1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
|
Independent Submission M. Kucherawy, Ed.
Request for Comments: 7489
Category: Informational E. Zwicky, Ed.
ISSN: 2070-1721 Yahoo!
March 2015
Domain-based Message Authentication, Reporting, and Conformance (DMARC)
Abstract
Domain-based Message Authentication, Reporting, and Conformance
(DMARC) is a scalable mechanism by which a mail-originating
organization can express domain-level policies and preferences for
message validation, disposition, and reporting, that a mail-receiving
organization can use to improve mail handling.
Originators of Internet Mail need to be able to associate reliable
and authenticated domain identifiers with messages, communicate
policies about messages that use those identifiers, and report about
mail using those identifiers. These abilities have several benefits:
Receivers can provide feedback to Domain Owners about the use of
their domains; this feedback can provide valuable insight about the
management of internal operations and the presence of external domain
name abuse.
DMARC does not produce or encourage elevated delivery privilege of
authenticated email. DMARC is a mechanism for policy distribution
that enables increasingly strict handling of messages that fail
authentication checks, ranging from no action, through altered
delivery, up to message rejection.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This is a contribution to the RFC Series, independently of any other
RFC stream. The RFC Editor has chosen to publish this document at
its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by
the RFC Editor are not a candidate for any level of Internet
Standard; see Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7489.
Kucherawy & Zwicky Informational [Page 1]
^L
RFC 7489 DMARC March 2015
Copyright Notice
Copyright (c) 2015 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.
Table of Contents
1. Introduction ....................................................3
2. Requirements ....................................................5
2.1. High-Level Goals ...........................................5
2.2. Out of Scope ...............................................6
2.3. Scalability ................................................6
2.4. Anti-Phishing ..............................................7
3. Terminology and Definitions .....................................7
3.1. Identifier Alignment .......................................8
3.2. Organizational Domain .....................................11
4. Overview .......................................................12
4.1. Authentication Mechanisms .................................12
4.2. Key Concepts ..............................................12
4.3. Flow Diagram ..............................................13
5. Use of RFC5322.From ............................................15
6. Policy .........................................................15
6.1. DMARC Policy Record .......................................16
6.2. DMARC URIs ................................................16
6.3. General Record Format .....................................17
6.4. Formal Definition .........................................21
6.5. Domain Owner Actions ......................................22
6.6. Mail Receiver Actions .....................................23
6.7. Policy Enforcement Considerations .........................27
7. DMARC Feedback .................................................28
7.1. Verifying External Destinations ...........................28
7.2. Aggregate Reports .........................................30
7.3. Failure Reports ...........................................36
8. Minimum Implementations ........................................37
9. Privacy Considerations .........................................38
9.1. Data Exposure Considerations ..............................38
9.2. Report Recipients .........................................39
Kucherawy & Zwicky Informational [Page 2]
^L
RFC 7489 DMARC March 2015
10. Other Topics ..................................................39
10.1. Issues Specific to SPF ...................................39
10.2. DNS Load and Caching .....................................40
10.3. Rejecting Messages .......................................40
10.4. Identifier Alignment Considerations ......................41
10.5. Interoperability Issues ..................................41
11. IANA Considerations ...........................................42
11.1. Authentication-Results Method Registry Update ............42
11.2. Authentication-Results Result Registry Update ............42
11.3. Feedback Report Header Fields Registry Update ............44
11.4. DMARC Tag Registry .......................................44
11.5. DMARC Report Format Registry .............................45
12. Security Considerations .......................................46
12.1. Authentication Methods ...................................46
12.2. Attacks on Reporting URIs ................................46
12.3. DNS Security .............................................47
12.4. Display Name Attacks .....................................47
12.5. External Reporting Addresses .............................48
12.6. Secure Protocols .........................................48
13. References ....................................................49
13.1. Normative References .....................................49
13.2. Informative References ...................................50
Appendix A. Technology Considerations .............................52
A.1. S/MIME .....................................................52
A.2. Method Exclusion ...........................................53
A.3. Sender Header Field ........................................53
A.4. Domain Existence Test ......................................54
A.5. Issues with ADSP in Operation ..............................54
A.6. Organizational Domain Discovery Issues .....................55
Appendix B. Examples ..............................................56
B.1. Identifier Alignment Examples ..............................56
B.2. Domain Owner Example .......................................58
B.3. Mail Receiver Example .....................................63
B.4. Utilization of Aggregate Feedback: Example .................64
B.5. mailto Transport Example ...................................65
Appendix C. DMARC XML Schema ......................................66
Acknowledgements ..................................................73
Authors' Addresses ................................................73
1. Introduction
The Sender Policy Framework ([SPF]) and DomainKeys Identified Mail
([DKIM]) provide domain-level authentication. They enable
cooperating email receivers to detect mail authorized to use the
domain name, which can permit differential handling. (A detailed
discussion of the threats these systems attempt to address can be
found in [DKIM-THREATS].) However, there has been no single widely
accepted or publicly available mechanism to communication of
Kucherawy & Zwicky Informational [Page 3]
^L
RFC 7489 DMARC March 2015
domain-specific message-handling policies for receivers, or to
request reporting of authentication and disposition of received mail.
Absent the ability to obtain feedback reports, originators who have
implemented email authentication have difficulty determining how
effective their authentication is. As a consequence, use of
authentication failures to filter mail typically does not succeed.
Over time, one-on-one relationships were established between select
senders and receivers with privately communicated means to assert
policy and receive message traffic and authentication disposition
reporting. Although these ad hoc practices have been generally
successful, they require significant manual coordination between
parties, and this model does not scale for general use on the
Internet.
This document defines Domain-based Message Authentication, Reporting,
and Conformance (DMARC), a mechanism by which email operators
leverage existing authentication and policy advertisement
technologies to enable both message-stream feedback and enforcement
of policies against unauthenticated email.
DMARC allows Domain Owners and receivers to collaborate by:
1. Providing receivers with assertions about Domain Owners' policies
2. Providing feedback to senders so they can monitor authentication
and judge threats
The basic outline of DMARC is as follows:
1. Domain Owners publish policy assertions about domains via the
DNS.
2. Receivers compare the RFC5322.From address in the mail to the SPF
and DKIM results, if present, and the DMARC policy in DNS.
3. These receivers can use these results to determine how the mail
should be handled.
4. The receiver sends reports to the Domain Owner or its designee
about mail claiming to be from their domain.
Security terms used in this document are defined in [SEC-TERMS].
Kucherawy & Zwicky Informational [Page 4]
^L
RFC 7489 DMARC March 2015
DMARC differs from previous approaches to policy advertisement (e.g.,
[SPF] and [ADSP]) in that:
o Authentication technologies are:
1. decoupled from any technology-specific policy mechanisms, and
2. used solely to establish reliable per-message domain-level
identifiers.
o Multiple authentication technologies are used to:
1. reduce the impact of transient authentication errors
2. reduce the impact of site-specific configuration errors and
deployment gaps
3. enable more use cases than any individual technology supports
alone
o Receiver-generated feedback is supported, allowing senders to
establish confidence in authentication practices.
o The domain name extracted from a message's RFC5322.From field is
the primary identifier in the DMARC mechanism. This identifier is
used in conjunction with the results of the underlying
authentication technologies to evaluate results under DMARC.
Experience with DMARC has revealed some issues of interoperability
with email in general that require due consideration before
deployment, particularly with configurations that can cause mail to
be rejected. These are discussed in Section 10.
2. Requirements
Specification of DMARC is guided by the following high-level goals,
security dependencies, detailed requirements, and items that are
documented as out of scope.
2.1. High-Level Goals
DMARC has the following high-level goals:
o Allow Domain Owners to assert the preferred handling of
authentication failures, for messages purporting to have
authorship within the domain.
o Allow Domain Owners to verify their authentication deployment.
Kucherawy & Zwicky Informational [Page 5]
^L
RFC 7489 DMARC March 2015
o Minimize implementation complexity for both senders and receivers,
as well as the impact on handling and delivery of legitimate
messages.
o Reduce the amount of successfully delivered spoofed email.
o Work at Internet scale.
2.2. Out of Scope
Several topics and issues are specifically out of scope for the
initial version of this work. These include the following:
o different treatment of messages that are not authenticated versus
those that fail authentication;
o evaluation of anything other than RFC5322.From;
o multiple reporting formats;
o publishing policy other than via the DNS;
o reporting or otherwise evaluating other than the last-hop IP
address;
o attacks in the RFC5322.From field, also known as "display name"
attacks;
o authentication of entities other than domains, since DMARC is
built upon SPF and DKIM, which authenticate domains; and
o content analysis.
2.3. Scalability
Scalability is a major issue for systems that need to operate in a
system as widely deployed as current SMTP email. For this reason,
DMARC seeks to avoid the need for third parties or pre-sending
agreements between senders and receivers. This preserves the
positive aspects of the current email infrastructure.
Although DMARC does not introduce third-party senders (namely
external agents authorized to send on behalf of an operator) to the
email-handling flow, it also does not preclude them. Such third
parties are free to provide services in conjunction with DMARC.
Kucherawy & Zwicky Informational [Page 6]
^L
RFC 7489 DMARC March 2015
2.4. Anti-Phishing
DMARC is designed to prevent bad actors from sending mail that claims
to come from legitimate senders, particularly senders of
transactional email (official mail that is about business
transactions). One of the primary uses of this kind of spoofed mail
is phishing (enticing users to provide information by pretending to
be the legitimate service requesting the information). Thus, DMARC
is significantly informed by ongoing efforts to enact large-scale,
Internet-wide anti-phishing measures.
Although DMARC can only be used to combat specific forms of exact-
domain spoofing directly, the DMARC mechanism has been found to be
useful in the creation of reliable and defensible message streams.
DMARC does not attempt to solve all problems with spoofed or
otherwise fraudulent email. In particular, it does not address the
use of visually similar domain names ("cousin domains") or abuse of
the RFC5322.From human-readable <display-name>.
3. Terminology and Definitions
This section defines terms used in the rest of the document.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [KEYWORDS].
Readers are encouraged to be familiar with the contents of
[EMAIL-ARCH]. In particular, that document defines various roles in
the messaging infrastructure that can appear the same or separate in
various contexts. For example, a Domain Owner could, via the
messaging security mechanisms on which DMARC is based, delegate the
ability to send mail as the Domain Owner to a third party with
another role. This document does not address the distinctions among
such roles; the reader is encouraged to become familiar with that
material before continuing.
The following terms are also used:
Authenticated Identifiers: Domain-level identifiers that are
validated using authentication technologies are referred to as
"Authenticated Identifiers". See Section 4.1 for details about
the supported mechanisms.
Author Domain: The domain name of the apparent author, as extracted
from the RFC5322.From field.
Kucherawy & Zwicky Informational [Page 7]
^L
RFC 7489 DMARC March 2015
Domain Owner: An entity or organization that owns a DNS domain. The
term "owns" here indicates that the entity or organization being
referenced holds the registration of that DNS domain. Domain
Owners range from complex, globally distributed organizations, to
service providers working on behalf of non-technical clients, to
individuals responsible for maintaining personal domains. This
specification uses this term as analogous to an Administrative
Management Domain as defined in [EMAIL-ARCH]. It can also refer
to delegates, such as Report Receivers, when those are outside of
their immediate management domain.
Identifier Alignment: When the domain in the RFC5322.From address
matches a domain validated by SPF or DKIM (or both), it has
Identifier Alignment.
Mail Receiver: The entity or organization that receives and
processes email. Mail Receivers operate one or more Internet-
facing Mail Transport Agents (MTAs).
Organizational Domain: The domain that was registered with a domain
name registrar. In the absence of more accurate methods,
heuristics are used to determine this, since it is not always the
case that the registered domain name is simply a top-level DNS
domain plus one component (e.g., "example.com", where "com" is a
top-level domain). The Organizational Domain is determined by
applying the algorithm found in Section 3.2.
Report Receiver: An operator that receives reports from another
operator implementing the reporting mechanism described in this
document. Such an operator might be receiving reports about its
own messages, or reports about messages related to another
operator. This term applies collectively to the system components
that receive and process these reports and the organizations that
operate them.
3.1. Identifier Alignment
Email authentication technologies authenticate various (and
disparate) aspects of an individual message. For example, [DKIM]
authenticates the domain that affixed a signature to the message,
while [SPF] can authenticate either the domain that appears in the
RFC5321.MailFrom (MAIL FROM) portion of [SMTP] or the RFC5321.EHLO/
HELO domain, or both. These may be different domains, and they are
typically not visible to the end user.
DMARC authenticates use of the RFC5322.From domain by requiring that
it match (be aligned with) an Authenticated Identifier. The
RFC5322.From domain was selected as the central identity of the DMARC
Kucherawy & Zwicky Informational [Page 8]
^L
RFC 7489 DMARC March 2015
mechanism because it is a required message header field and therefore
guaranteed to be present in compliant messages, and most Mail User
Agents (MUAs) represent the RFC5322.From field as the originator of
the message and render some or all of this header field's content to
end users.
Thus, this field is the one used by end users to identify the source
of the message and therefore is a prime target for abuse. Many
high-profile email sources, such as email service providers, require
that the sending agent have authenticated before email can be
generated. Thus, for these mailboxes, the mechanism described in
this document provides recipient end users with strong evidence that
the message was indeed originated by the agent they associate with
that mailbox, if the end user knows that these various protections
have been provided.
Domain names in this context are to be compared in a case-insensitive
manner, per [DNS-CASE].
It is important to note that Identifier Alignment cannot occur with a
message that is not valid per [MAIL], particularly one with a
malformed, absent, or repeated RFC5322.From field, since in that case
there is no reliable way to determine a DMARC policy that applies to
the message. Accordingly, DMARC operation is predicated on the input
being a valid RFC5322 message object, and handling of such
non-compliant cases is outside of the scope of this specification.
Further discussion of this can be found in Section 6.6.1.
Each of the underlying authentication technologies that DMARC takes
as input yields authenticated domains as their outputs when they
succeed. From the perspective of DMARC, each can be operated in a
"strict" mode or a "relaxed" mode. A Domain Owner would normally
select strict mode if it wanted Mail Receivers to apply DMARC
processing only to messages bearing an RFC5322.From domain exactly
matching the domains those mechanisms will verify. Relaxed mode can
be used when the operator also wishes to affect message flows bearing
subdomains of the verified domains.
3.1.1. DKIM-Authenticated Identifiers
DMARC permits Identifier Alignment, based on the result of a DKIM
authentication, to be strict or relaxed. (Note that these are not
related to DKIM's "simple" and "relaxed" canonicalization modes.)
Kucherawy & Zwicky Informational [Page 9]
^L
RFC 7489 DMARC March 2015
In relaxed mode, the Organizational Domains of both the [DKIM]-
authenticated signing domain (taken from the value of the "d=" tag in
the signature) and that of the RFC5322.From domain must be equal if
the identifiers are to be considered aligned. In strict mode, only
an exact match between both of the Fully Qualified Domain Names
(FQDNs) is considered to produce Identifier Alignment.
To illustrate, in relaxed mode, if a validated DKIM signature
successfully verifies with a "d=" domain of "example.com", and the
RFC5322.From address is "alerts@news.example.com", the DKIM "d="
domain and the RFC5322.From domain are considered to be "in
alignment". In strict mode, this test would fail, since the "d="
domain does not exactly match the FQDN of the address.
However, a DKIM signature bearing a value of "d=com" would never
allow an "in alignment" result, as "com" should appear on all public
suffix lists (see Appendix A.6.1) and therefore cannot be an
Organizational Domain.
Identifier Alignment is required because a message can bear a valid
signature from any domain, including domains used by a mailing list
or even a bad actor. Therefore, merely bearing a valid signature is
not enough to infer authenticity of the Author Domain.
