summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc7471.txt
blob: d0c8aa7d1e1f34e87b8c2b8af6cf94f0e46c7e9b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
Internet Engineering Task Force (IETF)                      S. Giacalone
Request for Comments: 7471                                  Unaffiliated
Category: Standards Track                                        D. Ward
ISSN: 2070-1721                                            Cisco Systems
                                                                J. Drake
                                                                A. Atlas
                                                        Juniper Networks
                                                              S. Previdi
                                                           Cisco Systems
                                                              March 2015


            OSPF Traffic Engineering (TE) Metric Extensions

Abstract

   In certain networks, such as, but not limited to, financial
   information networks (e.g., stock market data providers), network
   performance information (e.g., link propagation delay) is becoming
   critical to data path selection.

   This document describes common extensions to RFC 3630 "Traffic
   Engineering (TE) Extensions to OSPF Version 2" and RFC 5329 "Traffic
   Engineering Extensions to OSPF Version 3" to enable network
   performance information to be distributed in a scalable fashion.  The
   information distributed using OSPF TE Metric Extensions can then be
   used to make path selection decisions based on network performance.

   Note that this document only covers the mechanisms by which network
   performance information is distributed.  The mechanisms for measuring
   network performance information or using that information, once
   distributed, are outside the scope of this document.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc7471.





Giacalone, et al.            Standards Track                    [Page 1]
^L
RFC 7471                OSPF TE Metric Extensions             March 2015


Copyright Notice

   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1. Introduction ....................................................3
   2. Conventions Used in This Document ...............................4
   3. TE Metric Extensions to OSPF TE .................................4
   4. Sub-TLV Details .................................................6
      4.1. Unidirectional Link Delay Sub-TLV ..........................6
           4.1.1. Type ................................................6
           4.1.2. Length ..............................................6
           4.1.3. Anomalous (A) Bit ...................................7
           4.1.4. Reserved ............................................7
           4.1.5. Delay Value .........................................7
      4.2. Min/Max Unidirectional Link Delay Sub-TLV ..................7
           4.2.1. Type ................................................7
           4.2.2. Length ..............................................7
           4.2.3. Anomalous (A) Bit ...................................8
           4.2.4. Reserved ............................................8
           4.2.5. Min Delay ...........................................8
           4.2.6. Reserved ............................................8
           4.2.7. Max Delay ...........................................8
      4.3. Unidirectional Delay Variation Sub-TLV .....................9
           4.3.1. Type ................................................9
           4.3.2. Length ..............................................9
           4.3.3. Reserved ............................................9
           4.3.4. Delay Variation .....................................9
      4.4. Unidirectional Link Loss Sub-TLV ...........................9
           4.4.1. Type ...............................................10
           4.4.2. Length .............................................10
           4.4.3. Anomalous (A) Bit ..................................10
           4.4.4. Reserved ...........................................10
           4.4.5. Link Loss ..........................................10





Giacalone, et al.            Standards Track                    [Page 2]
^L
RFC 7471                OSPF TE Metric Extensions             March 2015


      4.5. Unidirectional Residual Bandwidth Sub-TLV .................10
           4.5.1. Type ...............................................11
           4.5.2. Length .............................................11
           4.5.3. Residual Bandwidth .................................11
      4.6. Unidirectional Available Bandwidth Sub-TLV ................11
           4.6.1. Type ...............................................12
           4.6.2. Length .............................................12
           4.6.3. Available Bandwidth ................................12
      4.7. Unidirectional Utilized Bandwidth Sub-TLV .................12
           4.7.1. Type ...............................................12
           4.7.2. Length .............................................13
           4.7.3. Utilized Bandwidth .................................13
   5. Announcement Thresholds and Filters ............................13
   6. Announcement Suppression .......................................14
   7. Network Stability and Announcement Periodicity .................14
   8. Enabling and Disabling Sub-TLVs ................................15
   9. Static Metric Override .........................................15
   10. Compatibility .................................................15
   11. Security Considerations .......................................15
   12. IANA Considerations ...........................................16
   13. References ....................................................16
      13.1. Normative References .....................................16
      13.2. Informative References ...................................17
   Acknowledgments ...................................................18
   Authors' Addresses ................................................19

1.  Introduction

   In certain networks, such as, but not limited to, financial
   information networks (e.g., stock market data providers), network
   performance information (e.g., link propagation delay) is becoming as
   critical to data path selection as other metrics.

