summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc7501.txt
blob: 411f9f23e597d07ec4e4c56ac6be18dcc6f920fd (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
Internet Engineering Task Force (IETF)                         C. Davids
Request for Comments: 7501              Illinois Institute of Technology
Category: Informational                                       V. Gurbani
ISSN: 2070-1721                        Bell Laboratories, Alcatel-Lucent
                                                             S. Poretsky
                                                    Allot Communications
                                                              April 2015


Terminology for Benchmarking Session Initiation Protocol (SIP) Devices:
                  Basic Session Setup and Registration

Abstract

   This document provides a terminology for benchmarking the Session
   Initiation Protocol (SIP) performance of devices.  Methodology
   related to benchmarking SIP devices is described in the companion
   methodology document (RFC 7502).  Using these two documents,
   benchmarks can be obtained and compared for different types of
   devices such as SIP Proxy Servers, Registrars, and Session Border
   Controllers.  The term "performance" in this context means the
   capacity of the Device Under Test (DUT) to process SIP messages.
   Media streams are used only to study how they impact the signaling
   behavior.  The intent of the two documents is to provide a normalized
   set of tests that will enable an objective comparison of the capacity
   of SIP devices.  Test setup parameters and a methodology are
   necessary because SIP allows a wide range of configurations and
   operational conditions that can influence performance benchmark
   measurements.  A standard terminology and methodology will ensure
   that benchmarks have consistent definitions and were obtained
   following the same procedures.

Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for informational purposes.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Not all documents
   approved by the IESG are a candidate for any level of Internet
   Standard; see Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc7501.




Davids, et al.                Informational                     [Page 1]
^L
RFC 7501              SIP Benchmarking Terminology            April 2015


Copyright Notice

   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.





































Davids, et al.                Informational                     [Page 2]
^L
RFC 7501              SIP Benchmarking Terminology            April 2015


Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
     1.1.  Scope . . . . . . . . . . . . . . . . . . . . . . . . . .   5
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   6
   3.  Term Definitions  . . . . . . . . . . . . . . . . . . . . . .   7
     3.1.  Protocol Components . . . . . . . . . . . . . . . . . . .   7
       3.1.1.  Session . . . . . . . . . . . . . . . . . . . . . . .   7
       3.1.2.  Signaling Plane . . . . . . . . . . . . . . . . . . .   8
       3.1.3.  Media Plane . . . . . . . . . . . . . . . . . . . . .   8
       3.1.4.  Associated Media  . . . . . . . . . . . . . . . . . .   9
       3.1.5.  Overload  . . . . . . . . . . . . . . . . . . . . . .   9
       3.1.6.  Session Attempt . . . . . . . . . . . . . . . . . . .  10
       3.1.7.  Established Session . . . . . . . . . . . . . . . . .  10
       3.1.8.  Session Attempt Failure . . . . . . . . . . . . . . .  11
     3.2.  Test Components . . . . . . . . . . . . . . . . . . . . .  11
       3.2.1.  Emulated Agent  . . . . . . . . . . . . . . . . . . .  11
       3.2.2.  Signaling Server  . . . . . . . . . . . . . . . . . .  12
       3.2.3.  SIP Transport Protocol  . . . . . . . . . . . . . . .  12
     3.3.  Test Setup Parameters . . . . . . . . . . . . . . . . . .  13
       3.3.1.  Session Attempt Rate  . . . . . . . . . . . . . . . .  13
       3.3.2.  Establishment Threshold Time  . . . . . . . . . . . .  13
       3.3.3.  Session Duration  . . . . . . . . . . . . . . . . . .  14
       3.3.4.  Media Packet Size . . . . . . . . . . . . . . . . . .  14
       3.3.5.  Codec Type  . . . . . . . . . . . . . . . . . . . . .  15
     3.4.  Benchmarks  . . . . . . . . . . . . . . . . . . . . . . .  15
       3.4.1.  Session Establishment Rate  . . . . . . . . . . . . .  15
       3.4.2.  Registration Rate . . . . . . . . . . . . . . . . . .  16
       3.4.3.  Registration Attempt Rate . . . . . . . . . . . . . .  17
   4.  Security Considerations . . . . . . . . . . . . . . . . . . .  17
   5.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  18
     5.1.  Normative References  . . . . . . . . . . . . . . . . . .  18
     5.2.  Informative References  . . . . . . . . . . . . . . . . .  18
   Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .  19
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  20