Note that a single email can contain multiple DKIM signatures, and it
is considered to be a DMARC "pass" if any DKIM signature is aligned
and verifies.
3.1.2. SPF-Authenticated Identifiers
DMARC permits Identifier Alignment, based on the result of an SPF
authentication, to be strict or relaxed.
In relaxed mode, the [SPF]-authenticated domain and RFC5322.From
domain must have the same Organizational Domain. In strict mode,
only an exact DNS domain match is considered to produce Identifier
Alignment.
Note that the RFC5321.HELO identity is not typically used in the
context of DMARC (except when required to "fake" an otherwise null
reverse-path), even though a "pure SPF" implementation according to
[SPF] would check that identifier.
Kucherawy & Zwicky Informational [Page 10]
^L
RFC 7489 DMARC March 2015
For example, if a message passes an SPF check with an
RFC5321.MailFrom domain of "cbg.bounces.example.com", and the address
portion of the RFC5322.From field contains "payments@example.com",
the Authenticated RFC5321.MailFrom domain identifier and the
RFC5322.From domain are considered to be "in alignment" in relaxed
mode, but not in strict mode.
3.1.3. Alignment and Extension Technologies
If in the future DMARC is extended to include the use of other
authentication mechanisms, the extensions will need to allow for
domain identifier extraction so that alignment with the RFC5322.From
domain can be verified.
3.2. Organizational Domain
The Organizational Domain is determined using the following
algorithm:
1. Acquire a "public suffix" list, i.e., a list of DNS domain names
reserved for registrations. Some country Top-Level Domains
(TLDs) make specific registration requirements, e.g., the United
Kingdom places company registrations under ".co.uk"; other TLDs
such as ".com" appear in the IANA registry of top-level DNS
domains. A public suffix list is the union of all of these.
Appendix A.6.1 contains some discussion about obtaining a public
suffix list.
2. Break the subject DNS domain name into a set of "n" ordered
labels. Number these labels from right to left; e.g., for
"example.com", "com" would be label 1 and "example" would be
label 2.
3. Search the public suffix list for the name that matches the
largest number of labels found in the subject DNS domain. Let
that number be "x".
4. Construct a new DNS domain name using the name that matched from
the public suffix list and prefixing to it the "x+1"th label from
the subject domain. This new name is the Organizational Domain.
Thus, since "com" is an IANA-registered TLD, a subject domain of
"a.b.c.d.example.com" would have an Organizational Domain of
"example.com".
The process of determining a suffix is currently a heuristic one. No
list is guaranteed to be accurate or current.
Kucherawy & Zwicky Informational [Page 11]
^L
RFC 7489 DMARC March 2015
4. Overview
This section provides a general overview of the design and operation
of the DMARC environment.
4.1. Authentication Mechanisms
The following mechanisms for determining Authenticated Identifiers
are supported in this version of DMARC:
o [DKIM], which provides a domain-level identifier in the content of
the "d=" tag of a validated DKIM-Signature header field.
o [SPF], which can authenticate both the domain found in an [SMTP]
HELO/EHLO command (the HELO identity) and the domain found in an
SMTP MAIL command (the MAIL FROM identity). DMARC uses the result
of SPF authentication of the MAIL FROM identity. Section 2.4 of
[SPF] describes MAIL FROM processing for cases in which the MAIL
command has a null path.
4.2. Key Concepts
DMARC policies are published by the Domain Owner, and retrieved by
the Mail Receiver during the SMTP session, via the DNS.
DMARC's filtering function is based on whether the RFC5322.From field
domain is aligned with (matches) an authenticated domain name from
SPF or DKIM. When a DMARC policy is published for the domain name
found in the RFC5322.From field, and that domain name is not
validated through SPF or DKIM, the disposition of that message can be
affected by that DMARC policy when delivered to a participating
receiver.
It is important to note that the authentication mechanisms employed
by DMARC authenticate only a DNS domain and do not authenticate the
local-part of any email address identifier found in a message, nor do
they validate the legitimacy of message content.
DMARC's feedback component involves the collection of information
about received messages claiming to be from the Organizational Domain
for periodic aggregate reports to the Domain Owner. The parameters
and format for such reports are discussed in later sections of this
document.
A DMARC-enabled Mail Receiver might also generate per-message reports
that contain information related to individual messages that fail SPF
and/or DKIM. Per-message failure reports are a useful source of
information when debugging deployments (if messages can be determined
Kucherawy & Zwicky Informational [Page 12]
^L
RFC 7489 DMARC March 2015
to be legitimate even though failing authentication) or in analyzing
attacks. The capability for such services is enabled by DMARC but
defined in other referenced material such as [AFRF].
A message satisfies the DMARC checks if at least one of the supported
authentication mechanisms:
1. produces a "pass" result, and
2. produces that result based on an identifier that is in alignment,
as defined in Section 3.
4.3. Flow Diagram
+---------------+
| Author Domain |< . . . . . . . . . . . . . . . . . . . . . . .
+---------------+ . . .
| . . .
V V V .
+-----------+ +--------+ +----------+ +----------+ .
| MSA |<***>| DKIM | | DKIM | | SPF | .
| Service | | Signer | | Verifier | | Verifier | .
+-----------+ +--------+ +----------+ +----------+ .
| ^ ^ .
| ************** .
V * .
+------+ (~~~~~~~~~~~~) +------+ * .
| sMTA |------->( other MTAs )----->| rMTA | * .
+------+ (~~~~~~~~~~~~) +------+ * .
| * ........
| * .
V * .
+-----------+ V V
+---------+ | MDA | +----------+
| User |<--| Filtering |<***>| DMARC |
| Mailbox | | Engine | | Verifier |
+---------+ +-----------+ +----------+
MSA = Mail Submission Agent
MDA = Mail Delivery Agent
The above diagram shows a simple flow of messages through a DMARC-
aware system. Solid lines denote the actual message flow, dotted
lines involve DNS queries used to retrieve message policy related to
the supported message authentication schemes, and asterisk lines
indicate data exchange between message-handling modules and message
authentication modules. "sMTA" is the sending MTA, and "rMTA" is the
receiving MTA.
Kucherawy & Zwicky Informational [Page 13]
^L
RFC 7489 DMARC March 2015
In essence, the steps are as follows:
1. Domain Owner constructs an SPF policy and publishes it in its
DNS database as per [SPF]. Domain Owner also configures its
system for DKIM signing as described in [DKIM]. Finally, Domain
Owner publishes via the DNS a DMARC message-handling policy.
2. Author generates a message and hands the message to Domain
Owner's designated mail submission service.
3. Submission service passes relevant details to the DKIM signing
module in order to generate a DKIM signature to be applied to
the message.
4. Submission service relays the now-signed message to its
designated transport service for routing to its intended
recipient(s).
5. Message may pass through other relays but eventually arrives at
a recipient's transport service.
6. Recipient delivery service conducts SPF and DKIM authentication
checks by passing the necessary data to their respective
modules, each of which requires queries to the Author Domain's
DNS data (when identifiers are aligned; see below).
7. The results of these are passed to the DMARC module along with
the Author's domain. The DMARC module attempts to retrieve a
policy from the DNS for that domain. If none is found, the
DMARC module determines the Organizational Domain and repeats
the attempt to retrieve a policy from the DNS. (This is
described in further detail in Section 6.6.3.)
8. If a policy is found, it is combined with the Author's domain
and the SPF and DKIM results to produce a DMARC policy result (a
"pass" or "fail") and can optionally cause one of two kinds of
reports to be generated (not shown).
9. Recipient transport service either delivers the message to the
recipient inbox or takes other local policy action based on the
DMARC result (not shown).
10. When requested, Recipient transport service collects data from
the message delivery session to be used in providing feedback
(see Section 7).
Kucherawy & Zwicky Informational [Page 14]
^L
RFC 7489 DMARC March 2015
5. Use of RFC5322.From
One of the most obvious points of security scrutiny for DMARC is the
choice to focus on an identifier, namely the RFC5322.From address,
which is part of a body of data that has been trivially forged
throughout the history of email.
Several points suggest that it is the most correct and safest thing
to do in this context:
o Of all the identifiers that are part of the message itself, this
is the only one guaranteed to be present.
o It seems the best choice of an identifier on which to focus, as
most MUAs display some or all of the contents of that field in a
manner strongly suggesting those data as reflective of the true
originator of the message.
The absence of a single, properly formed RFC5322.From field renders
the message invalid. Handling of such a message is outside of the
scope of this specification.
Since the sorts of mail typically protected by DMARC participants
tend to only have single Authors, DMARC participants generally
operate under a slightly restricted profile of RFC5322 with respect
to the expected syntax of this field. See Section 6.6 for details.
6. Policy
DMARC policies are published by Domain Owners and applied by Mail
Receivers.
A Domain Owner advertises DMARC participation of one or more of its
domains by adding a DNS TXT record (described in Section 6.1) to
those domains. In doing so, Domain Owners make specific requests of
Mail Receivers regarding the disposition of messages purporting to be
from one of the Domain Owner's domains and the provision of feedback
about those messages.
A Domain Owner may choose not to participate in DMARC evaluation by
Mail Receivers. In this case, the Domain Owner simply declines to
advertise participation in those schemes. For example, if the
results of path authorization checks ought not be considered as part
of the overall DMARC result for a given Author Domain, then the
Domain Owner does not publish an SPF policy record that can produce
an SPF pass result.
Kucherawy & Zwicky Informational [Page 15]
^L
RFC 7489 DMARC March 2015
A Mail Receiver implementing the DMARC mechanism SHOULD make a
best-effort attempt to adhere to the Domain Owner's published DMARC
policy when a message fails the DMARC test. Since email streams can
be complicated (due to forwarding, existing RFC5322.From
domain-spoofing services, etc.), Mail Receivers MAY deviate from a
Domain Owner's published policy during message processing and SHOULD
make available the fact of and reason for the deviation to the Domain
Owner via feedback reporting, specifically using the "PolicyOverride"
feature of the aggregate report (see Section 7.2).
6.1. DMARC Policy Record
Domain Owner DMARC preferences are stored as DNS TXT records in
subdomains named "_dmarc". For example, the Domain Owner of
"example.com" would post DMARC preferences in a TXT record at
"_dmarc.example.com". Similarly, a Mail Receiver wishing to query
for DMARC preferences regarding mail with an RFC5322.From domain of
"example.com" would issue a TXT query to the DNS for the subdomain of
"_dmarc.example.com". The DNS-located DMARC preference data will
hereafter be called the "DMARC record".
DMARC's use of the Domain Name Service is driven by DMARC's use of
domain names and the nature of the query it performs. The query
requirement matches with the DNS, for obtaining simple parametric
information. It uses an established method of storing the
information, associated with the target domain name, namely an
isolated TXT record that is restricted to the DMARC context. Use of
the DNS as the query service has the benefit of reusing an extremely
well-established operations, administration, and management
infrastructure, rather than creating a new one.
Per [DNS], a TXT record can comprise several "character-string"
objects. Where this is the case, the module performing DMARC
evaluation MUST concatenate these strings by joining together the
objects in order and parsing the result as a single string.
6.2. DMARC URIs
[URI] defines a generic syntax for identifying a resource. The DMARC
mechanism uses this as the format by which a Domain Owner specifies
the destination for the two report types that are supported.
The place such URIs are specified (see Section 6.3) allows a list of
these to be provided. A report is normally sent to each listed URI
in the order provided by the Domain Owner. Receivers MAY impose a
limit on the number of URIs to which they will send reports but MUST
support the ability to send to at least two. The list of URIs is
separated by commas (ASCII 0x2C).
Kucherawy & Zwicky Informational [Page 16]
^L
RFC 7489 DMARC March 2015
Each URI can have associated with it a maximum report size that may
be sent to it. This is accomplished by appending an exclamation
point (ASCII 0x21), followed by a maximum-size indication, before a
separating comma or terminating semicolon.
Thus, a DMARC URI is a URI within which any commas or exclamation
points are percent-encoded per [URI], followed by an OPTIONAL
exclamation point and a maximum-size specification, and, if there are
additional reporting URIs in the list, a comma and the next URI.
For example, the URI "mailto:reports@example.com!50m" would request
that a report be sent via email to "reports@example.com" so long as
the report payload does not exceed 50 megabytes.
A formal definition is provided in Section 6.4.
6.3. General Record Format
DMARC records follow the extensible "tag-value" syntax for DNS-based
key records defined in DKIM [DKIM].
Section 11 creates a registry for known DMARC tags and registers the
initial set defined in this document. Only tags defined in this
document or in later extensions, and thus added to that registry, are
to be processed; unknown tags MUST be ignored.
The following tags are introduced as the initial valid DMARC tags:
adkim: (plain-text; OPTIONAL; default is "r".) Indicates whether
strict or relaxed DKIM Identifier Alignment mode is required by
the Domain Owner. See Section 3.1.1 for details. Valid values
are as follows:
r: relaxed mode
s: strict mode
aspf: (plain-text; OPTIONAL; default is "r".) Indicates whether
strict or relaxed SPF Identifier Alignment mode is required by the
Domain Owner. See Section 3.1.2 for details. Valid values are as
follows:
r: relaxed mode
s: strict mode
Kucherawy & Zwicky Informational [Page 17]
^L
RFC 7489 DMARC March 2015
fo: Failure reporting options (plain-text; OPTIONAL; default is "0")
Provides requested options for generation of failure reports.
Report generators MAY choose to adhere to the requested options.
This tag's content MUST be ignored if a "ruf" tag (below) is not
also specified. The value of this tag is a colon-separated list
of characters that indicate failure reporting options as follows:
0: Generate a DMARC failure report if all underlying
authentication mechanisms fail to produce an aligned "pass"
result.
1: Generate a DMARC failure report if any underlying
authentication mechanism produced something other than an
aligned "pass" result.
d: Generate a DKIM failure report if the message had a signature
that failed evaluation, regardless of its alignment. DKIM-
specific reporting is described in [AFRF-DKIM].
s: Generate an SPF failure report if the message failed SPF
evaluation, regardless of its alignment. SPF-specific
reporting is described in [AFRF-SPF].
p: Requested Mail Receiver policy (plain-text; REQUIRED for policy
records). Indicates the policy to be enacted by the Receiver at
the request of the Domain Owner. Policy applies to the domain
queried and to subdomains, unless subdomain policy is explicitly
described using the "sp" tag. This tag is mandatory for policy
records only, but not for third-party reporting records (see
Section 7.1). Possible values are as follows:
none: The Domain Owner requests no specific action be taken
regarding delivery of messages.
quarantine: The Domain Owner wishes to have email that fails the
DMARC mechanism check be treated by Mail Receivers as
suspicious. Depending on the capabilities of the Mail
Receiver, this can mean "place into spam folder", "scrutinize
with additional intensity", and/or "flag as suspicious".
reject: The Domain Owner wishes for Mail Receivers to reject
email that fails the DMARC mechanism check. Rejection SHOULD
occur during the SMTP transaction. See Section 10.3 for some
discussion of SMTP rejection methods and their implications.
pct: (plain-text integer between 0 and 100, inclusive; OPTIONAL;
default is 100). Percentage of messages from the Domain Owner's
mail stream to which the DMARC policy is to be applied. However,
Kucherawy & Zwicky Informational [Page 18]
^L
RFC 7489 DMARC March 2015
this MUST NOT be applied to the DMARC-generated reports, all of
which must be sent and received unhindered. The purpose of the
"pct" tag is to allow Domain Owners to enact a slow rollout
enforcement of the DMARC mechanism. The prospect of "all or
nothing" is recognized as preventing many organizations from
experimenting with strong authentication-based mechanisms. See
Section 6.6.4 for details. Note that random selection based on
this percentage, such as the following pseudocode, is adequate:
if (random mod 100) < pct then
selected = true
else
selected = false
rf: Format to be used for message-specific failure reports (colon-
separated plain-text list of values; OPTIONAL; default is "afrf").
