summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc7380.txt
blob: 6a2ac594de86c2b4fc4ef90353920244db91c9db (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
Internet Engineering Task Force (IETF)                           J. Tong
Request for Comments: 7380                                    C. Bi, Ed.
Category: Standards Track                                  China Telecom
ISSN: 2070-1721                                                  R. Even
                                                              Q. Wu, Ed.
                                                                R. Huang
                                                                  Huawei
                                                           November 2014


    RTP Control Protocol (RTCP) Extended Report (XR) Block for MPEG2
 Transport Stream (TS) Program Specific Information (PSI) Decodability
                      Statistics Metrics Reporting

Abstract

   An MPEG2 Transport Stream (TS) is a standard container format used in
   the transmission and storage of multimedia data.  Unicast/multicast
   MPEG2 TS over RTP is widely deployed in IPTV systems.  This document
   defines an RTP Control Protocol (RTCP) Extended Report (XR) block
   that allows the reporting of MPEG2 TS decodability statistics metrics
   related to transmissions of MPEG2 TS over RTP.  The metrics specified
   in the RTCP XR block are related to Program Specific Information
   (PSI) carried in MPEG TS.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc7380.













Tong, et al.                 Standards Track                    [Page 1]
^L
RFC 7380                 RTCP XR TS Decodability           November 2014


Copyright Notice

   Copyright (c) 2014 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1. Introduction ....................................................3
      1.1. MPEG2 Transport Stream Decodability Metrics ................3
      1.2. RTCP and RTCP XR Reports ...................................3
      1.3. Performance Metrics Framework ..............................3
      1.4. Applicability ..............................................3
   2. Terminology .....................................................4
      2.1. Standards Language .........................................4
   3. MPEG2 TS PSI Decodability Statistics Metrics Block ..............4
   4. SDP Signaling ...................................................8
      4.1. SDP rtcp-xr-attrib Attribute Extension .....................8
      4.2. Offer/Answer Usage .........................................8
      4.3. Usage Outside of Offer/Answer ..............................8
   5. IANA Considerations .............................................9
      5.1. New RTCP XR Block Type Value ...............................9
      5.2. New RTCP XR SDP Parameter ..................................9
      5.3. Contact Information for Registrations ......................9
   6. Security Considerations .........................................9
   7. References ......................................................9
      7.1. Normative References .......................................9
      7.2. Informative References ....................................10
  Authors' Addresses .................................................11













Tong, et al.                 Standards Track                    [Page 2]
^L
RFC 7380                 RTCP XR TS Decodability           November 2014


1.  Introduction

1.1.  MPEG2 Transport Stream Decodability Metrics

   The European Telecommunications Standards Institute (ETSI) has
   defined a set of syntax and information consistency tests and
   corresponding indicators [ETSI] that are recommended for the
   monitoring of MPEG2 Transport Streams [ISO-IEC.13818-1.2007].  The
   tests and corresponding indicators are grouped according to priority:

   First priority:  Necessary for decodability (basic monitoring)

   Second priority:  Recommended for continuous or periodic monitoring

   Third priority:  Recommended for application-dependent monitoring

   This memo defines a new block type for use with MPEG2 Transport
   Streams [ISO-IEC.13818-1.2007] to augment those defined in [RFC3611].
   The new block type supports reporting of the number of occurrences of
   each Program Specific Information (PSI) indicator in the first and
   second priorities listed in Sections 5.2.1 and 5.2.2, respectively,
   of [ETSI].  The third priority indicators are not supported.  The
   metrics defined here supplement information from the PSI-Independent
   Decodability Statistics Metrics Block [RFC6990].

1.2.  RTCP and RTCP XR Reports

   The use of RTCP for reporting is defined in [RFC3550].  [RFC3611]
   defines an extensible structure for reporting using an RTCP Extended
   Report (XR).  This document defines a new Extended Report block for
   use with [RFC3550] and [RFC3611].

1.3.  Performance Metrics Framework

   The Performance Metrics Framework [RFC6390] provides guidance on the
   definition and specification of performance metrics.  The RTP
   Monitoring Architectures [RFC6792] provides guidelines for RTCP XR
   block formats.  The new report block described in this memo is in
   compliance with the monitoring architecture specified in [RFC6792]
   and the Performance Metrics Framework [RFC6390].

1.4.  Applicability

   These metrics are applicable to any type of RTP application that uses
   the MPEG2 TS standard format for multimedia data, for example, MPEG4
   over MPEG2 TS over RTP.  This new block type can be useful for
   measuring content stream or TS quality by checking TS header
   information [ETSI] and identifying the existence (and characterizing



Tong, et al.                 Standards Track                    [Page 3]
^L
RFC 7380                 RTCP XR TS Decodability           November 2014


   the severity) of bitstream packetization problems that may affect
   users' perception of a service delivered over RTP.  It may also be
   useful for verifying the continued correct operation of an existing
   system management tool.