1.  Introduction

   Service Providers and IT organizations deliver Voice Over IP (VoIP)
   and multimedia network services based on the IETF Session Initiation
   Protocol (SIP) [RFC3261].  SIP is a signaling protocol originally
   intended to be used to dynamically establish, disconnect, and modify
   streams of media between end users.  As it has evolved, it has been
   adopted for use in a growing number of services and applications.
   Many of these result in the creation of a media session, but some do
   not.  Examples of this latter group include text messaging and
   subscription services.  The set of benchmarking terms provided in
   this document is intended for use with any SIP-enabled device



Davids, et al.                Informational                     [Page 3]
^L
RFC 7501              SIP Benchmarking Terminology            April 2015


   performing SIP functions in the interior of the network, whether or
   not these result in the creation of media sessions.  The performance
   of end-user devices is outside the scope of this document.

   A number of networking devices have been developed to support SIP-
   based VoIP services.  These include SIP servers, Session Border
   Controllers (SBCs), and Back-to-back User Agents (B2BUAs).  These
   devices contain a mix of voice and IP functions whose performance may
   be reported using metrics defined by the equipment manufacturer or
   vendor.  The Service Provider or IT organization seeking to compare
   the performance of such devices will not be able to do so using these
   vendor-specific metrics, whose conditions of test and algorithms for
   collection are often unspecified.

   SIP functional elements and the devices that include them can be
   configured many different ways and can be organized into various
   topologies.  These configuration and topological choices impact the
   value of any chosen signaling benchmark.  Unless these conditions of
   test are defined, a true comparison of performance metrics across
   multiple vendor implementations will not be possible.

   Some SIP-enabled devices terminate or relay media as well as
   signaling.  The processing of media by the device impacts the
   signaling performance.  As a result, the conditions of test must
   include information as to whether or not the Device Under Test
   processes media.  If the device processes media during the test, a
   description of the media must be provided.  This document and its
   companion methodology document [RFC7502] provide a set of black-box
   benchmarks for describing and comparing the performance of devices
   that incorporate the SIP User Agent Client and Server functions and
   that operate in the network's core.

   The definition of SIP performance benchmarks necessarily includes
   definitions of Test Setup Parameters and a test methodology.  These
   enable the Tester to perform benchmarking tests on different devices
   and to achieve comparable results.  This document provides a common
   set of definitions for Test Components, Test Setup Parameters, and
   Benchmarks.  All the benchmarks defined are black-box measurements of
   the SIP signaling plane.  The Test Setup Parameters and Benchmarks
   defined in this document are intended for use with the companion
   methodology document.










Davids, et al.                Informational                     [Page 4]
^L
RFC 7501              SIP Benchmarking Terminology            April 2015


1.1.  Scope

   The scope of this document is summarized as follows:

   o  This terminology document describes SIP signaling performance
      benchmarks for black-box measurements of SIP networking devices.
      Stress conditions and debugging scenarios are not addressed in
      this document.

   o  The DUT must be network equipment that is RFC 3261 capable.  This
      may be a Registrar, Redirect Server, or Stateful Proxy.  This
      document does not require the intermediary to assume the role of a
      stateless proxy.  A DUT may also act as a B2BUA or take the role
      of an SBC.

   o  The Tester acts as multiple Emulated Agents (EAs) that initiate
      (or respond to) SIP messages as session endpoints and source (or
      receive) associated media for established connections.

   o  Regarding SIP signaling in presence of media:

      *  The media performance is not benchmarked.

      *  Some tests require media, but the use of media is limited to
         observing the performance of SIP signaling.  Tests that require
         media will annotate the media characteristics as a condition of
         test.

      *  The type of DUT dictates whether the associated media streams
         traverse the DUT.  Both scenarios are within the scope of this
         document.

      *  SIP is frequently used to create media streams; the signaling
         plane and media plane are treated as orthogonal to each other
         in this document.  While many devices support the creation of
         media streams, benchmarks that measure the performance of these
         streams are outside the scope of this document and its
         companion methodology document [RFC7502].  Tests may be
         performed with or without the creation of media streams.  The
         presence or absence of media streams MUST be noted as a
         condition of the test, as the performance of SIP devices may
         vary accordingly.  Even if the media is used during
         benchmarking, only the SIP performance will be benchmarked, not
         the media performance or quality.

   o  Both INVITE and non-INVITE scenarios (registrations) are addressed
      in this document.  However, benchmarking SIP presence or
      subscribe-notify extensions is not a part of this document.