The value of this tag is a list of one or more report formats as
requested by the Domain Owner to be used when a message fails both
[SPF] and [DKIM] tests to report details of the individual
failure. The values MUST be present in the registry of reporting
formats defined in Section 11; a Mail Receiver observing a
different value SHOULD ignore it or MAY ignore the entire DMARC
record. For this version, only "afrf" (the auth-failure report
type defined in [AFRF]) is presently supported. See Section 7.3
for details. For interoperability, the Authentication Failure
Reporting Format (AFRF) MUST be supported.
ri: Interval requested between aggregate reports (plain-text 32-bit
unsigned integer; OPTIONAL; default is 86400). Indicates a
request to Receivers to generate aggregate reports separated by no
more than the requested number of seconds. DMARC implementations
MUST be able to provide daily reports and SHOULD be able to
provide hourly reports when requested. However, anything other
than a daily report is understood to be accommodated on a best-
effort basis.
rua: Addresses to which aggregate feedback is to be sent (comma-
separated plain-text list of DMARC URIs; OPTIONAL). A comma or
exclamation point that is part of such a DMARC URI MUST be encoded
per Section 2.1 of [URI] so as to distinguish it from the list
delimiter or an OPTIONAL size limit. Section 7.1 discusses
considerations that apply when the domain name of a URI differs
from that of the domain advertising the policy. See Section 12.5
for additional considerations. Any valid URI can be specified. A
Mail Receiver MUST implement support for a "mailto:" URI, i.e.,
the ability to send a DMARC report via electronic mail. If not
Kucherawy & Zwicky Informational [Page 19]
^L
RFC 7489 DMARC March 2015
provided, Mail Receivers MUST NOT generate aggregate feedback
reports. URIs not supported by Mail Receivers MUST be ignored.
The aggregate feedback report format is described in Section 7.2.
ruf: Addresses to which message-specific failure information is to
be reported (comma-separated plain-text list of DMARC URIs;
OPTIONAL). If present, the Domain Owner is requesting Mail
Receivers to send detailed failure reports about messages that
fail the DMARC evaluation in specific ways (see the "fo" tag
above). The format of the message to be generated MUST follow the
format specified for the "rf" tag. Section 7.1 discusses
considerations that apply when the domain name of a URI differs
from that of the domain advertising the policy. A Mail Receiver
MUST implement support for a "mailto:" URI, i.e., the ability to
send a DMARC report via electronic mail. If not provided, Mail
Receivers MUST NOT generate failure reports. See Section 12.5 for
additional considerations.
sp: Requested Mail Receiver policy for all subdomains (plain-text;
OPTIONAL). Indicates the policy to be enacted by the Receiver at
the request of the Domain Owner. It applies only to subdomains of
the domain queried and not to the domain itself. Its syntax is
identical to that of the "p" tag defined above. If absent, the
policy specified by the "p" tag MUST be applied for subdomains.
Note that "sp" will be ignored for DMARC records published on
subdomains of Organizational Domains due to the effect of the
DMARC policy discovery mechanism described in Section 6.6.3.
v: Version (plain-text; REQUIRED). Identifies the record retrieved
as a DMARC record. It MUST have the value of "DMARC1". The value
of this tag MUST match precisely; if it does not or it is absent,
the entire retrieved record MUST be ignored. It MUST be the first
tag in the list.
A DMARC policy record MUST comply with the formal specification found
in Section 6.4 in that the "v" and "p" tags MUST be present and MUST
appear in that order. Unknown tags MUST be ignored. Syntax errors
in the remainder of the record SHOULD be discarded in favor of
default values (if any) or ignored outright.
Note that given the rules of the previous paragraph, addition of a
new tag into the registered list of tags does not itself require a
new version of DMARC to be generated (with a corresponding change to
the "v" tag's value), but a change to any existing tags does require
a new version of DMARC.
Kucherawy & Zwicky Informational [Page 20]
^L
RFC 7489 DMARC March 2015
6.4. Formal Definition
The formal definition of the DMARC format, using [ABNF], is as
follows:
dmarc-uri = URI [ "!" 1*DIGIT [ "k" / "m" / "g" / "t" ] ]
; "URI" is imported from [URI]; commas (ASCII
; 0x2C) and exclamation points (ASCII 0x21)
; MUST be encoded; the numeric portion MUST fit
; within an unsigned 64-bit integer
dmarc-record = dmarc-version dmarc-sep
[dmarc-request]
[dmarc-sep dmarc-srequest]
[dmarc-sep dmarc-auri]
[dmarc-sep dmarc-furi]
[dmarc-sep dmarc-adkim]
[dmarc-sep dmarc-aspf]
[dmarc-sep dmarc-ainterval]
[dmarc-sep dmarc-fo]
[dmarc-sep dmarc-rfmt]
[dmarc-sep dmarc-percent]
[dmarc-sep]
; components other than dmarc-version and
; dmarc-request may appear in any order
dmarc-version = "v" *WSP "=" *WSP %x44 %x4d %x41 %x52 %x43 %x31
dmarc-sep = *WSP %x3b *WSP
dmarc-request = "p" *WSP "=" *WSP
( "none" / "quarantine" / "reject" )
dmarc-srequest = "sp" *WSP "=" *WSP
( "none" / "quarantine" / "reject" )
dmarc-auri = "rua" *WSP "=" *WSP
dmarc-uri *(*WSP "," *WSP dmarc-uri)
dmarc-furi = "ruf" *WSP "=" *WSP
dmarc-uri *(*WSP "," *WSP dmarc-uri)
dmarc-adkim = "adkim" *WSP "=" *WSP
( "r" / "s" )
dmarc-aspf = "aspf" *WSP "=" *WSP
( "r" / "s" )
Kucherawy & Zwicky Informational [Page 21]
^L
RFC 7489 DMARC March 2015
dmarc-ainterval = "ri" *WSP "=" *WSP 1*DIGIT
dmarc-fo = "fo" *WSP "=" *WSP
( "0" / "1" / "d" / "s" )
*(*WSP ":" *WSP ( "0" / "1" / "d" / "s" ))
dmarc-rfmt = "rf" *WSP "=" *WSP Keyword *(*WSP ":" Keyword)
; registered reporting formats only
dmarc-percent = "pct" *WSP "=" *WSP
1*3DIGIT
"Keyword" is imported from Section 4.1.2 of [SMTP].
A size limitation in a dmarc-uri, if provided, is interpreted as a
count of units followed by an OPTIONAL unit size ("k" for kilobytes,
"m" for megabytes, "g" for gigabytes, "t" for terabytes). Without a
unit, the number is presumed to be a basic byte count. Note that the
units are considered to be powers of two; a kilobyte is 2^10, a
megabyte is 2^20, etc.
6.5. Domain Owner Actions
To implement the DMARC mechanism, the only action required of a
Domain Owner is the creation of the DMARC policy record in the DNS.
However, in order to make meaningful use of DMARC, a Domain Owner
must at minimum either establish an address to receive reports, or
deploy authentication technologies and ensure Identifier Alignment.
Most Domain Owners will want to do both.
DMARC reports will be of significant size, and the addresses that
receive them are publicly visible, so we encourage Domain Owners to
set up dedicated email addresses to receive and process reports, and
to deploy abuse countermeasures on those email addresses as
appropriate.
Authentication technologies are discussed in [DKIM] (see also
[DKIM-OVERVIEW] and [DKIM-DEPLOYMENT]) and [SPF].
Kucherawy & Zwicky Informational [Page 22]
^L
RFC 7489 DMARC March 2015
6.6. Mail Receiver Actions
This section describes receiver actions in the DMARC environment.
6.6.1. Extract Author Domain
The domain in the RFC5322.From field is extracted as the domain to be
evaluated by DMARC. If the domain is encoded with UTF-8, the domain
name must be converted to an A-label, as described in Section 2.3 of
[IDNA], for further processing.
In order to be processed by DMARC, a message typically needs to
contain exactly one RFC5322.From domain (a single From: field with a
single domain in it). Not all messages meet this requirement, and
handling of them is outside of the scope of this document. Typical
exceptions, and the way they have been historically handled by DMARC
participants, are as follows:
o Messages with multiple RFC5322.From fields are typically rejected,
since that form is forbidden under RFC 5322 [MAIL];
o Messages bearing a single RFC5322.From field containing multiple
addresses (and, thus, multiple domain names to be evaluated) are
typically rejected because the sorts of mail normally protected by
DMARC do not use this format;
o Messages that have no RFC5322.From field at all are typically
rejected, since that form is forbidden under RFC 5322 [MAIL];
o Messages with an RFC5322.From field that contains no meaningful
domains, such as RFC 5322 [MAIL]'s "group" syntax, are typically
ignored.
The case of a syntactically valid multi-valued RFC5322.From field
presents a particular challenge. The process in this case is to
apply the DMARC check using each of those domains found in the
RFC5322.From field as the Author Domain and apply the most strict
policy selected among the checks that fail.
Kucherawy & Zwicky Informational [Page 23]
^L
RFC 7489 DMARC March 2015
6.6.2. Determine Handling Policy
To arrive at a policy for an individual message, Mail Receivers MUST
perform the following actions or their semantic equivalents.
Steps 2-4 MAY be done in parallel, whereas steps 5 and 6 require
input from previous steps.
The steps are as follows:
1. Extract the RFC5322.From domain from the message (as above).
2. Query the DNS for a DMARC policy record. Continue if one is
found, or terminate DMARC evaluation otherwise. See
Section 6.6.3 for details.
3. Perform DKIM signature verification checks. A single email could
contain multiple DKIM signatures. The results of this step are
passed to the remainder of the algorithm and MUST include the
value of the "d=" tag from each checked DKIM signature.
4. Perform SPF validation checks. The results of this step are
passed to the remainder of the algorithm and MUST include the
domain name used to complete the SPF check.
5. Conduct Identifier Alignment checks. With authentication checks
and policy discovery performed, the Mail Receiver checks to see
if Authenticated Identifiers fall into alignment as described in
Section 3. If one or more of the Authenticated Identifiers align
with the RFC5322.From domain, the message is considered to pass
the DMARC mechanism check. All other conditions (authentication
failures, identifier mismatches) are considered to be DMARC
mechanism check failures.
6. Apply policy. Emails that fail the DMARC mechanism check are
disposed of in accordance with the discovered DMARC policy of the
Domain Owner. See Section 6.3 for details.
Heuristics applied in the absence of use by a Domain Owner of either
SPF or DKIM (e.g., [Best-Guess-SPF]) SHOULD NOT be used, as it may be
the case that the Domain Owner wishes a Message Receiver not to
consider the results of that underlying authentication protocol at
all.
DMARC evaluation can only yield a "pass" result after one of the
underlying authentication mechanisms passes for an aligned
identifier. If neither passes and one or both of them fail due to a
temporary error, the Receiver evaluating the message is unable to
conclude that the DMARC mechanism had a permanent failure; they
Kucherawy & Zwicky Informational [Page 24]
^L
RFC 7489 DMARC March 2015
therefore cannot apply the advertised DMARC policy. When otherwise
appropriate, Receivers MAY send feedback reports regarding temporary
errors.
Handling of messages for which SPF and/or DKIM evaluation encounter a
permanent DNS error is left to the discretion of the Mail Receiver.
6.6.3. Policy Discovery
As stated above, the DMARC mechanism uses DNS TXT records to
advertise policy. Policy discovery is accomplished via a method
similar to the method used for SPF records. This method, and the
important differences between DMARC and SPF mechanisms, are discussed
below.
To balance the conflicting requirements of supporting wildcarding,
allowing subdomain policy overrides, and limiting DNS query load, the
following DNS lookup scheme is employed:
1. Mail Receivers MUST query the DNS for a DMARC TXT record at the
DNS domain matching the one found in the RFC5322.From domain in
the message. A possibly empty set of records is returned.
2. Records that do not start with a "v=" tag that identifies the
current version of DMARC are discarded.
3. If the set is now empty, the Mail Receiver MUST query the DNS for
a DMARC TXT record at the DNS domain matching the Organizational
Domain in place of the RFC5322.From domain in the message (if
different). This record can contain policy to be asserted for
subdomains of the Organizational Domain. A possibly empty set of
records is returned.
4. Records that do not start with a "v=" tag that identifies the
current version of DMARC are discarded.
5. If the remaining set contains multiple records or no records,
policy discovery terminates and DMARC processing is not applied
to this message.
Kucherawy & Zwicky Informational [Page 25]
^L
RFC 7489 DMARC March 2015
6. If a retrieved policy record does not contain a valid "p" tag, or
contains an "sp" tag that is not valid, then:
1. if a "rua" tag is present and contains at least one
syntactically valid reporting URI, the Mail Receiver SHOULD
act as if a record containing a valid "v" tag and "p=none"
was retrieved, and continue processing;
2. otherwise, the Mail Receiver applies no DMARC processing to
this message.
If the set produced by the mechanism above contains no DMARC policy
record (i.e., any indication that there is no such record as opposed
to a transient DNS error), Mail Receivers SHOULD NOT apply the DMARC
mechanism to the message.
Handling of DNS errors when querying for the DMARC policy record is
left to the discretion of the Mail Receiver. For example, to ensure
minimal disruption of mail flow, transient errors could result in
delivery of the message ("fail open"), or they could result in the
message being temporarily rejected (i.e., an SMTP 4yx reply), which
invites the sending MTA to try again after the condition has possibly
cleared, allowing a definite DMARC conclusion to be reached ("fail
closed").
6.6.4. Message Sampling
If the "pct" tag is present in the policy record, the Mail Receiver
MUST NOT enact the requested policy ("p" tag or "sp" tag") on more
than the stated percent of the totality of affected messages.
However, regardless of whether or not the "pct" tag is present, the
Mail Receiver MUST include all relevant message data in any reports
produced.
If email is subject to the DMARC policy of "quarantine", the Mail
Receiver SHOULD quarantine the message. If the email is not subject
to the "quarantine" policy (due to the "pct" tag), the Mail Receiver
SHOULD apply local message classification as normal.
If email is subject to the DMARC policy of "reject", the Mail
Receiver SHOULD reject the message (see Section 10.3). If the email
is not subject to the "reject" policy (due to the "pct" tag), the
Mail Receiver SHOULD treat the email as though the "quarantine"
policy applies. This behavior allows Domain Owners to experiment
with progressively stronger policies without relaxing existing
policy.
Kucherawy & Zwicky Informational [Page 26]
^L
RFC 7489 DMARC March 2015
Mail Receivers implement "pct" via statistical mechanisms that
achieve a close approximation to the requested percentage and provide
a representative sample across a reporting period.
6.6.5. Store Results of DMARC Processing
The results of Mail Receiver-based DMARC processing should be stored
for eventual presentation back to the Domain Owner in the form of
aggregate feedback reports. Sections 6.3 and 7.2 discuss aggregate
feedback.
6.7. Policy Enforcement Considerations
Mail Receivers MAY choose to reject or quarantine email even if email
passes the DMARC mechanism check. The DMARC mechanism does not
inform Mail Receivers whether an email stream is "good". Mail
Receivers are encouraged to maintain anti-abuse technologies to
combat the possibility of DMARC-enabled criminal campaigns.
Mail Receivers MAY choose to accept email that fails the DMARC
mechanism check even if the Domain Owner has published a "reject"
policy. Mail Receivers need to make a best effort not to increase
the likelihood of accepting abusive mail if they choose not to comply
with a Domain Owner's reject, against policy. At a minimum, addition
of the Authentication-Results header field (see [AUTH-RESULTS]) is
RECOMMENDED when delivery of failing mail is done. When this is
done, the DNS domain name thus recorded MUST be encoded as an
A-label.