2.  Terminology

2.1.  Standards Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

3.  MPEG2 TS PSI Decodability Statistics Metrics Block

   ETSI TR 101 290 [ETSI] generally defines indicators related to error
   events whereas the XR block defined in this document contains counts
   of occurrences of the [ETSI] indicators.  The block defined in this
   document reports MPEG2 TS PSI decodability statistics metrics beyond
   the information carried in the standard RTCP packet format and PSI-
   Independent Decodability Statistics Metrics Block [RFC6990], which
   are measured at the receiving end of the RTP stream.  It contains
   counts of seven metrics defined in ETSI TR 101 290 [ETSI].
   Information is reported about basic monitoring parameters necessary
   to ensure that the TS can be decoded, including:

   o  Program Association Table (PAT) errors

   o  PAT2 errors

   o  Program Map Table (PMT) errors

   o  PMT2 errors

   o  Packet Identifier (PID) errors

   Information is also reported about continuous monitoring parameters
   necessary to ensure continuous decoding, including:

   o  Cyclic Redundancy Check (CRC) errors

   o  Conditional Access Table (CAT) errors

   In these parameters, PAT2 errors and PMT2 errors are actually
   replacements for and improvements on PAT errors and PMT errors,
   respectively, and are therefore preferred in future implementations.
   In addition, measurement results for some of these parameters (e.g.,
   PAT errors or PMT errors) may be different based on whether



Tong, et al.                 Standards Track                    [Page 4]
^L
RFC 7380                 RTCP XR TS Decodability           November 2014


   scrambling is employed.  The other parameters defined in Section 5 of
   [ETSI] are ignored since they do not apply to all MPEG2
   implementations.  For further detailed information on these
   parameters, see [ETSI].

   The MPEG2 TS PSI Decodability Metrics Block has the following format:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      BT=32    |    Reserved   |         block length          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     SSRC of source                            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          begin_seq            |             end_seq           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |        PAT_error_count        |      PAT_error_2_count        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |        PMT_error_count        |      PMT_error_2_count        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |       PID_error_count         |      CRC_error_count          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |        CAT_error_count        |        Reserved               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   block type (BT): 8 bits

      The MPEG2 TS PSI Decodability Metrics Block is identified by the
      constant 32;.

   Reserved: 8 bits

      These bits are reserved.  They MUST be set to zero by senders
      ignored by receivers (see Section 4.2 of [RFC6709]).

   block length: 16 bits

      The constant 6, in accordance with the definition of this field in
      Section 3 of [RFC3611].  The block MUST be discarded if the block
      length is set to a different value.

   Synchronization Source (SSRC) of source: 32 bits

      As defined in Section 4.1 of [RFC3611].

   begin_seq: 16 bits

      As defined in Section 4.1 of [RFC3611].



Tong, et al.                 Standards Track                    [Page 5]
^L
RFC 7380                 RTCP XR TS Decodability           November 2014


   end_seq: 16 bits

      As defined in Section 4.1 of [RFC3611].

   PAT_error_count: 16 bits

      A count of the number of PAT errors that occurred in the above
      sequence number interval.  The Program Association Table (PAT) is
      the only packet with Packet Identifier (PID) 0x0000.  A PAT error
      occurs when (1) a packet with PID 0x0000 does not occur at least
      every 0.5 seconds, (2) a packet with PID 0x0000 does not contain
      table_id 0x00 (i.e., a PAT), or (3) the Scrambling_control_field
      in the TS packet header is not 00 for a packet with PID 0x0000.
      See Section 5.2.1 of [ETSI].  Every program within the MPEG TS
      stream is listed in the PAT; if it is missing, then no programs
      can be decoded.

      The measured value is an unsigned value.  If the measurement is
      unavailable, then the value 0xFFFF MUST be reported.  NOTE 1 of
      the table in Section 5.2.1 of [ETSI] recommends using
      PAT_error_2_count.  Upon reception, if PAT_error_2_count is
      available (that is, other than 0xFFFF), then receivers MUST ignore
      PAT_error_count.

   PAT_error_2_count: 16 bits

      A count of the number of PAT2 errors that occurred in the above
      sequence number interval.  A PAT2 error occurs when (1) a packet
      with PID 0x0000 containing table_id 0x00 does not occur at least
      every 0.5 seconds, (2) a packet with PID 0x0000 contains a table
      with a table_id other than 0x00, or (3) the
      Scrambling_control_field in the TS packet header is not 00 for a
      packet with PID 0x0000.  See Section 5.2.1 of [ETSI].