Davids, et al.                Informational                     [Page 5]
^L
RFC 7501              SIP Benchmarking Terminology            April 2015


   o  Different transport -- such as UDP, TCP, SCTP, or TLS -- may be
      used.  The specific transport mechanism MUST be noted as a
      condition of the test, as the performance of SIP devices may vary
      accordingly.

   o  REGISTER and INVITE requests may be challenged or remain
      unchallenged for authentication purposes.  Whether or not the
      REGISTER and INVITE requests are challenged is a condition of test
      that will be recorded along with other such parameters that may
      impact the SIP performance of the device or system under test.

   o  Re-INVITE requests are not considered within the scope of this
      document since the benchmarks for INVITEs are based on the dialog
      created by the INVITE and not on the transactions that take place
      within that dialog.

   o  Only session establishment is considered for the performance
      benchmarks.  Session disconnect is not considered within the scope
      of this document.  This is because our goal is to determine the
      maximum capacity of the device or system under test, that is, the
      number of simultaneous SIP sessions that the device or system can
      support.  It is true that there are BYE requests being created
      during the test process.  These transactions do contribute to the
      load on the device or system under test and thus are accounted for
      in the metric we derive.  We do not seek a separate metric for the
      number of BYE transactions a device or system can support.

   o  Scenarios that are specific to the IP Multimedia Subsystem (IMS)
      are not considered, but test cases can be applied with 3GPP-
      specific SIP signaling and the Proxy-Call Session Control Function
      (P-CSCF) as a DUT.

   o  The benchmarks described in this document are intended for a
      laboratory environment and are not intended to be used on a
      production network.  Some of the benchmarks send enough traffic
      that a denial-of-service attack is possible if used in production
      networks.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in BCP 14, RFC2119
   [RFC2119].  RFC 2119 defines the use of these key words to help make
   the intent of Standards Track documents as clear as possible.  While
   this document uses these keywords, this document is not a Standards
   Track document.




Davids, et al.                Informational                     [Page 6]
^L
RFC 7501              SIP Benchmarking Terminology            April 2015


   For the sake of clarity and continuity, this document adopts the
   template for definitions set out in Section 2 of RFC 1242 [RFC1242].

   The term "Device Under Test (DUT)" is defined in Section 3.1.1 of RFC
   2285 [RFC2285].

   Many commonly used SIP terms in this document are defined in RFC 3261
   [RFC3261].  For convenience, the most important of these are
   reproduced below.  Use of these terms in this document is consistent
   with their corresponding definition in the base SIP specification
   [RFC3261] as amended by [RFC4320], [RFC5393], and [RFC6026].

   o  Call Stateful: A proxy is call stateful if it retains state for a
      dialog from the initiating INVITE to the terminating BYE request.
      A call stateful proxy is always transaction stateful, but the
      converse is not necessarily true.

   o  Stateful Proxy: A logical entity, as defined by [RFC3261], that
      maintains the client and server transaction state machines during
      the processing of a request.  (Also known as a transaction
      stateful proxy.)  The behavior of a stateful proxy is further
      defined in Section 16 of RFC 3261 [RFC3261] .  A transaction
      stateful proxy is not the same as a call stateful proxy.

   o  Back-to-Back User Agent: A back-to-back user agent (B2BUA) is a
      logical entity that receives a request and processes it as a user
      agent server (UAS).  In order to determine how the request should
      be answered, it acts as a user agent client (UAC) and generates
      requests.  Unlike a proxy server, it maintains dialog state and
      must participate in all requests sent on the dialogs it has
      established.  Since it is a concatenation of a UAC and a UAS, no
      explicit definitions are needed for its behavior.

3.  Term Definitions

3.1.  Protocol Components

3.1.1.  Session

   Definition:
      The combination of signaling and media messages and associated
      processing that enable a single SIP-based audio or video call, or
      SIP registration.

   Discussion:
      The term "session" commonly implies a media session.  In this
      document the term is extended to cover the signaling and any media
      specified and invoked by the corresponding signaling.