   Because of this, using metrics such as hop count or cost as routing
   metrics is becoming only tangentially important.  Rather, it would be
   beneficial to be able to make path selection decisions based on
   network performance information (such as link propagation delay) in a
   cost-effective and scalable way.

   This document describes extensions to OSPFv2 and OSPFv3 TE (hereafter
   called "OSPF TE Metric Extensions"), that can be used to distribute
   network performance information (viz link propagation delay, delay
   variation, link loss, residual bandwidth, available bandwidth, and
   utilized bandwidth).

   The data distributed by OSPF TE Metric Extensions is meant to be used
   as part of the operation of the routing protocol (e.g., by replacing
   cost with link propagation delay or considering bandwidth as well as



Giacalone, et al.            Standards Track                    [Page 3]
^L
RFC 7471                OSPF TE Metric Extensions             March 2015


   cost), by enhancing Constrained Shortest Path First (CSPF), or for
   use by a PCE [RFC4655] or an Application-Layer Traffic Optimization
   (ALTO) server [RFC7285].  With respect to CSPF, the data distributed
   by OSPF TE Metric Extensions can be used to set up, fail over, and
   fail back data paths using protocols such as RSVP-TE [RFC3209].

   Note that the mechanisms described in this document only distribute
   network performance information.  The methods for measuring that
   information or acting on it once it is distributed are outside the
   scope of this document.  A method for measuring loss and delay in an
   MPLS network is described in [RFC6374].

   While this document does not specify the method for measuring network
   performance information, any measurement of link propagation delay
   SHOULD NOT vary significantly based upon the offered traffic load
   and, hence, SHOULD NOT include queuing delays.  For a forwarding
   adjacency (FA) [RFC4206], care must be taken that measurement of the
   link propagation delay avoids significant queuing delay; this can be
   accomplished in a variety of ways, e.g., measuring with a traffic
   class that experiences minimal queuing or summing the measured link
   propagation delay of the links on the FA's path.

2.  Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

   In this document, these words should convey that interpretation only
   when in ALL CAPS.  Lowercase uses of these words are not to be
   interpreted as carrying this significance.

3.  TE Metric Extensions to OSPF TE

   This document defines new OSPF TE sub-TLVs that are used to
   distribute network performance information.  The extensions in this
   document build on the ones provided in OSPFv2 TE [RFC3630] and OSPFv3
   TE [RFC5329].

   OSPFv2 TE Link State Advertisements (LSAs) [RFC3630] are opaque LSAs
   [RFC5250] with area flooding scope while OSPFv3 Intra-Area-TE-LSAs
   have their own LSA type, also with area flooding scope; both consist
   of a single TLV with one or more nested sub-TLVs.  The Link TLV is
   common to both and describes the characteristics of a link between
   OSPF neighbors.






Giacalone, et al.            Standards Track                    [Page 4]
^L
RFC 7471                OSPF TE Metric Extensions             March 2015


   This document defines several additional sub-TLVs for the Link TLV:

      Type  Length   Value

      27    4        Unidirectional Link Delay

      28    8        Min/Max Unidirectional Link Delay

      29    4        Unidirectional Delay Variation

      30    4        Unidirectional Link Loss

      31    4        Unidirectional Residual Bandwidth

      32    4        Unidirectional Available Bandwidth

      33    4        Unidirectional Utilized Bandwidth

   As can be seen in the list above, the sub-TLVs described in this
   document carry different types of network performance information.
   Many (but not all) of the sub-TLVs include a bit called the Anomalous
   (or A) bit.  When the A bit is clear (or when the sub-TLV does not
   include an A bit), the sub-TLV describes steady state link
   performance.  This information could conceivably be used to construct
   a steady state performance topology for initial tunnel path
   computation, or to verify alternative failover paths.

   When network performance violates configurable link-local thresholds
   a sub-TLV with the A bit set is advertised.  These sub-TLVs could be
   used by the receiving node to determine whether to move traffic to a
   backup path or whether to calculate an entirely new path.  From an
   MPLS perspective, the intent of the A bit is to permit LSP ingress
   nodes to:

   A) Determine whether the link referenced in the sub-TLV affects any
      of the LSPs for which it is ingress.  If there are, then:

   B) The node determines whether those LSPs still meet end-to-end
      performance objectives.  If not, then:

   C) The node could then conceivably move affected traffic to a pre-
      established protection LSP or establish a new LSP and place the
      traffic in it.