Mail Receivers are only obligated to report reject or quarantine
policy actions in aggregate feedback reports that are due to DMARC
policy. They are not required to report reject or quarantine actions
that are the result of local policy. If local policy information is
exposed, abusers can gain insight into the effectiveness and delivery
rates of spam campaigns.
Final disposition of a message is always a matter of local policy.
An operator that wishes to favor DMARC policy over SPF policy, for
example, will disregard the SPF policy, since enacting an
SPF-determined rejection prevents evaluation of DKIM; DKIM might
otherwise pass, satisfying the DMARC evaluation. There is a
trade-off to doing so, namely acceptance and processing of the entire
message body in exchange for the enhanced protection DMARC provides.
DMARC-compliant Mail Receivers typically disregard any mail-handling
directive discovered as part of an authentication mechanism (e.g.,
Author Domain Signing Practices (ADSP), SPF) where a DMARC record is
also discovered that specifies a policy other than "none". Deviating
Kucherawy & Zwicky Informational [Page 27]
^L
RFC 7489 DMARC March 2015
from this practice introduces inconsistency among DMARC operators in
terms of handling of the message. However, such deviation is not
proscribed.
To enable Domain Owners to receive DMARC feedback without impacting
existing mail processing, discovered policies of "p=none" SHOULD NOT
modify existing mail disposition processing.
Mail Receivers SHOULD also implement reporting instructions of DMARC,
even in the absence of a request for DKIM reporting [AFRF-DKIM] or
SPF reporting [AFRF-SPF]. Furthermore, the presence of such requests
SHOULD NOT affect DMARC reporting.
7. DMARC Feedback
Providing Domain Owners with visibility into how Mail Receivers
implement and enforce the DMARC mechanism in the form of feedback is
critical to establishing and maintaining accurate authentication
deployments. When Domain Owners can see what effect their policies
and practices are having, they are better willing and able to use
quarantine and reject policies.
7.1. Verifying External Destinations
It is possible to specify destinations for the different reports that
are outside the authority of the Domain Owner making the request.
This allows domains that do not operate mail servers to request
reports and have them go someplace that is able to receive and
process them.
Without checks, this would allow a bad actor to publish a DMARC
policy record that requests that reports be sent to a victim address,
and then send a large volume of mail that will fail both DKIM and SPF
checks to a wide variety of destinations; the victim will in turn be
flooded with unwanted reports. Therefore, a verification mechanism
is included.
When a Mail Receiver discovers a DMARC policy in the DNS, and the
Organizational Domain at which that record was discovered is not
identical to the Organizational Domain of the host part of the
authority component of a [URI] specified in the "rua" or "ruf" tag,
the following verification steps are to be taken:
1. Extract the host portion of the authority component of the URI.
Call this the "destination host", as it refers to a Report
Receiver.
2. Prepend the string "_report._dmarc".
Kucherawy & Zwicky Informational [Page 28]
^L
RFC 7489 DMARC March 2015
3. Prepend the domain name from which the policy was retrieved,
after conversion to an A-label if needed.
4. Query the DNS for a TXT record at the constructed name. If the
result of this request is a temporary DNS error of some kind
(e.g., a timeout), the Mail Receiver MAY elect to temporarily
fail the delivery so the verification test can be repeated later.
5. For each record returned, parse the result as a series of
"tag=value" pairs, i.e., the same overall format as the policy
record (see Section 6.4). In particular, the "v=DMARC1" tag is
mandatory and MUST appear first in the list. Discard any that do
not pass this test.
6. If the result includes no TXT resource records that pass basic
parsing, a positive determination of the external reporting
relationship cannot be made; stop.
7. If at least one TXT resource record remains in the set after
parsing, then the external reporting arrangement was authorized
by the Report Receiver.
8. If a "rua" or "ruf" tag is thus discovered, replace the
corresponding value extracted from the domain's DMARC policy
record with the one found in this record. This permits the
Report Receiver to override the report destination. However, to
prevent loops or indirect abuse, the overriding URI MUST use the
same destination host from the first step.
For example, if a DMARC policy query for "blue.example.com" contained
"rua=mailto:reports@red.example.net", the host extracted from the
latter ("red.example.net") does not match "blue.example.com", so this
procedure is enacted. A TXT query for
"blue.example.com._report._dmarc.red.example.net" is issued. If a
single reply comes back containing a tag of "v=DMARC1", then the
relationship between the two is confirmed. Moreover,
"red.example.net" has the opportunity to override the report
destination requested by "blue.example.com" if needed.
Where the above algorithm fails to confirm that the external
reporting was authorized by the Report Receiver, the URI MUST be
ignored by the Mail Receiver generating the report. Further, if the
confirming record includes a URI whose host is again different than
the domain publishing that override, the Mail Receiver generating the
report MUST NOT generate a report to either the original or the
override URI.
Kucherawy & Zwicky Informational [Page 29]
^L
RFC 7489 DMARC March 2015
A Report Receiver publishes such a record in its DNS if it wishes to
receive reports for other domains.
A Report Receiver that is willing to receive reports for any domain
can use a wildcard DNS record. For example, a TXT resource record at
"*._report._dmarc.example.com" containing at least "v=DMARC1"
confirms that example.com is willing to receive DMARC reports for any
domain.
If the Report Receiver is overcome by volume, it can simply remove
the confirming DNS record. However, due to positive caching, the
change could take as long as the time-to-live (TTL) on the record to
go into effect.
A Mail Receiver might decide not to enact this procedure if, for
example, it relies on a local list of domains for which external
reporting addresses are permitted.
7.2. Aggregate Reports
The DMARC aggregate feedback report is designed to provide Domain
Owners with precise insight into:
o authentication results,
o corrective action that needs to be taken by Domain Owners, and
o the effect of Domain Owner DMARC policy on email streams processed
by Mail Receivers.
Aggregate DMARC feedback provides visibility into real-world email
streams that Domain Owners need to make informed decisions regarding
the publication of DMARC policy. When Domain Owners know what
legitimate mail they are sending, what the authentication results are
on that mail, and what forged mail receivers are getting, they can
make better decisions about the policies they need and the steps they
need to take to enable those policies. When Domain Owners set
policies appropriately and understand their effects, Mail Receivers
can act on them confidently.
Visibility comes in the form of daily (or more frequent) Mail
Receiver-originated feedback reports that contain aggregate data on
message streams relevant to the Domain Owner. This information
includes data about messages that passed DMARC authentication as well
as those that did not.
The format for these reports is defined in Appendix C.
Kucherawy & Zwicky Informational [Page 30]
^L
RFC 7489 DMARC March 2015
The report SHOULD include the following data:
o The DMARC policy discovered and applied, if any
o The selected message disposition
o The identifier evaluated by SPF and the SPF result, if any
o The identifier evaluated by DKIM and the DKIM result, if any
o For both DKIM and SPF, an indication of whether the identifier was
in alignment
o Data for each Domain Owner's subdomain separately from mail from
the sender's Organizational Domain, even if there is no explicit
subdomain policy
o Sending and receiving domains
o The policy requested by the Domain Owner and the policy actually
applied (if different)
o The number of successful authentications
o The counts of messages based on all messages received, even if
their delivery is ultimately blocked by other filtering agents
Note that Domain Owners or their agents may change the published
DMARC policy for a domain or subdomain at any time. From a Mail
Receiver's perspective, this will occur during a reporting period and
may be noticed during that period, at the end of that period when
reports are generated, or during a subsequent reporting period, all
depending on the Mail Receiver's implementation. Under these
conditions, it is possible that a Mail Receiver could do any of the
following:
o generate for such a reporting period a single aggregate report
that includes message dispositions based on the old policy, or a
mix of the two policies, even though the report only contains a
single "policy_published" element;
o generate multiple reports for the same period, one for each
published policy occurring during the reporting period;
o generate a report whose end time occurs when the updated policy
was detected, regardless of any requested report interval.
Kucherawy & Zwicky Informational [Page 31]
^L
RFC 7489 DMARC March 2015
Such policy changes are expected to be infrequent for any given
domain, whereas more stringent policy monitoring requirements on the
Mail Receiver would produce a very large burden at Internet scale.
Therefore, it is the responsibility of report consumers and Domain
Owners to be aware of this situation and allow for such mixed reports
during the propagation of the new policy to Mail Receivers.
Aggregate reports are most useful when they all cover a common time
period. By contrast, correlation of these reports from multiple
generators when they cover incongruent time periods is difficult or
impossible. Report generators SHOULD, wherever possible, adhere to
hour boundaries for the reporting period they are using. For
example, starting a per-day report at 00:00; starting per-hour
reports at 00:00, 01:00, 02:00; etc. Report generators using a
24-hour report period are strongly encouraged to begin that period at
00:00 UTC, regardless of local timezone or time of report production,
in order to facilitate correlation.
A Mail Receiver discovers reporting requests when it looks up a DMARC
policy record that corresponds to an RFC5322.From domain on received
mail. The presence of the "rua" tag specifies where to send
feedback.
7.2.1. Transport
Where the URI specified in a "rua" tag does not specify otherwise, a
Mail Receiver generating a feedback report SHOULD employ a secure
transport mechanism.
The Mail Receiver, after preparing a report, MUST evaluate the
provided reporting URIs in the order given. Any reporting URI that
includes a size limitation exceeded by the generated report (after
compression and after any encoding required by the particular
transport mechanism) MUST NOT be used. An attempt MUST be made to
deliver an aggregate report to every remaining URI, up to the
Receiver's limits on supported URIs.
If transport is not possible because the services advertised by the
published URIs are not able to accept reports (e.g., the URI refers
to a service that is unreachable, or all provided URIs specify size
limits exceeded by the generated record), the Mail Receiver SHOULD
send a short report (see Section 7.2.2) indicating that a report is
available but could not be sent. The Mail Receiver MAY cache that
data and try again later, or MAY discard data that could not be sent.
Kucherawy & Zwicky Informational [Page 32]
^L
RFC 7489 DMARC March 2015
7.2.1.1. Email
The message generated by the Mail Receiver MUST be a [MAIL] message
formatted per [MIME]. The aggregate report itself MUST be included
in one of the parts of the message. A human-readable portion MAY be
included as a MIME part (such as a text/plain part).
The aggregate data MUST be an XML file that SHOULD be subjected to
GZIP compression. Declining to apply compression can cause the
report to be too large for a receiver to process (a commonly observed
receiver limit is ten megabytes); doing the compression increases the
chances of acceptance of the report at some compute cost. The
aggregate data SHOULD be present using the media type "application/
gzip" if compressed (see [GZIP]), and "text/xml" otherwise. The
filename is typically constructed using the following ABNF:
filename = receiver "!" policy-domain "!" begin-timestamp
"!" end-timestamp [ "!" unique-id ] "." extension
unique-id = 1*(ALPHA / DIGIT)
receiver = domain
; imported from [MAIL]
policy-domain = domain
begin-timestamp = 1*DIGIT
; seconds since 00:00:00 UTC January 1, 1970
; indicating start of the time range contained
; in the report
end-timestamp = 1*DIGIT
; seconds since 00:00:00 UTC January 1, 1970
; indicating end of the time range contained
; in the report
extension = "xml" / "xml.gz"
The extension MUST be "xml" for a plain XML file, or "xml.gz" for an
XML file compressed using GZIP.
"unique-id" allows an optional unique ID generated by the Mail
Receiver to distinguish among multiple reports generated
simultaneously by different sources within the same Domain Owner.
Kucherawy & Zwicky Informational [Page 33]
^L
RFC 7489 DMARC March 2015
For example, this is a possible filename for the gzip file of a
report to the Domain Owner "example.com" from the Mail Receiver
"mail.receiver.example":
mail.receiver.example!example.com!1013662812!1013749130.gz
No specific MIME message structure is required. It is presumed that
the aggregate reporting address will be equipped to extract MIME
parts with the prescribed media type and filename and ignore the
rest.
Email streams carrying DMARC feedback data MUST conform to the DMARC
mechanism, thereby resulting in an aligned "pass" (see Section 3.1).
This practice minimizes the risk of report consumers processing
fraudulent reports.
The RFC5322.Subject field for individual report submissions SHOULD
conform to the following ABNF:
dmarc-subject = %x52.65.70.6f.72.74 1*FWS ; "Report"
%x44.6f.6d.61.69.6e.3a 1*FWS ; "Domain:"
domain-name 1*FWS ; from RFC 6376
%x53.75.62.6d.69.74.74.65.72.3a ; "Submitter:"
1*FWS domain-name 1*FWS
%x52.65.70.6f.72.74.2d.49.44.3a ; "Report-ID:"
msg-id ; from RFC 5322
The first domain-name indicates the DNS domain name about which the
report was generated. The second domain-name indicates the DNS
domain name representing the Mail Receiver generating the report.
The purpose of the Report-ID: portion of the field is to enable the
Domain Owner to identify and ignore duplicate reports that might be
sent by a Mail Receiver.
For instance, this is a possible Subject field for a report to the
Domain Owner "example.com" from the Mail Receiver
"mail.receiver.example". It is line-wrapped as allowed by [MAIL]:
Subject: Report Domain: example.com
Submitter: mail.receiver.example
Report-ID: <2002.02.15.1>
This transport mechanism potentially encounters a problem when
feedback data size exceeds maximum allowable attachment sizes for
either the generator or the consumer. See Section 7.2.2 for further
discussion.
Kucherawy & Zwicky Informational [Page 34]
^L
RFC 7489 DMARC March 2015
7.2.1.2. Other Methods
The specification as written allows for the addition of other
registered URI schemes to be supported in later versions.
7.2.2. Error Reports
When a Mail Receiver is unable to complete delivery of a report via
any of the URIs listed by the Domain Owner, the Mail Receiver SHOULD
generate an error message. An attempt MUST be made to send this
report to all listed "mailto" URIs, and it MAY also be sent to any or
all other listed URIs.
The error report MUST be formatted per [MIME]. A text/plain part
MUST be included that contains field-value pairs such as those found
in Section 2 of [DSN]. The fields required, which may appear in any
order, are as follows:
Report-Date: A [MAIL]-formatted date expression indicating when the
transport failure occurred.
Report-Domain: The domain-name about which the failed report was
generated.
Report-ID: The Report-ID: that the report tried to use.
Report-Size: The size, in bytes, of the report that was unable to be
sent. This MUST represent the number of bytes that the Mail
Receiver attempted to send. Where more than one transport system
was attempted, the sizes may be different; in such cases, separate
error reports MUST be generated so that this value matches the
actual attempt that was made.
Submitter: The domain-name representing the Mail Receiver that
generated, but was unable to submit, the report.
Submitting-URI: The URI(s) to which the Mail Receiver tried, but
failed, to submit the report.
An additional text/plain part MAY be included that gives a human-
readable explanation of the above and MAY also include a URI that can
be used to seek assistance.
Kucherawy & Zwicky Informational [Page 35]
^L
RFC 7489 DMARC March 2015
7.3. Failure Reports
Failure reports are normally generated and sent almost immediately
after the Mail Receiver detects a DMARC failure. Rather than waiting
for an aggregate report, these reports are useful for quickly
notifying the Domain Owners when there is an authentication failure.
Whether the failure is due to an infrastructure problem or the
message is inauthentic, failure reports also provide more information
about the failed message than is available in an aggregate report.
These reports SHOULD include any URI(s) from the message that failed
authentication. These reports SHOULD include as much of the message
and message header as is reasonable to support the Domain Owner's
investigation into what caused the message to fail authentication and
track down the sender.
When a Domain Owner requests failure reports for the purpose of
forensic analysis, and the Mail Receiver is willing to provide such
reports, the Mail Receiver generates and sends a message using the
format described in [AFRF]; this document updates that reporting
format, as described in Section 7.3.1.
The destination(s) and nature of the reports are defined by the "ruf"
and "fo" tags as defined in Section 6.3.
Where multiple URIs are selected to receive failure reports, the
report generator MUST make an attempt to deliver to each of them.