Davids, et al.                Informational                     [Page 7]
^L
RFC 7501              SIP Benchmarking Terminology            April 2015


   Measurement Units:
      N/A.

   Issues:
      None.

   See Also:
      Media Plane
      Signaling Plane
      Associated Media

3.1.2.  Signaling Plane

   Definition:
      The plane in which SIP messages [RFC3261] are exchanged between
      SIP agents [RFC3261].

   Discussion:
      SIP messages are used to establish sessions in several ways:
      directly between two User Agents [RFC3261], through a Proxy Server
      [RFC3261], or through a series of Proxy Servers.  The Session
      Description Protocol (SDP) is included in the Signaling Plane.

   Measurement Units:
      N/A.

   Issues:
      None.

   See Also:
      Media Plane
      Emulated Agent

3.1.3.  Media Plane

   Definition:
      The data plane in which one or more media streams and their
      associated media control protocols (e.g., RTCP [RFC3550]) are
      exchanged between User Agents after a media connection has been
      created by the exchange of signaling messages in the Signaling
      Plane.

   Discussion:
      Media may also be known as the "bearer channel".  The Media Plane
      MUST include the media control protocol, if one is used, and the
      media stream(s).  Examples of media are audio and video.  The
      media streams are described in the SDP of the Signaling Plane.




Davids, et al.                Informational                     [Page 8]
^L
RFC 7501              SIP Benchmarking Terminology            April 2015


   Measurement Units:
      N/A.

   Issues:
      None.

   See Also:
      Signaling Plane

3.1.4.  Associated Media

   Definition:
      Media that corresponds to an 'm' line in the SDP payload of the
      Signaling Plane.

   Discussion:
      The format of the media is determined by the SDP attributes for
      the corresponding 'm' line.

   Measurement Units:
      N/A.

   Issues:
      None.

3.1.5.  Overload

   Definition:
      Overload is defined as the state where a SIP server does not have
      sufficient resources to process all incoming SIP messages
      [RFC6357].

   Discussion:
      The distinction between an overload condition and other failure
      scenarios is outside the scope of black-box testing and of this
      document.  Under overload conditions, all or a percentage of
      Session Attempts will fail due to lack of resources.  In black-box
      testing, the cause of the failure is not explored.  The fact that
      a failure occurred for whatever reason will trigger the tester to
      reduce the offered load, as described in the companion methodology
      document [RFC7502].  SIP server resources may include CPU
      processing capacity, network bandwidth, input/output queues, or
      disk resources.  Any combination of resources may be fully
      utilized when a SIP server (the DUT) is in the overload condition.
      For proxy-only (or intermediary) devices, it is expected that the
      proxy will be driven into overload based on the delivery rate of
      signaling requests.




Davids, et al.                Informational                     [Page 9]
^L
RFC 7501              SIP Benchmarking Terminology            April 2015


   Measurement Units:
      N/A.

3.1.6.  Session Attempt

   Definition:
      A SIP INVITE or REGISTER request sent by the EA that has not
      received a final response.

   Discussion:
      The attempted session may be either an invitation to an audio/
      video communication or a registration attempt.  When counting the
      number of session attempts, we include all requests that are
      rejected for lack of authentication information.  The EA needs to
      record the total number of session attempts including those
      attempts that are routinely rejected by a proxy that requires the
      UA to authenticate itself.  The EA is provisioned to deliver a
      specific number of session attempts per second.  But the EA must
      also count the actual number of session attempts per given time
      interval.

   Measurement Units:
      N/A.

   Issues:
      None.

   See Also:
      Session
      Session Attempt Rate

3.1.7.  Established Session

   Definition:
      A SIP session for which the EA acting as the UA has received a 200
      OK message.

   Discussion:
      An Established Session may be either an invitation to an audio/
      video communication or a registration attempt.  Early dialogs for
      INVITE requests are out of scope for this work.

   Measurement Units:
      N/A.

   Issues:
      None.




Davids, et al.                Informational                    [Page 10]
^L
RFC 7501              SIP Benchmarking Terminology            April 2015


   See Also:
      None.

3.1.8.  Session Attempt Failure

   Definition:
      A session attempt that does not result in an Established Session.

   Discussion:
      The session attempt failure may be indicated by the following
      observations at the EA:

      1.  Receipt of a SIP 3xx-, 4xx-, 5xx-, or 6xx-class response to a
          Session Attempt.
      2.  The lack of any received SIP response to a Session Attempt
          within the Establishment Threshold Time (cf. Section 3.3.2).

