (BFD)[BFD-Gen] | |
| +--------------------------------------+----------+
| | Bidirectional Forwarding Detection | RFC 5883 |
| | (BFD) for Multihop Paths [BFD-Multi] | |
| +--------------------------------------+----------+
| | Bidirectional Forwarding Detection | RFC 5884 |
| | (BFD) for MPLS Label Switched Paths | |
| | (LSPs) [BFD-LSP] | |
| +--------------------------------------+----------+
| | Bidirectional Forwarding Detection | RFC 5885 |
| | for the Pseudowire Virtual Circuit | |
| | Connectivity Verification (VCCV) | |
| | [BFD-VCCV] | |
+-----------+--------------------------------------+----------+
|MPLS OAM | Operations and Management (OAM) | RFC 4377 |
| | Requirements for Multi-Protocol Label| |
| | Switched (MPLS) Networks [MPLS-OAM] | |
| +--------------------------------------+----------+
| | A Framework for Multi-Protocol | RFC 4378 |
| | Label Switching (MPLS) Operations | |
| | and Management (OAM) [MPLS-OAM-FW] | |
| +--------------------------------------+----------+
| | Detecting Multi-Protocol Label | RFC 4379 |
| | Switched (MPLS) Data Plane Failures | |
| | [LSP-Ping] | |
| +--------------------------------------+----------+
| | Operations and Management (OAM) | RFC 4687 |
| | Requirements for Point-to-Multipoint | |
| | MPLS Networks [MPLS-P2MP] | |
| +--------------------------------------+----------+
| | ICMP Extensions for Multiprotocol | RFC 4950 |
| | Label Switching [ICMP-Ext] | |
Mizrahi, et al. Informational [Page 47]
^L
RFC 7276 Overview of OAM Tools June 2014
| +--------------------------------------+----------+
| | Bidirectional Forwarding Detection | RFC 5884 |
| | for MPLS Label Switched Paths (LSPs) | |
| | [BFD-LSP] | |
+-----------+--------------------------------------+----------+
|MPLS-TP | Requirements for Operations, | RFC 5860 |
|OAM | Administration, and Maintenance (OAM)| |
| | in MPLS Transport Networks | |
| | [MPLS-TP-OAM] | |
| +--------------------------------------+----------+
| | MPLS Generic Associated Channel | RFC 5586 |
| | [G-ACh] | |
| +--------------------------------------+----------+
| | Operations, Administration, and | RFC 6371 |
| | Maintenance Framework for MPLS-Based | |
| | Transport Networks [TP-OAM-FW] | |
| +--------------------------------------+----------+
| | Proactive Connectivity Verification, | RFC 6428 |
| | Continuity Check, and Remote Defect | |
| | Indication for the MPLS Transport | |
| | Profile [TP-CC-CV] | |
| +--------------------------------------+----------+
| | MPLS On-Demand Connectivity | RFC 6426 |
| | Verification and Route Tracing | |
| | [OnDemand-CV] | |
| +--------------------------------------+----------+
| | MPLS Fault Management Operations, | RFC 6427 |
| | Administration, and Maintenance (OAM)| |
| | [TP-Fault] | |
| +--------------------------------------+----------+
| | MPLS Transport Profile Lock Instruct | RFC 6435 |
| | and Loopback Functions [Lock-Loop] | |
| +--------------------------------------+----------+
| | Packet Loss and Delay Measurement for| RFC 6374 |
| | MPLS Networks [MPLS-LM-DM] | |
| +--------------------------------------+----------+
| | A Packet Loss and Delay Measurement | RFC 6375 |
| | Profile for MPLS-Based Transport | |
| | Networks [TP-LM-DM] | |
+-----------+--------------------------------------+----------+
|Pseudowire | Pseudowire Virtual Circuit | RFC 5085 |
|OAM | Connectivity Verification (VCCV): | |
| | A Control Channel for Pseudowires | |
| | [VCCV] | |
Mizrahi, et al. Informational [Page 48]
^L
RFC 7276 Overview of OAM Tools June 2014
| +--------------------------------------+----------+
| | Bidirectional Forwarding Detection | RFC 5885 |
| | for the Pseudowire Virtual Circuit | |