An obvious consideration is the denial-of-service attack that can be
perpetrated by an attacker who sends numerous messages purporting to
be from the intended victim Domain Owner but that fail both SPF and
DKIM; this would cause participating Mail Receivers to send failure
reports to the Domain Owner or its delegate in potentially huge
volumes. Accordingly, participating Mail Receivers are encouraged to
aggregate these reports as much as is practical, using the Incidents
field of the Abuse Reporting Format ([ARF]). Various aggregation
techniques are possible, including the following:
o only send a report to the first recipient of multi-recipient
messages;
o store reports for a period of time before sending them, allowing
detection, collection, and reporting of like incidents;
o apply rate limiting, such as a maximum number of reports per
minute that will be generated (and the remainder discarded).
Kucherawy & Zwicky Informational [Page 36]
^L
RFC 7489 DMARC March 2015
7.3.1. Reporting Format Update
Operators implementing this specification also implement an augmented
version of [AFRF] as follows:
1. A DMARC failure report includes the following ARF header fields,
with the indicated normative requirement levels:
* Identity-Alignment (REQUIRED; defined below)
* Delivery-Result (OPTIONAL)
* DKIM-Domain, DKIM-Identity, DKIM-Selector (REQUIRED if the
message was signed by DKIM)
* DKIM-Canonicalized-Header, DKIM-Canonicalized-Body (OPTIONAL
if the message was signed by DKIM)
* SPF-DNS (REQUIRED)
2. The "Identity-Alignment" field is defined to contain a comma-
separated list of authentication mechanism names that produced an
aligned identity, or the keyword "none" if none did. ABNF:
id-align = "Identity-Alignment:" [CFWS]
( "none" /
dmarc-method *( [CFWS] "," [CFWS] dmarc-method ) )
[CFWS]
dmarc-method = ( "dkim" / "spf" )
; each may appear at most once in an id-align
3. Authentication Failure Type "dmarc" is defined, which is to be
used when a failure report is generated because some or all of
the authentication mechanisms failed to produce aligned
identifiers. Note that a failure report generator MAY also
independently produce an AFRF message for any or all of the
underlying authentication methods.
8. Minimum Implementations
A minimum implementation of DMARC has the following characteristics:
o Is able to send and/or receive reports at least daily;
o Is able to send and/or receive reports using "mailto" URIs;
Kucherawy & Zwicky Informational [Page 37]
^L
RFC 7489 DMARC March 2015
o Other than in exceptional circumstances such as resource
exhaustion, can generate or accept a report up to ten megabytes in
size;
o If acting as a Mail Receiver, fully implements the provisions of
Section 6.6.
9. Privacy Considerations
This section discusses security issues specific to private data that
may be included in the interactions that are part of DMARC.
9.1. Data Exposure Considerations
Aggregate reports are limited in scope to DMARC policy and
disposition results, to information pertaining to the underlying
authentication mechanisms, and to the identifiers involved in DMARC
validation.
Failed-message reporting provides message-specific details pertaining
to authentication failures. Individual reports can contain message
content as well as trace header fields. Domain Owners are able to
analyze individual reports and attempt to determine root causes of
authentication mechanism failures, gain insight into
misconfigurations or other problems with email and network
infrastructure, or inspect messages for insight into abusive
practices.
Both report types may expose sender and recipient identifiers (e.g.,
RFC5322.From addresses), and although the [AFRF] format used for
failed-message reporting supports redaction, failed-message reporting
is capable of exposing the entire message to the report recipient.
Domain Owners requesting reports will receive information about mail
claiming to be from them, which includes mail that was not, in fact,
from them. Information about the final destination of mail where it
might otherwise be obscured by intermediate systems will therefore be
exposed.
When message-forwarding arrangements exist, Domain Owners requesting
reports will also receive information about mail forwarded to domains
that were not originally part of their messages' recipient lists.
This means that destination domains previously unknown to the Domain
Owner may now become visible.
Disclosure of information about the messages is being requested by
the entity generating the email in the first place, i.e., the Domain
Owner and not the Mail Receiver, so this may not fit squarely within
Kucherawy & Zwicky Informational [Page 38]
^L
RFC 7489 DMARC March 2015
existing privacy policy provisions. For some providers, aggregate
reporting and failed-message reporting are viewed as a function
similar to complaint reporting about spamming or phishing and are
treated similarly under the privacy policy. Report generators (i.e.,
Mail Receivers) are encouraged to review their reporting limitations
under such policies before enabling DMARC reporting.
9.2. Report Recipients
A DMARC record can specify that reports should be sent to an
intermediary operating on behalf of the Domain Owner. This is done
when the Domain Owner contracts with an entity to monitor mail
streams for abuse and performance issues. Receipt by third parties
of such data may or may not be permitted by the Mail Receiver's
privacy policy, terms of use, or other similar governing document.
Domain Owners and Mail Receivers should both review and understand if
their own internal policies constrain the use and transmission of
DMARC reporting.
Some potential exists for report recipients to perform traffic
analysis, making it possible to obtain metadata about the Receiver's
traffic. In addition to verifying compliance with policies,
Receivers need to consider that before sending reports to a third
party.
10. Other Topics
This section discusses some topics regarding choices made in the
development of DMARC, largely to commit the history to record.
10.1. Issues Specific to SPF
Though DMARC does not inherently change the semantics of an SPF
policy record, historically lax enforcement of such policies has led
many to publish extremely broad records containing many large network
ranges. Domain Owners are strongly encouraged to carefully review
their SPF records to understand which networks are authorized to send
on behalf of the Domain Owner before publishing a DMARC record.
Some receiver architectures might implement SPF in advance of any
DMARC operations. This means that a "-" prefix on a sender's SPF
mechanism, such as "-all", could cause that rejection to go into
effect early in handling, causing message rejection before any DMARC
processing takes place. Operators choosing to use "-all" should be
aware of this.
Kucherawy & Zwicky Informational [Page 39]
^L
RFC 7489 DMARC March 2015
10.2. DNS Load and Caching
DMARC policies are communicated using the DNS and therefore inherit a
number of considerations related to DNS caching. The inherent
conflict between freshness and the impact of caching on the reduction
of DNS-lookup overhead should be considered from the Mail Receiver's
point of view. Should Domain Owners publish a DNS record with a very
short TTL, Mail Receivers can be provoked through the injection of
large volumes of messages to overwhelm the Domain Owner's DNS.
Although this is not a concern specific to DMARC, the implications of
a very short TTL should be considered when publishing DMARC policies.
Conversely, long TTLs will cause records to be cached for long
periods of time. This can cause a critical change to DMARC
parameters advertised by a Domain Owner to go unnoticed for the
length of the TTL (while waiting for DNS caches to expire). Avoiding
this problem can mean shorter TTLs, with the potential problems
described above. A balance should be sought to maintain
responsiveness of DMARC preference changes while preserving the
benefits of DNS caching.
10.3. Rejecting Messages
This proposal calls for rejection of a message during the SMTP
session under certain circumstances. This is preferable to
generation of a Delivery Status Notification ([DSN]), since
fraudulent messages caught and rejected using DMARC would then result
in annoying generation of such failure reports that go back to the
RFC5321.MailFrom address.
This synchronous rejection is typically done in one of two ways:
o Full rejection, wherein the SMTP server issues a 5xy reply code as
an indication to the SMTP client that the transaction failed; the
SMTP client is then responsible for generating notification that
delivery failed (see Section 4.2.5 of [SMTP]).
o A "silent discard", wherein the SMTP server returns a 2xy reply
code implying to the client that delivery (or, at least, relay)
was successfully completed, but then simply discarding the message
with no further action.
Each of these has a cost. For instance, a silent discard can help to
prevent backscatter, but it also effectively means that the SMTP
server has to be programmed to give a false result, which can
confound external debugging efforts.
Kucherawy & Zwicky Informational [Page 40]
^L
RFC 7489 DMARC March 2015
Similarly, the text portion of the SMTP reply may be important to
consider. For example, when rejecting a message, revealing the
reason for the rejection might give an attacker enough information to
bypass those efforts on a later attempt, though it might also assist
a legitimate client to determine the source of some local issue that
caused the rejection.
In the latter case, when doing an SMTP rejection, providing a clear
hint can be useful in resolving issues. A receiver might indicate in
plain text the reason for the rejection by using the word "DMARC"
somewhere in the reply text. Many systems are able to scan the SMTP
reply text to determine the nature of the rejection. Thus, providing
a machine-detectable reason for rejection allows the problems causing
rejections to be properly addressed by automated systems. For
example:
550 5.7.1 Email rejected per DMARC policy for example.com
If a Mail Receiver elects to defer delivery due to inability to
retrieve or apply DMARC policy, this is best done with a 4xy SMTP
reply code.
10.4. Identifier Alignment Considerations
The DMARC mechanism allows both DKIM and SPF-authenticated
identifiers to authenticate email on behalf of a Domain Owner and,
possibly, on behalf of different subdomains. If malicious or unaware
users can gain control of the SPF record or DKIM selector records for
a subdomain, the subdomain can be used to generate DMARC-passing
email on behalf of the Organizational Domain.
For example, an attacker who controls the SPF record for
"evil.example.com" can send mail with an RFC5322.From field
containing "foo@example.com" that can pass both authentication and
the DMARC check against "example.com".
The Organizational Domain administrator should be careful not to
delegate control of subdomains if this is an issue, and to consider
using the "strict" Identifier Alignment option if appropriate.
10.5. Interoperability Issues
DMARC limits which end-to-end scenarios can achieve a "pass" result.
Because DMARC relies on [SPF] and/or [DKIM] to achieve a "pass",
their limitations also apply.
Kucherawy & Zwicky Informational [Page 41]
^L
RFC 7489 DMARC March 2015
Additional DMARC constraints occur when a message is processed by
some Mediators, such as mailing lists. Transiting a Mediator often
causes either the authentication to fail or Identifier Alignment to
be lost. These transformations may conform to standards but will
still prevent a DMARC "pass".
In addition to Mediators, mail that is sent by authorized,
independent third parties might not be sent with Identifier
Alignment, also preventing a "pass" result.
Issues specific to the use of policy mechanisms alongside DKIM are
further discussed in [DKIM-LISTS], particularly Section 5.2.
11. IANA Considerations
This section describes actions completed by IANA.
11.1. Authentication-Results Method Registry Update
IANA has added the following to the "Email Authentication Methods"
registry:
Method: dmarc
Defined: RFC 7489
ptype: header
Property: from
Value: the domain portion of the RFC5322.From field
Status: active
Version: 1
11.2. Authentication-Results Result Registry Update
IANA has added the following in the "Email Authentication Result
Names" registry:
Code: none
Existing/New Code: existing
Defined: [AUTH-RESULTS]
Auth Method: dmarc (added)
Kucherawy & Zwicky Informational [Page 42]
^L
RFC 7489 DMARC March 2015
Meaning: No DMARC policy record was published for the aligned
identifier, or no aligned identifier could be extracted.
Status: active
Code: pass
Existing/New Code: existing
Defined: [AUTH-RESULTS]
Auth Method: dmarc (added)
Meaning: A DMARC policy record was published for the aligned
identifier, and at least one of the authentication mechanisms
passed.
Status: active
Code: fail
Existing/New Code: existing
Defined: [AUTH-RESULTS]
Auth Method: dmarc (added)
Meaning: A DMARC policy record was published for the aligned
identifier, and none of the authentication mechanisms passed.
Status: active
Code: temperror
Existing/New Code: existing
Defined: [AUTH-RESULTS]
Auth Method: dmarc (added)
Meaning: A temporary error occurred during DMARC evaluation. A
later attempt might produce a final result.
Status: active
Kucherawy & Zwicky Informational [Page 43]
^L
RFC 7489 DMARC March 2015
Code: permerror
Existing/New Code: existing
Defined: [AUTH-RESULTS]
Auth Method: dmarc (added)
Meaning: A permanent error occurred during DMARC evaluation, such as
encountering a syntactically incorrect DMARC record. A later
attempt is unlikely to produce a final result.
Status: active
11.3. Feedback Report Header Fields Registry Update
The following has been added to the "Feedback Report Header Fields"
registry:
Field Name: Identity-Alignment
Description: indicates whether the message about which a report is
being generated had any identifiers in alignment as defined in
RFC 7489
Multiple Appearances: No
Related "Feedback-Type": auth-failure
Reference: RFC 7489
Status: current
11.4. DMARC Tag Registry
A new registry tree called "Domain-based Message Authentication,
Reporting, and Conformance (DMARC) Parameters" has been created.
Within it, a new sub-registry called the "DMARC Tag Registry" has
been created.
Names of DMARC tags must be registered with IANA in this new
sub-registry. New entries are assigned only for values that have
been documented in a manner that satisfies the terms of Specification
Required, per [IANA-CONSIDERATIONS]. Each registration must include
the tag name; the specification that defines it; a brief description;
and its status, which must be one of "current", "experimental", or
"historic". The Designated Expert needs to confirm that the provided
Kucherawy & Zwicky Informational [Page 44]
^L
RFC 7489 DMARC March 2015
specification adequately describes the new tag and clearly presents
how it would be used within the DMARC context by Domain Owners and
Mail Receivers.
To avoid version compatibility issues, tags added to the DMARC
specification are to avoid changing the semantics of existing records
when processed by implementations conforming to prior specifications.
The initial set of entries in this registry is as follows:
+----------+-------------+---------+------------------------------+
| Tag Name | Reference | Status | Description |
+----------+-------------+---------+------------------------------+
| adkim | RFC 7489 | current | DKIM alignment mode |
+----------+-------------+---------+------------------------------+
| aspf | RFC 7489 | current | SPF alignment mode |
+----------+-------------+---------+------------------------------+
| fo | RFC 7489 | current | Failure reporting options |
+----------+-------------+---------+------------------------------+
| p | RFC 7489 | current | Requested handling policy |
+----------+-------------+---------+------------------------------+
| pct | RFC 7489 | current | Sampling rate |
+----------+-------------+---------+------------------------------+
| rf | RFC 7489 | current | Failure reporting format(s) |
+----------+-------------+---------+------------------------------+
| ri | RFC 7489 | current | Aggregate Reporting interval |
+----------+-------------+---------+------------------------------+
| rua | RFC 7489 | current | Reporting URI(s) for |
| | | | aggregate data |
+----------+-------------+---------+------------------------------+
| ruf | RFC 7489 | current | Reporting URI(s) for |
| | | | failure data |
+----------+-------------+---------+------------------------------+
| sp | RFC 7489 | current | Requested handling policy |
| | | | for subdomains |
+----------+-------------+---------+------------------------------+
| v | RFC 7489 | current | Specification version |
+----------+-------------+---------+------------------------------+
11.5. DMARC Report Format Registry
Also within "Domain-based Message Authentication, Reporting, and
Conformance (DMARC) Parameters", a new sub-registry called "DMARC
Report Format Registry" has been created.
Names of DMARC failure reporting formats must be registered with IANA
in this registry. New entries are assigned only for values that
satisfy the definition of Specification Required, per
Kucherawy & Zwicky Informational [Page 45]
^L
RFC 7489 DMARC March 2015
[IANA-CONSIDERATIONS]. In addition to a reference to a permanent
specification, each registration must include the format name; a
brief description; and its status, which must be one of "current",
"experimental", or "historic". The Designated Expert needs to
confirm that the provided specification adequately describes the
report format and clearly presents how it would be used within the
DMARC context by Domain Owners and Mail Receivers.
The initial entry in this registry is as follows:
+--------+-------------+---------+-----------------------------+
| Format | Reference | Status | Description |
| Name | | | |
+--------+-------------+---------+-----------------------------+
| afrf | RFC 7489 | current | Authentication Failure |
| | | | Reporting Format (see |
| | | | [AFRF]) |
+--------+-------------+---------+-----------------------------+
12. Security Considerations
This section discusses security issues and possible remediations
(where available) for DMARC.