   Measurement Units:
      N/A.

   Issues:
      None.

   See Also:
      Session Attempt

3.2.  Test Components

3.2.1.  Emulated Agent

   Definition:
      A device in the test topology that initiates/responds to SIP
      messages as one or more session endpoints and, wherever
      applicable, sources/receives Associated Media for Established
      Sessions.

   Discussion:
      The EA functions in the Signaling and Media Planes.  The Tester
      may act as multiple EAs.

   Measurement Units:
      N/A.

   Issues:
      None.






Davids, et al.                Informational                    [Page 11]
^L
RFC 7501              SIP Benchmarking Terminology            April 2015


   See Also:
      Media Plane
      Signaling Plane
      Established Session
      Associated Media

3.2.2.  Signaling Server

   Definition:
      Device in the test topology that facilitates the creation of
      sessions between EAs.  This device is the DUT.

   Discussion:
      The DUT is a network intermediary that is RFC 3261 capable such as
      a Registrar, Redirect Server, Stateful Proxy, B2BUA, or SBC.

   Measurement Units:
      N/A.

   Issues:
      None.

   See Also:
      Signaling Plane

3.2.3.  SIP Transport Protocol

   Definition:
      The protocol used for transport of the Signaling Plane messages.

   Discussion:
      Performance benchmarks may vary for the same SIP networking device
      depending upon whether TCP, UDP, TLS, SCTP, websockets [RFC7118],
      or any future transport-layer protocol is used.  For this reason,
      it is necessary to measure the SIP Performance Benchmarks using
      these various transport protocols.  Performance Benchmarks MUST
      report the SIP Transport Protocol used to obtain the benchmark
      results.

   Measurement Units:
      While these are not units of measure, they are attributes that are
      one of many factors that will contribute to the value of the
      measurements to be taken.  TCP, UDP, SCTP, TLS over TCP, TLS over
      UDP, TLS over SCTP, and websockets are among the possible values
      to be recorded as part of the test.

   Issues:
      None.



Davids, et al.                Informational                    [Page 12]
^L
RFC 7501              SIP Benchmarking Terminology            April 2015


   See Also:
      None.

3.3.  Test Setup Parameters

3.3.1.  Session Attempt Rate

   Definition:
      Configuration of the EA for the number of sessions per second
      (sps) that the EA attempts to establish using the services of the
      DUT.

   Discussion:
      The Session Attempt Rate is the number of sessions per second that
      the EA sends toward the DUT.  Some of the sessions attempted may
      not result in a session being established.

   Measurement Units:
      Session Attempts per second

   Issues:
      None.

   See Also:
      Session
      Session Attempt

3.3.2.  Establishment Threshold Time

   Definition:
      Configuration of the EA that represents the amount of time that an
      EA client will wait for a response from an EA server before
      declaring a Session Attempt Failure.

   Discussion:
      This time duration is test dependent.

      It is RECOMMENDED that the Establishment Threshold Time value be
      set to Timer B or Timer F as specified in RFC 3261, Table 4
      [RFC3261].

   Measurement Units:
      seconds

   Issues:
      None.





Davids, et al.                Informational                    [Page 13]
^L
RFC 7501              SIP Benchmarking Terminology            April 2015


   See Also:
      None.

3.3.3.  Session Duration

   Definition:
      Configuration of the EA that represents the amount of time that
      the SIP dialog is intended to exist between the two EAs associated
      with the test.

   Discussion:
      The time at which the BYE is sent will control the Session
      Duration.

   Measurement Units:
      seconds

   Issues:
      None.

   See Also:
      None.

3.3.4.  Media Packet Size

   Definition:
      Configuration on the EA for a fixed number of frames or samples to
      be sent in each RTP packet of the media stream when the test
      involves Associated Media.

   Discussion:
      This document describes a method to measure SIP performance.  If
      the DUT is processing media as well as SIP messages the media
      processing will potentially slow down the SIP processing and lower
      the SIP performance metric.  The tests with associated media are
      designed for audio codecs, and the assumption was made that larger
      media packets would require more processor time.  This document
      does not define parameters applicable to video codecs.