Giacalone, et al.            Standards Track                    [Page 5]
^L
RFC 7471                OSPF TE Metric Extensions             March 2015


   If link performance then improves beyond a configurable minimum value
   (reuse threshold), that sub-TLV can be re-advertised with the
   Anomalous bit cleared.  In this case, a receiving node can
   conceivably do whatever re-optimization (or failback) it wishes
   (including nothing).

   The A bit was intentionally omitted from some sub-TLVs to help
   mitigate oscillations.  See Section 7.1 for more information.

   Link delay, delay variation, and link loss MUST be encoded as
   integers.  Consistent with existing OSPF TE specifications [RFC3630],
   residual, available, and utilized bandwidth MUST be encoded in IEEE
   single precision floating point [IEEE754].  Link delay and delay
   variation MUST be in units of microseconds, link loss MUST be a
   percentage, and bandwidth MUST be in units of bytes per second.  All
   values (except residual bandwidth) MUST be calculated as rolling
   averages where the averaging period MUST be a configurable period of
   time.  See Section 5 for more information.

4.  Sub-TLV Details

4.1.  Unidirectional Link Delay Sub-TLV

   This sub-TLV advertises the average link delay between two directly
   connected OSPF neighbors.  The delay advertised by this sub-TLV MUST
   be the delay from the advertising node to its neighbor (i.e., the
   forward path delay).  The format of this sub-TLV is shown in the
   following diagram:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              27               |               4               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |A|  RESERVED   |                     Delay                     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.1.1.  Type

   This sub-TLV has a type of 27.

4.1.2.  Length

   The length is 4.







Giacalone, et al.            Standards Track                    [Page 6]
^L
RFC 7471                OSPF TE Metric Extensions             March 2015


4.1.3.  Anomalous (A) Bit

   This field represents the Anomalous (A) bit.  The A bit is set when
   the measured value of this parameter exceeds its configured maximum
   threshold.  The A bit is cleared when the measured value falls below
   its configured reuse threshold.  If the A bit is clear, the sub-TLV
   represents steady state link performance.

4.1.4.  Reserved

   This field is reserved for future use.  It MUST be set to 0 when sent
   and MUST be ignored when received.

4.1.5.  Delay Value

   This 24-bit field carries the average link delay over a configurable
   interval in microseconds, encoded as an integer value.  When set to
   the maximum value 16,777,215 (16.777215 sec), then the delay is at
   least that value, and it may be larger.

4.2.  Min/Max Unidirectional Link Delay Sub-TLV

   This sub-TLV advertises the minimum and maximum delay values between
   two directly connected OSPF neighbors.  The delay advertised by this
   sub-TLV MUST be the delay from the advertising node to its neighbor
   (i.e., the forward path delay).  The format of this sub-TLV is shown
   in the following diagram:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              28               |               8               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |A|  RESERVED   |                   Min Delay                   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   RESERVED    |                   Max Delay                   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.2.1.  Type

   This sub-TLV has a type of 28.

4.2.2.  Length

   The length is 8.






Giacalone, et al.            Standards Track                    [Page 7]
^L
RFC 7471                OSPF TE Metric Extensions             March 2015


4.2.3.  Anomalous (A) Bit

   This field represents the Anomalous (A) bit.  The A bit is set when
   one or more measured values exceed a configured maximum threshold.
   The A bit is cleared when the measured value falls below its
   configured reuse threshold.  If the A bit is clear, the sub-TLV
   represents steady state link performance.

4.2.4.  Reserved

   This field is reserved for future use.  It MUST be set to 0 when sent
   and MUST be ignored when received.

4.2.5.  Min Delay

   This 24-bit field carries minimum measured link delay value (in
   microseconds) over a configurable interval, encoded as an integer
   value.

   Implementations MAY also permit the configuration of an offset value
   (in microseconds) to be added to the measured delay value to
   advertise operator specific delay constraints.

   When set to the maximum value 16,777,215 (16.777215 sec), then the
   delay is at least that value, and it may be larger.

4.2.6.  Reserved

   This field is reserved for future use.  It MUST be set to 0 when sent
   and MUST be ignored when received.