12.1. Authentication Methods
Security considerations from the authentication methods used by DMARC
are incorporated here by reference.
12.2. Attacks on Reporting URIs
URIs published in DNS TXT records are well-understood possible
targets for attack. Specifications such as [DNS] and [ROLES] either
expose or cause the exposure of email addresses that could be flooded
by an attacker, for example; MX, NS, and other records found in the
DNS advertise potential attack destinations; common DNS names such as
"www" plainly identify the locations at which particular services can
be found, providing destinations for targeted denial-of-service or
penetration attacks.
Thus, Domain Owners will need to harden these addresses against
various attacks, including but not limited to:
o high-volume denial-of-service attacks;
o deliberate construction of malformed reports intended to identify
or exploit parsing or processing vulnerabilities;
Kucherawy & Zwicky Informational [Page 46]
^L
RFC 7489 DMARC March 2015
o deliberate construction of reports containing false claims for the
Submitter or Reported-Domain fields, including the possibility of
false data from compromised but known Mail Receivers.
12.3. DNS Security
The DMARC mechanism and its underlying technologies (SPF, DKIM)
depend on the security of the DNS. To reduce the risk of subversion
of the DMARC mechanism due to DNS-based exploits, serious
consideration should be given to the deployment of DNSSEC in parallel
with the deployment of DMARC by both Domain Owners and Mail
Receivers.
Publication of data using DNSSEC is relevant to Domain Owners and
third-party Report Receivers. DNSSEC-aware resolution is relevant to
Mail Receivers and Report Receivers.
12.4. Display Name Attacks
A common attack in messaging abuse is the presentation of false
information in the display-name portion of the RFC5322.From field.
For example, it is possible for the email address in that field to be
an arbitrary address or domain name, while containing a well-known
name (a person, brand, role, etc.) in the display name, intending to
fool the end user into believing that the name is used legitimately.
The attack is predicated on the notion that most common MUAs will
show the display name and not the email address when both are
available.
Generally, display name attacks are out of scope for DMARC, as
further exploration of possible defenses against these attacks needs
to be undertaken.
There are a few possible mechanisms that attempt mitigation of these
attacks, such as the following:
o If the display name is found to include an email address (as
specified in [MAIL]), execute the DMARC mechanism on the domain
name found there rather than the domain name discovered
originally. However, this addresses only a very specific attack
space, and spoofers can easily circumvent it by simply not using
an email address in the display name. There are also known cases
of legitimate uses of an email address in the display name with a
domain different from the one in the address portion, e.g.,
From: "user@example.org via Bug Tracker" <support@example.com>
Kucherawy & Zwicky Informational [Page 47]
^L
RFC 7489 DMARC March 2015
o In the MUA, only show the display name if the DMARC mechanism
succeeds. This too is easily defeated, as an attacker could
arrange to pass the DMARC tests while fraudulently using another
domain name in the display name.
o In the MUA, only show the display name if the DMARC mechanism
passes and the email address thus validated matches one found in
the receiving user's list of known addresses.
12.5. External Reporting Addresses
To avoid abuse by bad actors, reporting addresses generally have to
be inside the domains about which reports are requested. In order to
accommodate special cases such as a need to get reports about domains
that cannot actually receive mail, Section 7.1 describes a DNS-based
mechanism for verifying approved external reporting.
The obvious consideration here is an increased DNS load against
domains that are claimed as external recipients. Negative caching
will mitigate this problem, but only to a limited extent, mostly
dependent on the default TTL in the domain's SOA record.
Where possible, external reporting is best achieved by having the
report be directed to domains that can receive mail and simply having
it automatically forwarded to the desired external destination.
Note that the addresses shown in the "ruf" tag receive more
information that might be considered private data, since it is
possible for actual email content to appear in the failure reports.
The URIs identified there are thus more attractive targets for
intrusion attempts than those found in the "rua" tag. Moreover,
attacking the DNS of the subject domain to cause failure data to be
routed fraudulently to an attacker's systems may be an attractive
prospect. Deployment of [DNSSEC] is advisable if this is a concern.
The verification mechanism presented in Section 7.1 is currently not
mandatory ("MUST") but strongly recommended ("SHOULD"). It is
possible that it would be elevated to a "MUST" by later security
review.
12.6. Secure Protocols
This document encourages use of secure transport mechanisms to
prevent loss of private data to third parties that may be able to
monitor such transmissions. Unencrypted mechanisms should be
avoided.
Kucherawy & Zwicky Informational [Page 48]
^L
RFC 7489 DMARC March 2015
In particular, a message that was originally encrypted or otherwise
secured might appear in a report that is not sent securely, which
could reveal private information.
13. References
13.1. Normative References
[ABNF] Crocker, D., Ed., and P. Overell, "Augmented BNF for
Syntax Specifications: ABNF", STD 68, RFC 5234,
January 2008, <http://www.rfc-editor.org/info/rfc5234>.
[AFRF] Fontana, H., "Authentication Failure Reporting Using the
Abuse Reporting Format", RFC 6591, April 2012,
<http://www.rfc-editor.org/info/rfc6591>.
[AFRF-DKIM]
Kucherawy, M., "Extensions to DomainKeys Identified Mail
(DKIM) for Failure Reporting", RFC 6651, June 2012,
<http://www.rfc-editor.org/info/rfc6651>.
[AFRF-SPF] Kitterman, S., "Sender Policy Framework (SPF)
Authentication Failure Reporting Using the Abuse Reporting
Format", RFC 6652, June 2012,
<http://www.rfc-editor.org/info/rfc6652>.
[DKIM] Crocker, D., Ed., Hansen, T., Ed., and M. Kucherawy, Ed.,
"DomainKeys Identified Mail (DKIM) Signatures", STD 76,
RFC 6376, September 2011, <http://www.rfc-editor.org/
info/rfc6376>.
[DNS] Mockapetris, P., "Domain names - implementation and
specification", STD 13, RFC 1035, November 1987,
<http://www.rfc-editor.org/info/rfc1035>.
[DNS-CASE] Eastlake 3rd, D., "Domain Name System (DNS) Case
Insensitivity Clarification", RFC 4343, January 2006,
<http://www.rfc-editor.org/info/rfc4343>.
[GZIP] Levine, J., "The 'application/zlib' and 'application/gzip'
Media Types", RFC 6713, August 2012,
<http://www.rfc-editor.org/info/rfc6713>.
[IDNA] Klensin, J., "Internationalized Domain Names for
Applications (IDNA): Definitions and Document Framework",
RFC 5890, August 2010,
<http://www.rfc-editor.org/info/rfc5890>.
Kucherawy & Zwicky Informational [Page 49]
^L
RFC 7489 DMARC March 2015
[KEYWORDS] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997,
<http://www.rfc-editor.org/info/rfc2119>.
[MAIL] Resnick, P., Ed., "Internet Message Format", RFC 5322,
October 2008, <http://www.rfc-editor.org/info/rfc5322>.
[MIME] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message
Bodies", RFC 2045, November 1996,
<http://www.rfc-editor.org/info/rfc2045>.
[SEC-TERMS]
Shirey, R., "Internet Security Glossary, Version 2",
FYI 36, RFC 4949, August 2007,
<http://www.rfc-editor.org/info/rfc4949>.
[SMTP] Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,
October 2008, <http://www.rfc-editor.org/info/rfc5321>.
[SPF] Kitterman, S., "Sender Policy Framework (SPF) for
Authorizing Use of Domains in Email, Version 1", RFC 7208,
April 2014, <http://www.rfc-editor.org/info/rfc7208>.
[URI] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", STD 66,
RFC 3986, January 2005,
<http://www.rfc-editor.org/info/rfc3986>.
13.2. Informative References
[ADSP] Allman, E., Fenton, J., Delany, M., and J. Levine,
"DomainKeys Identified Mail (DKIM) Author Domain Signing
Practices (ADSP)", RFC 5617, August 2009,
<http://www.rfc-editor.org/info/rfc5617>.
[ARF] Shafranovich, Y., Levine, J., and M. Kucherawy, "An
Extensible Format for Email Feedback Reports", RFC 5965,
August 2010, <http://www.rfc-editor.org/info/rfc5965>.
[AUTH-RESULTS]
Kucherawy, M., "Message Header Field for Indicating
Message Authentication Status", RFC 7001, September 2013,
<http://www.rfc-editor.org/info/rfc7001>.
Kucherawy & Zwicky Informational [Page 50]
^L
RFC 7489 DMARC March 2015
[Best-Guess-SPF]
Kitterman, S., "Sender Policy Framework: Best guess record
(FAQ entry)", May 2010,
<http://www.openspf.org/FAQ/Best_guess_record>.
[DKIM-DEPLOYMENT]
Hansen, T., Siegel, E., Hallam-Baker, P., and D. Crocker,
"DomainKeys Identified Mail (DKIM) Development,
Deployment, and Operations", RFC 5863, May 2010,
<http://www.rfc-editor.org/info/rfc5863>.
[DKIM-LISTS]
Kucherawy, M., "DomainKeys Identified Mail (DKIM) and
Mailing Lists", BCP 167, RFC 6377, September 2011,
<http://www.rfc-editor.org/info/rfc6377>.
[DKIM-OVERVIEW]
Hansen, T., Crocker, D., and P. Hallam-Baker, "DomainKeys
Identified Mail (DKIM) Service Overview", RFC 5585,
July 2009, <http://www.rfc-editor.org/info/rfc5585>.
[DKIM-THREATS]
Fenton, J., "Analysis of Threats Motivating DomainKeys
Identified Mail (DKIM)", RFC 4686, September 2006,
<http://www.rfc-editor.org/info/rfc4686>.
[DNSSEC] Arends, R., Austein, R., Larson, M., Massey, D., and S.
Rose, "DNS Security Introduction and Requirements",
RFC 4033, March 2005,
<http://www.rfc-editor.org/info/rfc4033>.
[DSN] Moore, K. and G. Vaudreuil, "An Extensible Message Format
for Delivery Status Notifications", RFC 3464,
January 2003, <http://www.rfc-editor.org/info/rfc3464>.
[EMAIL-ARCH]
Crocker, D., "Internet Mail Architecture", RFC 5598,
July 2009, <http://www.rfc-editor.org/info/rfc5598>.
[IANA-CONSIDERATIONS]
Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", BCP 26, RFC 5226,
May 2008, <http://www.rfc-editor.org/info/rfc5226>.
[ROLES] Crocker, D., "Mailbox Names for Common Services, Roles and
Functions", RFC 2142, May 1997,
<http://www.rfc-editor.org/info/rfc2142>.
Kucherawy & Zwicky Informational [Page 51]
^L
RFC 7489 DMARC March 2015
Appendix A. Technology Considerations
This section documents some design decisions that were made in the
development of DMARC. Specifically, addressed here are some
suggestions that were considered but not included in the design.
This text is included to explain why they were considered and not
included in this version.
A.1. S/MIME
S/MIME, or Secure Multipurpose Internet Mail Extensions, is a
standard for encryption and signing of MIME data in a message. This
was suggested and considered as a third security protocol for
authenticating the source of a message.
DMARC is focused on authentication at the domain level (i.e., the
Domain Owner taking responsibility for the message), while S/MIME is
really intended for user-to-user authentication and encryption. This
alone appears to make it a bad fit for DMARC's goals.
S/MIME also suffers from the heavyweight problem of Public Key
Infrastructure, which means that distribution of keys used to verify
signatures needs to be incorporated. In many instances, this alone
is a showstopper. There have been consistent promises that PKI
usability and deployment will improve, but these have yet to
materialize. DMARC can revisit this choice after those barriers are
addressed.
S/MIME has extensive deployment in specific market segments
(government, for example) but does not enjoy similar widespread
deployment over the general Internet, and this shows no signs of
changing. DKIM and SPF both are deployed widely over the general
Internet, and their adoption rates continue to be positive.
Finally, experiments have shown that including S/MIME support in the
initial version of DMARC would neither cause nor enable a substantial
increase in the accuracy of the overall mechanism.
Kucherawy & Zwicky Informational [Page 52]
^L
RFC 7489 DMARC March 2015
A.2. Method Exclusion
It was suggested that DMARC include a mechanism by which a Domain
Owner could tell Message Receivers not to attempt validation by one
of the supported methods (e.g., "check DKIM, but not SPF").
Specifically, consider a Domain Owner that has deployed one of the
technologies, and that technology fails for some messages, but such
failures don't cause enforcement action. Deploying DMARC would cause
enforcement action for policies other than "none", which would appear
to exclude participation by that Domain Owner.
The DMARC development team evaluated the idea of policy exception
mechanisms on several occasions and invariably concluded that there
was not a strong enough use case to include them. The specific
target audience for DMARC does not appear to have concerns about the
failure modes of one or the other being a barrier to DMARC's
adoption.
In the scenario described above, the Domain Owner has a few options:
1. Tighten up its infrastructure to minimize the failure modes of
the single deployed technology.
2. Deploy the other supported authentication mechanism, to offset
the failure modes of the first.
3. Deploy DMARC in a reporting-only mode.
A.3. Sender Header Field
It has been suggested in several message authentication efforts that
the Sender header field be checked for an identifier of interest, as
the standards indicate this as the proper way to indicate a
re-mailing of content such as through a mailing list. Most recently,
it was a protocol-level option for DomainKeys, but on evolution to
DKIM, this property was removed.
The DMARC development team considered this and decided not to include
support for doing so, for the following reasons:
1. The main user protection approach is to be concerned with what
the user sees when a message is rendered. There is no consistent
behavior among MUAs regarding what to do with the content of the
Sender field, if present. Accordingly, supporting checking of
the Sender identifier would mean applying policy to an identifier
Kucherawy & Zwicky Informational [Page 53]
^L
RFC 7489 DMARC March 2015
the end user might never actually see, which can create a vector
for attack against end users by simply forging a Sender field
containing some identifier that DMARC will like.
2. Although it is certainly true that this is what the Sender field
is for, its use in this way is also unreliable, making it a poor
candidate for inclusion in the DMARC evaluation algorithm.
3. Allowing multiple ways to discover policy introduces unacceptable
ambiguity into the DMARC evaluation algorithm in terms of which
policy is to be applied and when.
A.4. Domain Existence Test
A common practice among MTA operators, and indeed one documented in
[ADSP], is a test to determine domain existence prior to any more
expensive processing. This is typically done by querying the DNS for
MX, A, or AAAA resource records for the name being evaluated and
assuming that the domain is nonexistent if it could be determined
that no such records were published for that domain name.
The original pre-standardization version of this protocol included a
mandatory check of this nature. It was ultimately removed, as the
method's error rate was too high without substantial manual tuning
and heuristic work. There are indeed use cases this work needs to
address where such a method would return a negative result about a
domain for which reporting is desired, such as a registered domain
name that never sends legitimate mail and thus has none of these
records present in the DNS.
A.5. Issues with ADSP in Operation
DMARC has been characterized as a "super-ADSP" of sorts.
Contributors to DMARC have compiled a list of issues associated with
ADSP, gained from operational experience, that have influenced the
direction of DMARC:
1. ADSP has no support for subdomains, i.e., the ADSP record for
example.com does not explicitly or implicitly apply to
subdomain.example.com. If wildcarding is not applied, then
spammers can trivially bypass ADSP by sending from a subdomain
with no ADSP record.
Kucherawy & Zwicky Informational [Page 54]
^L
RFC 7489 DMARC March 2015
2. Nonexistent subdomains are explicitly out of scope in ADSP.
There is nothing in ADSP that states receivers should simply
reject mail from NXDOMAINs regardless of ADSP policy (which of
course allows spammers to trivially bypass ADSP by sending email
from nonexistent subdomains).
3. ADSP has no operational advice on when to look up the ADSP
record.