| | Connectivity Verification (VCCV) | |
| | [BFD-VCCV] | |
| +--------------------------------------+----------+
| | Using the Generic Associated Channel | RFC 6423 |
| | Label for Pseudowire in the MPLS | |
| | Transport Profile (MPLS-TP) | |
| | [PW-G-ACh] | |
| +--------------------------------------+----------+
| | Pseudowire (PW) Operations, | RFC 6310 |
| | Administration, and Maintenance (OAM)| |
| | Message Mapping [PW-MAP] | |
| +--------------------------------------+----------+
| | MPLS and Ethernet Operations, | RFC 7023 |
| | Administration, and Maintenance (OAM)| |
| | Interworking [Eth-Int] | |
+-----------+--------------------------------------+----------+
|OWAMP and | A One-way Active Measurement Protocol| RFC 4656 |
|TWAMP | (OWAMP) [OWAMP] | |
| +--------------------------------------+----------+
| | A Two-Way Active Measurement Protocol| RFC 5357 |
| | (TWAMP) [TWAMP] | |
| +--------------------------------------+----------+
| | Framework for IP Performance Metrics | RFC 2330 |
| | [IPPM-FW] | |
| +--------------------------------------+----------+
| | IPPM Metrics for Measuring | RFC 2678 |
| | Connectivity [IPPM-Con] | |
| +--------------------------------------+----------+
| | A One-way Delay Metric for IPPM | RFC 2679 |
| | [IPPM-1DM] | |
| +--------------------------------------+----------+
| | A One-way Packet Loss Metric for IPPM| RFC 2680 |
| | [IPPM-1LM] | |
| +--------------------------------------+----------+
| | A Round-trip Delay Metric for IPPM | RFC 2681 |
| | [IPPM-2DM] | |
| +--------------------------------------+----------+
| | Packet Reordering Metrics | RFC 4737 |
| | [Reorder] | |
| +--------------------------------------+----------+
| | A One-Way Packet Duplication Metric | RFC 5560 |
| | [Dup] | |
Mizrahi, et al. Informational [Page 49]
^L
RFC 7276 Overview of OAM Tools June 2014
+-----------+--------------------------------------+----------+
|TRILL OAM | Requirements for Operations, | RFC 6905 |
| | Administration, and Maintenance (OAM)| |
| | in Transparent Interconnection of | |
| | Lots of Links (TRILL) | |
+-----------+--------------------------------------+----------+
Table 5: Summary of IETF OAM-Related RFCs
A.2. List of Selected Non-IETF OAM Documents
In addition to the OAM tools defined by the IETF, the IEEE and ITU-T
have also defined various OAM tools that focus on Ethernet and
various other transport-network environments. These various tools,
defined by the three standard organizations, are often tightly
coupled and have had a mutual effect on each other. The ITU-T and
IETF have both defined OAM tools for MPLS LSPs, [ITU-T-Y1711], and
[LSP-Ping]. The following OAM standards by the IEEE and ITU-T are to
some extent linked to the IETF OAM tools listed above and are
mentioned here only as reference material.
o OAM tools for Layer 2 have been defined by the ITU-T in
[ITU-T-Y1731] and by the IEEE in 802.1ag [IEEE802.1Q]. The IEEE
802.3 standard defines OAM for one-hop Ethernet links
[IEEE802.3ah].
o The ITU-T has defined OAM for MPLS LSPs in [ITU-T-Y1711] and for
MPLS-TP OAM in [ITU-G8113.1] and [ITU-G8113.2].
It should be noted that these non-IETF documents deal in many cases
with OAM functions below the IP layer (Layer 2, Layer 2.5) and that
in some cases operators use a multi-layered OAM approach, which is a
function of the way their networks are designed.
Mizrahi, et al. Informational [Page 50]
^L
RFC 7276 Overview of OAM Tools June 2014
Table 6 summarizes some of the main OAM standards published by
non-IETF standard organizations. This document focuses on IETF OAM
standards, but these non-IETF standards are referenced in this
document where relevant.