      The measured value is an unsigned value.  If the measurement is
      unavailable, then the value 0xFFFF MUST be reported.

   PMT_error_count: 16 bits

      A count of the number of PMT errors that occurred in the above
      sequence number interval.  A PMT_error occurs when (1) a packet
      containing a table with table_id 0x02 (i.e., a PMT) does not occur
      at least every 0.5 seconds on the PID that is referred to in the
      PAT or (2) the Scrambling_control_field in the TS packet header is
      not 00 for all packets with PID containing a table with table_id
      0x02 (i.e., a PMT).  See Section 5.2.1 of [ETSI].





Tong, et al.                 Standards Track                    [Page 6]
^L
RFC 7380                 RTCP XR TS Decodability           November 2014


      The measured value is an unsigned value.  If the measurement is
      unavailable, the value 0xFFFF MUST be reported.  NOTE 2 of the
      table in Section 5.2.1 of [ETSI] recommends using
      PMT_error_2_count.  Upon reception, if PMT_error_2_count is
      available (that is, other than 0xFFFF), then receivers MUST ignore
      PMT_error_count.

   PMT_error_2_count: 16 bits

      A count of the number of PMT2 errors that occurred in the above
      sequence number interval.  A PMT2_error occurs when (1) a packet
      containing table_id 0x02 (i.e., a PMT) does not occur at least
      every 0.5 seconds on each program_map_PID that is referred to in
      the PAT or (2) the Scrambling_control_field in the TS packet
      header is not 00 for all packets containing a table with table_id
      0x02 (i.e., a PMT) on each program_map_PID that is referred to in
      the PAT.  See Section 5.2.1 of [ETSI].

      The measured value is an unsigned value.  If the measurement is
      unavailable, then the value 0xFFFF MUST be reported.

   PID_error_count: 16 bits

      A count of the number of PID errors that occurred in the above
      sequence number interval.  A PID error occurs when no data stream
      is present corresponding to a given PID.  This may be caused by
      multiplexing or demultiplexing, then remultiplexing.  See
      Section 5.2.1 of [ETSI].

      The measured value is an unsigned value.  If the measurement is
      unavailable, then the value 0xFFFF MUST be reported.

   CRC_error_count: 16 bits

      A count of the number of CRC errors that occurred in the above
      sequence number interval.  A CRC_error occurs if data corruption
      occurred in any of the following tables -- CAT, PAT, PMT, Network
      Information Table (NIT), Event Information Table (EIT), Bouquet
      Association Table (BAT), Service Description Table (SDT), or Time
      Offset Table (TOT), as defined in Section 5.2.2 of [ETSI].

      The measured value is an unsigned value.  If the measurement is
      unavailable, then the value 0xFFFF MUST be reported.








Tong, et al.                 Standards Track                    [Page 7]
^L
RFC 7380                 RTCP XR TS Decodability           November 2014


   CAT_error_count: 16 bits

      A count of the number of CAT errors that occurred in the above
      sequence number interval.  A CAT_error occurs when (1) a packet
      with PID 0x0001 contains a table with a table_id other than 0x01
      (i.e., not a CAT) or (2) a packet does not contain a table with
      table_id = 0x01 (i.e., a CAT) when scrambling is employed (i.e.,
      the Scrambling_control_field is set as a value other than 00).
      See Section 5.2.2 of [ETSI].

      The measured value is an unsigned value.  If the measurement is
      unavailable, then the value 0xFFFF MUST be reported.

   Reserved: 16 bits

      These bits are reserved.  They MUST be set to zero by senders
      ignored by receivers (see Section 4.2 of [RFC6709]).

4.  SDP Signaling

   [RFC3611] defines the use of the Session Description Protocol (SDP)
   [RFC4566] for signaling the use of RTCP XR blocks.  However, XR
   blocks MAY be used without prior signaling (see Section 5 of
   [RFC3611]).

4.1.  SDP rtcp-xr-attrib Attribute Extension

   This session augments the SDP attribute "rtcp-xr" defined in
   Section 5.1 of [RFC3611] by providing an additional value of
   "xr-format" to signal the use of the report block defined in this
   document.  The ABNF [RFC5234] syntax is as follows:

   xr-format =/  xr-tpd-block

   xr-tpd-block = "ts-psi-decodability"

4.2.  Offer/Answer Usage

   When SDP is used in Offer/Answer context, the SDP Offer/Answer usage
   defined in [RFC3611] for unilateral "rtcp-xr" attribute parameters
   applies.  For detailed usage of Offer/Answer for unilateral
   parameters, refer to Section 5.2 of [RFC3611].

4.3.  Usage Outside of Offer/Answer

   For usage outside of Offer/Answer, refer to Section 5.3 of [RFC3611].