4. ADSP has no support for using SPF as an auxiliary mechanism to
DKIM.
5. ADSP has no support for a slow rollout, i.e., no way to configure
a percentage of email on which the receiver should apply the
policy. This is important for large-volume senders.
6. ADSP has no explicit support for an intermediate phase where the
receiver quarantines (e.g., sends to the recipient's "spam"
folder) rather than rejects the email.
7. The binding between the "From" header domain and DKIM is too
tight for ADSP; they must match exactly.
A.6. Organizational Domain Discovery Issues
Although protocols like ADSP are useful for "protecting" a specific
domain name, they are not helpful at protecting subdomains. If one
wished to protect "example.com" by requiring via ADSP that all mail
bearing an RFC5322.From domain of "example.com" be signed, this would
"protect" that domain; however, one could then craft an email whose
RFC5322.From domain is "security.example.com", and ADSP would not
provide any protection. One could use a DNS wildcard, but this can
undesirably interfere with other DNS activity; one could add ADSP
records as fraudulent domains are discovered, but this solution does
not scale and is a purely reactive measure against abuse.
The DNS does not provide a method by which the "domain of record", or
the domain that was actually registered with a domain registrar, can
be determined given an arbitrary domain name. Suggestions have been
made that attempt to glean such information from SOA or NS resource
records, but these too are not fully reliable, as the partitioning of
the DNS is not always done at administrative boundaries.
When seeking domain-specific policy based on an arbitrary domain
name, one could "climb the tree", dropping labels off the left end of
the name until the root is reached or a policy is discovered, but
then one could craft a name that has a large number of nonsense
Kucherawy & Zwicky Informational [Page 55]
^L
RFC 7489 DMARC March 2015
labels; this would cause a Mail Receiver to attempt a large number of
queries in search of a policy record. Sending many such messages
constitutes an amplified denial-of-service attack.
The Organizational Domain mechanism is a necessary component to the
goals of DMARC. The method described in Section 3.2 is far from
perfect but serves this purpose reasonably well without adding undue
burden or semantics to the DNS. If a method is created to do so that
is more reliable and secure than the use of a public suffix list,
DMARC should be amended to use that method as soon as it is generally
available.
A.6.1. Public Suffix Lists
A public suffix list for the purposes of determining the
Organizational Domain can be obtained from various sources. The most
common one is maintained by the Mozilla Foundation and made public at
<http://publicsuffix.org>. License terms governing the use of that
list are available at that URI.
Note that if operators use a variety of public suffix lists,
interoperability will be difficult or impossible to guarantee.
Appendix B. Examples
This section illustrates both the Domain Owner side and the Mail
Receiver side of a DMARC exchange.
B.1. Identifier Alignment Examples
The following examples illustrate the DMARC mechanism's use of
Identifier Alignment. For brevity's sake, only message headers are
shown, as message bodies are not considered when conducting DMARC
checks.
B.1.1. SPF
The following SPF examples assume that SPF produces a passing result.
Example 1: SPF in alignment:
MAIL FROM: <sender@example.com>
From: sender@example.com
Date: Fri, Feb 15 2002 16:54:30 -0800
To: receiver@example.org
Subject: here's a sample
Kucherawy & Zwicky Informational [Page 56]
^L
RFC 7489 DMARC March 2015
In this case, the RFC5321.MailFrom parameter and the RFC5322.From
field have identical DNS domains. Thus, the identifiers are in
alignment.
Example 2: SPF in alignment (parent):
MAIL FROM: <sender@child.example.com>
From: sender@example.com
Date: Fri, Feb 15 2002 16:54:30 -0800
To: receiver@example.org
Subject: here's a sample
In this case, the RFC5322.From parameter includes a DNS domain that
is a parent of the RFC5321.MailFrom domain. Thus, the identifiers
are in alignment if relaxed SPF mode is requested by the Domain
Owner, and not in alignment if strict SPF mode is requested.
Example 3: SPF not in alignment:
MAIL FROM: <sender@example.net>
From: sender@child.example.com
Date: Fri, Feb 15 2002 16:54:30 -0800
To: receiver@example.org
Subject: here's a sample
In this case, the RFC5321.MailFrom parameter includes a DNS domain
that is neither the same as nor a parent of the RFC5322.From domain.
Thus, the identifiers are not in alignment.
B.1.2. DKIM
The examples below assume that the DKIM signatures pass verification.
Alignment cannot exist with a DKIM signature that does not verify.
Example 1: DKIM in alignment:
DKIM-Signature: v=1; ...; d=example.com; ...
From: sender@example.com
Date: Fri, Feb 15 2002 16:54:30 -0800
To: receiver@example.org
Subject: here's a sample
In this case, the DKIM "d=" parameter and the RFC5322.From field have
identical DNS domains. Thus, the identifiers are in alignment.
Kucherawy & Zwicky Informational [Page 57]
^L
RFC 7489 DMARC March 2015
Example 2: DKIM in alignment (parent):
DKIM-Signature: v=1; ...; d=example.com; ...
From: sender@child.example.com
Date: Fri, Feb 15 2002 16:54:30 -0800
To: receiver@example.org
Subject: here's a sample
In this case, the DKIM signature's "d=" parameter includes a DNS
domain that is a parent of the RFC5322.From domain. Thus, the
identifiers are in alignment for relaxed mode, but not for strict
mode.
Example 3: DKIM not in alignment:
DKIM-Signature: v=1; ...; d=sample.net; ...
From: sender@child.example.com
Date: Fri, Feb 15 2002 16:54:30 -0800
To: receiver@example.org
Subject: here's a sample
In this case, the DKIM signature's "d=" parameter includes a DNS
domain that is neither the same as nor a parent of the RFC5322.From
domain. Thus, the identifiers are not in alignment.
B.2. Domain Owner Example
A Domain Owner that wants to use DMARC should have already deployed
and tested SPF and DKIM. The next step is to publish a DNS record
that advertises a DMARC policy for the Domain Owner's Organizational
Domain.
B.2.1. Entire Domain, Monitoring Only
The owner of the domain "example.com" has deployed SPF and DKIM on
its messaging infrastructure. The owner wishes to begin using DMARC
with a policy that will solicit aggregate feedback from receivers
without affecting how the messages are processed, in order to:
o Confirm that its legitimate messages are authenticating correctly
o Verify that all authorized message sources have implemented
authentication measures
o Determine how many messages from other sources would be affected
by a blocking policy
Kucherawy & Zwicky Informational [Page 58]
^L
RFC 7489 DMARC March 2015
The Domain Owner accomplishes this by constructing a policy record
indicating that:
o The version of DMARC being used is "DMARC1" ("v=DMARC1")
o Receivers should not alter how they treat these messages because
of this DMARC policy record ("p=none")
o Aggregate feedback reports should be sent via email to the address
"dmarc-feedback@example.com"
("rua=mailto:dmarc-feedback@example.com")
o All messages from this Organizational Domain are subject to this
policy (no "pct" tag present, so the default of 100% applies)
The DMARC policy record might look like this when retrieved using a
common command-line tool:
% dig +short TXT _dmarc.example.com.
"v=DMARC1; p=none; rua=mailto:dmarc-feedback@example.com"
To publish such a record, the DNS administrator for the Domain Owner
creates an entry like the following in the appropriate zone file
(following the conventional zone file format):
; DMARC record for the domain example.com
_dmarc IN TXT ( "v=DMARC1; p=none; "
"rua=mailto:dmarc-feedback@example.com" )
B.2.2. Entire Domain, Monitoring Only, Per-Message Reports
The Domain Owner from the previous example has used the aggregate
reporting to discover some messaging systems that had not yet
implemented DKIM correctly, but they are still seeing periodic
authentication failures. In order to diagnose these intermittent
problems, they wish to request per-message failure reports when
authentication failures occur.
Not all Receivers will honor such a request, but the Domain Owner
feels that any reports it does receive will be helpful enough to
justify publishing this record. The default per-message report
format ([AFRF]) meets the Domain Owner's needs in this scenario.
Kucherawy & Zwicky Informational [Page 59]
^L
RFC 7489 DMARC March 2015
The Domain Owner accomplishes this by adding the following to its
policy record from Appendix B.2:
o Per-message failure reports should be sent via email to the
address "auth-reports@example.com"
("ruf=mailto:auth-reports@example.com")
The DMARC policy record might look like this when retrieved using a
common command-line tool (the output shown would appear on a single
line but is wrapped here for publication):
% dig +short TXT _dmarc.example.com.
"v=DMARC1; p=none; rua=mailto:dmarc-feedback@example.com;
ruf=mailto:auth-reports@example.com"
To publish such a record, the DNS administrator for the Domain Owner
might create an entry like the following in the appropriate zone file
(following the conventional zone file format):
; DMARC record for the domain example.com
_dmarc IN TXT ( "v=DMARC1; p=none; "
"rua=mailto:dmarc-feedback@example.com; "
"ruf=mailto:auth-reports@example.com" )
B.2.3. Per-Message Failure Reports Directed to Third Party
The Domain Owner from the previous example is maintaining the same
policy but now wishes to have a third party receive and process the
per-message failure reports. Again, not all Receivers will honor
this request, but those that do may implement additional checks to
validate that the third party wishes to receive the failure reports
for this domain.
The Domain Owner needs to alter its policy record from Appendix B.2.2
as follows:
o Per-message failure reports should be sent via email to the
address "auth-reports@thirdparty.example.net"
("ruf=mailto:auth-reports@thirdparty.example.net")
The DMARC policy record might look like this when retrieved using a
common command-line tool (the output shown would appear on a single
line but is wrapped here for publication):
% dig +short TXT _dmarc.example.com.
"v=DMARC1; p=none; rua=mailto:dmarc-feedback@example.com;
ruf=mailto:auth-reports@thirdparty.example.net"
Kucherawy & Zwicky Informational [Page 60]
^L
RFC 7489 DMARC March 2015
To publish such a record, the DNS administrator for the Domain Owner
might create an entry like the following in the appropriate zone file
(following the conventional zone file format):
; DMARC record for the domain example.com
_dmarc IN TXT ( "v=DMARC1; p=none; "
"rua=mailto:dmarc-feedback@example.com; "
"ruf=mailto:auth-reports@thirdparty.example.net" )
Because the address used in the "ruf" tag is outside the
Organizational Domain in which this record is published, conforming
Receivers will implement additional checks as described in
Section 7.1 of this document. In order to pass these additional
checks, the third party will need to publish an additional DNS record
as follows:
o Given the DMARC record published by the Domain Owner at
"_dmarc.example.com", the DNS administrator for the third party
will need to publish a TXT resource record at
"example.com._report._dmarc.thirdparty.example.net" with the value
"v=DMARC1".
The resulting DNS record might look like this when retrieved using a
common command-line tool (the output shown would appear on a single
line but is wrapped here for publication):
% dig +short TXT example.com._report._dmarc.thirdparty.example.net
"v=DMARC1"
To publish such a record, the DNS administrator for example.net might
create an entry like the following in the appropriate zone file
(following the conventional zone file format):
; zone file for thirdparty.example.net
; Accept DMARC failure reports on behalf of example.com
example.com._report._dmarc IN TXT "v=DMARC1"
Intermediaries and other third parties should refer to Section 7.1
for the full details of this mechanism.
B.2.4. Subdomain, Sampling, and Multiple Aggregate Report URIs
The Domain Owner has implemented SPF and DKIM in a subdomain used for
pre-production testing of messaging services. It now wishes to
request that participating receivers act to reject messages from this
subdomain that fail to authenticate.
Kucherawy & Zwicky Informational [Page 61]
^L
RFC 7489 DMARC March 2015
As a first step, it will ask that a portion (1/4 in this example) of
failing messages be quarantined, enabling examination of messages
sent to mailboxes hosted by participating receivers. Aggregate
feedback reports will be sent to a mailbox within the Organizational
Domain, and to a mailbox at a third party selected and authorized to
receive same by the Domain Owner. Aggregate reports sent to the
third party are limited to a maximum size of ten megabytes.
The Domain Owner will accomplish this by constructing a policy record
indicating that:
o The version of DMARC being used is "DMARC1" ("v=DMARC1")
o It is applied only to this subdomain (record is published at
"_dmarc.test.example.com" and not "_dmarc.example.com")
o Receivers should quarantine messages from this Organizational
Domain that fail to authenticate ("p=quarantine")
o Aggregate feedback reports should be sent via email to the
addresses "dmarc-feedback@example.com" and
"example-tld-test@thirdparty.example.net", with the latter
subjected to a maximum size limit ("rua=mailto:dmarc-feedback@
example.com,mailto:tld-test@thirdparty.example.net!10m")
o 25% of messages from this Organizational Domain are subject to
action based on this policy ("pct=25")
The DMARC policy record might look like this when retrieved using a
common command-line tool (the output shown would appear on a single
line but is wrapped here for publication):
% dig +short TXT _dmarc.test.example.com
"v=DMARC1; p=quarantine; rua=mailto:dmarc-feedback@example.com,
mailto:tld-test@thirdparty.example.net!10m; pct=25"
To publish such a record, the DNS administrator for the Domain Owner
might create an entry like the following in the appropriate zone
file:
; DMARC record for the domain example.com
_dmarc IN TXT ( "v=DMARC1; p=quarantine; "
"rua=mailto:dmarc-feedback@example.com,"
"mailto:tld-test@thirdparty.example.net!10m; "
"pct=25" )
Kucherawy & Zwicky Informational [Page 62]
^L
RFC 7489 DMARC March 2015
B.3. Mail Receiver Example
A Mail Receiver that wants to use DMARC should already be checking
SPF and DKIM, and possess the ability to collect relevant information
from various email-processing stages to provide feedback to Domain
Owners (possibly via Report Receivers).
B.3.1. Processing of SMTP Time
An optimal DMARC-enabled Mail Receiver performs authentication and
Identifier Alignment checking during the [SMTP] conversation.
Prior to returning a final reply to the DATA command, the Mail
Receiver's MTA has performed:
1. An SPF check to determine an SPF-authenticated Identifier.
2. DKIM checks that yield one or more DKIM-authenticated
Identifiers.
3. A DMARC policy lookup.
The presence of an Author Domain DMARC record indicates that the Mail
Receiver should continue with DMARC-specific processing before
returning a reply to the DATA command.
Given a DMARC record and the set of Authenticated Identifiers, the
Mail Receiver checks to see if the Authenticated Identifiers align
with the Author Domain (taking into consideration any strict versus
relaxed options found in the DMARC record).
For example, the following sample data is considered to be from a
piece of email originating from the Domain Owner of "example.com":
Author Domain: example.com
SPF-authenticated Identifier: mail.example.com
DKIM-authenticated Identifier: example.com
DMARC record:
"v=DMARC1; p=reject; aspf=r;
rua=mailto:dmarc-feedback@example.com"
In the above sample, both the SPF-authenticated Identifier and the
DKIM-authenticated Identifier align with the Author Domain. The Mail
Receiver considers the above email to pass the DMARC check, avoiding
the "reject" policy that is to be applied to email that fails to pass
the DMARC check.
Kucherawy & Zwicky Informational [Page 63]
^L
RFC 7489 DMARC March 2015
If no Authenticated Identifiers align with the Author Domain, then
the Mail Receiver applies the DMARC-record-specified policy.
However, before this action is taken, the Mail Receiver can consult
external information to override the Domain Owner's policy. For
example, if the Mail Receiver knows that this particular email came
from a known and trusted forwarder (that happens to break both SPF
and DKIM), then the Mail Receiver may choose to ignore the Domain
Owner's policy.
The Mail Receiver is now ready to reply to the DATA command. If the
DMARC check yields that the message is to be rejected, then the Mail
Receiver replies with a 5xy code to inform the sender of failure. If
the DMARC check cannot be resolved due to transient network errors,
then the Mail Receiver replies with a 4xy code to inform the sender
as to the need to reattempt delivery later. If the DMARC check
yields a passing message, then the Mail Receiver continues on with
email processing, perhaps using the result of the DMARC check as an
input to additional processing modules such as a domain reputation
query.