4.2.7.  Max Delay

   This 24-bit field carries the maximum measured link delay value (in
   microseconds) over a configurable interval, encoded as an integer
   value.

   Implementations may also permit the configuration of an offset value
   (in microseconds) to be added to the measured delay value to
   advertise operator specific delay constraints.

   It is possible for min delay and max delay to be the same value.

   When the delay value is set to the maximum value 16,777,215
   (16.777215 sec), then the delay is at least that value, and it may be
   larger.





Giacalone, et al.            Standards Track                    [Page 8]
^L
RFC 7471                OSPF TE Metric Extensions             March 2015


4.3.  Unidirectional Delay Variation Sub-TLV

   This sub-TLV advertises the average link delay variation between two
   directly connected OSPF neighbors.  The delay variation advertised by
   this sub-TLV MUST be the delay from the advertising node to its
   neighbor (i.e., the forward path delay variation).  The format of
   this sub-TLV is shown in the following diagram:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              29               |               4               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    RESERVED   |              Delay Variation                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.3.1.  Type

   This sub-TLV has a type of 29.

4.3.2.  Length

   The length is 4.

4.3.3.  Reserved

   This field is reserved for future use.  It MUST be set to 0 when sent
   and MUST be ignored when received.

4.3.4.  Delay Variation

   This 24-bit field carries the average link delay variation over a
   configurable interval in microseconds, encoded as an integer value.
   When set to 0, it has not been measured.  When set to the maximum
   value 16,777,215 (16.777215 sec), then the delay is at least that
   value, and it may be larger.

4.4.  Unidirectional Link Loss Sub-TLV

   This sub-TLV advertises the loss (as a packet percentage) between two
   directly connected OSPF neighbors.  The link loss advertised by this
   sub-TLV MUST be the packet loss from the advertising node to its
   neighbor (i.e., the forward path loss).  The format of this sub-TLV
   is shown in the following diagram:







Giacalone, et al.            Standards Track                    [Page 9]
^L
RFC 7471                OSPF TE Metric Extensions             March 2015


     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              30               |               4               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |A|  RESERVED   |                 Link Loss                     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.4.1.  Type

   This sub-TLV has a type of 30

4.4.2.  Length

   The length is 4.

4.4.3.  Anomalous (A) Bit

   This field represents the Anomalous (A) bit.  The A bit is set when
   the measured value of this parameter exceeds its configured maximum
   threshold.  The A bit is cleared when the measured value falls below
   its configured reuse threshold.  If the A bit is clear, the sub-TLV
   represents steady state link performance.

4.4.4.  Reserved

   This field is reserved for future use.  It MUST be set to 0 when sent
   and MUST be ignored when received.

4.4.5.  Link Loss

   This 24-bit field carries link packet loss as a percentage of the
   total traffic sent over a configurable interval.  The basic unit is
   0.000003%, where (2^24 - 2) is 50.331642%.  This value is the highest
   packet loss percentage that can be expressed (the assumption being
   that precision is more important on high speed links than the ability
   to advertise loss rates greater than this, and that high speed links
   with over 50% loss are unusable).  Therefore, measured values that
   are larger than the field maximum SHOULD be encoded as the maximum
   value.

4.5.  Unidirectional Residual Bandwidth Sub-TLV

   This sub-TLV advertises the residual bandwidth between two directly
   connected OSPF neighbors.  The residual bandwidth advertised by this
   sub-TLV MUST be the residual bandwidth from the advertising node to
   its neighbor.




Giacalone, et al.            Standards Track                   [Page 10]
^L
RFC 7471                OSPF TE Metric Extensions             March 2015


   The format of this sub-TLV is shown in the following diagram:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              31               |               4               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                       Residual Bandwidth                      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.5.1.  Type

   This sub-TLV has a type of 31.

4.5.2.  Length

   The length is 4.

4.5.3.  Residual Bandwidth

   This field carries the residual bandwidth on a link, forwarding
   adjacency [RFC4206], or bundled link in IEEE floating point format
   with units of bytes per second.  For a link or forwarding adjacency,
   residual bandwidth is defined to be Maximum Bandwidth [RFC3630] minus
   the bandwidth currently allocated to RSVP-TE LSPs.  For a bundled
   link, residual bandwidth is defined to be the sum of the component
   link residual bandwidths.