+-----------+--------------------------------------+---------------+
| | Title | Document |
+-----------+--------------------------------------+---------------+
|ITU-T | Operation & Maintenance mechanism | ITU-T Y.1711 |
|MPLS OAM | for MPLS networks [ITU-T-Y1711] | |
| +--------------------------------------+---------------+
| | Assignment of the 'OAM Alert Label' | RFC 3429 |
| | for Multiprotocol Label Switching | |
| | Architecture (MPLS) Operation and | |
| | Maintenance (OAM) Functions | |
| | [OAM-Label] | |
| | | |
| | Note: although this is an IETF | |
| | document, it is listed as one of the| |
| | non-IETF OAM standards, since it | |
| | was defined as a complementary part | |
| | of ITU-T Y.1711. | |
+-----------+--------------------------------------+---------------+
|ITU-T | Operations, administration and |ITU-T G.8113.2 |
|MPLS-TP OAM| Maintenance mechanisms for MPLS-TP | |
| | networks using the tools defined for | |
| | MPLS [ITU-G8113.2] | |
| | | |
| | Note: this document describes the | |
| | OAM toolset defined by the IETF for | |
| | MPLS-TP, whereas ITU-T G.8113.1 | |
| | describes the OAM toolset defined | |
| | by the ITU-T. | |
| +--------------------------------------+---------------+
| | Operations, Administration and |ITU-T G.8113.1 |
| | Maintenance mechanism for MPLS-TP in | |
| | Packet Transport Network (PTN) | |
Mizrahi, et al. Informational [Page 51]
^L
RFC 7276 Overview of OAM Tools June 2014
| +--------------------------------------+---------------+
| | Allocation of a Generic Associated | RFC 6671 |
| | Channel Type for ITU-T MPLS Transport| |
| | Profile Operation, Maintenance, and | |
| | Administration (MPLS-TP OAM) | |
| | [ITU-T-CT] | |
| | | |
| | Note: although this is an IETF | |
| | document, it is listed as one of the| |
| | non-IETF OAM standards, since it | |
| | was defined as a complementary part | |
| | of ITU-T G.8113.1. | |
+-----------+--------------------------------------+---------------+
|ITU-T | OAM Functions and Mechanisms for | ITU-T Y.1731 |
|Ethernet | Ethernet-based Networks | |
|OAM | [ITU-T-Y1731] | |
+-----------+--------------------------------------+---------------+
|IEEE | Connectivity Fault Management | IEEE 802.1ag |
|CFM | [IEEE802.1Q] | |
| | | |
| | Note: CFM was originally published | |
| | as IEEE 802.1ag but is now | |
| | incorporated in the 802.1Q standard.| |
+-----------+--------------------------------------+---------------+
|IEEE | Management of Data Driven and Data | IEEE 802.1ag |
|DDCFM | Dependent Connectivity Faults | |
| | [IEEE802.1Q] | |
| | | |
| | Note: DDCFM was originally published| |
| | as IEEE 802.1Qaw but is now | |
| | incorporated in the 802.1Q standard.| |
+-----------+--------------------------------------+---------------+
|IEEE | Media Access Control Parameters, | IEEE 802.3ah |
|802.3 | Physical Layers, and Management | |
|link level | Parameters for Subscriber Access | |
|OAM | Networks [IEEE802.3ah] | |
| | | |
| | Note: link level OAM was originally | |
| | defined in IEEE 802.3ah and is now | |
| | incorporated in the 802.3 standard. | |
+-----------+--------------------------------------+---------------+
Table 6: Non-IETF OAM Standards Mentioned in This Document
Mizrahi, et al. Informational [Page 52]
^L
RFC 7276 Overview of OAM Tools June 2014
Authors' Addresses
Tal Mizrahi
Marvell
6 Hamada St.
Yokneam 20692
Israel
EMail: talmi@marvell.com
Nurit Sprecher
Nokia Solutions and Networks
3 Hanagar St. Neve Ne'eman B
Hod Hasharon 45241
Israel
EMail: nurit.sprecher@nsn.com
Elisa Bellagamba
Ericsson
6 Farogatan St.
Stockholm 164 40
Sweden
Phone: +46 761440785
EMail: elisa.bellagamba@ericsson.com
Yaacov Weingarten
34 Hagefen St.
Karnei Shomron 4485500
Israel
EMail: wyaacov@gmail.com
Mizrahi, et al. Informational [Page 53]
^L
|