Tong, et al.                 Standards Track                    [Page 8]
^L
RFC 7380                 RTCP XR TS Decodability           November 2014


5.  IANA Considerations

   New report block types for RTCP XR are subject to IANA registration.
   For general guidelines on IANA allocations for RTCP XR, refer to
   Section 6.2 of [RFC3611].

5.1.  New RTCP XR Block Type Value

   This document assigns the block type value 32 "MPEG2 Transport Stream
   PSI Decodability Statistics Metrics Block" in the "RTCP XR Block
   Type" subregistry of the IANA "RTP Control Protocol Extended Reports
   (RTCP XR) Block Type Registry".

5.2.  New RTCP XR SDP Parameter

   This document also registers a new parameter "ts-psi-decodability" in
   the "RTCP XR SDP Parameters" subregistry of the "RTP Control Protocol
   Extended Reports (RTCP XR) Session Description Protocol (SDP)
   Parameters Registry".

5.3.  Contact Information for Registrations

   The contact information for the registrations is:

   RAI Area Directors <rai-ads@tools.ietf.org>

6.  Security Considerations

   This proposed RTCP XR block introduces no new security considerations
   beyond those described in [RFC3611] and [RFC6990].

7.  References

7.1.  Normative References

   [ETSI]     ETSI, "Digital Video Broadcasting (DVB); Measurement
              guidelines for DVB systems", ETSI TR 101 290, June 2014.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997,
              <http://www.rfc-editor.org/info/rfc2119>.

   [RFC3550]  Schulzrinne, H., "RTP: A Transport Protocol for Real-Time
              Applications", RFC 3550, July 2003,
              <http://www.rfc-editor.org/info/rfc3550>.






Tong, et al.                 Standards Track                    [Page 9]
^L
RFC 7380                 RTCP XR TS Decodability           November 2014


   [RFC3611]  Friedman, T., Caceres, R., and A. Clark, "RTP Control
              Protocol Extended Reports (RTCP XR)", RFC 3611, November
              2003, <http://www.rfc-editor.org/info/rfc3611>.

   [RFC4566]  Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
              Description Protocol", RFC 4566, July 2006,
              <http://www.rfc-editor.org/info/rfc4566>.

   [RFC5234]  Crocker, D. and P. Overell, "Augmented BNF for Syntax
              Specifications: ABNF", STD 68, RFC 5234, January 2008,
              <http://www.rfc-editor.org/info/rfc5234>.

7.2.  Informative References

   [ISO-IEC.13818-1.2007]
              ISO/IEC, "Information technology - Generic coding of
              moving pictures and associated audio information - Part 1:
              Systems", ISO International Standard 13818-1, 2013.

   [RFC6390]  Clark, A. and B. Claise, "Guidelines for Considering New
              Performance Metric Development", BCP 170, RFC 6390,
              October 2011, <http://www.rfc-editor.org/info/rfc6390>.

   [RFC6709]  Carpenter, B., Aboba, B., and S. Cheshire, "Design
              Considerations for Protocol Extensions", RFC 6709,
              September 2012, <http://www.rfc-editor.org/info/rfc6709>.

   [RFC6792]  Wu, Q., Hunt, G., and P. Arden, "Guidelines for Use of the
              RTP Monitoring Framework", RFC 6792, November 2012,
              <http://www.rfc-editor.org/info/rfc6792>.

   [RFC6990]  Wu, Q., "RTP Control Protocol (RTCP) Extended Report (XR)
              Block for MPEG2 Transport Stream (TS) Program Specific
              Information (PSI) Independent Decodability Statistics
              Metrics reporting", RFC 6990, May 2013,
              <http://www.rfc-editor.org/info/rfc6990>.















Tong, et al.                 Standards Track                   [Page 10]
^L
RFC 7380                 RTCP XR TS Decodability           November 2014


Authors' Addresses

   Jiangang Tong
   Shanghai Research Institute of China Telecom Corporation Limited
   No. 1835, South Pudong Road
   Shanghai  200122
   China

   EMail: tongjg@sttri.com.cn


   Claire Bi (editor)
   Shanghai Research Institure of China Telecom Corporation Limited
   No. 1835, South Pudong Road
   Shanghai  200122
   China

   EMail: bijy@sttri.com.cn


   Roni Even
   Huawei
   14 David Hamelech
   Tel Aviv  64953
   Israel

   EMail: roni.even@mail01.huawei.com


   Qin Wu (editor)
   Huawei
   101 Software Avenue, Yuhua District
   Nanjing, Jiangsu  210012
   China

   EMail: bill.wu@huawei.com


   Rachel Huang
   Huawei
   101 Software Avenue, Yuhua District
   Nanjing, Jiangsu  210012
   China

   EMail: rachel.huang@huawei.com






Tong, et al.                 Standards Track                   [Page 11]
^L