   The calculation of Residual Bandwidth is different than that of
   Unreserved Bandwidth [RFC3630].  Residual Bandwidth subtracts tunnel
   reservations from Maximum Bandwidth (i.e., the link capacity)
   [RFC3630] and provides an aggregated remainder across priorities.
   Unreserved Bandwidth, on the other hand, is subtracted from the
   Maximum Reservable Bandwidth (the bandwidth that can theoretically be
   reserved) and provides per priority remainders.  Residual Bandwidth
   and Unreserved Bandwidth [RFC3630] can be used concurrently, and each
   has a separate use case (e.g., the former can be used for
   applications like Weighted ECMP while the latter can be used for call
   admission control).

4.6.  Unidirectional Available Bandwidth Sub-TLV

   This sub-TLV advertises the available bandwidth between two directly
   connected OSPF neighbors.  The available bandwidth advertised by this
   sub-TLV MUST be the available bandwidth from the advertising node to
   its neighbor.  The format of this sub-TLV is shown in the following
   diagram:




Giacalone, et al.            Standards Track                   [Page 11]
^L
RFC 7471                OSPF TE Metric Extensions             March 2015


     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              32               |               4               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      Available Bandwidth                      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.6.1.  Type

   This sub-TLV has a type of 32.

4.6.2.  Length

   The length is 4.

4.6.3.  Available Bandwidth

   This field carries the available bandwidth on a link, forwarding
   adjacency, or bundled link in IEEE floating point format with units
   of bytes per second.  For a link or forwarding adjacency, available
   bandwidth is defined to be residual bandwidth (see Section 4.5) minus
   the measured bandwidth used for the actual forwarding of non-RSVP-TE
   LSP packets.  For a bundled link, available bandwidth is defined to
   be the sum of the component link available bandwidths.

4.7.  Unidirectional Utilized Bandwidth Sub-TLV

   This Sub-TLV advertises the bandwidth utilization between two
   directly connected OSPF neighbors.  The bandwidth utilization
   advertised by this sub-TLV MUST be the bandwidth from the advertising
   node to its neighbor.  The format of this Sub-TLV is shown in the
   following diagram:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              33               |               4               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      Utilized Bandwidth                       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.7.1.  Type

   This sub-TLV has a type of 33.






Giacalone, et al.            Standards Track                   [Page 12]
^L
RFC 7471                OSPF TE Metric Extensions             March 2015


4.7.2.  Length

   The length is 4.

4.7.3.  Utilized Bandwidth

   This field carries the bandwidth utilization on a link, forwarding
   adjacency, or bundled link in IEEE floating-point format with units
   of bytes per second.  For a link or forwarding adjacency, bandwidth
   utilization represents the actual utilization of the link (i.e., as
   measured by the advertising node).  For a bundled link, bandwidth
   utilization is defined to be the sum of the component link bandwidth
   utilizations.

5.  Announcement Thresholds and Filters

   The values advertised in all sub-TLVs (except min/max delay and
   residual bandwidth) MUST represent an average over a period or be
   obtained by a filter that is reasonably representative of an average.
   For example, a rolling average is one such filter.

   Min and max delay MAY be the lowest and/or highest measured value
   over a measurement interval or MAY make use of a filter, or other
   technique, to obtain a reasonable representation of a min and max
   value representative of the interval with compensation for outliers.

   The measurement interval, any filter coefficients, and any
   advertisement intervals MUST be configurable for each sub-TLV.

   In addition to the measurement intervals governing re-advertisement,
   implementations SHOULD provide for each sub-TLV configurable
   accelerated advertisement thresholds, such that:

   1. If the measured parameter falls outside a configured upper bound
      for all but the min delay metric (or lower bound for min delay
      metric only) and the advertised sub-TLV is not already outside
      that bound, or

   2. If the difference between the last advertised value and current
      measured value exceed a configured threshold, then

   3. The advertisement is made immediately.









Giacalone, et al.            Standards Track                   [Page 13]
^L
RFC 7471                OSPF TE Metric Extensions             March 2015


   4. For sub-TLVs, which include an A bit (except min/max delay), an
      additional threshold SHOULD be included corresponding to the
      threshold for which the performance is considered anomalous (and
      sub-TLVs with the A bit are sent).  The A bit is cleared when the
      sub-TLV's performance has been below (or re-crosses) this
      threshold for an advertisement interval(s) to permit fail back.