      For a single benchmark test, media sessions use a defined number
      of samples or frames per RTP packet.  If two SBCs, for example,
      used the same codec but one puts more frames into the RTP packet,
      this might cause variation in the performance benchmark results.

   Measurement Units:
      An integer number of frames or samples, depending on whether a
      hybrid- or sample-based codec is used, respectively.




Davids, et al.                Informational                    [Page 14]
^L
RFC 7501              SIP Benchmarking Terminology            April 2015


   Issues:
      None.

   See Also:
      None.

3.3.5.  Codec Type

   Definition:
      The name of the codec used to generate the media session.

   Discussion:
      For a single benchmark test, all sessions use the same size packet
      for media streams.  The size of packets can cause a variation in
      the performance benchmark measurements.

   Measurement Units:
      This is a textual name (alphanumeric) assigned to uniquely
      identify the codec.

   Issues:
      None.
   See Also:
      None.

3.4.  Benchmarks

3.4.1.  Session Establishment Rate

   Definition:
      The maximum value of the Session Attempt Rate that the DUT can
      handle for an extended, predefined period with zero failures.

   Discussion:
      This benchmark is obtained with zero failure.  The Session Attempt
      Rate provisioned on the EA is raised and lowered as described in
      the algorithm in the accompanying methodology document [RFC7502],
      until a traffic load over the period of time necessary to attempt
      N sessions completes without failure, where N is a parameter
      specified in the algorithm and recorded in the Test Setup Report.

   Measurement Units:
      sessions per second (sps)

   Issues:
      None.





Davids, et al.                Informational                    [Page 15]
^L
RFC 7501              SIP Benchmarking Terminology            April 2015


   See Also:
      Session Attempt Rate

3.4.2.  Registration Rate

   Definition:
      The maximum value of the Registration Attempt Rate that the DUT
      can handle for an extended, predefined period with zero failures.

   Discussion:
      This benchmark is obtained with zero failures.  The registration
      rate provisioned on the Emulated Agent is raised and lowered as
      described in the algorithm in the companion methodology document
      [RFC7502], until a traffic load consisting of registration
      attempts at the given attempt rate over the period of time
      necessary to attempt N registrations completes without failure,
      where N is a parameter specified in the algorithm and recorded in
      the Test Setup Report.

      This benchmark is described separately from the Session
      Establishment Rate (Section 3.4.1), although it could be
      considered a special case of that benchmark, since a REGISTER
      request is a request for a session that is not initiated by an
      INVITE request.  It is defined separately because it is a very
      important benchmark for most SIP installations.  An example
      demonstrating its use is an avalanche restart, where hundreds of
      thousands of endpoints register simultaneously following a power
      outage.  In such a case, an authoritative measurement of the
      capacity of the device to register endpoints is useful to the
      network designer.  Additionally, in certain controlled networks,
      there appears to be a difference between the registration rate of
      new endpoints and the registering rate of existing endpoints
      (register refreshes).  This benchmark can capture these
      differences as well.

   Measurement Units:
      registrations per second (rps)

   Issues:
      None.

   See Also:
      None.








Davids, et al.                Informational                    [Page 16]
^L
RFC 7501              SIP Benchmarking Terminology            April 2015


3.4.3.  Registration Attempt Rate

   Definition:
      Configuration of the EA for the number of registrations per second
      that the EA attempts to send to the DUT.

   Discussion:
      The Registration Attempt Rate is the number of registration
      requests per second that the EA sends toward the DUT.

   Measurement Units:
      registrations per second (rps)

   Issues:
      None.

   See Also:
      None.

4.  Security Considerations

   Documents of this type do not directly affect the security of the
   Internet or corporate networks as long as benchmarking is not
   performed on devices or systems connected to production networks.
   Security threats and how to counter these in SIP and the media layer
   are discussed in RFC 3261 [RFC3261], RFC 3550 [RFC3550], and RFC 3711
   [RFC3711].  This document attempts to formalize a set of common
   terminology for benchmarking SIP networks.  Packets with unintended
   and/or unauthorized DSCP or IP precedence values may present security
   issues.  Determining the security consequences of such packets is out
   of scope for this document.




















Davids, et al.                Informational                    [Page 17]
^L
RFC 7501              SIP Benchmarking Terminology            April 2015


5.  References

5.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997,
              <http://www.rfc-editor.org/info/rfc2119>.