Before exiting DMARC-specific processing, the Mail Receiver checks to
see if the Author Domain DMARC record requests AFRF-based reporting.
If so, then the Mail Receiver can emit an AFRF to the reporting
address supplied in the DMARC record.
At the exit of DMARC-specific processing, the Mail Receiver captures
(through logging or direct insertion into a data store) the result of
DMARC processing. Captured information is used to build feedback for
Domain Owner consumption. This is not necessary if the Domain Owner
has not requested aggregate reports, i.e., no "rua" tag was found in
the policy record.
B.4. Utilization of Aggregate Feedback: Example
Aggregate feedback is consumed by Domain Owners to verify a Domain
Owner's understanding of how the Domain Owner's domain is being
processed by the Mail Receiver. Aggregate reporting data on emails
that pass all DMARC-supporting authentication checks is used by
Domain Owners to verify that authentication practices remain
accurate. For example, if a third party is sending on behalf of a
Domain Owner, the Domain Owner can use aggregate report data to
verify ongoing authentication practices of the third party.
Kucherawy & Zwicky Informational [Page 64]
^L
RFC 7489 DMARC March 2015
Data on email that only partially passes underlying authentication
checks provides visibility into problems that need to be addressed by
the Domain Owner. For example, if either SPF or DKIM fails to pass,
the Domain Owner is provided with enough information to either
directly correct the problem or understand where authentication-
breaking changes are being introduced in the email transmission path.
If authentication-breaking changes due to email transmission path
cannot be directly corrected, then the Domain Owner at least
maintains an understanding of the effect of DMARC-based policies upon
the Domain Owner's email.
Data on email that fails all underlying authentication checks
provides baseline visibility on how the Domain Owner's domain is
being received at the Mail Receiver. Based on this visibility, the
Domain Owner can begin deployment of authentication technologies
across uncovered email sources. Additionally, the Domain Owner may
come to an understanding of how its domain is being misused.
B.5. mailto Transport Example
A DMARC record can contain a "mailto" reporting address, such as:
mailto:dmarc-feedback@example.com
A sample aggregate report from the Mail Receiver at
mail.receiver.example follows:
DKIM-Signature: v=1; ...; d=mail.receiver.example; ...
From: dmarc-reporting@mail.receiver.example
Date: Fri, Feb 15 2002 16:54:30 -0800
To: dmarc-feedback@example.com
Subject: Report Domain: example.com
Submitter: mail.receiver.example
Report-ID: <2002.02.15.1>
MIME-Version: 1.0
Content-Type: multipart/alternative;
boundary="----=_NextPart_000_024E_01CC9B0A.AFE54C00"
Content-Language: en-us
This is a multipart message in MIME format.
------=_NextPart_000_024E_01CC9B0A.AFE54C00
Content-Type: text/plain; charset="us-ascii"
Content-Transfer-Encoding: 7bit
Kucherawy & Zwicky Informational [Page 65]
^L
RFC 7489 DMARC March 2015
This is an aggregate report from mail.receiver.example.
------=_NextPart_000_024E_01CC9B0A.AFE54C00
Content-Type: application/gzip
Content-Transfer-Encoding: base64
Content-Disposition: attachment;
filename="mail.receiver.example!example.com!
1013662812!1013749130.gz"
<gzipped content of report>
------=_NextPart_000_024E_01CC9B0A.AFE54C00--
Not shown in the above example is that the Mail Receiver's feedback
should be authenticated using SPF. Also, the value of the "filename"
MIME parameter is wrapped for printing in this specification but
would normally appear as one continuous string.
Appendix C. DMARC XML Schema
The following is the proposed initial schema for producing
XML-formatted aggregate reports as described in this document.
NOTE: Per the definition of XML, unless otherwise specified in the
schema below, the minOccurs and maxOccurs values for each element are
set to 1.
<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://dmarc.org/dmarc-xml/0.1">
<!-- The time range in UTC covered by messages in this report,
specified in seconds since epoch. -->
<xs:complexType name="DateRangeType">
<xs:all>
<xs:element name="begin" type="xs:integer"/>
<xs:element name="end" type="xs:integer"/>
</xs:all>
</xs:complexType>
<!-- Report generator metadata. -->
<xs:complexType name="ReportMetadataType">
<xs:sequence>
<xs:element name="org_name" type="xs:string"/>
<xs:element name="email" type="xs:string"/>
<xs:element name="extra_contact_info" type="xs:string"
minOccurs="0"/>
<xs:element name="report_id" type="xs:string"/>
Kucherawy & Zwicky Informational [Page 66]
^L
RFC 7489 DMARC March 2015
<xs:element name="date_range" type="DateRangeType"/>
<xs:element name="error" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<!-- Alignment mode (relaxed or strict) for DKIM and SPF. -->
<xs:simpleType name="AlignmentType">
<xs:restriction base="xs:string">
<xs:enumeration value="r"/>
<xs:enumeration value="s"/>
</xs:restriction>
</xs:simpleType>
<!-- The policy actions specified by p and sp in the
DMARC record. -->
<xs:simpleType name="DispositionType">
<xs:restriction base="xs:string">
<xs:enumeration value="none"/>
<xs:enumeration value="quarantine"/>
<xs:enumeration value="reject"/>
</xs:restriction>
</xs:simpleType>
<!-- The DMARC policy that applied to the messages in
this report. -->
<xs:complexType name="PolicyPublishedType">
<xs:all>
<!-- The domain at which the DMARC record was found. -->
<xs:element name="domain" type="xs:string"/>
<!-- The DKIM alignment mode. -->
<xs:element name="adkim" type="AlignmentType"
minOccurs="0"/>
<!-- The SPF alignment mode. -->
<xs:element name="aspf" type="AlignmentType"
minOccurs="0"/>
<!-- The policy to apply to messages from the domain. -->
<xs:element name="p" type="DispositionType"/>
<!-- The policy to apply to messages from subdomains. -->
<xs:element name="sp" type="DispositionType"/>
<!-- The percent of messages to which policy applies. -->
<xs:element name="pct" type="xs:integer"/>
<!-- Failure reporting options in effect. -->
<xs:element name="fo" type="xs:string"/>
</xs:all>
</xs:complexType>
Kucherawy & Zwicky Informational [Page 67]
^L
RFC 7489 DMARC March 2015
<!-- The DMARC-aligned authentication result. -->
<xs:simpleType name="DMARCResultType">
<xs:restriction base="xs:string">
<xs:enumeration value="pass"/>
<xs:enumeration value="fail"/>
</xs:restriction>
</xs:simpleType>
<!-- Reasons that may affect DMARC disposition or execution
thereof. -->
<xs:simpleType name="PolicyOverrideType">
<xs:restriction base="xs:string">
<xs:enumeration value="forwarded"/>
<xs:enumeration value="sampled_out"/>
<xs:enumeration value="trusted_forwarder"/>
<xs:enumeration value="mailing_list"/>
<xs:enumeration value="local_policy"/>
<xs:enumeration value="other"/>
</xs:restriction>
</xs:simpleType>
<!-- How do we allow report generators to include new
classes of override reasons if they want to be more
specific than "other"? -->
<xs:complexType name="PolicyOverrideReason">
<xs:all>
<xs:element name="type" type="PolicyOverrideType"/>
<xs:element name="comment" type="xs:string"
minOccurs="0"/>
</xs:all>
</xs:complexType>
<!-- Taking into account everything else in the record,
the results of applying DMARC. -->
<xs:complexType name="PolicyEvaluatedType">
<xs:sequence>
<xs:element name="disposition" type="DispositionType"/>
<xs:element name="dkim" type="DMARCResultType"/>
<xs:element name="spf" type="DMARCResultType"/>
<xs:element name="reason" type="PolicyOverrideReason"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
Kucherawy & Zwicky Informational [Page 68]
^L
RFC 7489 DMARC March 2015
<!-- Credit to Roger L. Costello for IPv4 regex
http://mailman.ic.ac.uk/pipermail/xml-dev/1999-December/
018018.html -->
<!-- Credit to java2s.com for IPv6 regex
http://www.java2s.com/Code/XML/XML-Schema/
IPv6addressesareeasiertodescribeusingasimpleregex.htm -->
<xs:simpleType name="IPAddress">
<xs:restriction base="xs:string">
<xs:pattern value="((1?[0-9]?[0-9]|2[0-4][0-9]|25[0-5]).){3}
(1?[0-9]?[0-9]|2[0-4][0-9]|25[0-5])|
([A-Fa-f0-9]{1,4}:){7}[A-Fa-f0-9]{1,4}"/>
</xs:restriction>
</xs:simpleType>
<xs:complexType name="RowType">
<xs:all>
<!-- The connecting IP. -->
<xs:element name="source_ip" type="IPAddress"/>
<!-- The number of matching messages. -->
<xs:element name="count" type="xs:integer"/>
<!-- The DMARC disposition applying to matching
messages. -->
<xs:element name="policy_evaluated"
type="PolicyEvaluatedType"
minOccurs="1"/>
</xs:all>
</xs:complexType>
<xs:complexType name="IdentifierType">
<xs:all>
<!-- The envelope recipient domain. -->
<xs:element name="envelope_to" type="xs:string"
minOccurs="0"/>
<!-- The RFC5321.MailFrom domain. -->
<xs:element name="envelope_from" type="xs:string"
minOccurs="1"/>
<!-- The RFC5322.From domain. -->
<xs:element name="header_from" type="xs:string"
minOccurs="1"/>
</xs:all>
</xs:complexType>
<!-- DKIM verification result, according to RFC 7001
Section 2.6.1. -->
<xs:simpleType name="DKIMResultType">
<xs:restriction base="xs:string">
<xs:enumeration value="none"/>
<xs:enumeration value="pass"/>
Kucherawy & Zwicky Informational [Page 69]
^L
RFC 7489 DMARC March 2015
<xs:enumeration value="fail"/>
<xs:enumeration value="policy"/>
<xs:enumeration value="neutral"/>
<xs:enumeration value="temperror"/>
<xs:enumeration value="permerror"/>
</xs:restriction>
</xs:simpleType>
<xs:complexType name="DKIMAuthResultType">
<xs:all>
<!-- The "d=" parameter in the signature. -->
<xs:element name="domain" type="xs:string"
minOccurs="1"/>
<!-- The "s=" parameter in the signature. -->
<xs:element name="selector" type="xs:string"
minOccurs="0"/>
<!-- The DKIM verification result. -->
<xs:element name="result" type="DKIMResultType"
minOccurs="1"/>
<!-- Any extra information (e.g., from
Authentication-Results). -->
<xs:element name="human_result" type="xs:string"
minOccurs="0"/>
</xs:all>
</xs:complexType>
<!-- SPF domain scope. -->
<xs:simpleType name="SPFDomainScope">
<xs:restriction base="xs:string">
<xs:enumeration value="helo"/>
<xs:enumeration value="mfrom"/>
</xs:restriction>
</xs:simpleType>
<!-- SPF result. -->
<xs:simpleType name="SPFResultType">
<xs:restriction base="xs:string">
<xs:enumeration value="none"/>
<xs:enumeration value="neutral"/>
<xs:enumeration value="pass"/>
<xs:enumeration value="fail"/>
<xs:enumeration value="softfail"/>
<!-- "TempError" commonly implemented as "unknown". -->
<xs:enumeration value="temperror"/>
<!-- "PermError" commonly implemented as "error". -->
<xs:enumeration value="permerror"/>
</xs:restriction>
</xs:simpleType>
Kucherawy & Zwicky Informational [Page 70]
^L
RFC 7489 DMARC March 2015
<xs:complexType name="SPFAuthResultType">
<xs:all>
<!-- The checked domain. -->
<xs:element name="domain" type="xs:string" minOccurs="1"/>
<!-- The scope of the checked domain. -->
<xs:element name="scope" type="SPFDomainScope" minOccurs="1"/>
<!-- The SPF verification result. -->
<xs:element name="result" type="SPFResultType"
minOccurs="1"/>
</xs:all>
</xs:complexType>
<!-- This element contains DKIM and SPF results, uninterpreted
with respect to DMARC. -->
<xs:complexType name="AuthResultType">
<xs:sequence>
<!-- There may be no DKIM signatures, or multiple DKIM
signatures. -->
<xs:element name="dkim" type="DKIMAuthResultType"
minOccurs="0" maxOccurs="unbounded"/>
<!-- There will always be at least one SPF result. -->
<xs:element name="spf" type="SPFAuthResultType" minOccurs="1"
maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<!-- This element contains all the authentication results that
were evaluated by the receiving system for the given set of
messages. -->
<xs:complexType name="RecordType">
<xs:sequence>
<xs:element name="row" type="RowType"/>
<xs:element name="identifiers" type="IdentifierType"/>
<xs:element name="auth_results" type="AuthResultType"/>
</xs:sequence>
</xs:complexType>
<!-- Parent -->
<xs:element name="feedback">
<xs:complexType>
<xs:sequence>
<xs:element name="version"
type="xs:decimal"/>
<xs:element name="report_metadata"
type="ReportMetadataType"/>
<xs:element name="policy_published"
type="PolicyPublishedType"/>
Kucherawy & Zwicky Informational [Page 71]
^L
RFC 7489 DMARC March 2015
<xs:element name="record" type="RecordType"
maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>
Descriptions of the PolicyOverrideTypes:
forwarded: The message was relayed via a known forwarder, or local
heuristics identified the message as likely having been forwarded.
There is no expectation that authentication would pass.
local_policy: The Mail Receiver's local policy exempted the message
from being subjected to the Domain Owner's requested policy
action.
mailing_list: Local heuristics determined that the message arrived
via a mailing list, and thus authentication of the original
message was not expected to succeed.
other: Some policy exception not covered by the other entries in
this list occurred. Additional detail can be found in the
PolicyOverrideReason's "comment" field.
sampled_out: The message was exempted from application of policy by
the "pct" setting in the DMARC policy record.
trusted_forwarder: Message authentication failure was anticipated by
other evidence linking the message to a locally maintained list of
known and trusted forwarders.
The "version" for reports generated per this specification MUST be
the value 1.0.
Kucherawy & Zwicky Informational [Page 72]
^L
RFC 7489 DMARC March 2015
Acknowledgements
DMARC and the draft version of this document submitted to the
Independent Submission Editor were the result of lengthy efforts by
an informal industry consortium: DMARC.org (see <http://dmarc.org>).
Participating companies included Agari, American Greetings, AOL, Bank
of America, Cloudmark, Comcast, Facebook, Fidelity Investments,
Google, JPMorgan Chase & Company, LinkedIn, Microsoft, Netease,
PayPal, ReturnPath, The Trusted Domain Project, and Yahoo!. Although
the contributors and supporters are too numerous to mention, notable
individual contributions were made by J. Trent Adams, Michael Adkins,
Monica Chew, Dave Crocker, Tim Draegen, Steve Jones, Franck Martin,
Brett McDowell, and Paul Midgen. The contributors would also like to
recognize the invaluable input and guidance that was provided early
on by J.D. Falk.
Additional contributions within the IETF context were made by Kurt
Anderson, Michael Jack Assels, Les Barstow, Anne Bennett, Jim Fenton,
J. Gomez, Mike Jones, Scott Kitterman, Eliot Lear, John Levine,
S. Moonesamy, Rolf Sonneveld, Henry Timmes, and Stephen J. Turnbull.
Authors' Addresses
Murray S. Kucherawy (editor)
EMail: superuser@gmail.com
Elizabeth Zwicky (editor)
Yahoo!
EMail: zwicky@yahoo-inc.com
Kucherawy & Zwicky Informational [Page 73]
^L
|