   To prevent oscillations, only the high threshold or the low threshold
   (but not both) may be used to trigger any given sub-TLV that supports
   both.

   Additionally, once outside of the bounds of the threshold, any re-
   advertisement of a measurement within the bounds would remain
   governed solely by the measurement interval for that sub-TLV.

6.  Announcement Suppression

   When link performance values change by small amounts that fall under
   thresholds that would cause the announcement of a sub-TLV,
   implementations SHOULD suppress sub-TLV re-advertisement and/or
   lengthen the period within which they are refreshed.

   Only the accelerated advertisement threshold mechanism described in
   Section 5 may shorten the re-advertisement interval.

   All suppression and re-advertisement interval back-off timer features
   SHOULD be configurable.

7.  Network Stability and Announcement Periodicity

   Sections 5 and 6 provide configurable mechanisms to bound the number
   of re-advertisements.  Instability might occur in very large networks
   if measurement intervals are set low enough to overwhelm the
   processing of flooded information at some of the routers in the
   topology.  Therefore, care should be taken in setting these values.

   Additionally, the default measurement interval for all sub-TLVs
   should be 30 seconds.

   Announcements must also be able to be throttled using configurable
   inter-update throttle timers.  The minimum announcement periodicity
   is 1 announcement per second.  The default value should be set to 120
   seconds.

   Implementations should not permit the inter-update timer to be lower
   than the measurement interval.





Giacalone, et al.            Standards Track                   [Page 14]
^L
RFC 7471                OSPF TE Metric Extensions             March 2015


   Furthermore, it is recommended that any underlying performance
   measurement mechanisms not include any significant buffer delay, any
   significant buffer induced delay variation, or any significant loss
   due to buffer overflow or due to active queue management.

8.  Enabling and Disabling Sub-TLVs

   Implementations MUST make it possible to individually enable or
   disable the advertisement of each sub-TLV.

9.  Static Metric Override

   Implementations SHOULD permit the static configuration and/or manual
   override of dynamic measurements for each sub-TLV in order to
   simplify migration and to mitigate scenarios where dynamic
   measurements are not possible.

10.  Compatibility

   As per [RFC3630], an unrecognized TLV should be silently ignored.
   That is, it should not be processed but it should be included in LSAs
   sent to OSPF neighbors.

11.  Security Considerations

   This document does not introduce security issues beyond those
   discussed in [RFC3630].  OSPFv2 HMAC-SHA [RFC5709] provides
   additional protection for OSPFv2.  OSPFv3 IPsec [RFC4552] and OSPFv3
   Authentication Trailer [RFC7166] provide additional protection for
   OSPFv3.

   OSPF Keying and Authentication for Routing Protocols (KARP) [RFC6863]
   provides an analysis of OSPFv2 and OSPFv3 routing security, and
   OSPFv2 Security Extensions [OSPFSEC] provides extensions designed to
   address the identified gaps in OSPFv2.
















Giacalone, et al.            Standards Track                   [Page 15]
^L
RFC 7471                OSPF TE Metric Extensions             March 2015


12.  IANA Considerations

   IANA maintains the registry for the Link TLV sub-TLVs.  For OSPF TE
   Metric Extensions, one new type code for each sub-TLV defined in this
   document has been registered, as follows:

   Value  Sub-TLV

     27   Unidirectional Link Delay

     28   Min/Max Unidirectional Link Delay

     29   Unidirectional Delay Variation

     30   Unidirectional Link Loss

     31   Unidirectional Residual Bandwidth

     32   Unidirectional Available Bandwidth

     33   Unidirectional Utilized Bandwidth

13.  References

13.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997,
              <http://www.rfc-editor.org/info/rfc2119>.

   [RFC3630]  Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering
              (TE) Extensions to OSPF Version 2", RFC 3630, September
              2003, <http://www.rfc-editor.org/info/rfc3630>.

   [RFC5329]  Ishiguro, K., Manral, V., Davey, A., and A. Lindem, Ed.,
              "Traffic Engineering Extensions to OSPF Version 3", RFC
              5329, September 2008,
              <http://www.rfc-editor.org/info/rfc5329>.

   [IEEE754]  Institute of Electrical and Electronics Engineers,
              "Standard for Floating-Point Arithmetic", IEEE Standard
              754, August 2008.