   [RFC3261]  Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
              A., Peterson, J., Sparks, R., Handley, M., and E.
              Schooler, "SIP: Session Initiation Protocol", RFC 3261,
              June 2002, <http://www.rfc-editor.org/info/rfc3261>.

   [RFC5393]  Sparks, R., Ed., Lawrence, S., Hawrylyshen, A., and B.
              Campen, "Addressing an Amplification Vulnerability in
              Session Initiation Protocol (SIP) Forking Proxies", RFC
              5393, December 2008,
              <http://www.rfc-editor.org/info/rfc5393>.

   [RFC4320]  Sparks, R., "Actions Addressing Identified Issues with the
              Session Initiation Protocol's (SIP) Non-INVITE
              Transaction", RFC 4320, January 2006,
              <http://www.rfc-editor.org/info/rfc4320>.

   [RFC6026]  Sparks, R. and T. Zourzouvillys, "Correct Transaction
              Handling for 2xx Responses to Session Initiation Protocol
              (SIP) INVITE Requests", RFC 6026, September 2010,
              <http://www.rfc-editor.org/info/rfc6026>.

   [RFC7502]  Davids, C., Gurbani, V., and S. Poretsky, "Terminology for
              Benchmarking Session Initiation Protocol (SIP) Devices:
              Basic Session Setup and Registration", RFC 7502, April
              2015, <http://www.rfc-editor.org/info/rfc7502>.

5.2.  Informative References

   [RFC2285]  Mandeville, R., "Benchmarking Terminology for LAN
              Switching Devices", RFC 2285, February 1998,
              <http://www.rfc-editor.org/info/rfc2285>.

   [RFC1242]  Bradner, S., "Benchmarking Terminology for Network
              Interconnection Devices", RFC 1242, July 1991,
              <http://www.rfc-editor.org/info/rfc1242>.

   [RFC3550]  Schulzrinne, H., Casner, S., Frederick, R., and V.
              Jacobson, "RTP: A Transport Protocol for Real-Time
              Applications", STD 64, RFC 3550, July 2003,
              <http://www.rfc-editor.org/info/rfc3550>.



Davids, et al.                Informational                    [Page 18]
^L
RFC 7501              SIP Benchmarking Terminology            April 2015


   [RFC3711]  Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
              Norrman, "The Secure Real-time Transport Protocol (SRTP)",
              RFC 3711, March 2004,
              <http://www.rfc-editor.org/info/rfc3711>.

   [RFC6357]  Hilt, V., Noel, E., Shen, C., and A. Abdelal, "Design
              Considerations for Session Initiation Protocol (SIP)
              Overload Control", RFC 6357, August 2011,
              <http://www.rfc-editor.org/info/rfc6357>.

   [RFC7118]  Baz Castillo, I., Millan Villegas, J., and V. Pascual,
              "The WebSocket Protocol as a Transport for the Session
              Initiation Protocol (SIP)", RFC 7118, January 2014,
              <http://www.rfc-editor.org/info/rfc7118>.

Acknowledgments

   The authors would like to thank Keith Drage, Cullen Jennings, Daryl
   Malas, Al Morton, and Henning Schulzrinne for invaluable
   contributions to this document.  Dale Worley provided an extensive
   review that lead to improvements in the documents.  We are grateful
   to Barry Constantine, William Cerveny, and Robert Sparks for
   providing valuable comments during the documents' last calls and
   expert reviews.  Al Morton and Sarah Banks have been exemplary
   working group chairs; we thank them for tracking this work to
   completion.

























Davids, et al.                Informational                    [Page 19]
^L
RFC 7501              SIP Benchmarking Terminology            April 2015


Authors' Addresses

   Carol Davids
   Illinois Institute of Technology
   201 East Loop Road
   Wheaton, IL  60187
   United States

   Phone: +1 630 682 6024
   EMail: davids@iit.edu


   Vijay K. Gurbani
   Bell Laboratories, Alcatel-Lucent
   1960 Lucent Lane
   Rm 9C-533
   Naperville, IL  60566
   United States

   Phone: +1 630 224 0216
   EMail: vkg@bell-labs.com


   Scott Poretsky
   Allot Communications
   300 TradeCenter, Suite 4680
   Woburn, MA  08101
   United States

   Phone: +1 508 309 2179
   EMail: sporetsky@allot.com




















Davids, et al.                Informational                    [Page 20]
^L