Giacalone, et al.            Standards Track                   [Page 16]
^L
RFC 7471                OSPF TE Metric Extensions             March 2015


13.2.  Informative References

   [RFC3209]  Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
              and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
              Tunnels", RFC 3209, December 2001,
              <http://www.rfc-editor.org/info/rfc3209>.

   [RFC4206]  Kompella, K. and Y. Rekhter, "Label Switched Paths (LSP)
              Hierarchy with Generalized Multi-Protocol Label Switching
              (GMPLS) Traffic Engineering (TE)", RFC 4206, October 2005,
              <http://www.rfc-editor.org/info/rfc4206>.

   [RFC4552]  Gupta, M. and N. Melam, "Authentication/Confidentiality
              for OSPFv3", RFC 4552, June 2006,
              <http://www.rfc-editor.org/info/rfc4552>.

   [RFC4655]  Farrel, A., Vasseur, J.-P., and J. Ash, "A Path
              Computation Element (PCE)-Based Architecture", RFC 4655,
              August 2006, <http://www.rfc-editor.org/info/rfc4655>.

   [RFC5250]  Berger, L., Bryskin, I., Zinin, A., and R. Coltun, "The
              OSPF Opaque LSA Option", RFC 5250, July 2008,
              <http://www.rfc-editor.org/info/rfc5250>.

   [RFC5709]  Bhatia, M., Manral, V., Fanto, M., White, R., Barnes, M.,
              Li, T., and R. Atkinson, "OSPFv2 HMAC-SHA Cryptographic
              Authentication", RFC 5709, October 2009,
              <http://www.rfc-editor.org/info/rfc5709>.

   [RFC6374]  Frost, D. and S. Bryant, "Packet Loss and Delay
              Measurement for MPLS Networks", RFC 6374, September 2011,
              <http://www.rfc-editor.org/info/rfc6374>.

   [RFC6863]  Hartman, S. and D. Zhang, "Analysis of OSPF Security
              According to the Keying and Authentication for Routing
              Protocols (KARP) Design Guide", RFC 6863, March 2013,
              <http://www.rfc-editor.org/info/rfc6863>.

   [RFC7166]  Bhatia, M., Manral, V., and A. Lindem, "Supporting
              Authentication Trailer for OSPFv3", RFC 7166, March 2014,
              <http://www.rfc-editor.org/info/rfc7166>.

   [RFC7285]  Alimi, R., Ed., Penno, R., Ed., Yang, Y., Ed., Kiesel, S.,
              Previdi, S., Roome, W., Shalunov, S., and R. Woundy,
              "Application-Layer Traffic Optimization (ALTO) Protocol",
              RFC 7285, September 2014,
              <http://www.rfc-editor.org/info/rfc7285>.




Giacalone, et al.            Standards Track                   [Page 17]
^L
RFC 7471                OSPF TE Metric Extensions             March 2015


   [OSPFSEC]  Bhatia, M., Hartman, S., Zhang, D., and A. Lindem, Ed.,
              "Security Extension for OSPFv2 when Using Manual Key
              Management", Work in Progress, draft-ietf-ospf-security-
              extension-manual-keying, November 2014.

Acknowledgments

   The authors would like to recognize Nabil Bitar, Edward Crabbe, Don
   Fedyk, Acee Lindem, David McDysan, and Ayman Soliman for their
   contributions to this document.

   The authors would also like to acknowledge Curtis Villamizar for his
   significant comments and direct content collaboration.






































Giacalone, et al.            Standards Track                   [Page 18]
^L
RFC 7471                OSPF TE Metric Extensions             March 2015


Authors' Addresses

   Spencer Giacalone
   Unaffiliated

   EMail: spencer.giacalone@gmail.com


   Dave Ward
   Cisco Systems
   170 West Tasman Dr.
   San Jose, CA  95134
   United States

   EMail: dward@cisco.com


   John Drake
   Juniper Networks
   1194 N. Mathilda Ave.
   Sunnyvale, CA  94089
   United States

   EMail: jdrake@juniper.net


   Alia Atlas
   Juniper Networks
   1194 N. Mathilda Ave.
   Sunnyvale, CA  94089
   United States

   EMail: akatlas@juniper.net


   Stefano Previdi
   Cisco Systems
   Via Del Serafico 200
   00142 Rome
   Italy

   EMail: sprevidi@cisco.com









Giacalone, et al.            Standards Track                   [Page 19]
^L